
Data and Process Modelling
4. Relational Mapping

Marco Montali

KRDB Research Centre for Knowledge and Data
Faculty of Computer Science

Free University of Bozen-Bolzano

A.Y. 2014/2015

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 1 / 45



From Design to Implementation

• A conceptual schema is designed to ultimately store, update and
query the relevant information of a domain.

• Concrete typical outcomes:
I Development of a physical database schema.
I Development of the model layer of an (object-oriented) software

application.
• In both cases, we need to map the conceptual schema to a
corresponding logical, and then physical, schema.

• Main methodological steps:
1. Design the conceptual schema.
2. Annotate the conceptual schema with mapping choices.
3. Mapping the conceptual schema to a logical schema

(relational, object-oriented, . . . ).
4. Manipulate the logical schema.
5. Generate the corresponding physical schema

(MySQL DB, Java classes, . . . ).

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 2 / 45



From Conceptual to Relational Schema
• Relational model (Codd, 1969): connection between databases and
first-order logic.

• Database schema constituted by a set of relation schemas containing:
I name of the relation (table name);
I (named) set of attributes (table columns), each ranging over some

data domain (unnamed equivalent version also exists).
• Extensional information represented as a set of unnamed tuples
(records) over such relations, where each attribute is filled in with a
value belonging to the corresponding data domain.

• Each tuple maintains information about one or more fact types.
I Elementary fact types (e.g., Student with code “1234” attends the

Course named “Conceptual Modeling”).
I Existential fact types (e.g., there exists a Course named “Conceptual

Modeling”).
• In addition:

I Constraints, in particular keys, foreign keys, optionality.
I Derivation rules.

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 3 / 45



Data Domains
• Relational model supports semantic domains for attributes.
• SQL standard now supports user-defined types for attributes
→ account for semantic domains.

• However, many commercial tools still provide support only for
primitive data types (strings, numbers, datetime, bit/boolean, . . . ).

• Furthermore, primitive data types facilitate the interoperation with
other languages/environment (see JDBC conversion in Java and
object-relational mapping).

We will abstract away from data domains in our analysis.

It is of fundamental importance to decide how to map semantic domains
to attribute types, and track the choice. If only primitive types are used,
then semantic domains translate into data validation policies (external
constraints).

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 4 / 45



Relational Schemas and Layouts

No industrial standard for representing relational schemas.
• Horizontal layout:

Employee( empNr, empName, deptCode, gender, salary, tax )
• Vertical layout:

Employee
empNr
empName
deptCode
gender
salary
tax

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 5 / 45



Relational Schemas and Internal Uniqueness Constraints
Internal UCs provide candidate keys for identifying tuples in a relation.

• Key: minimal set of uniquely constrained attributes.
I Horizontal layout: underlined attributes (as in ORM).
I Vertical layout: “Uk” decoration for the attributes involved in UC

identified by number “k”.
• Primary key: preferred key for identification.

I Horizontal layout: only existing UC → underlined attributes;
other alternative keys → doubly underlined attributes.

I Vertical layout: “PK” decoration for involved attributes, which are also
underlined.

Employee( empNr, empName, deptCode, gender, salary, tax )

Employee
PK empNr
U1 empName
U1 deptCode

gender
salary
tax

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 6 / 45



Relational Schemas and Mandatory Constraints
Mandatory constraint on a column: the column does not allow null values.
Contrariwise: optional column.

• Horizontal layout: square brackets around optional columns.
• Vertical layout: boldface around mandatory columns or square
brackets around optional columns (for diagrams written on paper).

Employee( empNr, empName, deptCode, gender, salary, [tax] )

Employee
PK empNr
U1 empName
U1 deptCode

gender
salary
tax

Basic Integrity Rule
A primary key contains no null: all its constitutive columns are mandatory.

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 7 / 45



Correspondence with Mandatory Roles in ORM
Problem: each tuple in a relation expresses one or more ORM fact, while
different facts about the same object can be stored in different tables.

• How to map a mandatory ORM role to the relational schema?
• Remember: role r mandatory for object type O if for each other r ′

played by O we have pop(r ′) ⊆ pop(r) → implied subset constraint
from r ′ to r .

• Mapping in the relational schema:
1. Column corresponding to r marked as mandatory.
2. Subset constraints from the column corresponding to r ′ in another

table to the column of r . This is a referential integrity constraint, and
the r ′ column is a foreign key referencing the r column.

This holds for every role r ′, and can easily be generalized to
combination of columns for extended mandatory constraints.

Basic integrity rule
Referential integrity: every nonnull value of a foreign key must match one
of the values of the referred primary key.

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 8 / 45



Foreign Keys and Layouts

TuteGroup
(.code)

 Room
(.code)

Time
(.dhcode)

... meets at ... in ...
Program
(.code)

is composed of

TuteGroup( tuteCode, progCode )

99
K

Meets( tuteCode, timeDHCode, roomCode )

TuteGroup Meets
PK tuteCode

L99

PK

, FK1

tuteCode
progCode PK timeDHCode

roomCode

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 9 / 45



Foreign Keys and Layouts

TuteGroup
(.code)

 Room
(.code)

Time
(.dhcode)

... meets at ... in ...
Program
(.code)

is composed of

TuteGroup( tuteCode, progCode )

99
K

Meets( tuteCode, timeDHCode, roomCode )

TuteGroup Meets
PK tuteCode

L99

PK

, FK1

tuteCode
progCode PK timeDHCode

roomCode

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 9 / 45



Foreign Keys and Layouts

TuteGroup
(.code)

 Room
(.code)

Time
(.dhcode)

... meets at ... in ...
Program
(.code)

is composed of

∗

TuteGroup( tuteCode, progCode )

99
K

Meets( tuteCode, timeDHCode, roomCode )

TuteGroup Meets
PK tuteCode L99 PK, FK1 tuteCode

progCode PK timeDHCode
roomCode

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 9 / 45



Other Constraints

• As we will see, many ORM constraints are mapped to keys and
references, depending on the context.

• Other constraints are maintained as annotations on the horizontal
layout, following the ORM conventions.

Researcher
(.code)

Paper
(.id)

≥ 3 ≤ 5

is reviewed by

Reviewed( paperId, resCode )
≥ 3 ≤ 5

Person
(SSN)

Gender
(.code)is of

{'M','F'}

Person( SSN, genderCode )
{′M ′,′ F ′}

• Some of such constraints can be then enforced as SQL constraints,
depending on the version and on the environment.

• Example:
check(not exists

(select resCode from Reviewed
group by resCode having count(*) > 5))

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 10 / 45



Other Constraints

• As we will see, many ORM constraints are mapped to keys and
references, depending on the context.

• Other constraints are maintained as annotations on the horizontal
layout, following the ORM conventions.

Researcher
(.code)

Paper
(.id)

≥ 3 ≤ 5

is reviewed by

Reviewed( paperId, resCode )
≥ 3 ≤ 5

Person
(SSN)

Gender
(.code)is of

{'M','F'}

Person( SSN, genderCode )
{′M ′,′ F ′}

• Some of such constraints can be then enforced as SQL constraints,
depending on the version and on the environment.

• Example:
check(not exists

(select resCode from Reviewed
group by resCode having count(*) > 5))

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 10 / 45



Derivation Rules and Relational Schemas

Several options exist to map derivation rules to the relational level (again,
support and language change with the DBMS at hand):
1. View that contains the derived facts, calculating them using the

derivation rules.
2. Generated column that, whenever a tuple is added/updated, is

automatically fed with a value calculated using the derivation rules.
3. Triggered column, using a trigger that encapsulates the algorithmic

logic of the derivation rules.
4. Stored procedure, run when needed to update the information base so

as to calculate the derived information using the fresh values.

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 11 / 45



Relational Mapping Algorithm: Rmap

Translation of a conceptual schema to a relational one balancing between
• efficiency (less tables);
• redundancy avoidance, no repetition of primitive facts (more tables).

Rmap contains strategy for the first issue, and guarantees the second
thanks to the following principle.

Redundancy Avoidance
Each fact type of the conceptual schema is mapped to one table, so that
its instances appear only once.

How to enforce this principle?

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 12 / 45



Relational Mapping Algorithm: Rmap

Translation of a conceptual schema to a relational one balancing between
• efficiency (less tables);
• redundancy avoidance, no repetition of primitive facts (more tables).

Rmap contains strategy for the first issue, and guarantees the second
thanks to the following principle.

Redundancy Avoidance
Each fact type of the conceptual schema is mapped to one table, so that
its instances appear only once.

How to enforce this principle?

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 12 / 45



Redundancy Avoidance Strategies
1. Fact type with a compound internal UC → mapped to dedicated

table, using the UC as PK.
2. Fact types with functional roles on the same object type → grouped

into a unique table, with the object type’s preferred identifier as PK.

Object types are mapped to one or more attributes, depending on their
preferred identification scheme.
Naming guidelines:

• Fix table names using the reading of the fact type (case 1.) or the
name of the object type (case 2.).

• Object types’ columns are named by adding in front of their name a
prefix corresponding to the object type name they refer to (e.g.,
EmpCode).

• Use informative names for columns, using, if possible, the same name
for FKs and their references.

• If a predicate contains roles played by the same object type, use the
name of the roles (e.g., superpart and subpart).

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 13 / 45



Prototypical Examples
Hp: a, b, c, d, e represent the set of attributes representing the preferred
identification scheme for the corresponding object type.

A

D

E
RC

B

Case 2

• Applies to binary fact types with
simple UCs all over roles played by
the same object type.

• Mandatory dots determine
mandatory columns in the grouped
table.

Case 1

• Applies to binary fact types with
spanning UCs and to n-ary fact
types with n > 2 (why?).

• FKs must be added for those roles
attached to object types that play
mandatory roles elsewhere (⊆).

A( a, b, [c]) R( a, d, e) 

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 14 / 45



Prototypical Examples
Hp: a, b, c, d, e represent the set of attributes representing the preferred
identification scheme for the corresponding object type.

A

D

E
RC

B

Case 2

• Applies to binary fact types with
simple UCs all over roles played by
the same object type.

• Mandatory dots determine
mandatory columns in the grouped
table.

Case 1

• Applies to binary fact types with
spanning UCs and to n-ary fact
types with n > 2 (why?).

• FKs must be added for those roles
attached to object types that play
mandatory roles elsewhere (⊆).

A( a, b, [c]) R( a, d, e) 

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 14 / 45



Example

PersonName

Person
(SSN)

Company
(VAT)works for

has

Place
(.nr)lives in

[livingPlace]

Country
(.code)belongs to

Address
(.name)located at

Person( SSN, persName, [livingPlace] )

WorksFor( SSN, VAT )

Place( placeNr, countryCode, addrName )

N.B.: squared brackets in ORM schema denote role name, while in relational
schema they denote optionality.

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 15 / 45



Example

PersonName

Person
(SSN)

Company
(VAT)works for

has

Place
(.nr)lives in

[livingPlace]

Country
(.code)belongs to

Address
(.name)located at

Person( SSN, persName, [livingPlace] )

WorksFor( SSN, VAT )

Place( placeNr, countryCode, addrName )

N.B.: squared brackets in ORM schema denote role name, while in relational
schema they denote optionality.

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 15 / 45



Example

PersonName

Person
(SSN)

Company
(VAT)works for

has

Place
(.nr)lives in

[livingPlace]

Country
(.code)belongs to

Address
(.name)located at

Person( SSN, persName, [livingPlace] )

WorksFor( SSN, VAT )

Place( placeNr, countryCode, addrName )

N.B.: squared brackets in ORM schema denote role name, while in relational
schema they denote optionality.

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 15 / 45



Example - Referential Cycle

The two mandatory roles form an equality constraint.

Commercial
Consultant

(.id)

Company
(VAT)works for

Area
(.code)covers

CommercialConsultant( commConsId, VAT )

Covers( commConsId, AreaCode )

The equality constraint becomes a pair of subset constraints in the
relational schema, forming a referential cycle.

• The subset constraint from Covers to CommercialConsultant is a
FK constraint.

• The subset constraint from CommercialConsultant to Covers is
not a FK constraint, because it targets only part of the PK in Covers.
It can be enforced using assertions, stored procedures, triggers, . . .

Referential cycles should be avoided if possible.

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 16 / 45



Example - Referential Cycle
The two mandatory roles form an equality constraint.

Commercial
Consultant

(.id)

Company
(VAT)works for

Area
(.code)covers

CommercialConsultant( commConsId, VAT )

Covers( commConsId, AreaCode )

The equality constraint becomes a pair of subset constraints in the
relational schema, forming a referential cycle.

• The subset constraint from Covers to CommercialConsultant is a
FK constraint.

• The subset constraint from CommercialConsultant to Covers is
not a FK constraint, because it targets only part of the PK in Covers.
It can be enforced using assertions, stored procedures, triggers, . . .

Referential cycles should be avoided if possible.

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 16 / 45



Example - Referential Cycle
The two mandatory roles form an equality constraint.

Commercial
Consultant

(.id)

Company
(VAT)works for

Area
(.code)covers

CommercialConsultant( commConsId, VAT )

Covers( commConsId, AreaCode )

The equality constraint becomes a pair of subset constraints in the
relational schema, forming a referential cycle.

• The subset constraint from Covers to CommercialConsultant is a
FK constraint.

• The subset constraint from CommercialConsultant to Covers is
not a FK constraint, because it targets only part of the PK in Covers.
It can be enforced using assertions, stored procedures, triggers, . . .

Referential cycles should be avoided if possible.
Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 16 / 45



Mapping 1:1 Associations

The key point is on which side the association must be grouped. Aspects
to be considered:

• Presence of null values must be minimized.
• Do both object types play other functional roles?
• Are the involved roles mandatory on both sides?

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 17 / 45



1:1 Association - Only One “Complex” Endpoint

Hypothesis
We are sure that one of the two endpoints does not play other functional
roles.

Person
(SSN) PersonName

Avatar
(.name)

Gender
(.code)is of

has

owns

Person( SSN, [gender], persName, [avName] )

Strategy
Group around the other endpoint.

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 18 / 45



1:1 Association - Only One “Complex” Endpoint

Hypothesis
We are sure that one of the two endpoints does not play other functional
roles.

Person
(SSN) PersonName

Avatar
(.name)

Gender
(.code)is of

has

owns

Person( SSN, [gender], persName, [avName] )

Strategy
Group around the other endpoint.

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 18 / 45



1:1 Association - Only One “Complex” Endpoint

This case directly covers 1:1 associations with value types → grouping on
the object type.

Company

VAT

CompanyName
has

has

Company( VAT, companyName )

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 19 / 45



1:1 Association - Only One “Complex” Endpoint

This case directly covers 1:1 associations with value types → grouping on
the object type.

Company

VAT

CompanyName
has

has

Company( VAT, companyName )

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 19 / 45



1:1 Association - Only One Mandatory Endpoint
Hypothesis
Both endpoints play other functional roles, but only one endpoint role is
mandatory.

Person
(SSN) PersonName

Avatar
(.name)

Gender
(.code)is of

has

owns / is owned by

E-mail
(.code)was validated with

Photo
(URL)has

Person( SSN, [gender], persName )

99
K

Avatar( avName, SSN, eMailCode, [photoURL] )

Strategy
Group on the mandatory role side.

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 20 / 45



1:1 Association - Only One Mandatory Endpoint
Hypothesis
Both endpoints play other functional roles, but only one endpoint role is
mandatory.

Person
(SSN) PersonName

Avatar
(.name)

Gender
(.code)is of

has

owns / is owned by

E-mail
(.code)was validated with

Photo
(URL)has

Person( SSN, [gender], persName )

99
K

Avatar( avName, SSN, eMailCode, [photoURL] )

Strategy
Group on the mandatory role side.

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 20 / 45



1:1 Association - Symmetric Case with Both Mandatory

Hypothesis
Both endpoints play other functional roles, and both endpoint roles are
mandatory.

Community
Member
(SSN)

PersonName

Avatar
(.name)

Gender
(.code)is of

has

owns / is owned by

E-mail
(.code)was validated with

Photo
(URL)has

Strategy
Arbitrarily choose one of the two endpoints (free choice of the modeler).

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 21 / 45



1:1 Association - Symmetric Case with Both Mandatory
Hypothesis
Both endpoints play other functional roles, and both endpoint roles are
mandatory.

Community
Member
(SSN)

PersonName

Avatar
(.name)

Gender
(.code)is of

has

owns / is owned by

E-mail
(.code)was validated with

Photo
(URL)has

(1) CommunityMember( SSN, [gender], persName )
99
K
L9
9

Avatar( avName, SSN, eMailCode, [photoURL] )

Strategy
Arbitrarily choose one of the two endpoints (free choice of the modeler).

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 21 / 45



1:1 Association - Symmetric Case with Both Mandatory
Hypothesis
Both endpoints play other functional roles, and both endpoint roles are
mandatory.

Community
Member
(SSN)

PersonName

Avatar
(.name)

Gender
(.code)is of

has

owns / is owned by

E-mail
(.code)was validated with

Photo
(URL)has

(2) CommunityMember( SSN, avName, [gender], persName )
99
K
L9
9

Avatar( avName, eMailCode, [photoURL] )

Strategy
Arbitrarily choose one of the two endpoints (free choice of the modeler).

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 21 / 45



1:1 Association - Symmetric Case with None Mandatory

Hypothesis
Both endpoints play other functional roles, and none of the endpoint roles
is mandatory.

Person
(SSN)

PersonName

Company
(VAT)

has

is CEO of

CompanyStatus
(type)has

Strategy
Either grouping is reasonable.
Choose the best grouping based on the percentage of likely null values.
If both solutions are unsatisfactory, introduce a third table for the 1:1
association.

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 22 / 45



1:1 Association - Symmetric Case with None Mandatory

Person
(SSN)

PersonName

Company
(VAT)

has

is CEO of

CompanyStatus
(type)has

Hp: it is more likely for a Company
to have a CEO that for a Person to
be CEO of a Company.

Person( SSN , persName )

99
K

Company( VAT, [SSN], ComStatus)

Hp: it is likely that both solutions
(grouping on Person or on Company)
yield many null values.

Person( SSN, persName )

99
K

IsCEOof( SSN, VAT )

L9
9

Company( VAT, ComStatus)

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 23 / 45



1:1 Association - Symmetric Case with None Mandatory

Person
(SSN)

PersonName

Company
(VAT)

has

is CEO of

CompanyStatus
(type)has

Hp: it is more likely for a Company
to have a CEO that for a Person to
be CEO of a Company.

Person( SSN , persName )

99
K

Company( VAT, [SSN], ComStatus)

Hp: it is likely that both solutions
(grouping on Person or on Company)
yield many null values.

Person( SSN, persName )

99
K

IsCEOof( SSN, VAT )

L9
9

Company( VAT, ComStatus)

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 23 / 45



Mapping 1:1 Associations - Overall Strategy

1. If only one object type in the association has another functional rule
then group on its side.

2. Else if both object types have other functional roles and only one role
in the 1:1 association is mandatory
then group on its side.

3. Else if no object type has another functional role
then map 1:1 to a separate table.

4. Else the grouping choice is completely delegated to the modeler.

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 24 / 45



Mapping External UCs
Procedure:
1. Do not consider the identification scheme of object types.
2. Group fact types into tables, using compact surrogates as columns.
3. Restore the full tables replacing surrogates with the attributes used

for preferred identification.
Cases:

• External UC is the preferred identification scheme for an object type
attached to other functional roles.

• External UC is the preferred identification scheme for an object type
attached to other nonfunctional roles.

• External UC is not the preferred identification scheme for an object
type attached to other functional roles.

• External UC is not the preferred identification scheme for an object
type, and it is paired with an n:m fact type.

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 25 / 45



External Preferred UC, Functional Fact Type

Hypothesis
Object type has an external UC as preferred identifier, and plays other
functional roles.

Employee

EmpId
has

Company
(VAT)

works for

PersonName
has

Employee( e, n )

Strategy
Group on the object type using surrogates, without considering the
predicates involved in the external UC.
Then expand the PK using the object types involved in the external UC.

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 26 / 45



External Preferred UC, Functional Fact Type

Hypothesis
Object type has an external UC as preferred identifier, and plays other
functional roles.

Employee

EmpId
has

Company
(VAT)

works for

PersonName
has

Employee( e, n )

Strategy
Group on the object type using surrogates, without considering the
predicates involved in the external UC.
Then expand the PK using the object types involved in the external UC.

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 26 / 45



External Preferred UC, Functional Fact Type

Hypothesis
Object type has an external UC as preferred identifier, and plays other
functional roles.

Employee

EmpId
has

Company
(VAT)

works for

PersonName
has

Employee( e, n )

Employee( empId, VAT, empName )

Strategy
Group on the object type using surrogates, without considering the
predicates involved in the external UC.
Then expand the PK using the object types involved in the external UC.

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 26 / 45



External Preferred UC, Functional Fact Type

Hypothesis
Object type has an external UC as preferred identifier, and plays other
functional roles.

Employee

EmpId
has

Company
(VAT)

works for

PersonName
has

Employee( e, n )

Strategy
Group on the object type using surrogates, without considering the
predicates involved in the external UC.
Then expand the PK using the object types involved in the external UC.

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 27 / 45



External Preferred UC, Functional Fact Type

Hypothesis
Object type has an external UC as preferred identifier, and plays other
functional roles.

Employee

EmpId
has

Company
(VAT)

works for

PersonName
has

Employee( e, n )

Strategy
Group on the object type using surrogates, without considering the
predicates involved in the external UC.
Then expand the PK using the object types involved in the external UC.

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 27 / 45



External Preferred UC, Functional Fact Type

Hypothesis
Object type has an external UC as preferred identifier, and plays other
functional roles.

Employee

EmpId
has

Company
(VAT)

works for

PersonName
has

Employee( e, n )

Employee( empId, VAT, empName )

Strategy
Group on the object type using surrogates, without considering the
predicates involved in the external UC.
Then expand the PK using the object types involved in the external UC.

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 27 / 45



External Preferred UC, Nonfunctional Fact Type
Hypothesis
Object type has an external UC as preferred identifier, and has an m:n
association with another object type

Employee

EmpId
has

Company
(VAT)

works for

handles

[customer]

Handles( e, c )

Strategy
Map the m:n association to a separate table, using surrogates.
Then expand the PK using the object types involved in the external UC.

Employee

EmpId
has

Company
(VAT)

works for

PersonName
has

Employee( e, n )

Strategy
Group on the object type using surrogates, without considering the
predicates involved in the external UC.
Then expand the PK using the object types involved in the external UC.

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 28 / 45



External Preferred UC, Nonfunctional Fact Type
Hypothesis
Object type has an external UC as preferred identifier, and has an m:n
association with another object type

Employee

EmpId
has

Company
(VAT)

works for

handles

[customer]

Handles( e, c )

Strategy
Map the m:n association to a separate table, using surrogates.
Then expand the PK using the object types involved in the external UC.

Employee

EmpId
has

Company
(VAT)

works for

PersonName
has

Employee( e, n )

Strategy
Group on the object type using surrogates, without considering the
predicates involved in the external UC.
Then expand the PK using the object types involved in the external UC.

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 28 / 45



External Preferred UC, Nonfunctional Fact Type
Hypothesis
Object type has an external UC as preferred identifier, and has an m:n
association with another object type

Employee

EmpId
has

Company
(VAT)

works for

handles

[customer]

Handles( e, c )

Handles( empId, VAT, customerVAT )

Strategy
Map the m:n association to a separate table, using surrogates.
Then expand the PK using the object types involved in the external UC.

Employee

EmpId
has

Company
(VAT)

works for

PersonName
has

Employee( e, n )

Employee( empId, VAT, empName )

Strategy
Group on the object type using surrogates, without considering the
predicates involved in the external UC.
Then expand the PK using the object types involved in the external UC.

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 28 / 45



External UC, Functional Fact Type

Hypothesis
Object type with a simple preferred identifier, attached to functional roles
with an external UC and other functional roles.

Employee
(SSN)

EmpId
has

Company
(VAT)

works for

PersonName
has

Employee( SSN, VAT, empId, persName)

Strategy
Follow the standard mapping. Model the external UC as a key.

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 29 / 45



External UC, Functional Fact Type

Hypothesis
Object type with a simple preferred identifier, attached to functional roles
with an external UC and other functional roles.

Employee
(SSN)

EmpId
has

Company
(VAT)

works for

PersonName
has

Employee( SSN, VAT, empId, persName)

Strategy
Follow the standard mapping. Model the external UC as a key.

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 29 / 45



External UC Involving m:n Fact Type

Hypothesis
External UC involving an m:n fact type.

Strategy
Follow the standard mapping without considering the external UC. Add
the external UC as an inter-table constraint.

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 30 / 45



Mapping Objectified Associations

Procedure:
1. Do not consider the identification scheme of the objectified

association.
2. Consider the objectified association as a black box.
3. Group fact types in the standard way.
4. Unpack the black box into its component attributes.
5. Deal with fine-grained constraints involving component roles of the

objectified association.

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 31 / 45



Example

TuteGroup
(.code)

Room
(.code)

Time
(.dhcode)

... meets at ... 
"Meeting"

• Consider the objectified association as a black box:
Meeting (�, [roomCode])

• Expand:
Meeting (tuteCode, meetingTime, [roomCode])

• Incorporate fine-grained constraints: key meetingTime, [roomCode]

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 32 / 45



Example

TuteGroup
(.code)

Room
(.code)

Time
(.dhcode)

... meets at ... 
"Meeting"

• Consider the objectified association as a black box:
Meeting (�, [roomCode])

• Expand:
Meeting (tuteCode, meetingTime, [roomCode])

• Incorporate fine-grained constraints: key meetingTime, [roomCode]

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 32 / 45



Example

TuteGroup
(.code)

Room
(.code)

Time
(.dhcode)

... meets at ... 
"Meeting"

• Consider the objectified association as a black box:
Meeting (�, [roomCode])

• Expand:
Meeting (tuteCode, meetingTime, [roomCode])

• Incorporate fine-grained constraints: key meetingTime, [roomCode]

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 32 / 45



Example

TuteGroup
(.code)

Room
(.code)

Time
(.dhcode)

... meets at ... 
"Meeting"

• Consider the objectified association as a black box:
Meeting (�, [roomCode])

• Expand:
Meeting (tuteCode, meetingTime, [roomCode])

• Incorporate fine-grained constraints: key meetingTime, [roomCode]

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 32 / 45



Mapping Independent Object Types

Each independent object type has its own life cycle, hence:
• it must be mapped to a dedicated table with its preferred identifier as
PK, together with all fact types in which it plays a functional role;
(note: they are all optional by construction, can you spot why?)

• every nonfunctional role will have a FK pointing to this table.

TuteGroup
(.code)

Room !
(.code)

Time
(.dhcode)

meets at 
"Meeting !"

Person
(.name) participates to is held in

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 33 / 45



Example

TuteGroup
(.code)

Room !
(.code)

Time
(.dhcode)

meets at 
"Meeting !"

Person
(.name) participates to is held in

Room( roomCode )

Meeting( �, [roomCode] )

PartTo( persName, � )

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 34 / 45



Example

TuteGroup
(.code)

Room !
(.code)

Time
(.dhcode)

meets at 
"Meeting !"

Person
(.name) participates to is held in

Room( roomCode )

99
K

Meeting( �, [roomCode] )
99
K

PartTo( persName, � )

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 34 / 45



Example

TuteGroup
(.code)

Room !
(.code)

Time
(.dhcode)

meets at 
"Meeting !"

Person
(.name) participates to is held in

Room( roomCode )

99
K

Meeting( tGroup, tTime, [roomCode] )
99
K

PartTo( persName, tGroup, tTime )

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 34 / 45



Mapping Subtype Constraints
Absorption

Subtypes are absorbed back into their top supertype,
grouping the fact types as usual and adding the
subtyping constraints as textual qualifications.

A

B C
A

Separation

Each object type of the hierarchy is mapped to
a separate table. FKs are added from the
subtypes tables to the supertype table.

A

B C

A

B C

Partition

Supertype is removed, replicating the attached
information for each subtype.

A

B C B C

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 35 / 45



Absorption
Standard approach for mapping hierarchies.

• A discriminator column typically reflects the presence of a
classification type to distinguish subtypes (e.g., Gender,
CompanyStatus, MemberType) with a fixed domain whose possible
values correspond to the different subtypes.

• All fact types attached to subtypes are moved to the supertype,
making the participation of the supertype optional.

• Textual constraints are added to specify when such a participation is
in fact mandatory, using the discriminator column.

I exists only if and exists iff constraints.
• M:n fact types involving subtypes are mapped to separate tables, with
FK pointing to the supertype table, and suitably combined with
constraints that use the discriminator column.

I only where constraints.
• Main advantage: only one table for the hierarchy (no join, greater
efficiency).

• Main weakness: many potential null values, difficult to pose queries
regarding only subtypes.

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 36 / 45



Absorption - Representative Example

StaffMember
(.nr)

Email
has

Permanent
Member

FixedTerm
Member

Phone
Number

has

EndTerm
(.date)

has
Division

(.nr) belongs to

ContractType
(.code) has

{'P','NP'}

∗ ∗

∗
∗Each PermanentMember is a Member who has ContractType 'P'

Each FixedTermMember is a Member who has ContractType 'NP'

managed by

Project
(.nr) involves

1exists only if contrCode = ‘P’ 2exists iff contrCode = ‘NP’
3only where contrCode = ‘NP’ 4only where contrCode = ‘P’

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 37 / 45



Absorption - Representative Example

StaffMember
(.nr)

Email
has

Permanent
Member

FixedTerm
Member

Phone
Number

has

EndTerm
(.date)

has
Division

(.nr) belongs to

ContractType
(.code) has

{'P','NP'}

∗ ∗

∗
∗Each PermanentMember is a Member who has ContractType 'P'

Each FixedTermMember is a Member who has ContractType 'NP'

managed by

Project
(.nr) involves

Project( projNr, manager )

ProjectInvolvesFTMember( projNr, ftMember )

StaffMember( staffNr, contrCode, eMail, [phoneNumber], [divisionNr] , [endTerm]  )
{'P','NP'}

1exists only if contrCode = ‘P’ 2exists iff contrCode = ‘NP’
3only where contrCode = ‘NP’ 4only where contrCode = ‘P’

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 37 / 45



Absorption - Representative Example

StaffMember
(.nr)

Email
has

Permanent
Member

FixedTerm
Member

Phone
Number

has

EndTerm
(.date)

has
Division

(.nr) belongs to

ContractType
(.code) has

{'P','NP'}

∗ ∗

∗
∗Each PermanentMember is a Member who has ContractType 'P'

Each FixedTermMember is a Member who has ContractType 'NP'

managed by

Project
(.nr) involves

Project( projNr, manager )

ProjectInvolvesFTMember( projNr, ftMember )

StaffMember( staffNr, contrCode, eMail, [phoneNumber], [divisionNr] , [endTerm]  )
{'P','NP'}

1 2

1exists only if contrCode = ‘P’ 2exists iff contrCode = ‘NP’

3only where contrCode = ‘NP’ 4only where contrCode = ‘P’

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 37 / 45



Absorption - Representative Example

StaffMember
(.nr)

Email
has

Permanent
Member

FixedTerm
Member

Phone
Number

has

EndTerm
(.date)

has
Division

(.nr) belongs to

ContractType
(.code) has

{'P','NP'}

∗ ∗

∗
∗Each PermanentMember is a Member who has ContractType 'P'

Each FixedTermMember is a Member who has ContractType 'NP'

managed by

Project
(.nr) involves

Project( projNr, manager )

ProjectInvolvesFTMember( projNr, ftMember )

StaffMember( staffNr, contrCode, eMail, [phoneNumber], [divisionNr] , [endTerm]  )
{'P','NP'}

1 2

3
4

1exists only if contrCode = ‘P’ 2exists iff contrCode = ‘NP’
3only where contrCode = ‘NP’ 4only where contrCode = ‘P’

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 37 / 45



Separation
Mapping that tends to maintain the structure of the hierarchy,
representing supertype and subtypes separately.

• Each object type of the hierarchy becomes a separate table, provided
that it is involved in at least one functional role.

• PK of each subtype refers to (FK) the PK of the supertype (subtype
constraints become subset constraints).

• Also in this case, a discriminator column can be typically used in the
supertype; this requires the presence of suitable constraints in the
FKs.

I Depending on the existence of a mandatory role in the supertype, the
constraint has the shape of exactly where or only where.

• Full information about the subtype is obtained by natural join with
the table of the supertype.

• Main advantage: null values minimization, easy to access subtypes.
• Main weakness: joins needed, slow insertions for subtypes.

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 38 / 45



Separation - Representative Example

StaffMember
(.nr)

Email
has

Permanent
Member

FixedTerm
Member

Phone
Number

has

EndTerm
(.date)

has
Division

(.nr) belongs to

ContractType
(.code) has

{'P','NP'}

∗ ∗

∗
∗Each PermanentMember is a Member who has ContractType 'P'

Each FixedTermMember is a Member who has ContractType 'NP'

managed by

Project
(.nr) involves

Project( projNr, manager ) ProjectInvolvesFTMember( projNr, ftMember )

StaffMember( staffNr, contrCode, eMail, [phoneNumber] )
{'P','NP'}

PermanentMember( staffNr, [division] ) FixedTermMember( staffNr, endTerm )

1only where contrCode = ‘P’ 2exactly where contrCode = ‘NP’

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 39 / 45



Separation - Representative Example

StaffMember
(.nr)

Email
has

Permanent
Member

FixedTerm
Member

Phone
Number

has

EndTerm
(.date)

has
Division

(.nr) belongs to

ContractType
(.code) has

{'P','NP'}

∗ ∗

∗
∗Each PermanentMember is a Member who has ContractType 'P'

Each FixedTermMember is a Member who has ContractType 'NP'

managed by

Project
(.nr) involves

Project( projNr, manager ) ProjectInvolvesFTMember( projNr, ftMember )

StaffMember( staffNr, contrCode, eMail, [phoneNumber] )
{'P','NP'}

PermanentMember( staffNr, [division] ) FixedTermMember( staffNr, endTerm )

1only where contrCode = ‘P’ 2exactly where contrCode = ‘NP’

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 39 / 45



Separation - Representative Example

StaffMember
(.nr)

Email
has

Permanent
Member

FixedTerm
Member

Phone
Number

has

EndTerm
(.date)

has
Division

(.nr) belongs to

ContractType
(.code) has

{'P','NP'}

∗ ∗

∗
∗Each PermanentMember is a Member who has ContractType 'P'

Each FixedTermMember is a Member who has ContractType 'NP'

managed by

Project
(.nr) involves

Project( projNr, manager ) ProjectInvolvesFTMember( projNr, ftMember )

StaffMember( staffNr, contrCode, eMail, [phoneNumber] )
{'P','NP'}

21
PermanentMember( staffNr, [division] ) FixedTermMember( staffNr, endTerm )

1only where contrCode = ‘P’ 2exactly where contrCode = ‘NP’
Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 39 / 45



Partition
Applied when the subtypes are exclusive or form a partition.

• Idea: map only the subtypes to tables, reconstructing the supertype
using unions.

• Roles attached to the supertype are virtually replicated and pushed
down to each subtype, before applying the relational mapping.

• If the subtypes form a partition, only one table per subtype with
functional roles is needed.

• If the subtypes are only exclusive, a “complementary” table is needed.
If that A is supertype of the exclusive subtypes B and C , the partition
is obtained by considering B, C and A \ B ∪ C (not recommended).

• An exclusion constraints between the PKs of the subtype tables
ensures that each supertype individual is maintained only in one table.

• Subtype constraints ignored or trivially encoded, so as the
discriminator entity type.

• Main advantage: null values minimization, fast queries for subtypes.
• Main weakness: unions needed for querying the superclass (a view
can be constructed for this).

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 40 / 45



Partition - Representative Example

StaffMember
(.nr)

Email
has

Permanent
Member

FixedTerm
Member

Phone
Number

has

EndTerm
(.date)

has
Division

(.nr) belongs to

ContractType
(.code) has

{'P','NP'}

∗ ∗

∗
∗Each PermanentMember is a Member who has ContractType 'P'

Each FixedTermMember is a Member who has ContractType 'NP'

managed by

Project
(.nr) involves

Project( projNr, manager ) ProjectInvolvesFTMember( projNr, ftMember )

PermanentMember( staffNr, [division], eMail, [phoneNumber] ) FixedTermMember( staffNr, endTerm, eMail, [phoneNumber] )

∗StaffMember( staffNr ) =
PermanentMember( staffNr ) union FixedTermMember( staffNr )

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 41 / 45



Partition - Representative Example

StaffMember
(.nr)

Email
has

Permanent
Member

FixedTerm
Member

Phone
Number

has

EndTerm
(.date)

has
Division

(.nr) belongs to

ContractType
(.code) has

{'P','NP'}

∗ ∗

∗
∗Each PermanentMember is a Member who has ContractType 'P'

Each FixedTermMember is a Member who has ContractType 'NP'

managed by

Project
(.nr) involves

Project( projNr, manager ) ProjectInvolvesFTMember( projNr, ftMember )

PermanentMember( staffNr, [division], eMail, [phoneNumber] ) FixedTermMember( staffNr, endTerm, eMail, [phoneNumber] )

∗StaffMember( staffNr ) =
PermanentMember( staffNr ) union FixedTermMember( staffNr )

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 41 / 45



Partition - Representative Example

StaffMember
(.nr)

Email
has

Permanent
Member

FixedTerm
Member

Phone
Number

has

EndTerm
(.date)

has
Division

(.nr) belongs to

ContractType
(.code) has

{'P','NP'}

∗ ∗

∗
∗Each PermanentMember is a Member who has ContractType 'P'

Each FixedTermMember is a Member who has ContractType 'NP'

managed by

Project
(.nr) involves

Project( projNr, manager ) ProjectInvolvesFTMember( projNr, ftMember )

PermanentMember( staffNr, [division], eMail, [phoneNumber] ) FixedTermMember( staffNr, endTerm, eMail, [phoneNumber] )

∗StaffMember( staffNr ) =
PermanentMember( staffNr ) union FixedTermMember( staffNr )

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 41 / 45



Mapping Hierarchies with Different Preferred Identifiers

• The root supertype table is obtained in the standard way.
• Each subtype overriding the preferred identification scheme is mapped
separately.

• If the subtype has a corresponding total table, then the preferred
reference of the supertype is added as a further column with a FK
pointing to the supertype table.

• If the subtype has no total table, then an extra reference table is
introduced to connect the identifiers of the subtype to identifiers of
the supertype.

• Additional consistency constraints are introduced for multiple
inheritance.

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 42 / 45



Hierarchies with Different Ids - Representative Example

• Student, Employee, Person mapped to separate tables.
• Student and Employee add a reference to Person in their total tables.
• StudentEmployee inherits Employee’s preferred id → two choices:

I Separation strategy. In this case the functional role “tutors for” is
considered mandatory in the table, because it is the only distinctive
feature of StudentEmployee.

I Absorption strategy. Functional role “tutors for” added as optional
column in Employee table. Discriminator column could be introduced.

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 43 / 45



Hierarchies with Different Ids - Representative Example
Separate mapping strategy for each object type of the hierarchy.

520 Chapter 11: Relational Mapping 
 
 

Student ( studentNr, personNr, degree, ... )

Person ( personNr, ... )

Employee ( empNr, personNr, deptCode, ... )

StudentEmployee ( empNr, tutePeriod, ... )

1 only where personNr in Student.personNr1

Person
(.nr)

Student
(.nr)

Employee
(.nr)

Student
Employee

works for

Department
(.code)

Degree
(.code) seeks

tutors for

Period
(h:)

is
/is

is
/is

is
/is!

is
/is

! StudentEmployee is Student "##
       StudentEmployee is $%&e Employee
              '(% is $%&) Person

    '(% is *(+* Student.

 
 
 
 
 
 
 
 
 
 

Figure 11.45 The relational map of Figure 11.44, choosing subtype separation. 

 
Choosing subtype separation for mapping each subtype, each of the three super-

types has a total table that is identical to its functional table. The functional fact types 
of the nodes in the subtype graph map to the four tables shown in Figure 11.45. Here 
an ellipsis “…” denotes any other (functional) attributes omitted in Figure 11.44. 

If there are other mandatory columns in StudentEmployee, then tutePeriod becomes 
optional. Notice that personNr is not included in the StudentEmployee table: this 
avoids duplicating any instances of Person(.nr) has StudentNr(). Other mapping options 
exist. For example, we might absorb StudentEmployee into Employee. 

Note that subtype links imply is-associations as depicted in the underlying explana-
tory schema of Figure 11.46. The four subtype-to-supertype connections in Figure 
11.44 are actually metafact types (relationships between types) that imply the instance 
level fact types shown here. The subtyping link from StudentEmployee to Employee 
implies the reference type StudentEmployee is Employee. 

The implied is-associations from Student and Employee to Person allow us to ex-
press facts such as “The employee with employeeNr 23 is the person with personNr 
507”. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.46 Subtype links to new reference schemes are treated as base fact types. 

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 44 / 45



Rmap Procedure
0. Indicate any absorption-overrides (separation or partition) for

subtypes, and absorb other subtypes into their top supertype.
Mentally erase all explicit preferred identification schemes, treating
compositely identified object types as “black boxes”.

1. Map each fact type with a compound UC to a separate table.
2. Fact types with functional roles attached to the same object type are

grouped into the same table, keyed on the object type’s identifier.
3. Map 1:1 cases to a single table, generally favoring fewer nulls.
4. Map each independent object type with no functional roles to a

separate table.
5. Unpack each “black box column” into its component attributes.
6. Map all other constraints and derivation rules.

In case of absorption, subtype constraints on functional roles map to
qualified optional columns, and those on nonfunctional roles map to
qualified subset constraints.
Nonfunctional roles of independent object types map to column
sequences that reference the independent table.

Marco Montali (unibz) DPM - 5.Relational Mapping A.Y. 2014/2015 45 / 45


