
Verification of Data-Aware Processes
Data Centric Dynamic Systems

Diego Calvanese, Marco Montali

Research Centre for Knowledge and Data (KRDB)
Free University of Bozen-Bolzano, Italy

KRDB
1

29th European Summer School in Logic, Language, and Information
(ESSLLI 2017)

Toulouse, France – 17–28 July 2017

Formalization Relational Transition System Semantics of Action Execution Det. and Non-Det. Semantics

Outline

1 Formalization of DCDSs

2 Relational Transition System

3 Semantics of Action Execution

4 Deterministic and Non-deterministic Execution Semantics

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (1/25)

Formalization Relational Transition System Semantics of Action Execution Det. and Non-Det. Semantics

Formalization of Data Centric Dynamic Systems

A DCDS X is a triple 〈D,P, I0〉, where:

D is the data layer, capturing the static aspects of the DCDS;

P is the process layer, capturing the dynamic aspects of the DCDS;

I0 is the initial database.

The data layer D is a pair 〈R, C〉, where:

R is a relational schema, i.e., a set of relation schemas (relation names
with their arity).

C is a set of integrity constraints.
We assume the constraints to be domain-independent FOL sentences.

The initial database I0 is a relational DB conforming to the data layer, i.e.:

it is a database for the relational schema R, and

it satisfies the constraints C.

Note: having an initial DB is an assumption that we make to ensure good
computational properties (notably, decidability) of verification in our framework.

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (2/25)

Formalization Relational Transition System Semantics of Action Execution Det. and Non-Det. Semantics

The process layer of DCDSs

The process layer P is a triple P = 〈F ,A, %〉, where:

F is a finite set of functions, each representing the interface to an external
service.

The services can be called, and as a result the function is activated and the
answer is produced.
How the result is actually computed is unknown to the DCDS since the
services are external.

A is a finite set of actions, whose execution updates the data layer, and
may involve external service calls.

% is a finite set of condition-action rules that form the specification of the
overall process, which tells at any moment which actions can be executed.

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (3/25)

Formalization Relational Transition System Semantics of Action Execution Det. and Non-Det. Semantics

Actions and process

An action α is a triple constituted by:

A action name α·name;

A list α·pars of individual input parameters;

Parameters are substituted by constants for the execution of the action.

An effect specification α·eff consisting of a set of effects.

Effects are assumed to take place simultaneously.

The process % is a finite set of condition-action rules.

Each condition-action rule has the form Q 7→ α, where:

α is an action in A;

Q is a FO query over R:

the free variables are exactly the parameters of α;
the other terms in the query can be either quantified variables or constants
in adom(I0).

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (4/25)

Formalization Relational Transition System Semantics of Action Execution Det. and Non-Det. Semantics

Action effects

Each effect e ∈ α·eff has the form Qe addA delD where:

Qe is a query over R that may include as terms of the query:

constants of adom(I0),
some of the input parameters.

A and D are two sets of facts over R, respectively to be added to and
deleted from the current state to produce a new state.

They may include as terms:

constants in adom(I0), parameters, free variables of Qe, and
functions calls, which formalize call to (atomic) external services.

Note:

All queries (in the action effects, and in the condition of the process rules) are
evaluated over the active domain adom(I) of the current database.
; Active domain semantics.

Hence the queries instantiate the facts to add and delete in the action effects
with known values only.

However, new values are introduced by the calls to external services!

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (5/25)

Formalization Relational Transition System Semantics of Action Execution Det. and Non-Det. Semantics

Deterministic vs. non-deterministic services

DCDSs admit two different semantics for service-execution:

Deterministic services semantics

Along a run, when the same service is called again with the same arguments, it
returns the same result as in the previous call.

Are used to model an environment whose behavior is completely determined by
the parameters.
Example: temperature, given the location and the date and time

Non-deterministic services semantics

Along a run, when the same service is called again with the same arguments, it
may return a different value than in the previous call.

Are used to model:

an environment whose behavior is determined by parameters that are
outside the control of the system;

input of external users, whose choices depend on external factors.

Example: current temperature, given the location
Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (6/25)

Formalization Relational Transition System Semantics of Action Execution Det. and Non-Det. Semantics

An example: Hotels and price conversion

Data Layer: Info about room prices for hotels and their currency

Cur = 〈UserCurrency〉 CH = 〈Hotel ,Currency〉
PEntry = 〈Hotel ,Price,Date〉

Process Layer/1: User selection of a currency

Process: true 7−→ ChooseCur()

Service call for currency selection: uInputCurr()

Models user input with non-deterministic behavior.

ChooseCur() :

{
Cur(c) del{Cur(c)}
true add{Cur(uInputCurr())}

}

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (7/25)

Formalization Relational Transition System Semantics of Action Execution Det. and Non-Det. Semantics

An example: Hotels and price conversion

Data Layer: Info about room prices for hotels and their currency

Cur = 〈UserCurrency〉 CH = 〈Hotel ,Currency〉
PEntry = 〈Hotel ,Price,Date〉

Process Layer/2: Price conversion for a hotel

Process: Cur(c) ∧ CH(h, ch) ∧ ch 6= c 7−→ ApplyConv(h, c)

Service call for currency selection: conv(price, from, to, date)

Models historical conversion with deterministic behavior.

ApplyConv(h, c) :
PEntry(h, p, d) del{PEntry(h, p, d)}

PEntry(h, p, d) ∧
CH(h, cold) add{PEntry(h,conv(p, cold , c, d), d)}
CH(h, cold) del{CH(h, cold)}, add{CH(h, c)}

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (7/25)

Formalization Relational Transition System Semantics of Action Execution Det. and Non-Det. Semantics

Outline

1 Formalization of DCDSs

2 Relational Transition System

3 Semantics of Action Execution

4 Deterministic and Non-deterministic Execution Semantics

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (8/25)

Formalization Relational Transition System Semantics of Action Execution Det. and Non-Det. Semantics

Execution semantics of dynamic systems

Typically given in the form of a transition system.

(Propositional) transition system

Given a set Σ of state propositions, a (propositional) transition system is a
tuple 〈S, s0, prop,⇒〉, where:

S is a finite set of states;

s0 ∈ S is the initial state;

prop : S → 2Σ is an assignment, mapping each state in S to the set of
propositions from Σ holding in that state;

⇒ ⊆ S × S is the transition relation between states.

Usually, the transitions are labeled with corresponding actions.

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (9/25)

Formalization Relational Transition System Semantics of Action Execution Det. and Non-Det. Semantics

Impact of data on verification

The presence of data complicates verification significantly:

States must be modeled relationally rather than propositionally.

The resulting transition system is typically infinite state.

Query languages for analysis need to combine two dimensions:

a temporal dimension to query the process execution flow, and
a first-order dimension to query the data present in the relational structures.

; We need first-order variants of temporal logics.

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (10/25)

Formalization Relational Transition System Semantics of Action Execution Det. and Non-Det. Semantics

What if the system evolves a database?

We get a transition system in which each state is a relational database.

In the following, we fix an infinite domain ∆ of data items (also called values).

Relational transition system (RTS)

Is a tuple 〈∆,R, S, s0, db,⇒〉, where:

R is a database schema;

S is a possibly infinite set of states;

s0 ∈ S is the initial state;

db is a function that, given a state s ∈ S, returns the database instance
db(s) over R and ∆;

⇒ ⊆ S × S is the transition relation between states.

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (11/25)

Formalization Relational Transition System Semantics of Action Execution Det. and Non-Det. Semantics

Execution semantics of a DCDS

Is determined by the relational transition system that accounts for all possible
runs of the DCDS:

States are database instances (i.e., db is the identity function).

Transitions: correspond to legal applications of an action with parameter
instantiation + service call evaluations.

Action with param. instantiation: executable according to the process rules.
Satisfaction of constraints ensured by each DB instance.

We obtain a possibly infinite-state (relational) transition system, intuitively
constructed as follows:

start from the initial DB;

apply transitions in all possible ways;

continue (ad infinitum) on the newly obtained states.

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (12/25)

Formalization Relational Transition System Semantics of Action Execution Det. and Non-Det. Semantics

Outline

1 Formalization of DCDSs

2 Relational Transition System

3 Semantics of Action Execution

4 Deterministic and Non-deterministic Execution Semantics

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (13/25)

Formalization Relational Transition System Semantics of Action Execution Det. and Non-Det. Semantics

Action execution – Intuition

To execute an action α in state s according to Q 7→ α:

1 Evaluate Q over db(s), and choose a parameters assignment σ for α.

2 If such an assignment exists, then α is executable and instantiated with σ.

3 ασ is executed: for each effect Qi addAi delDi of α:
1 Qiσ is evaluated over db(s), getting variable assignments ρ1, . . . , ρn;

2 for each ρj , the grounded facts Aiσρj and Diσρj are obtained;

3 all service calls contained in all Aiσρj and Diσρj are issued;

4 the next state is obtained by removing from the current state all facts Diσρj
and adding all facts Aiσρj , after the inclusion of all service call results.

We now define the semantics formally.

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (14/25)

Formalization Relational Transition System Semantics of Action Execution Det. and Non-Det. Semantics

Semantics of an action execution (1/3)

Consider:

a DCDS X = 〈D,P, I0〉, where D = 〈R, C〉 and P = 〈F ,A, %〉;
the current instance I of X , which is a DB state for R satisfying C;

an action α ∈ A;

a parameter substitution σ assigning to α·pars actual parameters from ∆.

We want to compute the possible new instances I ′ obtained from I by
executing action α under substitution σ.

We need to deal with incomplete instances I, which may contain service calls.

We define basic functions capturing the execution in I of α under σ:

del(I, α, σ) computes the (incomplete) facts to delete from I;

add(I, α, σ) computes the (incomplete) facts to add to I;

calls(I) denotes the service calls contained in an incomplete instance I;

evals∆(I) denotes the set of substitutions that replace all service calls in
I with values from ∆.

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (15/25)

Formalization Relational Transition System Semantics of Action Execution Det. and Non-Det. Semantics

Semantics of an action execution (2/3)

To compute a possible new instance I ′ from the current instance I:

1 Compute the incomplete facts Idel = del(I, α, σ) (for deletion), where:

del(I, α, σ) =
⋃

(Qi addAi delDi)∈α·eff

⋃
ρ∈ ans (Qiσ,I)

Diσρ

2 Compute the incomplete facts Iadd = add(I, α, σ) (for addition), where:

add(I, α, σ) =
⋃

(Qi addAi delDi)∈α·eff

⋃
ρ∈ ans (Qiσ,I)

Aiσρ

3 Compute the set of substitutions for the service calls in I = Idel ∪ Iadd:

evals∆(I) = {θ | θ is a total function, θ : calls(I)→ ∆}

4 A possible new instance is I ′ = do(I, α, σ, θ) for θ ∈ evals∆(I), where:

do(I, α, σ, θ) = (I \ Idelθ) ∪ Iaddθ

Note: additions globally take preference over deletions.

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (16/25)

Formalization Relational Transition System Semantics of Action Execution Det. and Non-Det. Semantics

Semantics of an action execution (3/3)

Each I ′ = do(I, α, σ, θ), for each θ ∈ evals∆(I), represents a potential
new state resulting from the execution of α under parameter instantiation
σ.

However, I ′ must also satisfy the constraint of the data layer.

Legal new state

We say that I ′ is legal w.r.t. state I, action α, parameter substitution σ, and
service evaluation θ, if the following holds:

1 There exists a condition-action rule Q 7→ α in % such that σ ∈ ans (Q, I).

2 The new state I ′ satisfies all constraints in C.

To understand the possible executions of DCDSs, we have to clarify how
external services behave across runs.

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (17/25)

Formalization Relational Transition System Semantics of Action Execution Det. and Non-Det. Semantics

An example: Hotels and price conversion

Data Layer: Info about room prices for hotels and their currency

Cur = 〈UserCurrency〉 CH = 〈Hotel ,Currency〉
PEntry = 〈Hotel ,Price,Date〉

Process Layer/1: User selection of a currency

Process: true 7−→ ChooseCur()

Service call for currency selection: uInputCurr()

Models user input with non-deterministic behavior.

ChooseCur() :

{
Cur(c) del{Cur(c)}
true add{Cur(uInputCurr())}

}

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (18/25)

Formalization Relational Transition System Semantics of Action Execution Det. and Non-Det. Semantics

An example: Hotels and price conversion

Data Layer: Info about room prices for hotels and their currency

Cur = 〈UserCurrency〉 CH = 〈Hotel ,Currency〉
PEntry = 〈Hotel ,Price,Date〉

Process Layer/2: Price conversion for a hotel

Process: Cur(c) ∧ CH(h, ch) ∧ ch 6= c 7−→ ApplyConv(h, c)

Service call for currency selection: conv(price, from, to, date)

Models historical conversion with deterministic behavior.

ApplyConv(h, c) :
PEntry(h, p, d) del{PEntry(h, p, d)}

PEntry(h, p, d) ∧
CH(h, cold) add{PEntry(h,conv(p, cold , c, d), d)}
CH(h, cold) del{CH(h, cold)}, add{CH(h, c)}

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (18/25)

Formalization Relational Transition System Semantics of Action Execution Det. and Non-Det. Semantics

Run of the system

HC

h1 eur
h2 eur

PEntry

h1 95 apr-25
h1 80 sep-18
h2 80 sep-18

HC

h1 eur
h2 eur

PEntry

h1 95 apr-25
h1 80 sep-18
h2 80 sep-18

Cur

usd

HC

h1 usd
h2 eur

PEntry

h1 115 apr-25
h1 95 sep-18
h2 80 sep-18

Cur

usd

HC

h1 usd
h2 usd

PEntry

h1 115 apr-25
h1 95 sep-18
h2 95 sep-18

Cur

usd

ChooseCur(): uInputCurr() =

?

usd

ApplyConv(h1,usd):
conv(95,eur,usd,apr-25) = ?115
conv(80,eur,usd,sep-18) = ?95

ChooseCur()

ApplyConv(h2,usd)

ChooseCur()

ApplyConv(h2,usd)
conv(80,eur,usd,sep-18) = 95

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (19/25)

Formalization Relational Transition System Semantics of Action Execution Det. and Non-Det. Semantics

Outline

1 Formalization of DCDSs

2 Relational Transition System

3 Semantics of Action Execution

4 Deterministic and Non-deterministic Execution Semantics

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (20/25)

Formalization Relational Transition System Semantics of Action Execution Det. and Non-Det. Semantics

Execution semantics for non-deterministic services

The above semantics for action execution provides directly the execution
semantics for a DCDS X with non-deterministic services.

Transition relation n-execX over states

Captures how states evolve:

〈I, ασ, I ′〉 ∈ n-execX

if and only if

there exists θ ∈ evals∆(del(I, α, σ) ∪ add(I, α, σ)) such that
I ′ = do(I, α, σ, θ) is legal w.r.t. I, α, σ, θ.

Note:

The condition-action rules of % are taken into account in n-execX .

States that do not satisfy the constraints in the data layer of the DCDS are
not considered.

There is no condition on how service calls evaluate across different states.

However, within one execution step, all occurrences of the same service call
evaluate to the same result.

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (21/25)

Formalization Relational Transition System Semantics of Action Execution Det. and Non-Det. Semantics

Concrete transition system under non-deterministic services

Making use of the transition relation n-execX , we can now define the transition
systems generated by a DCDS under non-deterministic services semantics.

Concrete RTS for a DCDS X = 〈∆,D,P, I0〉 under non-deterministic services

Is an RTS Υn
X = 〈∆,R, S, s0, db,⇒n〉, where:

s0 = I0;

db is the identity function, i.e., db(I) = I;

R is the database schema of X ;

the states S and the transition relation ⇒n are defined by simultaneous
induction as the smallest set satisfying the following properties:

1 s0 ∈ S;
2 if I ∈ S, then for all actions α, parameter substitutions σ, and states I′

such that 〈I, ασ, I′〉 ∈ n-execX , we have that I′ ∈ S and I ⇒n I′.

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (22/25)

Formalization Relational Transition System Semantics of Action Execution Det. and Non-Det. Semantics

Execution semantics under deterministic services

To ensure that service calls behave deterministically, the states of the transition
system keep track of all results of the service calls made so far.

Let SC = {f(v1, . . . , vn) | f ∈ F and {v1, . . . , vn} ⊆ ∆} be the set of
(Skolem terms representing) service calls.

A service call map is a partial function M : SC→ ∆.

A state of the transition system is a pair 〈I,M〉, where:

I is a relational instance for D, and
M is a service call map.

Transition relation d-execX over states

〈〈I,M〉, ασ, 〈I ′,M′〉〉 ∈ d-execX

if and only if

there exists θ ∈ evals∆(del(I, α, σ) ∪ add(I, α, σ)) such that:

I ′ = do(I, α, σ, θ) is legal w.r.t. I, α, σ, θ,

θ and M agree on the common values in their domain, and

M′ =M∪ θ.

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (23/25)

Formalization Relational Transition System Semantics of Action Execution Det. and Non-Det. Semantics

Concrete transition system under deterministic services

Making use of the transition relation d-execX , we can now define the RTS
generated by a DCDS under deterministic services semantics.

Concrete RTS for a DCDS X = 〈∆,D,P, I0〉 under deterministic services

Is an RTS Υd
X = 〈R, S, s0, db,⇒d〉, where:

s0 = 〈I0, ∅〉;
db is such that db(〈I,M〉) = I;

R is the database schema of X ;

the states S and the transition relation ⇒d are defined by simultaneous
induction as the smallest set satisfying the following properties:

1 s0 ∈ S;
2 if 〈I,M〉 ∈ S, then for all actions α, parameter substitutions σ, and states

〈I′,M′〉 such that 〈〈I,M〉, ασ, 〈I′,M′〉〉 ∈ d-execX ,
we have that 〈I′,M′〉 ∈ S and 〈I,M〉 ⇒d 〈I′,M′〉.

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (24/25)

Formalization Relational Transition System Semantics of Action Execution Det. and Non-Det. Semantics

Sources of unboundedness/infinity

In general: service calls cause . . .

......

......

. . .

infinite branching (due to all possible results of
service calls);

infinite runs (usage of values obtained from
unboundedly many service calls);

unbounded DBs
(accumulation of such values).

HC

h1 eur
h2 eur

PEntry

h1 95 apr-25
h1 80 sep-18
h2 80 sep-18

Cur

usd

. . .

. . .

. . .

.

.

.

ApplyConv(h1,usd): exchange rate = 1.2

ApplyConv(h1,usd): exchange rate = 1.23

ApplyConv(h1,usd): exchange rate = 1.3

ApplyConv(h1,usd): exchange rate = ...

Calvanese, Montali (FUB) Verification of Data-Aware Processes ESSLLI 2017 – 24–28/07/2017 (25/25)

	Formalization of DCDSs
	Relational Transition System
	Semantics of Action Execution
	Deterministic and Non-deterministic Execution Semantics

