
Data and Process Modelling
3. Object-Role Modeling - CSDP Step 1

Marco Montali

KRDB Research Centre for Knowledge and Data
Faculty of Computer Science

Free University of Bozen-Bolzano

A.Y. 2014/2015

Marco Montali (unibz) DPM - 3.CDSP-1 A.Y. 2014/2015 1 / 12

CSDP Methodology
ORM provides a Conceptual Schema Design Procedure.

Global conceptual
structural schema

Divide the UoD
in sub-areas

Apply CSDP on
each area

Integrate

To logical/physical/external
design...

1. Transform familiar examples into elementary
facts.

2. Draw the fact types, and apply a population
check.

3. Check for entity types to be combined, and
note any arithmetic derivations.

4. Add uniqueness constraints, and check the arity
of fact types.

5. Add mandatory role constraints, and check for
logical derivations.

6. Add value, set-comparison, and subtyping
constraints.

7. Add further constraints, do final checks.

Marco Montali (unibz) DPM - 3.CDSP-1 A.Y. 2014/2015 2 / 12

From Examples to Elementary Facts
CSDP Step 1
Transform familiar examples into elementary facts.

• Most critical step: understanding the UoD.
• Goal: isolate relevant information to be represented in the IS.

I Every relevant piece of information: must be elementary or derivable.
I → Isolate each elementary fact.

F Cannot be split into smaller units of information.
F Simple assertion, atomic proposition about the UoD.
F Epistemic commitment: people act as they believed the fact to be true.

• Questions: what kinds of info do we want from the system? Are
entities well-identified? Can the facts be split into smaller units
without losing information?

• Answers: by talking with domain experts about examples (“familiar
information examples”).

I Reports, input forms, sample queries, . . .
• Data use cases: talk about processes and requirements, but to
understand the data. Then design the processes.

Marco Montali (unibz) DPM - 3.CDSP-1 A.Y. 2014/2015 3 / 12

From Examples to Elementary Facts
CSDP Step 1
Transform familiar examples into elementary facts.

• Most critical step: understanding the UoD.
• Goal: isolate relevant information to be represented in the IS.

I Every relevant piece of information: must be elementary or derivable.
I → Isolate each elementary fact.

F Cannot be split into smaller units of information.
F Simple assertion, atomic proposition about the UoD.
F Epistemic commitment: people act as they believed the fact to be true.

• Questions: what kinds of info do we want from the system? Are
entities well-identified? Can the facts be split into smaller units
without losing information?

• Answers: by talking with domain experts about examples (“familiar
information examples”).

I Reports, input forms, sample queries, . . .
• Data use cases: talk about processes and requirements, but to
understand the data. Then design the processes.

Marco Montali (unibz) DPM - 3.CDSP-1 A.Y. 2014/2015 3 / 12

Elementary Fact

Asserts that a particular object has a property, or that one or more objects
participate together in a relationship (each playing certain role).

• Ann smokes.
• Ann employs Bob.
• Bob is employed by Ann.
• If Ann employs Bob, then Bob gets a salary.
• If someone becomes employed, then he/she gets a salary.
• Lee is located in E301.
• Ann employs Bob and John.
• Ann and Bob open a loan request.
• Bob does not smoke. (disambiguate)

I CWA vs OWA (with consistency constraint A ∧ ¬A → ⊥).
I What about “Bob is a non-smoker”?

Marco Montali (unibz) DPM - 3.CDSP-1 A.Y. 2014/2015 4 / 12

Elementary Fact

Asserts that a particular object has a property, or that one or more objects
participate together in a relationship (each playing certain role).

• Ann smokes.
• Ann employs Bob.
• Bob is employed by Ann.
• If Ann employs Bob, then Bob gets a salary.
• If someone becomes employed, then he/she gets a salary.
• Lee is located in E301.
• Ann employs Bob and John. (!!!)
• Ann and Bob open a loan request. (disambiguate)
• Bob does not smoke. (disambiguate)

I CWA vs OWA (with consistency constraint A ∧ ¬A → ⊥).
I What about “Bob is a non-smoker”?

Marco Montali (unibz) DPM - 3.CDSP-1 A.Y. 2014/2015 4 / 12

Basic Objects

• Value: has self-identifying reference (30, π, ‘Lee’, ‘E301’).
I Rigid.
I Strings and numbers.

• Entity/Object: referenced by a definite description (Lee, E301).
I Typically changes with time.
I Tangible (this computer) vs abstract (this lesson).
I Referenced by a rigid value: use/mention distinction.

F Lee is located in E301 vs ‘Lee’ is located in ‘E301’.
I Just a value is not sufficient → referential ambiguity.

Marco Montali (unibz) DPM - 3.CDSP-1 A.Y. 2014/2015 5 / 12

What is a Definite Description?

Definite description
1. value (‘Lee’)
2. + explicit entity type (the Person ‘Lee’). . .
3. + reference mode: the manner in which the value refers to the entity

type (the Person with surname ‘Lee’).

Compact verbalization:
Person (.surname) ‘Lee’ is located in Room (.code) ‘E301’.

Notes:
• Also composite identification schemes exist (later. . .).
• In critical cases, add a descriptive comment.

Marco Montali (unibz) DPM - 3.CDSP-1 A.Y. 2014/2015 6 / 12

Roles

Modeled by logical predicates: sentences containing “object holes”.
• Object hole: placeholder for an object designator (object term).
The person with firstname ‘Ann’ smokes → . . . smokes (unary).

• Most predicates: binary.
The person with firstname ‘Ann’ employs the person with firstname
‘Bob’ → . . . employs . . .

• Extension to arbitrary n-ary predicates.
• Principles:

I Order matters.
I The n object terms must not be necessarily distinct.
I The obtained proposition must not be expressible as a conjunction of

simpler independent propositions.

Marco Montali (unibz) DPM - 3.CDSP-1 A.Y. 2014/2015 7 / 12

Procedure
1. Collect significant reports, incomplete sentences, tables, graphs.

I Cover all the possible cases.
I Remember: most material represents incomplete knowledge.

2. Analyze them with domain expert using the telephone heuristic.
I Identify synonyms, choose preferred terms, write a glossary.

→ verbalized information about the system as-is.

3. Process the verbalized information (modeler). Questions: which
aspects should be modeled? Which parts may take on different
values?

I Write further examples.
I Identify hidden constraints.

F Example: consider A ∧ B ∧ C .
B and C independent → A ∧ B; A ∧ C .

I Rewrite information using definite descriptions for entities and
identifying inverse roles.

→ elementary facts about the system as-is.
4. Do the same with the new data requirements.

→ elementary facts about the system to-be.

Marco Montali (unibz) DPM - 3.CDSP-1 A.Y. 2014/2015 8 / 12

Procedure
1. Collect significant reports, incomplete sentences, tables, graphs.

I Cover all the possible cases.
I Remember: most material represents incomplete knowledge.

2. Analyze them with domain expert using the telephone heuristic.
I Identify synonyms, choose preferred terms, write a glossary.

→ verbalized information about the system as-is.
3. Process the verbalized information (modeler). Questions: which

aspects should be modeled? Which parts may take on different
values?

I Write further examples.
I Identify hidden constraints.

F Example: consider A ∧ B ∧ C .
B and C independent → A ∧ B; A ∧ C .

I Rewrite information using definite descriptions for entities and
identifying inverse roles.

→ elementary facts about the system as-is.

4. Do the same with the new data requirements.
→ elementary facts about the system to-be.

Marco Montali (unibz) DPM - 3.CDSP-1 A.Y. 2014/2015 8 / 12

Procedure
1. Collect significant reports, incomplete sentences, tables, graphs.

I Cover all the possible cases.
I Remember: most material represents incomplete knowledge.

2. Analyze them with domain expert using the telephone heuristic.
I Identify synonyms, choose preferred terms, write a glossary.

→ verbalized information about the system as-is.
3. Process the verbalized information (modeler). Questions: which

aspects should be modeled? Which parts may take on different
values?

I Write further examples.
I Identify hidden constraints.

F Example: consider A ∧ B ∧ C .
B and C independent → A ∧ B; A ∧ C .

I Rewrite information using definite descriptions for entities and
identifying inverse roles.

→ elementary facts about the system as-is.
4. Do the same with the new data requirements.

→ elementary facts about the system to-be.
Marco Montali (unibz) DPM - 3.CDSP-1 A.Y. 2014/2015 8 / 12

Example

Tute Group Time Room Student Nr Student Name

A Mon. 3 p.m. CS-718 302156 Bloggs FB
180064 Fletcher JB
278155 Jackson M

B1 Tue. 2 p.m. E-B18 266010 Anderson AB
348112 Bloggs FB

.

Typical verbalization by domain expert:
• Student 302156 belongs to group A and is named ‘Bloggs FB’.
• Tute group A meets at 3 p.m. Monday in Room CS-718.

Marco Montali (unibz) DPM - 3.CDSP-1 A.Y. 2014/2015 9 / 12

Example

Tute Group Time Room Student Nr Student Name

A Mon. 3 p.m. CS-718 302156 Bloggs FB
180064 Fletcher JB
278155 Jackson M

B1 Tue. 2 p.m. E-B18 266010 Anderson AB
348112 Bloggs FB

.

Typical verbalization by domain expert:
• Student 302156 belongs to group A and is named ‘Bloggs FB’.
• Tute group A meets at 3 p.m. Monday in Room CS-718.

Marco Montali (unibz) DPM - 3.CDSP-1 A.Y. 2014/2015 9 / 12

Value Types, Inverse Roles
Student 302156 belongs to group A and is named ‘Bloggs FB’.

• Name and surname together.
• Student name and nr. in the same row refer to the same student.
• Student has only one number but could share the name with others.

I Student number is a good identifier, student name is not.

→ Student (nr.) 302156 has StudentName ‘Bloggs FB’.
• StudentName is a value type: no reference scheme.

→ Student (nr.) 302156 belongs to Tutegroup (.code) ‘A’.
• Inverse: Tutegroup (.code) ‘A’ involves Student (nr.) 302156.
• . . . (Stud.) belongs to . . . (TuteG.) ↔ . . . (TuteG.) involves . . . (Stud.)

I 6= surface structure, = deep structure.
I One primary (mandatory), the inverse optional.

→ Student (nr.) 302156 belongs to/involves Tutegroup (.code) ‘A’.

Marco Montali (unibz) DPM - 3.CDSP-1 A.Y. 2014/2015 10 / 12

Value Types, Inverse Roles
Student 302156 belongs to group A and is named ‘Bloggs FB’.

• Name and surname together.
• Student name and nr. in the same row refer to the same student.
• Student has only one number but could share the name with others.

I Student number is a good identifier, student name is not.

→ Student (nr.) 302156 has StudentName ‘Bloggs FB’.
• StudentName is a value type: no reference scheme.

→ Student (nr.) 302156 belongs to Tutegroup (.code) ‘A’.
• Inverse: Tutegroup (.code) ‘A’ involves Student (nr.) 302156.
• . . . (Stud.) belongs to . . . (TuteG.) ↔ . . . (TuteG.) involves . . . (Stud.)

I 6= surface structure, = deep structure.
I One primary (mandatory), the inverse optional.

→ Student (nr.) 302156 belongs to/involves Tutegroup (.code) ‘A’.
Marco Montali (unibz) DPM - 3.CDSP-1 A.Y. 2014/2015 10 / 12

(In)separability of Facts

Tute group A meets at 3 p.m. Monday in Room CS-718.
↓
TuteGroup(.code) ‘A’ meets at Time(.dhcode) ‘Mon. 3 p.m.’ in
Room(.code) ‘CS-718’.

• Hp: TuteGroups meet more than once a week.
I Further questions (Always in the same room? Suppose not)
I The fact is inseparable.
I Hence elementary → a ternary predicate!
I Need to complete the sample data with additional significant cases:

F TuteGroup(.code) ‘A’ meets at Time(.dhcode) ‘Tue. 4 p.m.’ in
Room(.code) ‘CS-513’.

I Separation → information loss!

Marco Montali (unibz) DPM - 3.CDSP-1 A.Y. 2014/2015 11 / 12

(In)separability of Facts

Tute group A meets at 3 p.m. Monday in Room CS-718.
↓
TuteGroup(.code) ‘A’ meets at Time(.dhcode) ‘Mon. 3 p.m.’ in
Room(.code) ‘CS-718’.

• Sample questions:
1. Does TuteGroup(.code) ‘A’ always meet in Room(.code) ‘CS-718’?
2. Does this hold for all TuteGroups?
3. Do TuteGroups meet only once a week? (Note: (3) → (2)).

Marco Montali (unibz) DPM - 3.CDSP-1 A.Y. 2014/2015 11 / 12

(In)separability of Facts

Tute group A meets at 3 p.m. Monday in Room CS-718.
↓
TuteGroup(.code) ‘A’ meets at Time(.dhcode) ‘Mon. 3 p.m.’ in
Room(.code) ‘CS-718’.

• Hp: TuteGroups meet only once a week.
I The fact must be separated.
I It is not elementary → two binary predicates!
I TuteGroup(.code) ‘A’ meets at Time(.dhcode) ‘Mon. 3 p.m.’.

TuteGroup(.code) ‘A’ meets in/hosts Room(.code) ‘CS-718’.

Marco Montali (unibz) DPM - 3.CDSP-1 A.Y. 2014/2015 11 / 12

System As-Is vs System To-Be
3.3 CSDP Step 1: From Examples to Elementary Facts 79

Seattle

Los
Angeles

Chicago New
 York

Figure 3.7 A graph showing nonstop flight connections between cities.

As a simple graphical example, Figure 3.7 might be used to display information about
nonstop flight connections provided by a particular airline, with the arrowheads indicating
the direction of the flights. As an exercise, perform step 1 for this graph before reading on.

Now let’s see how well you performed. There is only one entity type: City (.name).
There is also only one fact type: City has a flight to City. For instance, the arrow from Chicago
to Seattle may be verbalized as: City ‘Chicago’ has a flight to City ‘Seattle’. The “to” in
the predicate is important, since it conveys direction and avoids the symmetry problem
with the earlier marriage example.

If this was an as-is model, and we wanted also to talk about the flight connections (e.g.,
state their duration) or to include many airlines, we should add flight numbers to the ar-
rows on the graph. This to-be model leads to a different verbalization, which you might
like to try for yourself. A later exercise returns to this example.

In practice, it is usually possible for a city to have more than one airport, so that con-
nections apply directly between airports rather than cities. Airports are identified by air-
port codes (e.g. ‘JFK’ and ‘LGA’ respectively denote John F. Kennedy and LaGuardia
airports which service New York).

Airports can service a city without being located in that city. For example, Newark air-
port (EWR) located in New Jersey also services New York, and Sea-Tac airport (SEA)
located between Seattle and Tacoma services Seattle. We need to determine which specific
kinds of fact are of interest in the business domain and verbalize them precisely (e.g., Air-
port services City is a different fact type from Airport is located in City).

By now you may have some sense of the power of verbalizing examples in terms of
elementary facts. No matter what kind of example you start with, if you or an assistant
understands the example then you should be able to express the information in simple
facts. This does require practice at the technique, but this is fun anyway—isn’t it?

If you can’t do step 1, there is little point in proceeding with the design—either you
don’t understand the UoD or you can’t communicate it clearly.

System as-is: direct flight
connections between cities.

• City(.name) ‘New York’ has a
flight to/has a flight from
City(.name) ‘Chicago’.

System to-be:
• Info about the flights.
• Notion of airport.
• Notion of airport that serves one or more cities.

Marco Montali (unibz) DPM - 3.CDSP-1 A.Y. 2014/2015 12 / 12

System As-Is vs System To-Be
3.3 CSDP Step 1: From Examples to Elementary Facts 79

Seattle

Los
Angeles

Chicago New
 York

Figure 3.7 A graph showing nonstop flight connections between cities.

As a simple graphical example, Figure 3.7 might be used to display information about
nonstop flight connections provided by a particular airline, with the arrowheads indicating
the direction of the flights. As an exercise, perform step 1 for this graph before reading on.

Now let’s see how well you performed. There is only one entity type: City (.name).
There is also only one fact type: City has a flight to City. For instance, the arrow from Chicago
to Seattle may be verbalized as: City ‘Chicago’ has a flight to City ‘Seattle’. The “to” in
the predicate is important, since it conveys direction and avoids the symmetry problem
with the earlier marriage example.

If this was an as-is model, and we wanted also to talk about the flight connections (e.g.,
state their duration) or to include many airlines, we should add flight numbers to the ar-
rows on the graph. This to-be model leads to a different verbalization, which you might
like to try for yourself. A later exercise returns to this example.

In practice, it is usually possible for a city to have more than one airport, so that con-
nections apply directly between airports rather than cities. Airports are identified by air-
port codes (e.g. ‘JFK’ and ‘LGA’ respectively denote John F. Kennedy and LaGuardia
airports which service New York).

Airports can service a city without being located in that city. For example, Newark air-
port (EWR) located in New Jersey also services New York, and Sea-Tac airport (SEA)
located between Seattle and Tacoma services Seattle. We need to determine which specific
kinds of fact are of interest in the business domain and verbalize them precisely (e.g., Air-
port services City is a different fact type from Airport is located in City).

By now you may have some sense of the power of verbalizing examples in terms of
elementary facts. No matter what kind of example you start with, if you or an assistant
understands the example then you should be able to express the information in simple
facts. This does require practice at the technique, but this is fun anyway—isn’t it?

If you can’t do step 1, there is little point in proceeding with the design—either you
don’t understand the UoD or you can’t communicate it clearly.

System as-is: direct flight
connections between cities.

• City(.name) ‘New York’ has a
flight to/has a flight from
City(.name) ‘Chicago’.

System to-be:
• Info about the flights.
• Notion of airport.
• Notion of airport that serves one or more cities.

Marco Montali (unibz) DPM - 3.CDSP-1 A.Y. 2014/2015 12 / 12

