
Object-centric Processes with
Structured Data and Universal Synchronization

Formal Modelling and Conformance Checking

Alessandro Gianola1, Marco Montali2, and Sarah Winkler2

1 INESC-ID/IST, Universidade de Lisboa, Portugal
alessandro.gianola@tecnico.ulisboa.pt
2 Free University of Bozen-Bolzano, Italy

{montali,winkler}@inf.unibz.it

Abstract. Real-world processes often involve interdependent objects,
also carrying on sophisticated data values, such as integers, reals, strings.
However, existing process formalisms fall short to combine key mod-
eling features, such as tracking object identities, supporting complex
datatypes, handling dependencies among them, and object-aware syn-
chronization. Object-centric Petri nets with identifiers (OPIDs) partially
address these needs but treat objects as unstructured identifiers (e.g., or-
der and item IDs), overlooking the rich semantics of complex data values
(e.g., item prices or other attributes). To overcome these limitations, we
introduce Data-aware OPIDs (DOPIDs), a framework that strictly ex-
tends OPIDs by incorporating structured data manipulation capabilities,
and full synchronization mechanisms. In spite of the expressiveness of the
model, we show that it can be made operational, considering in partic-
ular the task of conformance checking. Specifically, we define a novel
operational approach leveraging satisfiability modulo theories (SMT) to
compute data-aware object-centric alignments.

Keywords: Object-centric conformance checking · Universal Synchro-
nization · Data-aware Processes · Complex Datatypes · SMT

1 Introduction

In recent years, research in information systems supporting the execution of
business and work processes has increasingly emphasized the need for multi-
perspective process models. Prominently, the goal has been to tackle the intri-
cate relationship between the control flow and the data with which this control
flow can interact. This calls for investigating how data influence the process be-
havior, and how the control flow of the process impacts on the data queried and
manipulated by activities and decision points. Data dimensions can be mani-
fold: case variables carrying data, multi-case interactions with objects involved
in many-to-many relations, and interactions with persistent storage like a rela-
tional database. In this spectrum, a growing stream of research is producing dif-
ferent formal models of data-aware processes with the twofold aim of supporting

2 A. Gianola et al.

representation and computation, on the one hand covering relevant modelling
constructs, on the other providing effective algorithmic techniques for process
analysis and mining (such as, most prominently, automated discovery and con-
formance checking). Within this stream, two distinct directions emerged. The
first focuses on enriching case-centric processes by incorporating structured case
attributes (e.g., the price of a product, the age and name of a customer, as well
as more complex structures such as a persistent relational storage). This, in turn,
supports expressing how activities in the process read and write these variables,
and how decision points use these variables to express routing conditions for
cases. A prime example in this vein is that of Data Petri nets (DPNs [17,15]). The
second direction has instead the purpose of lifting the case-centricity assumption,
tackling so-called object-centric processes where multiple objects, interconnected
via complex one-to-many and many-to-many relationships, are co-evolved by the
process (e.g., orders containing multiple products, shipped in packages that may
mix up products from different orders). It has been pointed out that straight-
jacketing this complexity through a single case notion yields to misleading pro-
cess analysis and mining results [1,4]. Several process modelling formalisms have
emerged, such as object-centric Petri nets [3], synchronous proclets [8], and differ-
ent variants of Petri nets with identifiers (PNIDs) [19,11,22,13], tackling essential
features like: (i) tracking objects, by representing concurrent flows of object ids,
and by enabling parallel progression of object ids such as package shipments and
order notifications; (ii) object creation and manipulation, handling dependen-
cies among objects and their related data values, and supporting one-to-one and
one-to-many relationships - e.g., adding multiple items to an order or splitting
it into separate packages. (iii) object-aware full synchronization, i.e., an object
can flow through an activity only if some (subset) or all (exact) related objects
also flow – ensuring that an object can proceed through an activity only when
certain conditions are met (e.g., initiating order billing only when some or all
associated packages have been delivered).

The ultimate goal of this work is to reconcile these two lines of research,
proposing a unified formalism supporting at once the most advanced modelling
features for object-centric processes, as well as those dealing with data attributes
and conditions. Specifically, we provide a twofold contribution in representation
and computation. As for representation, we start from OPIDs [13] – the most so-
phisticated formalism based on PNIDs: they support all the main object-centric
required modelling features, with the exception of universal/exact synchroniza-
tion. We lift OPIDs into a new class of PNIDs called DOPIDs, which at once
close the gap regarding synchronization, and support infusing in the net also
data values with a variety of data types, together with conditions expressed over
such data values, ranging from simple comparison conditions to advanced forms
of aggregation. As for computation, we consider conformance checking, show-
ing that we can lift existing SMT-techniques for conformance checking to cover
all the newly introduced features. We do so by integrating and extending the
SMT-encodings for conformance checking separately studied for OPIDs [13] and
DPNs [9], covering the full DOPID spectrum.

Object-centric processes with structured data and universal synchronization 3

ob
je

ct
cr

ea
ti

on

ob
je

ct
re

m
ov

al
co

nc
ur

re
nt

ob
je

ct
flo

w
s

m
ul

ti
-o

bj
ec

t
tr

an
sf

er

m
ul

ti
-o

bj
ec

t
sp

aw
ni

ng

ob
je

ct
re

la
ti

on
s

su
bs

et
sy

nc

ex
ac

t
sy

nc

co
re

fe
re

nc
e

st
ru

ct
.d

at
a

ob
je

ct
re

fe
re

nc
e

co
nf

or
m

an
ce

OC nets [3] ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ imp. [16]

synchronous
proclets [8] ✓ ✓ ✓ ∼∼∼ ✓ ✓ ✓ ✓ ✗ ✗ imp. ✗

DPNs [15] ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ imp. [17]

PNIDs
[19,11,22] ✓ ✓ ✓ ∼∼∼ ∼∼∼ ✓ ∼∼∼ ✗ ✓ ✗ exp. ✗

OPIDs [13] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ∼∼∼ ✓ ✗ exp. [13]

DABs [6] ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ no ✗

DOPIDs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ exp. here

Table 1. Comparison of Petri net-based object-centric process modelling languages
along main modelling features, tracking which approaches support conformance. ✓

indicates full, direct support, ✗ no support, and ∼∼∼ indirect support.

2 Related Work and Modelling Features

To highlight key modeling features of DOPIDs, we reviewed relevant literature
on case-centric data-aware processes [10,6,12] and object-centricity [1,4,2]. A
summary of these features and their implementation across different approaches
is presented in Tab. 1.

The first key feature is the incorporation of constructs for creating and delet-
ing objects. Different approaches vary based on whether objects are explicitly
referenced within the model or are only implicitly manipulated. Another criti-
cal aspect is the ability for objects to flow concurrently and independently —
for example, items being picked while their corresponding order is paid (see di-
vergence in [1]). Additionally, models may support the simultaneous transfer of
multiple objects of the same type, such as processing several items in a single
transaction. Moreover, transitions in these models must account for the manip-
ulation of multiple objects, either of the same type or different types, at the
same time (see convergence in [1]). A type of convergence occurs when a single
transition generates an unbounded number of child objects from a parent object,
where the children are all linked to the parent. For instance, placing an order can
create unboundedly many associated items. Once this parent-child one-to-many
relationship is established, other forms of convergence, such as synchronizing
transitions, can be introduced. These transitions allow a parent object to evolve
only if some (subset synchronization) or all its child objects (exact synchroniza-
tion) are in a certain state. In addition, advanced coreference techniques can
be employed to simultaneously examine and evolve multiple interconnected ob-
jects. Finally, an essential feature is the support for advanced and structured
data types, such as integers, reals, lists, and arrays. They enhance the objects
manipulated by the process with additional information, allowing users to de-
fine complex conditions and constraints that act as guards for the transitions
in the process model, possibly enriching it with background knowledge. This

4 A. Gianola et al.

final feature, unlike the others, is more characteristic of data-aware extensions
of case-centric process models [18], where the focus is traditionally placed on
the complex structure of data values, often governed by relational logical the-
ories [7]. Among these approaches, the most advanced framework is the DAB
model [6], which supports rich forms of database-driven data, and sophisticated
forms of reasoning. In process mining, multi-perspective models capable of incor-
porating richer data representations while expressing concurrent flows have also
been introduced. A prominent example is Data Petri Nets [10], a Petri net-based
formalism that, while more expressive, remains case-centric.

Regarding object-centric models, several Petri net-based formal models have
been introduced [21,3,8,19,11,22]. Object-centric nets [3] offer an implicit ap-
proach to object-centricity. Here, places and transitions are associated with dif-
ferent object types. Simple arcs match with a single object at a time, while
double arcs handle arbitrarily many objects of the same type. However, the
lack of mechanisms to track object relationships prevents modeling object syn-
chronization and coreference. Alignment-based conformance checking for this
approach is in [16]. Synchronous proclets [8] offer a framework that can implic-
itly express the tracking of objects and their mutual relationships. They include
specialized constructs to support the described types of convergence, including
subset and exact synchronization, though other forms of coreference are not
supported. Multi-object transfers are approximated through iteration, process-
ing objects one by one. Conformance checking for proclets is implicitly tackled
here for the first time (considering that DOPIDs generalize proclets). Petri nets
with identifiers (PNIDs), and variants, have been studied in [19,11,22], though
without addressing conformance checking. PNIDs build upon ν-Petri nets by
explicitly managing objects and their relationships through identifier tuples.
Unlike object-centric nets and proclets, PNIDs lack constructs for manipulating
unboundedly many objects in a single transition. As demonstrated in [11], multi-
object transfers, spawning, and subset synchronization can be achieved through
object coreference and iterative operations. Nevertheless, exact synchronization
would necessitate data-aware wholeplace operations, which no variant of PNID
supports. Finally, DOPIDs strictly subsume OPIDS [13], extending them with
complex, structured data capabilities and by supporting full object-aware syn-
chronization. In fact, OPIDs do not allow guards in transitions, and only permit
unstructured object ids and subset synchronization.

3 Object-Centric Event Logs with Data Attributes

We start from object-centric event logs as in [3,13], and enrich them with data
attributes. To this end, we assume that data types are divided in two classes: a
class Σobj of object id types, and a class Σval of data-value types.

Consistently with the literature, every object id type σ ∈ Σobj has an (un-
interpreted) domain dom(σ) ⊆ O, given by all object ids in O of type σ. Such
identifiers are used to refer to objects in the real world, and can be compared
only for equality and inequality. Examples are order and product identifiers.

Object-centric processes with structured data and universal synchronization 5

To capture the data attributes attached to objects and recorded in event
logs, such as for example the price of a product and the delivery address of
an order, we also introduce data-value domains for data-value types in Σval:
dom(bool) = B, the booleans; dom(int) = Z, the integers; dom(rat) = Q, the
rational numbers; and dom(string) = S, the strings over some fixed alphabet;
unconstrained finite sets dom(finseti) = Di, for some finite set Di (subsuming
strings); all the defined types are equipped with relational and function symbols
defined over it. While boolean, numerical, and string values are of standard,
relational and function symbols are particularly important not only towards
generality of the approach, but also to conceptually capture implicit boolean,
numerical, and string values that are attached to objects but not explicitly ma-
nipulated by the process. For example, for an order management process where
every order gets attached to a delivery address (explicitly accounted and ma-
nipulated by the process) and an owner (implicitly assumed, but not directly
manipulated by the process), one may opt for modelling the delivery address as
a string, and the owner as a function taking an order id as its only argument.

In addition to the sets Σobj and Σval for object and data-value types, fix a set
A of activities and a set T of timestamps with a total order <. We also consider
(partial) assignments from a set of variables V to elements of their domain. The
set of all such assignments is denoted AssignV .

Definition 1. An event log (with objects and attributes) is a tuple L =
⟨E,O, πact , πobj , πtime , πval⟩ where: (i) E is a set of event identifiers, (ii) O is
a set of object identifiers that are typed by a function type : O → Σobj, (iii) the
functions πact : E → A, πobj : E → P(O), and πtime : E → T associate each
event e ∈ E with an activity, a set of affected objects, and a timestamp, respec-
tively, such that for every o ∈ O the timestamps πtime(e) of all events e such that
o ∈ πobj (e) are all different.(iv) the function πval : E → AssignV . This function
associates each event e ∈ E with a set of affected data-values.

Given an event log and an object o ∈ O, we write πtrace(o) for the tuple of events
involving o, ordered by timestamps. Formally, πtrace(o) = ⟨e1, . . . , en⟩ such that
{e1, . . . , en} is the set of events in E with o ∈ πobj (e), and πtime(e1) < · · · <
πtime(en) (by assumption these timestamps can be totally ordered.) In examples,
we often leave O, A and domains implicit and present an event log L as a set of
tuples ⟨e, πact(e), πobj (e), πtime(e), πval(e)⟩ representing events. Timestamps are
shown as natural numbers, and concrete event ids as #0,#1,

Example 1. We consider a more sophisticated variant of the order-to-shipment
example in [13], in turn inspired from [3]. Instead of emphasizing the problems
related to reshuffling products from one order to the other, which were tackled in
[13] and are homogeneously handled in this work, we focus on distinctive features
of our extended model, not covered in object-centric nets [3] nor OPIDs [13].
Process executions in this scenario involve the following events: (i) place order
creates an order indicating its id, the number of days expected by the customer
for the delivery, and the order content, consisting of one or more products;
(ii) pay cc and pay bt pay the order by credit card and bank transfer respectively;

6 A. Gianola et al.

(iii) pick item fetches a product from the warehouse; (iv) ship takes an order with
its products and deals with the shipment, also declaring the shipment mode.

Consider O = {o1, p1, p2} with type(o1) = order and type(p1) = type(p2) =
product . The following is an event log with four events E = {#0,#1,#2,#3},
indicating that order o1 is placed with two products p1, p2 and with 3 days for
preferred delivery, then o1 is paid, p1 is picked, and finally o1 is shipped only
with p1, confirming the 3 days and selecting truck as mode:

⟨#0, place order, {o1, p1, p2}, {d 7→ 3}, 1⟩, ⟨#1, pay cc, {o1}, ∅, 4⟩,
⟨#2, pick item, {o1, p1}, ∅, 5⟩, ⟨#3, ship, {o1, p1}, {d 7→ 3, s 7→ truck}, 9⟩

The notions of object and trace graphs from [3,13] remain identical also in our
setting. In particular, the notion of trace graph, used to single out all the events
and flows referring to an object, does not change as what matters for correlating
events is that they insist on the same objects, while it is not important whether
they share data values. In the example, we have a single trace graph for o1.

4 Data-Aware Object-Centric Petri Nets with Identifiers

We define data-aware object-centric Petri nets with identifiers (DOPIDs), en-
riching the features of OPIDs [13] with data values, complex data manipulation
capabilities, and full object-aware synchronization.

As in PNIDs and OPIDs, objects can be created in DOPIDs using ν variables,
and tokens can carry object ids, data values, or tuples containing multiple object
ids and/or data values. The latter account at once for relationships among ob-
jects, and attributes connecting objects to data values. So, objects can be linked
to other objects or data values, e.g., as in Ex. 3, where a product tracks the
order it belongs to, and an order is associated to its shipment mode. Arcs are
labeled with (tuples of) variables to match with objects and relations.

In the style of object-centric nets [3] and synchronous proclets [8], in a DOPID
one can spawn and transfer multiple objects at once, using an extension of the
mechanism introduced for OPIDs, based on the usage of special “set variables”
that match with sets of objects. The refinement consists in the possibility of
indicating, when operating over a set of objects by consuming multiple tokens
at once, whether one wants to consume some or all matching objects. The latter
case could not be tackled in OPIDs, and is essential to reconstruct the different
forms of synchronization present in synchronous proclets.

A second, key extension to OPIDs is that DOPIDs support different types
of data values carried by tokens, i.e., object ids to account for the identifiers
of objects and structured data-values such as integers or reals. By expressing
guards over such data values, DOPIDs incorporate and go beyond the modelling
features of Data Petri nets [17,15] and related formalisms.

Formal Definition. Let Σ = Σobj ⊎Σval be the overall set of types (including
both object and data value types). A set of variables V is typed if there is a
function type : V → Σ assigning a type to each variable in V. In addition to the
types in Σ, we also consider list types with a base type σ ∈ Σ, denoted as [σ].

Object-centric processes with structured data and universal synchronization 7

As in colored Petri nets, each place has a color : a cartesian product of data
types from Σ. More precisely, the set of colors Col is the set of all σ1 × · · · × σm

such that m ≥ 1 and σi ∈ Σ for all 1 ≤ i ≤ m. We fix a set of Σ-typed variables
X = V ⊎ Vlist ⊎ V⊆

list ⊎ V=
list ⊎ Υ as the disjoint union of:

1. a set V of “normal” variables that refer to single objects or data values,
denoted by lower-case letters like v, with a type type(v) ∈ Σ;

2. a set Vlist of list variables referring to a list of objects of the same type,
denoted by upper case letters like U , with type(U) = [σ] for some σ ∈ Σ;

3. two sets V⊆
list and V=

list that contain annotated list variables U⊆ and U=

resp., for each list variable U in Vlist – these will be used to express whether
some or all objects matching the variable must be considered;

4. a set Υ of variables ν referring to fresh objects, with type(ν) ∈ Σobj .
We assume that infinitely many variables of each kind exist, and for every

ν ∈Υ , that dom(type(ν)) is infinite, for unbounded supply of fresh objects [20]).
In DOPIDs, tokens are tuples of object ids and data-values, each associated

with a color. E.g., for the objects in Ex. 1, we want to use ⟨o1⟩, ⟨o1, p1⟩, and ⟨o1, 5⟩
as tuples carried by tokens – respectively representing a reference to: order o1,
the relationship indicating that product p1 is contained in order o1, and the fact
that o1 has 5 days of desired delivery by the customer. To define relationships
between objects in consumed and produced tokens when firing a transition, we
need, as customary, inscriptions of arcs, which are tuples of variables in X .

Definition 2. An inscription is v = ⟨v1, . . . , vm⟩ s.t. m ≥ 1 and vi ∈ X for all
i, but at most one vi ∈ Vlist ⊎ V⊆

list ⊎ V=
list (1 ≤ i ≤ m). We call v a transfer-

template inscription if vi ∈ Vlist , ⊆-template inscription if vi ∈ V⊆
list , or =-

template inscription if vi ∈ V=
list for some i, and a simple inscription otherwise.

For instance, for o, p ∈ V and P ∈ Vlist , there are inscriptions ⟨o, P ⟩ or ⟨p⟩,
the former being a template inscription and the latter a simple one. Inscription
⟨o, P=⟩ is a =-template inscription since it contains the variable P= in V=

list .
However, ⟨P, P ⟩ is not a valid inscription as it has two list variables. By allowing
at most one list variable in inscriptions, we restrict to many-to-one relationships
between objects. Recall that many-to-many relationships can be modeled as
many-to-one with auxiliary objects, through reification.

As we will see later, simple, ⊆- and =-template inscriptions will be used
when consuming tokens, while simple and transfer-template inscriptions will be
employed when producing tokens. Specifically, template inscriptions will be used
to capture an arbitrary number of tokens of the same color: intuitively, if o is of
type order and P of type [product], then ⟨o, P ⟩ refers to a single order with an
arbitrary number of produced product ids (i.e., other object ids). When consum-
ing tokens carrying order-product pairs from a place, ⟨o, P⊆⟩ selects some tokens
carrying different products for a given order o, while ⟨o, P=⟩ selects all of them.
This will be useful to tackle subset and exact synchronization (cf. Section 2).

We define the color of an inscription ι = ⟨v1, . . . , vm⟩ as the tuple of the types
of the involved variables, i.e., color(ι) = ⟨σ1, . . . , σm⟩ where σi = type(vi) if
vi ∈ V ∪ Υ , and σi = σ′ if vi is a list variable of type [σ′]. Moreover, we set

8 A. Gianola et al.

vars(ι) = {v1, . . . , vm}. E.g. for ι = ⟨o, P ⟩ with o, P as above, we have color(ι) =
⟨order , product⟩ and vars(ι) = {o, P}. The same applies to ⊆- and =-template
inscriptions. The set of all inscriptions is denoted Ω.

To define guards on transitions, we consider the following definition of condi-
tions, where we assume that (uninterpreted) functions and relations are defined
over Σ (i.e., all object id and data value domains):

Definition 3. Given V and Vlist , a constraint c and expressions s, n, r, d, k,
tD, and tK are defined by the grammar:

c ::= vb | b | d = d | k ≥ k | k > k | R(d, . . . , d) | R(k, . . . , k) | c ∧ c | ¬c
n ::= vn | z | sum(Z) | min(Z) | max(Z) | n+ n | −n

r ::= vr | q | sum(Q) | min(Q) | max(Q) | mean(Q) | r + r | −r

s ::= vs | h | f(s, . . . , s) d ::= s | fw(d, . . . , d) | fw(k, . . . , k)
k ::= n | r | gw(k, . . . , k) | gw(d, . . . , d) | k + k | −k | sum(tK)

tD ::= D | fy(tD) | fy(tK) tK ::= Z | Q | gy(tK) | gy(tD)

where vb, vs, vn, vr ∈ V, type(vb) = bool, b∈B, type(vn) = int, z ∈Z,
type(vr) = rat, q ∈Q, type(vs) = finseti, h∈Di (some i), Z,Q,D ∈ Vlist,
type(Z) = [int], type(Q) = [rat], D has non-arithmetic type, fw, fy are func-
tions with arithmetic codomains, gw, gy are functions with non-arithmetic ones.

This definition may seem quite involved, but it defines esentially simple con-
cepts. Term s defines strings as variables, constants, or inductive function ap-
plications. Term n defines integers, sums of integers, or aggregators sum, min,
and max applied to lists of integers. Term r is analogous to n but for rational
numbers, for which also the aggregator mean is defined. Terms k and d define,
with a double induction, mixed terms that can combine different types: the only
difference is that the root symbol for k lives in a arithmetical domain (Z or Q),
wheres for d it lives in a non-arithmetical domain. An analogous double induc-
tion defines the list terms tD and tK , which are built on list variables (a function
applied to a list term is applied component-wise, and returns another list), but
differ in the fact that tK lives in a arithmetical domain. Notice also that the term
k can be produced by the application of the aggregator sum to a list variable
tk. Standard equivalences apply, hence disjunction (i.e., ∨) of constraints can be
used, as well as comparisons =, ̸=, <, ≤ on integer and rational expressions.

The constraints defined in Def. 3 serve to express conditions on the values of
(list) variables. We stress again the expressiveness of this language, which makes
also use of aggregators, such as the sum of all elements in a finite list.

Example 2. We consider two constraints that will be later used to express con-
ditions on transitions in Ex. 3. Consider an integer variable d representing the
expected maximum days for a delivery by a customer, and a string variable m
denoting the shipment mode of an order. Condition (d ≤ 5 ∧ m = car) ∨ (d >
5∧m = truck) expresses that either d is at most 5 days and the shipment mode
is car, or that d is 6 days or more and the shipment mode is truck.

Object-centric processes with structured data and universal synchronization 9

Consider now a list variable P for products. We use a unary function cost that
returns the cost of each product in euros, a rational number. This expresses the
background knowledge that every product has a cost, but this is not explicitly
manipulated at the process level (so it will not appear in the log). Consistently
with Def. 3, cost(P) represents the list of rational numbers that contains the
costs of all elements in P . Then, constraint sum(cost(P)) ≤ 1000 expresses that
the overall cost of all products in P does not exceed 1000 euros.

Definition 4. A data-aware object-centric Petri net with identifiers (DOPID)
is a tuple N = (Σobj , Σval, P, T, Fin, Fout, color, ℓ, guard), where:
1. P and T are finite sets of places and transitions such that P ∩ T = ∅;
2. color : P → Col maps every place to a color over Σobj, and Σval;
3. ℓ : T → A∪{τ} is the transition labelling where τ marks an invisible activity,
4. Fin : P × T → Ω is a partial function called input flow, such that

color(Fin(p, t)) = color(p) for every (p, t) ∈ dom(Fin);
5. Fout : T × P → Ω is a partial function called output flow, such that

color(Fout(t, p)) = color(p) for every (t, p) ∈ dom(Fout);
6. guard : T → {φ | φ ∈ C(X)} is a partial guard assignment function, s.t., for

every guard(t) = φ and t ∈ T , Vars(φ) ⊆ vars in(t) ∪ varsout(t) ∪ Υ , where
vars in(t) = ∪p∈PVars(Fin(p, t)) and varsout(t) = ∪p∈PVars(Fout(t, p))

As a well-formedness condition, we assume that in Fin one can only use simple,
⊆-template and =-template inscriptions, while in Fout one can only use simple
and transfer-template inscriptions (cf. Def. 2).

Simple flows (i.e., flows with simple inscriptions) are meant to consume and
produce (tuples of) single matching tokens, whereas template flows (i.e., flows
with template inscriptions) to consume and produce multiple (tuples of) match-
ing tokens. Consumption in this case can be fine-tuned by indicating whether
some (in the case of a ⊆-template inscription) or all (for a =-template inscrip-
tion) matching tokens have to be consumed. Production transfers such matched
tokens to the corresponding output places, using transfer-template inscriptions.

As it will be clear from the next example and the definition of the semantics
of DOPIDs, this is used to capture variable arcs in [16] as in OPIDs, but also to
reconstruct different forms of synchronizations. In particular, =-template inscrip-
tions realize a form of data-aware wholeplace operation: they do not consume
all the tokens contained in a place, but all those that match the inscription.

For a DOPID N as in Def. 4, we also use the common notations •t = {p |
(p, t) ∈ dom(Fin)} and t• = {p | (t, p) ∈ dom(Fout)}.

Ex.3 shows some of the most important features of DOPIDs, and how they
exceed by far the modelling capabilities of existing object-centric formalisms.

Example 3. Fig. 1 graphically depicts a DOPID for a simple yet sophisticated
order-to-ship process, extending the running example from [13]. Variables νo of
type order and νp of type product, both in Υ , refer to new orders and products.
Normal variables o, p ∈ V of type order and product refer to existing orders and
products, and variable P of type [product] to lists of products. We also use two
data value variables d and m, resp. of type integer and string, to represent the

10 A. Gianola et al.

τ
νo

τ
νp

place order

[d > 2]

o

P
⊆

o
pay bt

[sum(cost(P)) ≤ 1000]

pay cco

o

⟨o, P ⟩

⟨o, P=⟩ ⟨o, P ⟩

o

o

⟨o, P ⟩ pick item
⟨o, p⟩ ⟨o, p⟩

⟨o,
d⟩

ship

[
d ≤ 5 ∧m = car

∨ d > 5 ∧m = truck

]

⟨o, d⟩

o

⟨o, P=⟩

⟨o,
P
= ⟩

⟨o,m⟩
⟨o, P ⟩

q0

q1

q2 q3

q4

q5

q6 q7

q8

q9

Fig. 1. DOPID of an order-to-ship process.

delivery days desired by the customer, and the shipment mode. For readability,
single-component tuples are written without brackets (e.g., o instead of ⟨o⟩).

We explain the model transition by transition. The two silent transitions
on the left have the purpose of injecting (fresh) orders and products in the net.
Transition place order takes an order o from place q0 and some available products
P from place q1, and assign all those products to the order. This is done through
the output transfer-template inscription ⟨o, P ⟩, which transfers to place q2 |P |
tokens, each carrying a pair ⟨o, p⟩ with p taken from P . In this respect, place
q5 explicitly represents what in proclets is called correlation set: for every active
order in the system, which products belong to it. When place order fires for a
given order o, also place q6 is with products of o, but from there single products
will be consumed concurrently and independently through pick item. In addition
to assigning products to the consumed order o, place order also assigns to o the
maximum number of expected days of delivery d by the customer, inserting the
pair ⟨o, d⟩ in place q4, responsible for tracking this attribute for every active
order. Since d is only used in output flows, this reconstructs what in DPNs is
called a “write” variable. Also notice that this write is constrained by condition
d > 2, capturing that d can only take values above 2 days. Finally, place order
changes the state of the picked order o, moving it place q0 to q2

From q2, two transitions can be fired for o, reflecting two payment modes.
Specifically, order o either flows through pay cc, or through pay bt, but the latter
can only be selected if the overall cost o (i.e., the sum of the costs of all its
products) does not exceed 1000 euros (cf. Ex. 2). To obtain all the products of
o, pay bt needs to fetch those products from place q5, using inscription ⟨o, P=⟩.
This inscription requires that the first component matches order o consumed
from place q2, while P= forces all the matching pairs for o to be fetched from
q5. As the purpose is to use such products, but not to remove the corresponding
pairs, they are all transferred back to q5 using the inscription ⟨o, P ⟩.

Concurrently with order payment, the state of single products (recalling their
order) is changed when they are, one by one, picked via the pick item transition.

Finally, the ship transition is enabled for a paid order o under the following
conditions. First and foremost o can be shipped only if all its products have been
picked. This is expressed through the two =-template input flows, both using
the same inscription ⟨o, P=⟩. At once, this has the effect of consuming all pairs

Object-centric processes with structured data and universal synchronization 11

containing products of o from places q5 and q7. The output transfer-template
inscription ⟨o, P ⟩ connecting ship to place q9 has then the effect of transferring
all those pairs there. At the same time, ship considers the value d for o, and
through the attached condition (cf. Ex. 2) determines the shipmpent mode for
o, which is recorded in place q8, linking m to o using inscription ⟨o,m⟩.

Two important remarks are in place wrt. Ex. 3. First, the modelling pattern in
Fig. 1 that employs the “correlation” place q5 to keep track of products contained
in an order, paired with the two =-template inscriptions in shipment to ensure
that all products of an order have been actually picked, is what makes DOPIDs
able to support universal synchronization in the full generality of synchronous
proclets [8], something that was out of reach until now for formal models based on
PNIDs. Second, as DOPIDs handle multiple objects and data values at once, they
are not only able to express read-write conditions and guards as in DPNs [15],
both also to express more sophisticated conditions using aggregation expressions.

Semantics. Given the set of object ids O and a set of data-values DV,
the set of tokens T OK is the set of tuples of object ids and data-
values T OK= {(O ⊎ DV)m |m≥ 1}. The color of a token ω ∈ T OK
of the form ω = ⟨o1, . . . , oj , dvj+1, . . . , dvm⟩ is denoted color(ω) =
⟨type(o1), . . . , type(oj), type(dvj+1), . . . , type(dvm)⟩. To define the execution
semantics, we first introduce a notion of a marking of an DOPID N =
⟨Σobj , Σval, P, T, Fin, Fout, color, ℓ, guard⟩, namely as a function M : P →
2T OK, such that for all p ∈ P and ⟨o1, . . . , oj , dvj+1, . . . , dvm⟩ ∈ M(p), it holds
that color(⟨o1, . . . , oj , dvj+1, . . . , dvm⟩) = color(p). Let Lists(O) denote the set
of object lists of the form [o1, . . . , ok] with o1, . . . , ok ∈ O such that all oi have the
same object type; the type of such a list is then [type(o1)]. Analogously, given
Lists(DV) the set of data-value lists [dv1, . . . , dvl] with dv1, . . . , dvl ∈ DV such
that all dvi have the same data-value type, the type of such a list is [type(dv1)].
Next, we define bindings to fix which data are involved in a transition firing.

Definition 5. A binding for a transition t and a marking M is a type-preserving
function b : vars in(t) ∪ varsout(t) → (O ∪ Lists(O)) ⊎ (DV ∪ Lists(DV)), such
that for all U ∈ Vlist , we have b(U) = b(U=) = b(U⊆). To ensure freshness of
created values, we demand that b is injective on Υ ∩ varsout(t), and that b(ν)
does not occur in M for all ν ∈ Υ ∩ varsout(t).

E.g., for transition ship in Ex. 3 the mapping b that sets b(o) = o1 and
b(P) = [p1, p2, p3] is a binding. Next, we extend bindings to inscriptions to
fix which tokens (not just single objects) participate in a transition firing. The
extension of a binding b to inscriptions, i.e., variable tuples, is denoted b. For
an inscription ι= ⟨v1, . . . , vm⟩, let oi = b(vi) for all 1≤ i≤m. Then b(ι) is the
set of object tuples defined as follows: if ι is a simple inscription then b(ι) =
{⟨o1, . . . , om⟩}. Otherwise, there must be one vi, 1≤ i≤n, such that vi ∈ Vlist ,
and consequently oi must be a list, say oi = [u1, . . . , uk] for some u1, . . . , uk. Then
b(ι) = {⟨o1, . . . , oi−1, u1, oi+1, . . . , om⟩, . . . , ⟨o1, . . . , oi−1, uk, oi+1, . . . , om⟩}. The
set of all bindings is denoted by B. We define that a transition with a binding b

12 A. Gianola et al.

is enabled if all object tuples pointed by b occur in the current marking. Given
a condition ϕ, b(ϕ) means that b is applied to all variables occurring in ϕ.

Definition 6. A transition t ∈ T and a binding b for marking M are enabled
in M if (1) b(guard(t)) is true; (2) b(Fin(p, t)) ⊆ M(p) for all p ∈ •t, such
that Fin(p, t) is a (plain) variable flow, a ⊆-variable or a non-variable flow;
(3) b(Fin(p, t)) = M(p) for all p ∈ •t such that Fin(p, t) is a =-variable flow.

E. g., the binding b with b(o) = o1 and b(P) = [p1, p2, p3] is enabled in a mark-
ing M of the DOPID in Ex. 3 with ⟨o1⟩ ∈ M(qblue) and ⟨o1, p1⟩, ⟨o1, p2⟩, ⟨o1, p3⟩ ∈
M(qgreen), for qblue and qgreen the input places of ship with respective color.

Definition 7. Let transition t be enabled in marking M with binding b. The
firing of t yields the new marking M ′ given by M ′(p) = M(p) \ b(Fin(p, t)) for
all p ∈ •t, and M ′(p) = M(p) ∪ b(Fout(p, t)) for all p ∈ t•.

We write M t,b−→ M ′ to denote that t is enabled with binding b in
M , and its firing yields M ′. A sequence of transitions with bindings ρ =
⟨(t1, b1), . . . , (tn, bn)⟩ is called a run if Mi−1

ti,bi−−−→ Mi for all 1 ≤ i ≤ n, in which
case we write M0

ρ−→ Mn. For such a binding sequence ρ, the visible subsequence
ρv is the subsequence of ρ consisting of all (ti, bi) such that ℓ(ti) ̸= τ .

An accepting object-centric Petri net with identifiers is an object-centric Petri
net N together with a set of initial markings Minit and a set of final markings
Mfinal . For instance, for Ex. 3, Minit consists only of the empty marking, whereas
Mfinal consists of all (infinitely many) markings in which each of the two right-
most places has at least one token, and all other places have no token. The
language of the net is given by L(N) = {ρv | m ρ−→ m′, m ∈ Minit , and m′ ∈
Mfinal}, i.e., the set of visible subsequences of accepted sequences.

The next example relates an observed event log with a DOPID, preluding to
the conformance checking problem tackled in the next section.

Example 4. The event log described in Ex. 1 cannot be suitably replayed in the
DOPID N of Fig. 1, due to two mismatches: according to N , o1 must be shipped
by car (as the preferred days are below 5), and with both products p1 and p2.
This in turn requires that, before shipping, also product p1 must be picked.

5 Alignment-Based Conformance Checking for DOPIDs

We tackle conformance following alignment-based approaches for object-centric
processes [16,13], which relate trace graphs to model runs to find deviations. In
the remainder of the section, we consider a trace graph TX and an accepting
DOPID N , assuming that the language of N is not empty. We define moves as
in [16,13], with the difference that they also contain assignments of data values.

Definition 8 (Moves). A model move is a tuple in {≫}×((A∪{τ})×P(O)×
AssignV), a log move a tuple in (A×P(O)×AssignV)×{≫}, and a synchronous
move is of the form ⟨⟨a,OM , αM ⟩, ⟨a′, OL, αL⟩⟩ ∈ (A× P(O)× AssignV)2 such
that a = a′ and OL = OM . The set of all synchronous, model, and log moves
over X and N is denoted moves(TX , N).

Object-centric processes with structured data and universal synchronization 13

In the object-centric setting, an alignment is a graph of moves G. We use the
notions of log projection G|log and model projection G|mod exactly as defined
in [16,13]. Intuitively, the log projection is a graph that restricts to the log
component of moves, omitting skip symbols. Edges are as in G, except that
one adds edges that “shortcut” over model moves, i.e. where the log component
is ≫; the model projection is analogous for the other component. For formal
definitions cf. [16,13]. Next we define an alignment as a graph over moves where
the log and model projections are a trace graph and a run, respectively.

Definition 9 (Alignment). An alignment of a trace graph TX and an ac-
cepting DOPID N is an acyclic directed graph Γ = ⟨C,B⟩ with C ⊆
moves(TX , N) such that Γ |log = TX , there is a run ρ = ⟨⟨t1, b1⟩, . . . , ⟨tn, bn⟩⟩
with ρv ∈ L(N), and the model projection Γ |mod = ⟨Cm, Bm⟩ admits a bijection
f : {⟨t1, b1⟩, . . . , ⟨tn, bn⟩} → Cm such that
• if f(ti, bi) = ⟨a,OM , αM ⟩ then ℓ(ti) = a, OM = range(bi) ∩ O, and αM =
bi|Vval

for all 1 ≤ i ≤ n, where Vval is the subset of V with a sort in Σval;
• for all ⟨r, r′⟩ ∈ Bm there are 1≤i<j≤n such that f(ti, bi)=r and f(tj , bj)=r′,

and conversely, if r, r′ ∈ Cm with r = f(ti, bi) and r′ = f(ti+1, bi+1) for some
1 ≤ i < n then ⟨r, r′⟩ ∈ Bm.

Example 5. Below is an alignment Γ for the log in Ex. 1 wrt. N in Ex. 3. The
log (resp. model) component is shown on top (resp. bottom) of moves.

τ {o1}

≫

τ {p1}

≫

τ {p2}

≫

place order {o1, p1, p2} {d 7→ 3}

place order {o1, p1, p2} {d 7→ 3}
pay cc {o1}

pay cc {o1}

pick item {o1, p1}

pick item {o1, p1}

pick item {o1, p2}

≫ ≫

ship {o1, p1} {d 7→ 3, s 7→ truck}

ship {o1, p1, p2} {d 7→ 3, s 7→ car}

≫

We adopt the cost function from [16], but we need to extend it to account
for mismatching data values; other definitions are, however, possible as well.

Definition 10. The cost of a move M is defined as follows: (1) if M is a
log move ⟨⟨aL, OL, αL⟩,≫⟩ then cost(M) = |OL|, (2) if M is a model move
⟨≫, ⟨aM , OM , αM ⟩⟩ then cost(M) = 0 if amod = τ , and cost(M) = |OM |
otherwise, (3) if M is a synchronous move ⟨⟨aL, OL, αL⟩, ⟨aM , OM , αM ⟩⟩ then
cost(M) is the number of variables in dom(αL) ∪ dom(αM) for which αL and
αM differ. For an alignment Γ = ⟨C,B⟩, we set cost(Γ) =

∑
M∈C cost(M), i.e.,

the cost of an alignment Γ is the sum of the cost of its moves.

E.g., Γ in Ex. 5 has cost 7, as it involves one log move (cost 2) and two
non-silent model moves (costs 2 and 3). In fact, Γ is optimal:

Definition 11. An alignment Γ of a trace graph TX and an accepting DOPID
N is optimal if cost(Γ)≤ cost(Γ ′) for all alignments Γ ′ of TX and N .

The conformance checking task for an accepting DOPID N and a log L is to
find optimal alignments with respect to N for all trace graphs in L.

14 A. Gianola et al.

SMT encoding for conformance checking. We assume a given DOPID N
and a trace graph TX . An SMT encoding of the conformance checking task for
DOPIDs can be done in a very similar way as for OPIDs as presented in [13].
For reasons of space, we focus on the differences here.

First, in encoding-based conformance checking, it is essential to fix upfront
an upper bound on the size of an optimal alignment [9]. For DOPIDs, we can
exploit [13, Lemma 1]: DOPIDs differ from OPIDs in the presence of data and
synchronization, but this does not affect the reasoning of that proof. We thus
get an upper bound n on the number of nodes in the model projection of the
alignment and an upper bound K on the number of objects used in a transition.
Using TX we can get a finite set of objects O ⊆ O that contains all objects in
the alignment. Let moreover m be the number of nodes in TX . From N we can
also read off the maximum number D of data values involved in a transition.

The encoding uses similar SMT variables as in [13], namely (a) transition
variables Tj for all 1 ≤ j ≤ n to encode the j-th transition in the run; (b) marking
variables Mj,p,o for every time point 0 ≤ j ≤ n, every place p ∈ P , and every
vector o of objects with elements in O to encode markings; (c) to encode the
actual length of the run, we use an integer variable len; and (d) to keep track
of which objects are used by transitions, we use object variables Oj,k for all
1 ≤ j ≤ n and 0 ≤ k ≤ K to encode which objects populate inscriptions,
and (e) distance variables δi,j to optimize the cost of the alignment, similar as
in [9,13]. In addition, to keep track of which data values are used by transitions,
we use (e) data value variables dj,k for all 1 ≤ j ≤ n and 0 ≤ k ≤ D to encode
which data values are used in which transition.

There are then two main differences in the encoding in [13]. First, when
encoding transitions, conditions need to be taken into account, similarly to [9],
using object variables Oj,k and data variables dj,k. Uninterpreted predicates and
function symbols are directly modeled as such in SMT, while numeric predicates
and aggregation functions are natively supported by SMT solvers. Second, to
model synchronization, in contrast to the subset synchronization employed in [13]
it must be ensured that inscription variables from V=

list are always instantiated
by all tokens currently in the respective places.

Notably, we can show that by calling the SMT solver with all accumulated
constraints, we obtain an assignment to SMT variables from which the optimal
alignment can be decoded. See [14] for details.

6 Conclusions

We have introduced DOPIDs, a new process formalism that unifies modelling
features of case-centric data-aware processes and object-centric processes, espe-
cially offering an object-centric paradigm with full synchronization and support
for complex data. We also showed a novel operational approach leveraging the
SMT technology to tackle alignment-based conformance checking for DOPIDs.
In future work, we intend to conduct an experimental evaluation of this approach,
and study discovery techniques for DOPIDs.

Object-centric processes with structured data and universal synchronization 15

References

1. van der Aalst, W.M.P.: Object-centric process mining: Dealing with divergence
and convergence in event data. In: Proc. SEFM (2019)

2. van der Aalst, W.M.P.: Twin transitions powered by event data - using object-
centric process mining to make processes digital and sustainable. In: Joint Proc.
ATAED/PN4TT (2023)

3. van der Aalst, W.M.P., Berti, A.: Discovering object-centric Petri nets. Fundam.
Informaticae 175(1-4), 1–40 (2020)

4. Berti, A., Montali, M., van der Aalst, W.M.P.: Advancements and chal-
lenges in object-centric process mining: A systematic literature review. CoRR
abs/2311.08795 (2023)

5. Boltenhagen, M., Chatain, T., Carmona, J.: Optimized SAT encoding of confor-
mance checking artefacts. Computing 103(1), 29–50 (2021)

6. Calvanese, D., Ghilardi, S., Gianola, A., Montali, M., Rivkin, A.: Formal modeling
and smt-based parameterized verification of data-aware BPMN. In: Proc. of BPM
2019. LNCS, vol. 11675, pp. 157–175. Springer (2019), https://doi.org/10.1007/
978-3-030-26619-6_12

7. Damaggio, E., Deutsch, A., Hull, R., Vianu, V.: Automatic verification of data-
centric business processes. In: Proc. of BPM 2011. Lecture Notes in Com-
puter Science, vol. 6896, pp. 3–16. Springer (2011). https://doi.org/10.1007/
978-3-642-23059-2_3

8. Fahland, D.: Describing behavior of processes with many-to-many interactions. In:
Proc. PETRI NETS (2019)

9. Felli, P., Gianola, A., Montali, M., Rivkin, A., Winkler, S.: Data-aware conformance
checking with SMT. Inf. Syst. 117, 102230 (2023)

10. Felli, P., de Leoni, M., Montali, M.: Soundness verification of data-aware process
models with variable-to-variable conditions. Fundam. Informaticae 182(1), 1–29
(2021). https://doi.org/10.3233/FI-2021-2064

11. Ghilardi, S., Gianola, A., Montali, M., Rivkin, A.: Petri net-based object-centric
processes with read-only data. Inf. Syst. 107, 102011 (2022)

12. Gianola, A.: Verification of Data-Aware Processes via Satisfiability Modulo Theo-
ries, Lecture Notes in Business Information Processing, vol. 470. Springer (2023).
https://doi.org/10.1007/978-3-031-42746-6

13. Gianola, A., Montali, M., Winkler, S.: Object-centric conformance alignments with
synchronization. In: Proc. 36th CAiSE. LNCS, vol. 14663, pp. 3–19. Springer
(2024). https://doi.org/10.1007/978-3-031-61057-8_1

14. Gianola, A., Montali, M., Winkler, S.: Object-centric processes with structured
data and universal synchronization (extended version) (2024), available from https:
//www.inf.unibz.it/montali/papers/dopid-long-version.pdf

15. de Leoni, M., Felli, P., Montali, M.: A holistic approach for soundness verification
of decision-aware process models. In: ER. LNCS, vol. 11157, pp. 219–235. Springer
(2018)

16. Liss, L., Adams, J.N., van der Aalst, W.M.P.: Object-centric alignments. In: Proc.
ER (2023)

17. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Balanced multi-
perspective checking of process conformance. Computing 98(4), 407–437 (2016)

18. Montali, M., Calvanese, D.: Soundness of data-aware, case-centric processes. Int.
J. Softw. Tools Technol. Transf. 18(5), 535–558 (2016). https://doi.org/10.1007/
S10009-016-0417-2

https://doi.org/10.1007/978-3-030-26619-6_12
https://doi.org/10.1007/978-3-030-26619-6_12
https://doi.org/10.1007/978-3-642-23059-2_3
https://doi.org/10.1007/978-3-642-23059-2_3
https://doi.org/10.1007/978-3-642-23059-2_3
https://doi.org/10.1007/978-3-642-23059-2_3
https://doi.org/10.3233/FI-2021-2064
https://doi.org/10.3233/FI-2021-2064
https://doi.org/10.1007/978-3-031-42746-6
https://doi.org/10.1007/978-3-031-42746-6
https://doi.org/10.1007/978-3-031-61057-8_1
https://doi.org/10.1007/978-3-031-61057-8_1
 https://www.inf.unibz.it/montali/papers/dopid-long-version.pdf
 https://www.inf.unibz.it/montali/papers/dopid-long-version.pdf
https://doi.org/10.1007/S10009-016-0417-2
https://doi.org/10.1007/S10009-016-0417-2
https://doi.org/10.1007/S10009-016-0417-2
https://doi.org/10.1007/S10009-016-0417-2

16 A. Gianola et al.

19. Polyvyanyy, A., van der Werf, J.M.E.M., Overbeek, S., Brouwers, R.: Information
systems modeling: Language, verification, and tool support. In: Proc. CAiSE (2019)

20. Rosa-Velardo, F., de Frutos-Escrig, D.: Decidability problems in petri nets with
names and replication. Fundam. Informaticae 105(3), 291–317 (2010)

21. Sommers, D., Sidorova, N., van Dongen, B.: Aligning event logs to resource-con-
strained ν-petri nets. In: Proc. PETRINETS. LNCS, vol. 13288, pp. 325–345 (2022)

22. van der Werf, J.M.E.M., Rivkin, A., Polyvyanyy, A., Montali, M.: Data and process
resonance - identifier soundness for models of information systems. In: Proc. PETRI
NETS (2022)

A Encoding

We detail the encoding outlined in the main body of the paper. The encoding
crucially relies on the following bound on the number of objects and the number
of moves in an optimal alignment, taken from [13]. DOPIDs differ from the
OPIDs in [13] by the presence of data and synchronization, but this does not
affect the reasoning of this proof.

Lemma 1. Let N be a DOPID and TX = ⟨EX , DX⟩ a trace graph with optimal
alignment Γ . Let m =

∑
e∈EX

|πobj (e)| the number of object occurrences in EX ,
and c =

∑n
i=1 |dom(bi)| the number of object occurrences in some run ρ of N ,

with ρv = ⟨⟨t1, b1⟩, . . . ⟨tn, bn⟩⟩. Then Γ |mod has at most (|EX | + c +m)(k + 1)
moves if N has no ν-inscriptions, and at most (|EX |+3c+2m)(k+1) otherwise,
where k is the longest sequence of silent transitions without ν-inscriptions in N .
Moreover, Γ |mod has at most 2c+m object occurrences in non-silent transitions.

Next, we detail which variables are necessary for the SMT encoding.
Variables. We start by fixing the set of variables used to represent the (un-
known) model run and alignment:
(a) Transition variables Tj of type integer for all 1 ≤ j ≤ n to identify the j-

th transition in the run. To this end, we enumerate the transitions as T =
{t1, . . . , tL}, and add the constraint

∧n
j=1 1 ≤ Tj ≤ L, with the semantics

that Tj is assigned value l iff the j-th transition in ρ is tl.
(b) To identify the markings in the run, we use marking variables Mj,p,o of type

boolean for every time point 0 ≤ j ≤ n, every place p ∈ P , and every
vector o of objects with elements in O such that color(o) = color(p). The
semantics is that Mj,p,o is assigned true iff o occurs in p at time j.

(c) To keep track of which objects are used by transitions of the run, we use
object variables Oj,k of type integer for all 1 ≤ j ≤ n and 0 ≤ k ≤ K with
the constraint

∧n
j=1 1 ≤ Oj,k ≤ |O|. The semantics is that if Oj,k is assigned

value i then, if i > 0 the k-th object involved in the j-th transition is oi, and
if i = 0 then the j-th transition uses less than k objects.

In addition, we use the following variables to represent alignment cost:
(d) Distance variables δi,j of type integer for every 0 ≤ i ≤ m and 0 ≤ j ≤ n,

their use will be explained later.
Constraints. We use the following constraints on the variables defined above:

Object-centric processes with structured data and universal synchronization 17

(1) Initial markings. We first need to ensure that the first marking in the run ρ
is initial. By the expression [o ∈ M(p)] we abbreviate ⊤ if an object tuple
o occurs in the M(p), and ⊥ otherwise.∨

M∈Minit

∧
p∈P

∧
o∈Ocolor(p)

M0,p,o = [o ∈ M(p)] (φinit)

(2) Final markings. Next, we state that after at most n steps, but possibly
earlier, a final marking is reached.∨

0≤j≤n

∨
M∈Mfinal

∧
p∈P

∧
o∈Ocolor(p)

Mj,p,o = [o ∈ M(p)] (φfin)

(3) Moving tokens. Transitions must be enabled, and tokens are moved by tran-
sitions. We encode this as follows:

n∧
j=1

L∧
l=1

Tj = l →
∧

p∈•tl\tl•

∧
o∈Ocolor(p)

(consumed(p, tl, j,o) → Mj−1,p,o ∧ ¬Mj,p,o) ∧

∧
p∈•tl∩tl•

∧
o∈Ocolor(p)

(consumed(p, tl, j,o) → Mj−1,p,o) ∧

∧
p∈tl•

∧
o∈Ocolor(p)

(produced(p, tl, j,o) → Mj,p,o) ∧

synced(p, tl, j) (φmove)

where consumed(p, t, j,o) expresses that token o is consumed from p in the
jth transition which is t, similarly produced(p, t, j,o) expresses that token
o is produced, and synced(p, tl, j) ensures that, in the case where the flow
from p to t uses an =-template inscription, all tokens in p are consumed.
Formally, consumed is encoded as follows, distinguishing two cases:
– if Fin(p, t) = (v1, . . . , vh) is a non-variable flow, let (k1, . . . , kh) be the

object indices for t of v1, . . . , vh. Then

consumed(p, t, j,o) := (

h∧
i=1

Oj,ki
= id(oi))

i.e., we demand that every variable used in the transition is instantiated
to the respective object in o. In this case, we set synced(p, tl, j) = ⊤.

– if Fin(p, t) = (V1, . . . , vh) is a variable flow, suppose without loss of
generality that V1 ∈ Vlist . Variable V1 can be instantiated by multi-
ple objects in a transition firing. This is also reflected by the fact that
there are several (but at most K) inscription indices corresponding to
instantiations of V1, say ℓ1, . . . , ℓx. For ki as above for i > 1, we then set

consumed(p, t, j,o) := (

h∧
i=2

Oj,ki
= id(oi)) ∧

x∨
i=1

Oj,ℓi = id(o1)

18 A. Gianola et al.

If V1 is a ⊆-template inscription, we set again synced(p, tl, j) = ⊤. Oth-
erwise, V1 is a =-template inscription, and it must be ensured that all
tokens from p are consumed. To this end, we set

synced(p, tl, j) =
∑

o∈Ocolor(p)

Mj−1,p,o =

h∑
i=1

(Oj,ki
̸= 0)

i.e., the number of tokens present in p at instant j − 1 must be equal to
the number of objects used to instantiate V1. (Note that, formally, sums
over boolean expressions must be encoded using if-then-else constructs;
they are omitted here for readability.)

The shorthand produced is encoded similarly as consumed , using Fout(t, p).
(4) Tokens that are not moved by transitions remain in their place.

n+1∧
j=1

∧
p∈P

∧
o∈Ocolor(p)

(Mj−1,p,o ↔ Mj,p,o)∨
∨

tl∈p•
(Tj = l ∧ consumed(p, t, j,o)) ∨

∨
tl∈•p

(Tj = l ∧ produced(p, t, j,o))

(φrem)

(5) Transitions use objects of suitable type. To this end, recall that every tran-
sition can use at most K objects, which limits instantiations of template
inscriptions. For every transition t ∈ T , we can thus enumerate the objects
used by it from 1 to K. However, some of these objects may be unused. We
use the shorthand needed t,k to express this: needed t,k = ⊤ if the k-th object
is necessary for transition t because it occurs in a simple inscription, and ⊥
otherwise. Moreover, let ttype(t, k) be the type of the k-th object used by
transition t. Finally, we denote by Oσ the subset of objects in O of type σ.

n∧
j=1

L∧
l=1

Tj = l →
K∧

k=1

(¬[needed tl,k] ∧ Oj,k = 0) ∨
∨

o∈Ottype(tl,k)

Oj,k = id(o)

(φtype)

(6) Objects that instantiate ν-variables are fresh. We assume in the following
constraint that tidsν is the set of all 1 ≤ l ≤ L such that tl has an outgoing
ν-inscription, and that every such tl has only one outgoing ν-inscription νt,
and we assume w.l.o.g. that in the enumeration of objects of t, νt is the
first object. However, the constraint can be easily generalized to more such
inscriptions.

n∧
j=1

∧
l∈tidsν

∧
o∈Otype(νt)

Tj = l ∧ Oj,1 = id(o) → (
∧
p∈P

∧
o∈Ocolor(p),o∈o

¬Mj−1,p,o)

(φfresh)

Object-centric processes with structured data and universal synchronization 19

(7) Guards are satisfied. To that end, we set

n∧
j=1

L∧
l=1

Tj = l → guard(tl)(Oj,1, . . . , Oj,K) (φguard)

where guard(tl)(Oj,1, . . . , Oj,K) is an instantiation of the guard of tl with
the object variables of instant j, using object indices. Here we assume that
aggregation functions have a suitable SMT encoding supported by the solver,
which is the case for the common aggregations of summation, maximum,
minimum, and average.

Encoding alignment cost. Similar as in [9,5], we encode the cost of an align-
ment as the edit distance with respect to suitable penalty functions P=, PM ,
and PL. Given a trace graph TX = (EX , DX), let

e = ⟨e1, . . . , em⟩ (1)

be an enumeration of all events in EX such that πtime(e1) ≤ · · · ≤ πtime(em). Let
the penalty expressions [PL]i, [PM]j , and [P=]i,j be as follows, for all 1 ≤ i ≤ m
and 1 ≤ j ≤ n:

[PL]i = |πobj (ei)| [P=]i,j = ite(is_labelled(j, πact(ei)), 0,∞)

[PM]j = ite(is_labelled(j, τ), 0, ΣK
k=1(Oj,k ̸= 0))

where is_labelled(j, a) expresses that the j-the transition has label a ∈ A∪{τ},
which can be done by taking is_labelled(j, a) :=

∨
l∈Tidx(a)

Tj = l where Tidx(a)
is the set of transition indices with label a, i.e., the set of all l with tl ∈ T such
that ℓ(tl) = a.

Using these expressions, one can encode the edit distance as in [9,5]:

δ0,0 = 0 δi+1,0 = [PL] + δi,0 δ0,j+1 = [PM]j+1 + δ0,j

δi+1,j+1 = min([P=]i+1,j+1 + δi,j , [PL] + δi,j+1, [PM]j+1 + δi+1,j)
(φδ)

Solving. We abbreviate φrun = φinit∧φfin∧φmove∧φrem∧φtype∧φfresh∧φguard

and use an SMT solver to obtain a satisfying assignment α for the following
constrained optimization problem:

φrun ∧ φδ minimizing δm,n (Φ)

Decoding. From an assignment α satisfying (Φ), we next define a run ρα and
an alignment Γα. First, we note the following: From Lemma 1, we can obtain
a number M such that M is the maximal number of objects used to instan-
tiate a list variable in the model run and alignment. By convention, we may
assume that in the enumeration of objects used in the jth transition firing,
Oj,|O|−M+1, . . . , Oj,|O| are those instantiating a list variable, if there is a list vari-
able in vars in(tα(Tj)) ∪ varsout(tα(Tj)).

We assume the set of transitions T = {t1, . . . , tL} is ordered as t1, . . . , tL in
some arbitrary but fixed way that was already used for the encoding.

20 A. Gianola et al.

Definition 12 (Decoded run). For α satisfying (Φ), let the decoded pro-
cess run be ρα = ⟨f1, . . . , fn⟩ such that for all 1 ≤ j ≤ n, fj = (t̂j , bj),
where t̂j = tα(Tj) and bj is defined as follows: Assuming that vars in(tα(Tj)) ∪
varsout(tα(Tj)) is ordered as v1, . . . , vk in an arbitrary but fixed way that was
already considered for the encoding, we set bj(vi) = α(Oj,i) if vi ∈ V, and
bj(vi) = [Oα(Oj,|O|−M+1), . . . , Oα(Oj,|O|−M+z)] if vi ∈ V, where 0 ≤ z < M is
maximal such that α(Oj,|O|−M+z) ̸= 0.

At this point, ρα is actually just a sequence; we will show below that it is
indeed a process run of N . Next, given a satisfying assignment α for (Φ), we
define an alignment of the log trace TX and the process run ρα.

Definition 13 (Decoded alignment). For α satisfying (Φ), ρα = ⟨f1, . . . , fn⟩
as defined above, and e as in (1), consider the sequence of moves γi,j recursively
defined as follows:

γ0,0 = ϵ γi+1,0 = γi,0 · ⟨ei+1,≫⟩ γ0,j+1 = γ0,j · ⟨≫, fj+1⟩

γi+1,j+1 =

γi,j+1 · ⟨ei+1,≫⟩ if α(δi+1,j+1) = α([PL] + δi,j+1)

γi+1,j · ⟨≫, fj+1⟩ if otherwise α(δi+1,j+1) = α([PM]j+1 + δi+1,j)

γi,j · ⟨ei+1, fj+1⟩ otherwise

Given γi,j, we define a graph Γ (γi,j) = ⟨C,B⟩ of moves as follows: the node
set C consists of all moves in γi,j, and there is an edge ⟨⟨q, r⟩, ⟨q′, r′⟩⟩ ∈ B if
either q ̸= ≫, q′ ̸= ≫ and there is an edge q → q′ in TX , or if r ̸= ≫, r′ ̸= ≫,
r = fh, and r′ = fh+1 for some h with 1 ≤ h < n. Finally, we define the decoded
alignment as Γ (α) := Γ (γm,n).

In fact, as defined, Γ (α) is just a graph of moves, it yet has to be shown that it
is a proper alignment. This will be done in the next section.
Correctness. In the remainder of this section, we will prove that ρα is indeed
a run, and Γ (α) is an alignment of TX and ρα. We first show the former:

Lemma 2. Let N be a DOPID, TX a log trace and α a solution to (Φ). Then
ρα is a run of N .

Proof. We define a sequence of markings M0, . . . ,Mn. Let Mj , 0 ≤ j ≤ n, be
the marking such that Mj(p) = {o | o ∈ Ocolor(p) and α(Mj,p,o) = ⊤}. Then, we
can show by induction on j that for the process run ρj = ⟨f1, . . . , fj⟩ it holds
that M0

ρj−→ Mj .

Base case. If n = 0, then ρ0 is empty, so the statement is trivial.
Inductive step. Consider ρj+1 = ⟨f1, . . . , fj+1⟩ and suppose that for the prefix

ρ′ = ⟨f1, . . . , fj⟩ it holds that M0
ρ′

−→ Mj . We have fj+1 = (t̂, b) and t̂ = ti
for some i such that 1≤ i≤ |T | with α(Tj) = i. First, we note that b is a
valid binding: as α satisfies (φtype), it assigns a non-zero value to all Oj,k
such that vk ∈ vars in(ti) ∪ varsout(ti) that are not of list type (and hence
needed), and by (φtype), the unique object o with id(o) = α(Oj,k) has the

Object-centric processes with structured data and universal synchronization 21

type of vk. Similarly, b assigns a list of objects of correct type to a variable in
(vars in(ti) ∪ varsout(ti)) ∩ Vlist , if such a variable exists. Moreover, (φfresh)
ensures that variables in (vars in(ti) ∪ varsout(ti)) ∩ Υ are instantiated with
objects that did not occur in Mj , and (φguard) ensures taht the guard is
satisfied.
Since α is a solution to (Φ), it satisfies (φmove), so that ti is enabled in Mn.
Moreover, the distinction between ⊆- and =-inscriptions is taken care of by
the synced predicate. As α satisfies (φrem), the new marking Mj+1 contains
only either tokens that were produced by ti, or tokens that were not affected
by ti. Thus, Mj

fj+1−−−→ Mj+1, which concludes the induction proof.

Finally, as α satisfies (φinit) and (φfin), it must be that M0 = MI and the last
marking must be final, so ρα is a run of N . ⊓⊔

Theorem 1. Given a DOPID N , trace graph TX , and satisfying assignment α
to (Φ), Γ (α) is an optimal alignment of TX and the run ρα with cost α(δm,n).

Proof. By Lem. 2, ρα is a run of N . We first note that [P=], [PL], and [PM]
are correct encodings of P=, PL, and PM from Def. 10, respectively. For PL

this is clear. For P=, is_labelled(j, a) is true iff the value of Tj corresponds to
a transition that is labeled a. If the labels match, cost 0 is returned, otherwise
∞. For PM , the case distinction returns cost 0 if the jth transition is silent;
otherwise, the expression ΣK

k=1ite(Oj,k ̸= 0, 1, 0) counts the number of objects
involved in the model step, using the convention that if fewer than k objects are
involved in the jth transition then Oj,k is assigned 0.

Now, let di,j = α(δi,j), for all i, j such that 0 ≤ i ≤ m and 0 ≤ j ≤ n. Let
again e = ⟨e1, . . . , em⟩ be the sequence ordering the nodes in TX as in (1). Let
TX |i be the restriction of TX to the node set {e1, . . . , ei}. We show the stronger
statement that Γ (γi,j) is an optimal alignment of TX |i and ρα|j with cost di,j ,
by induction on (i, j).

Base case. If i= j=0, then γi,j is the trivial, empty alignment of an empty log
trace and an empty process run, which is clearly optimal with cost di,j =0,
as defined in (φδ).

Step case. If i=0 and j > 0, then γ0,j is a sequence of model moves γ0,j =
⟨(≫, f1), . . . , (≫, fj)⟩ according to Def. 13. Consequently, Γ (α) = Γ (γ0,j)
has edges (≫, fh), . . . , (≫, fh+1) for all h, 1 ≤ h < j, which is a valid and
optimal alignment of the empty log trace and ρα. By Def. 10, the cost of
Γ (α) is the number of objects involved in non-silent transitions of f1, . . . , fj ,
which coincides with α([PM]1 + · · ·+ [PM]j), as stipulated in (φδ).

Step case. If j=0 and i> 0, then γi,0 is a sequence of log moves γi,0 =
⟨(e1,≫), . . . , (ej ,≫)⟩ according to Def. 13. Thus, Γ (α) = Γ (γi,0) is a graph
whose log projection coincides by definition with TX |i. By Def. 10, the cost
of Γ (α) is the number of objects involved in e1, . . . , ei, which coincides with
α([PL]1 + · · ·+ [PL]j), as stipulated in (φδ).

Step case. If i> 0 and j > 0, di,j must be the minimum of α([P=]i,j)+di−1,j−1,
α([PL])+di−1,j , and α([PM]j)+di,j−1. We can distinguish three cases:

22 A. Gianola et al.

• Suppose di,j = α([PL]i)+di−1,j . By Def. 13, we have γi,j = γi−1,j ·⟨ei,≫⟩.
Thus, Γ (γi,j) extends Γ (γi−1,j) by a node ⟨ei,≫⟩, and edges to this node
as induced by TX |i. By the induction hypothesis, Γ (γi−1,j) is a valid and
optimal alignment of TX |i−1 and ρα|j with cost di−1,j . Thus Γ (γi,j) is
a valid alignment of TX |i and ρα|j , because the log projection coincides
with TX |i by definition. By minimality of the definition of di,j , also
Γ (γi,j) is optimal.

• Suppose di,j = α([PM]j) + di,j−1. By Def. 13, we have γi,j = γi,j−1 ·
⟨≫, fj⟩. By the induction hypothesis, Γ (γi,j−1) is a valid and optimal
alignment of TX |i and ρα|j−1 with cost di,j−1. Thus, Γ (γi,j−1) must have
a node ⟨r, fj−1⟩, for some r. The graph Γ (γi,j) extends Γ (γi,j−1) by a
node ⟨≫, fj⟩, and an edge ⟨r, fj−1⟩ → ⟨≫, fj⟩. Thus, Γ (γi,j) is a valid
alignment for TX |i and ρα|j , and by minimality it is also optimal.

• Let di,j = α([P=]i,j) + di−1,j−1. By Def. 13, we have γi,j = γi−1,j−1 ·
⟨ei, fj⟩. By the induction hypothesis, Γ (γi−1,j−1) is an optimal alignment
of TX |i−1 and ρα|j−1 with cost di−1,j−1. In particular, Γ (γi−1,j−1) must
have a node ⟨r, fj−1⟩, for some r. The graph Γ (γi,j) extends Γ (γi−1,j−1)
by a node ⟨e1, fj⟩, an edge ⟨r, fj−1⟩ → ⟨ei, fj⟩, as well as edges to ⟨e1, fj⟩
as induced by TX |i. Thus Γ (γi,j) is a valid alignment of TX |i and ρα|j ,
because the log projection coincides with TX |i by definition, and the
model projection has the required additional edge. By minimality of the
definition of di,j , also Γ (γi,j) is optimal.

For the case i = m and j = n, we obtain that Γ (α) = Γ (γm,n) is an optimal
alignment of TX and ρα with cost dm,n = α(δm,n). ⊓⊔

	Object-centric Processes with Structured Data and Universal Synchronization

