A Graph $G = (V, E)$ has two natural parameters:

- Number of nodes. $n = |V|$;
- Number of edges. $m = |E|$.

Running time/Space required will be given in terms of both of these two parameters.
Graph Representation: Adjacency Matrix

Adjacency Matrix. For a graph G with n vertices, is a $n \times n$ matrix with $A[u, v] = 1$ if (u, v) is an edge.

- Each edge is mentioned twice in the matrix when G is undirected, i.e., the matrix is symmetric.

Properties:

1. **Search/Delete.** Checking if (u, v) is an edge takes $\Theta(1)$ time.
2. **Storage.** Space required is $\Theta(n^2)$—when the G has many fewer edges more compact representations are possible.
3. **They are not efficient to check all incident edges which takes $\Theta(n)$ time.**
Graph Representation: Adjacency Matrix

The graph shown in the diagram has the following adjacency matrix:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Each entry \(A_{uv} = 1 \) indicates that there is an edge between vertices \(u \) and \(v \). The graph contains edges between vertices 1 and 2, 2 and 3, 3 and 4, 3 and 5, and 5 and 6.
Graph Representation: Adjacency List

Adjacency list. Vertex-indexed array of lists.

- The array Adj when indexed with a vertex v, $\text{Adj}[v]$, is a pointer to the list of all vertices adjacent to v.
- Each edge is mentioned twice (when G is undirected).

Properties:

1. **Search/Delete.** Checking if (u, v) is an edge takes $\Theta(\deg(u))$ time.
2. **Storage.** Space is $\Theta(m + n)$: Since each edge appears twice, and $2 \cdot m \in O(m)$, and we need an array of n pointers to initialize Adj.
 - **Note.** Since $m \leq n^2$, $\Theta(m + n)$ is $O(n^2)$, i.e., much better when G is sparse.
3. **Identifying all incident edges to v** takes $\Theta(\deg(v))$ time better than $\Theta(n)$.
Graph Representation: Adjacency List

- **Node** indexed array of lists
- Two representations of each edge
- Space is $\Theta(m + n)$
- Checking if (u, v) is an edge takes $O(\text{degree}(u))$ time
- Identifying all edges takes $\Theta(m + n)$ time
Breadth-First Search (BFS)

- **s–t connectivity problem (Reachability).** Given two nodes, s, t, is there a path between s and t?

- **BFS intuition.** Explore outward from the vertex s in all possible directions, adding vertices one *layer* at a time.

Layers L_1, L_2, L_3, \ldots are constructed in the following way:

1. L_1 consists of all vertices adjacent to s;
2. L_{j+1} consists of all vertices that: *i*) Do not belong to an earlier layer, and *ii*) Are adjacent to a vertex in layer L_j.
BFS — Spanning Tree

- BFS traverses a connected component of an undirected graph containing s, and in doing so defines a spanning tree rooted at s.
- The path in the spanning tree from s to v, corresponds to a shortest path in G.

Example of a spanning tree rooted at vertex 1.
Breadth-First Search – Properties

Properties:

BFS/P1 For each $j \geq 1$, layer L_j produced by BFS consists of all nodes at distance *exactly* j from s.

BFS/P2 There is a path from s to t if and only if t appears in some layer.

BFS/P3 Let T be a breadth-first spanning tree, let u, v be vertices in T belonging to layers L_i and L_j respectively, and let (u, v) be an edge of G. Then i and j differ by at most 1.
The adjacency list data structure is ideal for implementing a BFS algorithm.

The algorithm examines the edges incident on a given vertex \(u \) one by one using its adjacency list \(\text{Adj}[u] \).

Array \(\text{Discovered} \) of length \(n \) stores whether or not vertex \(u \) has been previously discovered by the search.

To maintain the vertices in a layer \(L_i \), we have a list \(L[i] \), for each \(i = 0, 1, 2, \ldots \) and \(i < n - 1 \).
BFS(G,s)
 Discovered[s]=true;
 Discovered[u]=false, for all other u ∈ V;
 L[0]=s; layer counter i=0; spanning tree T=s;
 While L[i] ≠ ∅
 Initialize an empty list L[i+1]
 For each node u ∈ L[i]
 For each edge (u,v) incident to u;
 If Discovered[v]=false then
 Discovered[v]=true;
 Add edge (u,v) to tree T;
 Add v to the list L[i+1]
 EndIf
 EndFor
 EndFor
 i=i+1;
 Endwhile
BFS Complexity

- The inner For-Loop takes $O(\text{deg}(u))$ time for each vertex u;
- Thus, in total we need $O(\sum_{u \in V} \text{deg}(u))$;
- From graph properties, $\sum_{u \in V} \text{deg}(u) = 2 \cdot m$;
- Thus, $O(\sum_{u \in V} \text{deg}(u)) = O(m)$;
- We need $O(n)$ additional time to set up lists and manage the array Discovered;
- Finally, the BFS runs in $O(m + n)$.
• BFS visits vertices at increasing distances: starts with distance 1 from s, then those at distance 2, and so on.
• **Depth-First Search (DFS):** follows some path as deeply as possible into the graph before it is forced to backtrack.
• BFS and DFS both build the connected component containing s with a similar complexity.
DFS — Recursive version

DFS(G,u)
Explored[u]=true;
If \(u \neq s \) add edge (parent[u],u) to \(\mathcal{T} \);
for each edge (u,v) incident to u do
\[
\begin{align*}
&\text{if Explored[v]=false then} \\
&\quad \text{parent}[v] = u; \\
&\quad \text{DFS}(G,v)
\end{align*}
\]

To apply this to \(s-t \) connectivity, we:
- Declare all vertices initially to be not explored;
- Initialize \(\mathcal{T} \) to be a tree with root \(s \);
- Invoke DFS(G,s).
Depth-First Search Tree

DFS(u) :
Mark u as "Explored" and add u to R
For each edge (u,v) incident to u
If v is not marked "Explored" then
Recursively invoke DFS(u)
Endif
Endfor

To apply this to s-t connectivity, we simply declare all nodes initially to be not explored, and invoke DFS(s).

There are some fundamental similarities and some fundamental differences between DFS and BFS. The similarities are based on the fact that they both build the connected component containing s, and we will see in the next section that they achieve qualitatively similar levels of efficiency.

While DFS ultimately visits exactly the same set of nodes as BFS, it typically "does so in a very different order; it probes its way down long paths, potentially getting very far from s, before backing up to try nearer unexplored nodes. We can see a reflection of this difference in the fact that, like BFS, the DFS algorithm yields a natural rooted tree T on the component containing s, but the tree will generally have a very different structure. We make s the root of the tree T, and make u the parent of v when u is responsible for the discovery of v. That is, whenever DFS(v) is invoked directly during the call to DFS(u), we add the edge (u, v) to T. The resulting tree is called a depth-first search tree of the component R.

Figure 3.5 depicts the construction of a DFS tree rooted at node 1 for the graph in Figure 3.2. The solid edges are the edges of T; the dotted edges are edges of G that do not belong to T. The execution of DFS begins by building a path on nodes 1, 2, 3, 5, 4. The execution reaches a dead end at 4, since there are no new nodes to find, and so it "backs up" to 5, finds node 6, backs up again to 3, and finds nodes 7 and 8. At this point there are no new nodes to find in the connected component, so all the pending recursive DFS calls terminate, one by one, and the execution comes to an end. The full DFS tree is depicted in Figure 3.5(g).

This example suggests the characteristic way in which DFS trees look different from BFS trees. Rather than having root-to-leaf paths that are as short as possible, they tend to be quite narrow and deep. However, as in the case of BFS, we can say something quite strong about the way in which nontree edges of G must be arranged relative to the edges of a DFS tree T: as in the figure, nontree edges can only connect ancestors of T to descendants.
The spanning tree, also called depth-first search tree, generated by the DFS has a very different structure.

The starting vertex s is the root of T;

A vertex v is a child of u in T if $\text{DFS}(G,v)$ is called directly during the call $\text{DFS}(G,u)$.
DFS — Properties

DFS/P1 For a given recursive call DFS(G, u), all nodes that are marked "Explored" between the invocation and the end of this recursive call are descendants of u in T.

DFS/P2 Let T be a depth-first search tree, let u and v be two nodes in T, and let (u, v) be an edge of G that is not an edge of T. Then one of u or v is an ancestor of the other.
Depth-First Search – Iterative Algorithm

- Maintain the vertices to be processed in a stack: The recursive calls of DFS can be viewed as pushing vertices into a stack for later processing.

DFS(G,s)
Initialize S to be a stack with one element s;
Initialize T to be a tree with root s;
Initialize Explored[u] = false, for all v ∈ V;
while S ≠ ∅ do
 Pop a node u from S;
 if Explored[u] = false then
 Explored[u] = true;
 If u ≠ s add edge (parent[u],u) to T;
 for each edge (u, v) incident to u do
 Push v to the stack S;
 parent[v] = u
The main step in the algorithm is to push and pop vertices to and from the stack S;

How many elements ever get pushed (and thus popped) to S?

Vertex v will be pushed to the stack S every time one of its $\text{deg}(v)$ adjacent vertices is explored.

Thus, in total we need $O(\Sigma_{u \in V} \text{deg}(u)) = O(m)$;

We need $O(n)$ additional time to manage the array Explored;

Finally, the DFS runs in $O(m + n)$.
The Set of All Connected Components

Property: For any two nodes s and t in a graph, their connected components are either identical or disjoint.

To compute all connected components of a graph G:

1. Start with an arbitrary node s, and, using BFS or DFS, generate its connected component;
2. Find a node v (if any) that was not visited by the previous search, and generate its connected component—which will be disjoint from the previous components.
3. Continue till all vertices have been visited.
Bipartite Graphs – 2-Colorability

Bipartite Graph: An undirected graph $G = (V, E)$ is Bipartite (or, 2-Colorable) if the vertices can be colored blue or white such that every edge has one white and one blue end.

- **Applications.**
 - **Matching:** residents = blue, hospitals = white;
 - **Scheduling:** machines = blue, jobs = white.
What can be an obstacle for a graph not to be bipartite?

- For example, a triangle is not bipartite.
- Property. If a graph G is bipartite, it cannot contain an odd-length cycle.
Lemma. Let G be a connected graph, and let L_0, \ldots, L_k be the layers produced by BFS starting at vertex s. Exactly one of the following holds.

1. No edge of G connects two vertices of the same layer, and G is bipartite.
2. An edge of G connects two vertices of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Case (i)

Case (ii)
Bipartite Graphs – Property/2

1. No edge of G connects two vertices of the same layer, and G is bipartite.

Proof of (1).

- Suppose no edge connects two vertices in same layer.
- By [BFS/P3] property, each edge of the Graph connects two vertices in adjacent levels.
- Bipartition (2-Coloring): blue = vertices on even levels, white = vertices on odd levels.
Bipartite Graphs – Property/3

1. No edge of G connects two vertices of the same layer, and G is bipartite.

2. An edge of G connects two vertices of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Pf. (ii)

- Suppose (x, y) is an edge with x, y in same level L_j.
- Let $z = \text{lca}(x, y) = \text{lowest common ancestor}$.
- Let L_i be level containing z.
- Consider cycle that takes edge from x to y,
 then path from y to z, then path from z to x.
- Its length is $1 + (j - i) + (j - i)$, which is odd. \blacksquare

Diagram:
- Node s is the source.
- Nodes x and y are in layer L_j.
- node z is the lowest common ancestor of x and y.
- The path from y to z is indicated.
- The path from z to x is indicated.
- The path from s to x is indicated.
The Only Obstruction to Bipartiteness

Corollary. A graph G is bipartite iff it contains no odd-length cycles.

Complexity of Bipartiteness: $O(m + n)$.

What about the Algorithm?
Thank You!