Verification of Data-Aware Processes

unibz

Diego Calvanese Marco Montali {calvanese,montali}@inf.unibz.it

Free University of Bozen-Bolzano

Advanced Course in Logic and Computation - ESSLLI 2017, Toulouse, France

The Three Pillars of Complex Systems

State of the Art

Traditional isolation between processes and data

• Why? To attack the complexity (*divide et impera*)

Logic and Computation have deeply contributed to the development of these two aspects

- Data: knowledge bases, conceptual models, ontologies, ontology-based data access and integration, inconsistency-tolerant semantics, ...
- Processes: reasoning about actions, temporal/ dynamic logics, situation/event calculus, temporal reasoning, planning, verification, synthesis, ...

Information Assets

- **Data**: the main information source about the history of the domain of interest and the relevant aspects of the current state of affairs
- **Processes**: how work is orchestrated in the domain of interest, so as to create value
- Resources: humans and devices responsible for the execution of work units within a process

We focus on data and processes!

Marrying **processes** and **data** is extremely **challenging**....

... but is a **must** if we want to really **understand** how **complex dynamic systems** operate.

Our Research at KRDB

6

Business Process Management Modeling

Data Management

Formal Methods

Artificial Intelligence

Practice

Theory

Practice

Theory

Outline

- 1. Introduction and motivation: why processes + data
- 2. The framework of **Data-Centric Dynamic Systems**
- 3. Verification logics and behavioural indistinguishability
- 4. Sources of **undecidability**
- 5. Control and conquer: **decidability** results
- 6. Connection to concrete languages and systems

Experience Dichotomy

Workers

[reality]

Management [models]

Management Dichotomy

Business [decision making]

[infrastructure]/

Expertise Dichotomy

Business Process Management

Master Data Management

A Successful Organization

Business Process

A set of **logically related tasks** performed to achieve a **defined business outcome** for a particular customer or market.

(Davenport, 1992)

A collection of activities that take one or more kinds of input and create an output that is of value to the customer.

(Hammer & Champy, 1993)

A set of activities performed in coordination in an organizational and technical environment. These activities jointly realize a business goal.

(Weske, 2011)

Business Process Management

A collection of concepts, methods, and techniques to support humans in modeling, administration, configuration, execution, analysis, and continuous improvement of business processes

New Organisational Roles

Short History

17

- Smith (~1750): division of labour
- Taylor (~1911): scientific method applied to organisations
- Hammer and Champy (~1990): processes as the basis for reengineering
- 2000s: business process lifecycle, process-orientation

Value Chains, Business Functions, Tasks

From tasks...

... to their coordination

End-To-End, Reactive Behaviour

Order-to-cash, procure-to-pay, issue-to-resolution, ...

Business Process Lifecycle

picture by Wil van der Aalst

Two Questions

How to **formally** and **conceptually** account for the **process+data** interplay?

How to verify such **BPMs**?

Two Questions

How to **formally** and **conceptually** account for the **process+data** interplay?

Is this Synergy Reflected by Models?

Survey by *Forrester* [Karel et al, 2009]: lack of interaction between data and process experts.

- BPM professionals: data are subsidiary to processes
- Master data managers: data are the main driver for the company's existence
- 83/100 companies: no interaction at all between these two groups
- This isolation propagates to models, languages and tools

Example: Order-To-Delivery

\angle . Uluel decomposition

3. Selection and interaction with suppliers

4. material assembly

4. material assembly

Observations

• A complex process, where the company acts as an intermediate hub between customers and suppliers

Happy path

The customer issues a purchase order
 The ordered material is obtained from suppliers
 The material is shipped, possibly using different packages

One exceptional path (in general, there are many):
1) The customer cancels the order
2) A cancelation policy is applied to calculate a penalty

Conventional Data Modeling

Focus: revelant entities, relations, static constraints

But... how do data evolve? Where can we find the "state" of a purchase order?

Conventional Process Modeling

Focus: control-flow of activities in response to events

But... how do activities update data? What is the impact of canceling an order?

A Deployed Process

V Suche	Auswahl	Ticket & Optionen	Zahlung	Prüfen & Buchen	Bestätigung	
Hinfahrt	Zeuthen → BERLIN Di, 29.11.16, ab: 15:00)	Häufige	e Fragen		
Reisende 1 Erwachsener, 2. Klasse						e ich Sparpreise? Jeutet "Preisauskunft nicht "?
Angaben ändern						"f Ifigen Fragen

Hinfahrt am 29.11.16

🖶 Druckansicht

Bahnhof/Haltestelle	Zeit	Dauer V	Umst.	Produkte	Flexpreis	\sim
	∧ Früher				Preis für alle Reisenden inkl. Ermäßigungskarten*	
Zeuthen Berlin Hbf (S-Bahn)	15:00 15:45	0:45	1	S	ab 3,30 EUR p.P. VBB-Tarif	
V Details einblenden					Zur Preisauskunft	

Do you like Spaghetti?

IT integration: difficult to manage, understand, maintain
Too Late!

- Where are the data?
- Where shall we model relevant business rules?
- Consider an order cancelation policy that needs to check which <u>material</u> has been already <u>shipped</u> towards determining the customer <u>penalty</u>...

N.B.: these are "sparse" dots!!!

... There is Hope!

data-centric

0	 0		0			0	0	00		0	8	0		00	0
								0	0	00				0	_0
					0		0	0	0				0	0	0
					act	ivity	-cer	ntric							
1 9 9	 2 0 0	2 0 0	2 0 0	2 0 0	2 0 0	2 0 0	2 0 0	2 0 1							

• [BPM2010, Richardson]: BPM vs master data dichotomy

- Data+Process integration key to:
 - assess value of processes and evaluate KPIs [Meyer et al, 2011]
 - aggregate relevant info, elicit business rules [ABDIS11, Dumas]
- [Reichert, 2012]: "Process and data are just two sides of the same coin"

data-centric

One Step Back...

How do contemporary activity-centric BPMSs account for the process-data interplay?

Case and Persistent Data

Persistent Data Engineering

Case Data Engineering

A General Recipe

"REAL" PROCESS

- Explicit control-flow
- Local, case data
- Global, persistent data
- Queries/updates on the persistent data
- External inputs
- Internal generation of fresh IDs

BPMN

Explicit control-flow

Local, case data

Global, persistent data

Queries/updates on the persistent data

External inputs

Internal generation of fresh IDs

Colored Petri Nets

No conceptual representation of persistent storage

COLORED PETRI NETS

Global, persistent data

Queries/updates on the persistent data

External inputs

implicit, or using fresh variables

Business Entities/Artifacts

Data-centric paradigm for process modeling

- First: *elicitation of relevant business entities* that are evolved within given organizational boundaries
- Then: definition of the *lifecycle* of such entities, and how *tasks trigger the progression* within the lifecycle
- Active research area, with concrete languages (e.g., IBM GSM, OMG CMMN)
- Cf. EU project ACSI (completed)

Finite-State Machines

GSM - CMMN

Philharmonic Flows

ARTIFACT-/OBJECT-CENTRIC PROCESSES

- Explicit control-flow
- - Local, case data
- Global, persistent data

Queries/updates on the persistent data

External inputs

Internal generation of fresh IDs

Problem Dimensions

MAR SU

Dimension 1 Static Information Model

How are data structured?

- Propositional symbols —> Finite state system
- Fixed number of values from an unbounded domain
- Full-fledged database:
 - relational database
 - tree-structured data, XML
 - graph-structured data

Dimension 1 Static Information Model

Are constraints present? How are they interpreted?

- Complete data
- Data under incomplete information
 - ontology (with intensional part typically fixed)
 - full-fledged ontology-based data access system
- Hard vs soft-constraints (inconsistency-tolerance)

Dimension 2 Dynamic Component

- Implicit representation of time vs. implicit progression mechanism vs. explicit process
- When an explicit process is present:
 - how is the process dynamics represented?
 - procedural vs. declarative approaches (e.g., finite state machines vs. rule-based)
- Deterministic vs. non-deterministic behaviour
- Linear time vs. branching time model
- Finite vs. infinite traces

Dimension 3 Data-Process Interaction

How are data manipulated by the process?

- Data is only accessed, but not modified
- Data are updated, but no new values are inserted
- Full-fledged combination of the temporal and structural dimensions
- Hybrid approaches (e.g., read-only database + readwrite registers)

Dimension 4 Interaction with the Environment

Is the system interacting with the external world?

- Closed systems vs. bounded input vs. unbounded input
- Synchronous vs. asynchronous communication
- Message passing, possibly with queues
- One-way or two-way service calls

Dimension 4 Interaction with the Environment

Which parts of the environment are fixed? Which change?

- Stateless vs stateful environment
- Fixed database vs. varying database vs. varying portion of data
- Multiple devices/agents interacting with each other
- Fixed vs changing topologies

Dimension 5 Formal Analysis

How are (un)desired properties formulated?

- Analysis of fundamental properties: reachability, absence of deadlock, boundedness, (weak) soundness
- Analysis of arbitrary formulae in some temporal logic
- Analysis of properties with queries across the temporal dimension (in the style of temporal DBs)

Dimension 5 Formal Analysis

Which forms of analysis?

- Verification
- Dominance, simulation, equivalence
- Synthesis from a given specification
- Composition of available components

 Go to the essential
Find boundaries of decidability in a general setting
Understand the connection with concrete languages
Implement

Fixing the main coordinates...

MS

091

40

NE

120 120 120 120 Minimum

The Model

Data-Centric Dynamic Systems

A pristine, yet very powerful framework for data-aware processes

Data layer: storage for persistent data

Process layer: declarative specification of system dynamics

Data Layer

Thus, a finite FO structure queried using domainindependent FO formulae

We fix an *infinite abstract data domain* Δ , and a finite subset Δ_0 of distinguished constants

- **DB**: set of relation schemas
- **DB instance**: finite set of facts over DB using values from Δ
 - Active domain: (finite) set of values used in the instance

A DB instance is **queried** using possibly open firstorder (FO) formulae with active domain semantics

- **Constraints**: boolean queries, which *must be true in an instance*
 - E.g.: Keys, FKs, dependencies, multiplicities, ...

Example: User Cart

Actions

Each action encapsulates a **complex update** over the data layer

- Action signature: name + set of parameters
- Action specification: conditional CRUD effects (a là ADL in planning, or resembling SQL INSERT/ UPDATE/DELETE prepared statements)

Action Effect

- Each effect is an IF-THEN rule
 - IF part: query over the current DB, possibly mentioning the action parameters
 - THEN part: ADD/DELETE facts, mentioning Action parameters Results to the IF query (bulk interpretation) Service calls to account for **new data**
- Cf.: ADL planning, tuple-generating dependencies, SQL insert/update/delete queries

Example: User Cart

User Cart Actions

Any customer may decide to insert a new item of a given product into her cart

 $\exists \vec{y}, \vec{z}.Customer(c, \vec{y}) \land Product(p, \vec{z}) \mapsto \mathsf{AddToCart}(c, p)$

• Any customer may empty her own cart

 $\exists \vec{y}.Customer(c,\vec{y}) \mapsto \mathsf{EmptyCart}(c)$

User Cart Actions

• Adding to a cart...

 $\begin{array}{l} \mathsf{AddToCart}(c,p): \\ \{ true \rightsquigarrow \mathbf{add}\{InCart(\mathbf{getBarCode}(\mathbf{p}),c,p)\} \end{array} \end{array}$

• Emptying a cart...

 $\{ InCart(b, c, p) \rightsquigarrow \mathbf{del}\{InCart(b, c, p)\} \}$

Action Application

- 1. **Bind** the action parameters to actual values (obtaining an instantiated action specification)
- 2. Issue the **condition queries**, retrieving *all* answers
- 3. Instantiate the add/delete facts using the parameters and all answers
- 4. Evaluate each ground service call, getting a corresponding value
- 5. Complete the **grounding** of add/delete facts
- 6. Apply the update on the current DB instance, first deleting, then adding
- 7. If the resulting DB instance satisfies all constraints: commit! Otherwise: roll-back!

Sophisticated Inputs

Service calls are interpreted as being purely nondeterministic (e.g., user input).

In many cases, it is useful to have:

- constrained inputs (e.g., comboboxes);
- **fresh value invention** (e.g., generation of a new primary key in a relation).

All this advanced features are syntactic sugar in DCDSs

Type of Analysis

Formal Verification

Automated analysis of a formal model of the system against a property of interest, considering all possible system behaviors

Guidelines

- System we verify = system we execute
- System compactly specified using a suitable modelling language: DCDS!
- A DCDS induces a transition system that provides the basis for verification
- Concurrency is interpreted as interleaving
- Various verification languages, with reachability as bottom line

Formal Verification

The Conventional, Propositional Case

Process control-flow

Formal Verification

The Data-Aware Case

DCDS (process+data)

Formal Verification The Data-Aware Case

DCDS (process+data)

transition system [Vardi 2005] 90

First-order temporal formula

(Un)desired property

Why FO Temporal Logics

- To inspect data: FO queries
- To capture system dynamics: temporal modalities
- To track the evolution of objects: FO quantification across states
- Example: It is always the case that every order is eventually either cancelled, or paid and then delivered

Not Just Business Processes!

