
Probabilistic Trace Alignment
Giacomo Bergami ∗, Fabrizio Maria Maggi ∗, Marco Montali ∗, Rafael Peñaloza †

∗Free University of Bozen-Bolzano, Bozen, Italy
Email: gibergami@unibz.it, {maggi,montali}@inf.unibz.it

†University of Milano-Bicocca, Milan, Italy
Email: rafael.penaloza@unimib.it

Abstract—Alignments provide sophisticated diagnostics that
pinpoint deviations in a trace with respect to a process model.
Alignment-based approaches for conformance checking have so
far used crisp process models as a reference. Recent proba-
bilistic conformance checking approaches check the degree of
conformance of an event log as a whole with respect to a
stochastic process model, without providing alignments. For the
first time, we introduce a conformance checking approach based
on trace alignments using stochastic Workflow nets. This requires
to handle the two possibly contrasting forces of the cost of the
alignment on the one hand and the likelihood of the model trace
with respect to which the alignment is computed on the other.

Index Terms—Stochastic Petri nets, Conformance Checking,
Alignments.

I. INTRODUCTION

In the existing literature on conformance checking, a com-
mon approach is based on trace alignment [1]. This approach
uses crisp process models as reference models. Recently devel-
oped probabilistic conformance checking approaches provide
a numerical quantification of the degree of conformance of an
event log with a stochastic process model by either assessing
the distribution discrepancies [2], or by exploiting entropy-
based measures [3], [4]. These strategies are not based on
trace alignments, and hence cannot be readily used to relate an
observed trace with the model traces generated by a stochastic
process model. In this paper, we provide, for the first time, an
approach for the alignment of a trace and a stochastic reference
model. This approach is not comparable with the existing
literature on probabilistic conformance checking as its output
is not numeric but consists of a ranked list of alignments.

With reference to Figure 1, a user might be inter-
ested to align the log trace 〈close order, archive order〉
with one of the two possible model traces 〈close order,
accept order, pay order, archive order〉 or 〈close order,
refuse order, archive order〉. While the latter trace provides
the least alignment cost though the model trace has a low
probability (0.1), the former gives a slightly greater alignment
cost while providing a higher model trace probability (0.9).
Since, depending on the context, analysts might prefer either
the former or the latter alignment, providing a selection of
the best k alignments among all the distinct model traces
empowers the analysts to find their own trade-off between
alignment cost and model trace probability.

This research has been supported by the project IDEE FESR1133 funded
by the Eur. Reg. Development Fund (ERDF) Investment for Growth and Jobs
Programme 2014-2020, and by the UNIBZ projects VERBA and CAT.

p1 close order

1.0 p2 accept order

0.9

p3 pay order

1.0

refuse order

0.1

p4

archive order

1.0

p5

Fig. 1: a simple Stochastic Workflow Net.

To do so, we frame probabilistic trace alignment as a k-
Nearest Neighbors (kNN) problem [5], which amounts to find
the k nearest data points to a query from a set of data points
via a distance function. We introduce two ranking strategies.
The first is based on a brute force approach that reuses existing
trace aligners such as [1], [6], where the (optimal) ranking of
the top-k alignments is obtained by computing the Levensthein
distance of the trace to be aligned to all the model traces. and
by multiplying each of these distances by the probability of
the corresponding model trace. While this approach returns the
best alignment ranking for a query trace, the trace alignments
must be computed a-new for all the possible traces to be
aligned. For models generating a large number of model traces,
this is clearly unfeasible.

To mitigate this, our second strategy produces an approxi-
mate ranking where model traces are represented as numerical
vectors via embeddings that are independent of the query trace.
By exploiting ad-hoc data structures, we can then retrieve the
neighborhood of size k containing the traces similar to the
given query by pre-ordering (indexing) the model traces. Since
the embeddings for model traces are independent of the query,
this does not require to recompute, for each query, the numeric
vector representation of the model traces.

We implemented both strategies, and use a real event log
coming from a hospital system to empirically evaluate their
properties. Our experiments assess the two strategies as fol-
lows: (i) first, we evaluate the degree of approximation intro-
duced by the approximate-ranking approach when compared
with optimal-ranking; (ii) we evaluate the computation time
needed by the two strategies to produce the top-k alignments.
We observe that, by properly selecting the data structure used
to represent the search space, approximate-ranking alignments
provide the best trade-off between accuracy and efficiency.

II. RELATED WORK

Recent works on probabilistic conformance checking assess
the degree of conformance of a Stochastic Petri net against

9

20
21

 3
rd

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 P

ro
ce

ss
 M

in
in

g
(I

C
PM

) |
 9

78
-1

-6
65

4-
35

14
-7

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
PM

53
25

1.
20

21
.9

57
68

56

Authorized licensed use limited to: LIBERA UNIVERSITA DI BOLZANO. Downloaded on August 21,2022 at 12:25:41 UTC from IEEE Xplore. Restrictions apply.

p1 τ

vτ1

p2

τ

vτ2

p3 a

va1

p5

a va2

τ

vτ3

c

vc

p4 τ

vτ3

p6 b

vb p7

a va3

Fig. 2: A sample SWN N . Labels are in green, τ transitions
in grey, weights in magenta.

p1

p2 p3p4

p5p6

p7

1τ
ρ23 =

vτ2
vτ2+vc

τ

ρ24 = vc
vτ2+vc

c
1a1τ

ρ57 =
vτ3

va2
+vτ3

τ ρ55 =
va2

va2+vτ3

a

ρ65 =
va3

va3
+vb

a
ρ67 =

vb
va3

+vb

b

Fig. 3: Reachability graph of N . Probabilities are in violet.

1 τ

9

τ
2

a
6

a

3

c
10

τ
5

b

4

a

8

τ

7

τρ23

1

ρ57

ρ24

1

ρ65

ρ55
ρ57

ρ67 1

1

ρ57ρ55

ρ55

Fig. 4: Preliminary Transition graph encoding N
with no τ -closures.

1 τ

9 2

a
6

a

3

c
10 5

b

4

a

7

τρ23

ρ57

ρ24
ρ65

ρ55
ρ57

ρ67

1

ρ57ρ55

ρ55

Fig. 5: Transition graph resulting from N after τ -
closure.

either one single log trace [3], [4] or against an entire log
[7]. The former approaches might be used to rank different
stochastic models according to their degree of conformance
with respect to a fixed log trace, while our proposed solution
ranks a subset of the model traces of the same stochastic model
with respect to a given log trace. Albeit the input of such
approaches is the same as ours, the problem that we intend to
solve is different. Nevertheless, we might exploit our solution
to rank stochastic models via the best trace alignment provided
by each single model. Furthermore, approaches evaluating the
conformance of a stochastic model against a whole log cannot
be exploited for aligning a stochastic model and a single
log trace, since, apart from the log trace to be aligned, the
remaining log traces are not necessarily known, and therefore
it is impossible to “earth-move” the probability distribution of
a stochastic model towards a set of unknown traces.

A work that combines probabilistic conformance checking
and alignments and that is closer to the one described in this
paper is [8]. Their approach is based on standard (not stochas-
tic) Petri nets and extends the alignment cost functions by
considering the probabilities of activities to be added/deleted
when a log trace and a model trace do not match. Such
functions always return a zero alignment cost on matching
traces, independently of the probability associated to the model
trace. Hence, the resulting ranking cannot be used to provide
a trade-off between trace probability and alignment cost.

III. MODELING PROBABILISTIC DYNAMIC SYSTEMS

We recall the models and techniques at the basis for
representing and computing probabilistic trace alignments.

A. Stochastic Workflow Nets

As customary in probabilistic conformance checking [2]–
[4], we adopt stochastic Petri nets [9], [10] to represent
processes. More specifically, we consider an interesting class

of stochastic Petri nets with immediate (not timed) transitions
only, namely untimed Stochastic Workflow Nets (SWNs). We
fix a set Σ = A ∪ { τ } of labels, where labels in A indicate
process tasks, whereas τ indicates an invisible execution step
(τ -transition). A trace is a finite sequence of labels from A.

Definition 1. An untimed Stochastic Workflow Net (SWN) is
a tuple N = (P, T, F, `,W) where: (i) (P, T, F) is a standard
Workflow net with places P , transitions T , and flow relation
F such that there is exactly one input place with no incoming
arc, and exactly one output place with no outgoing arcs; (ii) ` :
T → Σ is a labeling function mapping each transition t ∈ T
into a label `(t) ∈ Σ (if `(t) = τ , then t is a silent transition);
(iii) W : T → R+ is a weight function assigning a positive
firing weight to each transition of the net. /

For an SWN N , we use dot notation to get its components
(e.g., N.P denotes its places). We do the same for the other
structures introduced in the paper. We use N.in and N.out
to respectively denote the input and output places of N .

As usual, the current state of execution for N is captured
as a marking of the net: a multiset over places N.P indi-
cating how many tokens populate each place. The notions
of transition enablement and firing are also standard. Given
a marking m over SWN N , we denote by EN (m) the set
of enabled transitions in m; given transition t ∈ EN (m), we
write m t−→N m′ to capture that, within N , firing t in m results
in the new marking m′. A firing sequence of N starting from
marking m0 is a sequence t1 · · · tn of transitions from N.T so
that, for every i ∈ { 1, . . . , n }, we have that mi−1

ti−→N mi.
We say that the firing sequence results in mn.

As customary in Workflow nets, we consider two special
markings: the input (resp. output) marking mN

in (resp. mN
out)

that assigns a single token to the input (resp. output) place
N.in (resp. N.out) of N , and no token elsewhere. A valid

10

Authorized licensed use limited to: LIBERA UNIVERSITA DI BOLZANO. Downloaded on August 21,2022 at 12:25:41 UTC from IEEE Xplore. Restrictions apply.

sequence η = t1 · · · tn of N is a firing sequence of N
starting from mN

in and resulting in mN
out. A sequence ξ =

α1 · · ·αn of labels from Σ is a run of N if there exists a
valid underlying sequence η = t1 · · · tn of N such that, for
every i ∈ { 1, . . . , n }, we have N.`(ti) = αi. Run ξ may
have different underlying valid sequences in N , which we
collectively refer to as seqsN (ξ). A trace σ is a model trace
of N (or N -trace for short) if there exists an underlying run
ξ of N that corresponds to σ once all occurrences of τ are
removed. There may be multiple runs underlying an N -trace
σ, and we collectively refer to them as runsN (σ). Finally, we
denote the (possibly infinite) set of N -traces as traces(N).

For an SWN, the key change to the standard execution se-
mantics is that, being the net stochastic, the set of enabled tran-
sitions in a marking is associated to a discrete probability dis-
tribution. This is defined using the weight function of N : given
marking m of N and an enabled transition t ∈ EN (m), the
firing probability of t in m is Pm,N (t) = N.W (t)∑

t′∈EN (m)N.W (t′) .
We use this to define the probability PN (η) of a valid sequence
η = t1 · · · tn of N as the product of the probabilities associated
to each transition: PN (η) =

∏
i∈{ 1,...,n } Pmi−1,N (ti). For

a trace σ of N , its probability PN (σ) is then obtained by
collecting all its underlying runs, in turn collecting all their
underlying valid sequences, and summing up their respective
probabilities: PN (σ) =

∑
ξ∈runsN (σ)

∑
η∈seqsN (ξ) PN (η).

This captures that, to observe σ, one can equivalently pick
any of its underlying valid sequences. Notably, if a trace is
not an N -trace (i.e., it does not conform with N), then its
probability is 0. For convenience, when needed, we represent
an N -trace as a pair 〈σ,PN (σ)〉.

Remark 1. The sum of the probabilities of all runs of an
SWN, up to a certain maximum length n, is between 0 and 1.
When n tends to ∞, this sum tends to 1. This is a direct
consequence of how transition probabilities are computed,
paired with the fact that runs of a Workflow net are maximal./

By interpreting concurrency by interleaving, firing se-
quences and their probabilities are compactly represented in a
reachability graph.

Definition 2. The Reachability Graph RG(N) of SWN N is a
triple (M,E,P) where: (i) M is the set of reachable markings
from mN

0 (mN
0 included); (ii) E ⊆ M × Σ × M is a Σ-

labeled transition relation induced by N , that is, for m,m′ ∈
M , we have edge (m, a,m′) ∈ E if and only if there exists
transition t in N with label `(t) = a and such that m t−→N

m′; (iii) P : E → [0, 1] is the transition probability function
assigning to each transition (m, a,m′) ∈ E its probability,
obtained from the firing probability of the SWN transition(s)
that lead from m to m′ and are labeled by a: P (m, a,m′) =∑
ti∈EN (m) s.t. N.`(t)=a and m

t−→Nm′
Pm,N (t). /

The definition also handles the special case where, in a given
marking, distinct net transitions with the same label produce
the same consequent marking: they are indistinguishable when
observing the execution traces of the net, hence they collapse

into a single edge of the reachability graph, where all firing
probabilities are aggregated into a single value. Fig. 3 shows
an example of a reachability graph.

Every SWN N handled in our framework is assumed to
satisfy two natural properties:

1) N is bounded, that is, every marking in RG(N) assigns
at most a pre-defined number of tokens to each place;

2) no loop in RG(N) has all edges labeled by τ .
Property 1) states that process instances of N do not generate
unboundedly many concurrent threads, i.e., that RG(N) has
finitely many states. Property 2) naturally corresponds to how
τ -transitions are used when modeling processes: they are
essential to model gateways (such as exclusive and parallel
splits/joins), cascaded gateways without tasks in between, and
skippable tasks; such constructs require τ -transitions, but never
used in fully invisible loops.1 Property 2) implies a very
interesting property: given a trace σ, there are only boundedly
many valid sequences that can produce it. Hence, the probabil-
ity of σ can be computed by: (i) exhaustively enumerating all
its valid sequences; (ii) calculating the probability of each such
sequence; (iii) summing up all the so-obtained probabilities.

Remark 2 (From [11]). For an SWN N with at most b
consecutive τ transitions, there are boundedly many runs of
N yielding a given N -trace σ: seqsN (σ) contains runs whose
maximum length is bounded by the length of σ and b. /

By combining Remarks 1 and 2, we get a direct way of
computing the trace probability PN (σ). To handle probabilistic
trace alignment, we need to relate an arbitrary log trace σ′ over
A∗ with the closest N -traces that balance their distance from
σ′ and their probability. Fortunately:

Remark 3. By increasing the length of the N -traces, we reach
a point where their probability and distance with respect to any
log trace σ′ both decrease. Intuitively, this is because executing
too many loop iterations within N at once decreases the overall
run probability and increments the distance from σ′. /

This implies that probabilistic trace alignment operates over
a finite space of traces/runs, hence being a combinatorial
problem that can be tackled with techniques such as kNN.

B. Transition Graphs

The graph and trace embedding techniques at the core of our
approach cannot be directly defined over reachability graphs:
they rely on graphs where edges are decorated by probabilities,
and where labels are attached to nodes. In addition, to enable
efficient algorithmic techniques, such graphs are compactly
defined via transition matrixes. We hence take inspiration from
[12] and introduce probabilistic transition graphs, used later
to encode SWNs via their reachability graphs.

Definition 3. A (Probabilistic) Transition Graph is a tuple
(V, s, t, L,R) where: (i) V ⊂ N is a set of nodes; (ii) s ∈ V
is the initial node; (iii) e ∈ V is the accepting node;
(iv) L : Σ × V → {0, 1} is a label matrix associating each

1A more thorough discussion on this can be found in [11].

11

Authorized licensed use limited to: LIBERA UNIVERSITA DI BOLZANO. Downloaded on August 21,2022 at 12:25:41 UTC from IEEE Xplore. Restrictions apply.

graph encoding model trace extraction probabilistic alignment

SWN N

threshold ρ

trace σ

Build
reachability

graph RG(N)

Shift
labels

GRG(N)

Apply
τ -closure

GRG(N)

Unfold
traces

ptracesρ(GRG(N)) ranking

Fig. 6: Proposed pipeline to assess the probabilistic trace alignment.

node in V to a single label in Σ, where for label α ∈ Σ and
node i ∈ V , [L]αi gives 1 if i is labeled by α, 0 otherwise;
(v) R : V × V → [0, 1] is a (probabilistic) transition matrix
indicating, for each pair of nodes, the probability of executing
a transition from the first node leads to the second node. L
and R satisfy the following well-formedness conditions: (i) for
every i ∈ V there is one and only one label α ∈ Σ so that
[L]αi = 1; (ii) for every i ∈ V ,

∑
j∈V [R]ij = 1. /

The condition for L indicates that each node is mapped
by L to a single label, while the same label may be used
for multiple nodes. The condition for R ensures that the
values contained therein can be interpreted as a probability
distribution when choosing which next node to pick upon
executing a transition. Matrices L and R can be exploited
to determine the probability of reaching a node labeled by
β ∈ Σ from any node labeled α ∈ Σ in n steps with
[LRnL>]αβ/[LL

>]αα that we shorthand as [G.Λn]αβ [12].
A transition graph G can be visualized as shown in Fig. 4

(Fig. 5 after τ -closure, see below). There, the elements have
the obvious interpretation, with the only important considera-
tion that an edge from node i to node j is only depicted if
the transition probability [G.R]ij is positive.

We mirror the definitions of SWNs considering that now
labels are on nodes. A valid sequence of G is a sequence
i0 . . .in of nodes in G.V from the initial to the accepting
node that only traverses transitions with nonzero probability:
(i) i0 = G.s; (ii) in = G.e; (iii) if the sequence contains at
least two nodes, each two consecutive nodes are connected by
a positive transition probability, i.e., for every j ∈ { 1, . . . , n }
we have [R]ij−1ij > 0. Runs and model traces of transition
graphs are then defined as in SWNs, and we employ the same
notation to indicate the runs underlying a model trace, and
the valid sequences underlying a run. The computation of
probabilities for runs and traces is hence defined equivalently.

C. Graph and String Kernels

As a foundational basis to compute trace alignments, we
adapt similarity measures from the database literature. Given
a set of data examples X , (e.g., strings or traces, transition
graphs) a (positive definite) kernel function k : X × X → R
denotes the similarity of elements in X . If X is the d-
dimensional Euclidean space Rd, the simplest kernel function
is the inner product 〈x,x′〉 =

∑
1≤i≤d xix

′
i. A kernel is said

to perform ideally [13] when k(x, x′) = 1 whenever x and
x′ are the same object (strong equality) and k(x, x′) = 0

whenever x and x′ are distinct objects (strong dissimilar-
ity). A kernel is also said to be appropriate when similar
elements x, x′ ∈ X are also close in the feature space.
Notice that appropriateness can only be assessed empirically
[13]. A positive definite kernel induces a distance metric
as dk(x,x′) :=

√
k(x,x)− 2k(x,x′) + k(x′,x′). When the

kernel of choice is the inner product, the resulting distance
is the Euclidean distance ‖x − x′‖2. A normalized vector
x̂ is defined as x/‖x‖2. For a normalized vector, we can
easily prove that: ‖x̂ − x̂′‖22 = 2(1 − 〈x̂, x̂′〉). When X does
not represent directly the d-dimensional Euclidean space Rd,
we can use an embedding φ : X → Rd to define a kernel
kφ : X × X → R as kφ(x, x′) := 〈φ(x), φ(x′)〉.

The literature also provides a kernel representation for
strings [12], which we can directly employ for traces. Specifi-
cally, if we associate each dimension in Rd to a different sub-
string αβ of size 2 (i.e., 2-grams2), the embedding represents
how frequently and “compactly” this sub-trace is embedded
in the trace σ′ of interest. Therefore, we introduce a decay
factor λ ∈ [0, 1] ⊆ R that, for all m sub-strings where α and
β appear in σ′ at the same relative distance z < |σ′|, weights
the resulting embedding as λzm.

Example 1. Consider tasks A = { a, b, c }. The 2-grams
over A are A2 = { aa, ab, ac, ba, bb, bc, ca, cb, cc }. TABLE I
shows the embeddings of some traces. Being a 2-gram, trace
cb has only one nonzero component, corresponding to itself,
with φtr

cb(cb) = λ. Trace caa has the 2-gram ca occurring
with length 1 (caa) and 2 (caa), and the 2-gram aa occur-
ring with length 1 (caa). Hence: φtr

ca(caa) = λ + λ2 and
φtr

aa(caa) = λ. Similar considerations apply for the other
traces. We now want to compute the similarity between trace
caba and the other two traces. To do so, we sum, column-wise
(that is, 2-gram by 2-gram) the product of the embeddings
for each pair of traces. We then get kφtr(caba, caa) = λ3 +
(λ+ λ3)(λ+ λ2) and kφtr(caba, cb) = λ3, which induces the
ranking kφtr(caba, caa) > kφtr(caba, cb). /

This trace kernel returns strong dissimilarity when the two
traces have no shared 2-grams at any arbitrary length, but does
not enjoy strong equality: the similarity of a trace with itself
is at least λ2 (returned when the trace is a 2-gram).

2For our experiments, we choose to consider only 2-grams but any p-grams
of arbitrary length p ≥ 2 might be adopted [13]. An increased size of p
improves precision but also incurs in a worse computational complexity, as it
requires to consider all the arbitrary sub-traces of length p whose constitutive
elements occur at any distance from each other within the trace.

12

Authorized licensed use limited to: LIBERA UNIVERSITA DI BOLZANO. Downloaded on August 21,2022 at 12:25:41 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Embedding of traces caba, caa and cb.
aa ab ac ba bb bc ca cb cc

caba λ2 λ 0 λ 0 0 λ+ λ3 λ2 0
caa λ 0 0 0 0 0 λ+ λ2 0 0
cb 0 0 0 0 0 0 0 λ 0

IV. PROBABILISTIC TRACE ALIGNMENT PIPELINE

Our approach takes as input (i) a reference model repre-
sented as an SWN N , (ii) a minimum, positive probability
threshold ρ ∈ (0, 1] (iii) a trace σ′ of interest, and returns
a ranking over all the N -traces having a probability ≥ ρ,
combining their probability values (probabilistic component)
and their distance to σ′ (alignment component).

A. Computation pipeline

The approach is realized through the pipeline shown in
Fig. 6, consisting of the following five steps. In step 1, the
reachability graph RG(N) of N is constructed. In step 2,
RG(N) is converted into a corresponding transition graph
GRG(N) that preserves model traces and their probabilities.
We omit the details of this conversion, due to lack of space and
the fact that it employs well-known techniques used to shift
labels from transitions to states while preserving the behavior
encoded by a transition system. Fig. 4 shows the result of this
conversion when applied to the reachability graph in Fig. 3.

In step 3, the transition graph GRG(N) is processed ap-
plying a τ -closure that compiles away τ -transitions. This
results into a new transition graph GRG(N) that retains τ
labels only in the initial and accepting states and for the
rest exclusively employs visible labels in A, while preserving
model traces and their probabilities. Also in this case we omit
the details: the transformation relies on well-known automata-
based techniques for removing ε-moves. The only non-trivial
observation is that, even in our case where probabilities are
present, all τ transitions can still be removed thanks to the
working hypothesis done for SWNs in Sect. III-A, namely
absence of fully silent loops. As a result of this step, the
transition graph in Fig. 4 results in that of Fig. 5.

In step 4, the τ -closed transition graph GRG(N) is unfolded,
so as to collect all the model traces that have a probability of
at least ρ. To do so, we rely on the properties in Remarks
2 and 3 from Sect. III, which are inherited by GRG(N).
Specifically, they imply that no loop can be executed without
strictly decreasing the resulting probability. This means that
all valid sequences with a resulting probability of at least ρ
can be enumerated and returned in a set. The so-obtained
sequences are combined by merging those that produce the
same trace, summing up their probabilities, thus obtaining the
set ptracesρ(GRG(N)) of all the traces with probability ≥ ρ.
The closure operation also implies that the notion of model
trace coincides with that of run, modulo removing the two τ
labels attached to the initial and accepting nodes.

The last step takes the so-obtained model traces and ranks
them by considering their probabilities and the similarity with

the log trace σ′ of interest. In Fig. 6, this is shown as a black-
box. As we describe next, we have implemented this last step
in two alternative ways: one computationally demanding but
guaranteeing an optimal-ranking, the other more efficient but
providing approximate ranking without optimality guarantees.

B. Alignment Strategies

Upon aligning an event log with a stochastic net, distinct
model traces have different probabilities. Hence the retrieval
of the best model traces maximizing the combined provision
of minimum trace alignment cost and maximum model trace
probability might not suffice. In some cases, the user could
favor an alignment with a lower cost even if based on a less
probable model trace, while, in other cases, they may prefer a
model trace with a higher probability at the expense of a higher
alignment cost. Hence, we align a log trace with a transition
graph by retrieving the best k alignments among all model
traces in ptracesρ(N). This reduces to the kNN problem by
finding the k nearest data points to a query x from a set X of
data points w.r.t. a given distance function dk.

Optimal-Ranking Trace Aligner. Here we reuse existing
trace aligners such as [1], [6], where d(σ′, σ) is the Leven-
shtein distance. We express the ranking score as the product
PG(σ)d(σ′, σ), considering the cost of the alignment (i.e., the
distance between the model trace and the trace to be aligned)
and the probability of the model trace. To represent the same
intuition of such a weighted distance as a ranking function, we
transform it into a similarity function returning 1 when σ = σ′

and PG(σ′) = 1 hold. We then express d as a normalized sim-
ilarity score sd(σ′, σ) := 1

d(σ′,σ)+1 . The maximum similarity
is reached when the distance is 0 and the similarity decreases
while the distance increases. The golden ranking function
(i.e., the one producing the optimal-ranking) can therefore
be represented as R(σ′, σ) = PG(σ)PG(σ′)sd(σ

′, σ). The
computation max argσ∈ptracesρ(G)R(σ′, σ) returns the best
optimal-ranking trace alignment for a log trace σ′, where R
must be computed a-new for all the possible σ′.

Approximate-Ranking Trace Embedder. Ranking optimality
comes at the sub-optimal cost of a brute-force recomputation
of R for each novel trace σ′ to align. Since each embedding φ
entails an associated similarity metric kφ and hence an associ-
ated distance dkφ (Sect. III-C), we compute the embeddings for
all the unfolded traces before performing the top-k search en-
suring that they are independent of the trace to align, avoiding
the brute-force cost. This computation gain comes with a loss
in precision: the generation of precise embeddings for graph
data with loops is NP-Complete [12] and, in its approximated

13

Authorized licensed use limited to: LIBERA UNIVERSITA DI BOLZANO. Downloaded on August 21,2022 at 12:25:41 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Projections over N -traces of length 4.

σ Gσ l ω

a
2

a
1 ρ23ρ57

cb
3

c

5

b
ρ67 2 ρ24

aaa

2

a

6

a
ρ55

ρ55

3 ρ23ρ57

caa
3

c

4

a

6

a
ρ65 ρ55 3 ρ24ρ57

aa
2

a

6

a
ρ55 2 ρ23ρ57

ca
3

c

2

a
ρ65 2 ρ24ρ57

aaaa

2

a

6

a
ρ55

ρ55

4 ρ23ρ57

caaa

3

c

4

a

6

a
ρ65 ρ55

ρ55

4 ρ24ρ57

version, does not accurately represent the data using low-
dimensional vectors [14]. So, our proposed embedding (that
we indicate with φg) is weakly-ideal (Sect. III-C and [13]).

To obtain φg , we adapt the embedding strategy φtr from [15]
by addressing some shortcomings of such a strategy: (a) it does
not perform weakly-ideally, so we cannot numerically assess
if two embeddings represent equivalent traces (Example 1);
(b) it does not characterize τ -moves, so the probabilities of the
initial and final τ -moves are not preserved; (c) it is affected
by numerical errors from finite arithmetics: longer traces σ
generated from skewed probability distributions GRG(N).Λ

i

suffer from greater truncation errors, as smaller λi components
for bigger i < |σ| will be ignored, preventing a complete
numerical vector characterization of σ in practice.

To overcome these shortcomings we (a) propose a weak-
ly-ideal embedding, which also (b) exploits an ω factor for
preserving probabilities from and to τ transitions. We also
(c) mitigate the numerical truncation errors induced by trace
length and probability distribution skewness through two sub-
-embedding strategies, εx and νx, where the former descends
from φtr and the latter approximates the trace similarity via
label frequencies similarity. Since a trace embedding for
σ ∈ ptracesρ(G) adequately representing the transitions in
GRG(N).Λ requires an intermediate G representation, we map
each σ to a transition graph Gσ as follows:

Definition 4 (G projection over traces). Given a minimum
probability threshold ρ and a τ -closed transition graph
G = (V, s, t, L,R), for each trace σ ∈ ptracesρ(G), the
G projection over σ is a pair (Gσ, ω), where Gσ is a
transition graph such that (i) Gσ.V contains all distinct
nodes generating σ from G (i.e.,

⋃
ξ∈runsG(σ) seqsG(ξ));

(ii) Gσ.s = s; (iii) Gσ.t = t; (iv) Gσ.L (and Gσ.R) is
the submatrix of L (and R) over the columns (and rows)
in Gσ.V , and ω ∈ [0, 1] is a graph weight preserving
the transition probabilities from and to τ nodes and com-

TABLE III: Different sub-embedding definitions (ε1, ε2, ν1,
and ν2) for φg .

x = 1 x = 2

εxab(Gσ) :=
∑l
i=1 λ

i [LRiLt]ab∑
a′b′∈A2 R

i
a′b′

∑l
i=1 λ

i[Λi]ab

νxa (Gσ) := 1
c

∑
σ′∈ptraces0(Gσ)

|{ σ′i∈σ′ | a∈A∧σ′i=a }|
|σ′| 0

puted as 1−
∏
ξ∈runsG(σ),η∈seqsG(ξ)

(
1−(ifte([L]τη1 , [R]η1η2)

ifte([L]τtn , [R]tn−1tn)
)

, where ifte(x, y) := x(y − 1) + 1

returns y if x = 1 and 1 otherwise. We denote the set of
all the Gσ as Gρ(G). /

The graph weight ω derives from the outgoing edges of the
initial node and the ingoing edges of the accepting node when
such nodes are labeled as τ . Given that (i) the embedding strat-
egy from [15] allows trace embedding only for visible (i.e.,
non-τ) transitions, and (ii) the trace extraction process discards
the τ information, we use ω to preserve such information.

Example 2. Given the τ -closed transition graph GRG(N)

in Fig. 5, we assign the probability values ρ23 = 0.8,
ρ24 = 0.2, ρ55 = ρ57 = 0.5, ρ65 = 0.7, and
ρ67 = 0.3. The ptraces0(GRG(N)) with maximum length
4 are: {〈a, 0.4〉 , 〈aa, 0.2〉, 〈aaa, 0.1〉, 〈ca, 0.07〉, 〈cb, 0.06〉,
〈aaaa, 0.05〉 , 〈caa, 0.035〉 , 〈caaa, 0.0175〉}. TABLE II shows
the projected transition graphs associated to such traces, where
only the relevant information for embedding them is displayed
(e.g., all the τ -labeled nodes are removed). /

Our proposed embedding φg is computed for each transition
graph generated in the former definition. The goal is to use
kφg for ranking all the traces generated by unfolding via
such graphs. We extend the embedding φtr from [15] by
including the traces associated probability, and making the
ranking induced by kφg the inverse of the ranking induced by
the sum of the following distances: the transition correlations
ε and the transition label frequency ν. We also require that the
desired properties of φg are independent of the characterization
of ε over the 2-grams in A2 and ν over the labels in A,
which provide different embedding strategies. Therefore, our
proposed φg embedding is defined as follows:

Definition 5 (G-Embedding). Given a G projection over σ
(Gσ, ω) and a tuning parameter tf ∈ [0, 1] ⊆ R+

0 , the G-
Embedding φg over the visible 2-grams and transition labels,
A ∪A2, is defined by

φgi(Gσ) =

{
ω εab(Gσ)‖ε‖2 t

|R>0|
f i = ab

νa(Gσ)
‖ν‖2 t

|R>0|
f i = a

where ν (and ε) represents the non-negatively defined embed-
dings associated to Gσ.L (both Gσ.R and Gσ.L). /

Here, max argσ∈ptracesρ(G),Gσ∈Gp(P)kφg (G′σ, Gσ) returns the
best approximated trace alignment for a log trace represented
as Gσ′ . For sub-embeddings ε and ν, in our experiment
section, we choose two possible interchangeable definitions

14

Authorized licensed use limited to: LIBERA UNIVERSITA DI BOLZANO. Downloaded on August 21,2022 at 12:25:41 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: Distinct SWNs and associated sets of unfolded
traces discovered from the Sepsis Cases event log.

Experiment Conf. (U) Model +W. Estimator ρ |ptracesρ(G)(PU)|

SM CONS 20 SplitMiner 2.0 [17] +Constant 0 157
SM FORK 20 SplitMiner 2.0 [17] +Fork [18] 0 32
SM PAIR 20 SplitMiner 2.0 [17] +PairScale [18] 0 157
STPETRI 20 Rogge-Solti [10] 10−5 1612

(x = 1 and x = 2) shown in TABLE III: here, l is the path
length (reported in TABLE II), and c for ν1 is a normalization
factor such that

∑
a∈A ν

1
a (P) = 1. While ν2 implies to

completely ignore the label frequency contribution, ε2 is the
direct implementation of φtr from Sect. III-C, and ε1 and ε2

only differ from the normalization perspective.
tf ∈ [0, 1] ⊆ R+

0 and λ ∈ [0, 1] ⊂ R+
0 are tuning parameters

that can be inferred from the available data [16]. The latter
describes the previously mentioned decay factor, while tf
represents the relevance of our embedding representation as
the number of edges within Gσ increases. In our experiments
and examples, we choose tf = 0.0001 and λ = 0.07. This
representation is independent of the representation associated
with a trace to be aligned. Therefore it does not have to be
recomputed at each alignment with a different σ′.

The kernel kφg associated to φg is a function of the distance
‖ε̂− ε̂′‖22 and ‖ν̂ − ν̂′‖22 for traces σ′ and σ:

Proposition 1. Given (Gσ, ω) and (Gσ, ω
′) with Gσ =

(s, t, L,R) and Gσ = (s′, t′, L′, R′), the definition for kφg
is expanded as follows:

kφg (Gσ, Gσ) = ωω′t
|R>0|+|R′>0|
f

(
1− ‖ε̂− ε̂

′‖22
2

)
+

+t
|R>0|+|R′>0|
f

(
1− ‖ν̂ − ν̂

′‖22
2

)
Proof. By definition of kφ as a vector dot product for any
embedding φ and by ‖x̂−x̂′‖22 = (2−1 〈x̂, x̂′〉) (Sect. III-C).a

When ε̂ and ε̂′ are affected by numerical cancelation due to
truncation error (i.e., ‖ε̂− ε̂′‖22 → 0), the ν strategy intervenes
as a backup ranking strategy. The first term of the sum does
not affect the ranking, as it reduces to a constant factor.
Properties. We can prove that when two traces σ′ and σ are
equivalent (i.e., have the same sequence of labels and the same
probability), the kernel computation reduces to ωω′. When
both weights are 1, the kernel returns 1. We call this condition
weak equality because we cannot possibly prove that when the
kernel is equal to ωω′ then the two traces we are comparing
are equivalent (there could be equal embeddings coming from
non-equivalent traces). As shown in Sect. 1, traces having
neither 2-grams nor transition labels in common have kernel 0
and vice versa (strong dissimilarity). Since weak equality and
strong similarity hold, the embedding performs weakly-ideally.

V. EXPERIMENTAL RESULTS

For experimenting our proposed approach to probabilistic
trace alignment, we used the Sepsis Cases event log.3

3https://data.4tu.nl/articles/Sepsis Cases - Event Log/12707639

In particular, we split the dataset into a training set, con-
taining the “happy traces” lasting at most the average trace
duration in the log (≤ 2.3 · 107 ms), and a test set, containing
the traces with the highest execution times. We used the
training set to generate either an SWN, using the approach
presented in [10], or a BPMN with only exclusive gates
using Split Miner 2.0 [17] that was then converted into a
Petri net [19]. This Petri net was later on converted into
an SWN by using a firing weight estimator: we chose the
Fork and the PairScale estimators from [18] and we
denote as Constant a naive estimator assuming that all
the transition enabled in a given marking are equiprobable.
From such SWNs, we generated distinct sets of unfolded traces
(of different sizes). The experimental settings are summarized
in TABLE IV. The experiments described in the following
sections have the aim of evaluating the benefits of performing
the approximate-ranking strategy over the optimal-ranking
one.

Approximation. To assess how well the proposed
approximate-ranking strategy approximates the optimal-
ranking one, we use the Spearman correlation index [20]
to express the correlation between the ranking provided by
each sub-embedding strategy for φg and the optimal-ranking.
Fig. 7 shows the average Spearman index for traces of
different lengths in the test set. We can see from the plots that
the sub-embeddings considering only information about the
edges (i.e., the ones where the features corresponding to the ν
dimension are set to zero) have in general a higher correlation
with the optimal-ranking, but their correlation values are less
stable w.r.t. the length of the trace to be aligned. In the case
of STPETRI 20, the correlation is lower than for the other
configurations (lower than 0.7 for all sub-embeddings). For
SM PAIR 20 and SM CONS 20, the correlation index is
around 0.8 for ε1&ν2 and ε2&ν2, and almost 1 for ε1&ν1 and
ε2&ν1, but less stable for these sub-embeddings especially for
longer traces. In the case of SM FORK 20, the correlation
is maximum for all sub-embedding strategies.

Efficiency. With reference to the plots in Fig. 8, we evaluated
the efficiency of computing the trace alignment over both
optimal-ranking and approximate-ranking strategies over two
different data structures enabling kNN queries, i.e., VP-Trees
and KD-Trees. We conducted our experiments for k = 20, and
we used the Levenshtein distance as distance function for the
optimal-ranking strategy. While the average query time (over
traces of the same length) for the optimal-ranking strategy
includes the indexing time for generating all the vectors of
the search space (that has to be constructed from scratch for
each query) and the time for the neighborhood search, the
approximate-ranking one includes the neighborhood search
time and the time needed for the embedding transformation
of the trace to be aligned σ′ (in this case, the indexing is
performed only once before the query time); in particular, in
the latter case, in addition to averaging the query time over
traces of the same length, we also consider the average embed-
ding time for all the possible embedding strategies introduced

15

Authorized licensed use limited to: LIBERA UNIVERSITA DI BOLZANO. Downloaded on August 21,2022 at 12:25:41 UTC from IEEE Xplore. Restrictions apply.

Fig. 7: Approximation comparison. Fig. 8: kNN alignment benchmark.

in this paper (and also used in the previous section). Fig. 8
plots the result of such experiments: when using KD-Trees to
represent the search space, the time required to generate all the
alignments needed to compute R truly dominates the cost of
generating the embedding φg(G

′
σ) for datasets with a higher

number of model traces such as STPETRI 20, while the cost
for φg(G

′
σ) becomes non-negligible when the stochastic net

generates a more restricted set of traces, requiring to compute
a lower number of alignments to generate the optimal-ranking
(like, for example, in the case of SM FORK 20). Finally, we
can see that, in general, the computation time increases with
the length of the traces to be aligned.

VI. CONCLUSIONS AND FUTURE WORKS

We framed probabilistic trace alignment as a kNN problem.
Our approach balances the likelihood of the aligned trace and
the cost of the alignment by providing the top-k alignments
instead of a single alignment as output. The experimentation
shows that the approximated top-k ranking provides a good
trade-off between accuracy and efficiency especially when
the reference stochastic net generates several model traces.
Future works will investigate probabilistic alignments over
fuzzy-labeled nodes and declarative process models. We also
aim at improving the efficiency and accuracy of the proposed
approach by intervening both on the embedding and the
algorithmic strategies.

REFERENCES

[1] A. Adriansyah, B. F. van Dongen, and W. M. P. van der Aalst,
“Conformance checking using cost-based fitness analysis,” in EDOC
2011. IEEE, 2011, pp. 55–64.

[2] S. J. J. Leemans, A. F. Syring, and W. M. P. van der Aalst, “Earth
movers’ stochastic conformance checking,” in BPM, vol. 360. Springer,
2019, pp. 127–143.

[3] A. Polyvyanyy and A. A. Kalenkova, “Monotone conformance checking
for partially matching designed and observed processes,” in ICPM, 2019,
pp. 81–88.

[4] A. Polyvyanyy, A. Solti, M. Weidlich, C. Di Ciccio, and J. Mendling,
“Monotone precision and recall measures for comparing executions and
specifications of dynamic systems,” ACM Trans. Softw. Eng. Methodol.,
vol. 29, no. 3, pp. 17:1–17:41, 2020.

[5] N. S. Altman, “An introduction to kernel and nearest-neighbor non-
parametric regression,” The American Statistician, vol. 46, no. 3, pp.
175–185, 1992.

[6] M. de Leoni and A. Marrella, “Aligning real process executions and
prescriptive process models through automated planning,” Expert Syst.
Appl., vol. 82, pp. 162–183, 2017.

[7] S. J. J. Leemans, A. F. Syring, and W. M. P. van der Aalst, “Earth
movers’ stochastic conformance checking,” in Business Process Man-
agement Forum - BPM Forum 2019, Vienna, Austria, September 1-6,
2019, Proceedings, ser. Lecture Notes in Business Information Process-
ing, T. T. Hildebrandt, B. F. van Dongen, M. Röglinger, and J. Mendling,
Eds., vol. 360. Springer, 2019, pp. 127–143.

[8] M. Alizadeh, M. de Leoni, and N. Zannone, “History-based construction
of alignments for conformance checking: Formalization and implemen-
tation,” in SIMPDA, vol. 237. Springer, 2014, pp. 58–78.

[9] M. A. Marsan, G. Conte, and G. Balbo, “A class of generalized stochastic
petri nets for the performance evaluation of multiprocessor systems,”
ACM Trans. Comput. Syst., vol. 2, no. 2, pp. 93–122, 1984.

[10] A. Rogge-Solti, W. M. P. van der Aalst, and M. Weske, “Discovering
stochastic petri nets with arbitrary delay distributions from event logs,”
in BPMW13, 2013, pp. 15–27.

[11] G. Bergami, F. M. Maggi, M. Montali, and R. Peñaloza, “A tool for
probabilistic trace alignments,” in CAiSE Forum. Springer, 2021.

[12] T. Gärtner, P. A. Flach, and S. Wrobel, “On graph kernels: Hardness
results and efficient alternatives,” in COLT/Kernel 2003, vol. 2777.
Springer, 2003, pp. 129–143.

[13] T. Gärtner, “A survey of kernels for structured data,” SIGKDD, vol. 5,
no. 1, 2003.

[14] C. Seshadhri, A. Sharma, A. Stolman, and A. Goel, “The impossibility
of low-rank representations for triangle-rich complex networks,” Pro-
ceedings of the National Academy of Sciences, vol. 117, no. 11, pp.
5631–5637, 2020.

[15] H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. J. C. H.
Watkins, “Text classification using string kernels,” J. Mach. Learn. Res.,
vol. 2, pp. 419–444, 2002.

[16] K. Driessens, J. Ramon, and T. Gärtner, “Graph kernels and gaussian
processes for relational reinforcement learning,” Mach. Learn., vol. 64,
no. 1-3, pp. 91–119, 2006.

[17] A. Augusto, R. Conforti, M. Dumas, M. La Rosa, and A. Polyvyanyy,
“Split miner: automated discovery of accurate and simple business
process models from event logs,” Knowl. Inf. Syst., vol. 59, no. 2, pp.
251–284, 2019.

[18] A. Burke, S. Leemans, and M. Wynn, “Stochastic process discovery by
weight estimation,” in PQMI, 10 2020.

[19] W. M. P. van der Aalst and B. F. van Dongen, “Discovering Petri
nets from event logs,” in Trans. on Petri Nets and Other Models of
Concurrency VII, 2013, pp. 372–422.

[20] G. Bergami, F. Bertini, and D. Montesi, “Hierarchical embedding for
DAG reachability queries,” in IDEAS. ACM, 2020, pp. 24:1–24:10.

16

Authorized licensed use limited to: LIBERA UNIVERSITA DI BOLZANO. Downloaded on August 21,2022 at 12:25:41 UTC from IEEE Xplore. Restrictions apply.

