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ABSTRACT
Data-centric dynamic systems are systems where both the process
controlling the dynamics and the manipulation of data are equally
central. We study verification of (first-order) µ-calculus variants
over relational data-centric dynamic systems, where data are main-
tained in a relational database, and the process is described in terms
of atomic actions that evolve the database. Action execution may
involve calls to external services, thus inserting fresh data into the
system. As a result such systems are infinite-state. We show that
verification is undecidable in general, and we isolate notable cases
where decidability is achieved. Specifically we start by considering
service calls that return values deterministically (depending only
on passed parameters). We show that in a µ-calculus variant that
preserves knowledge of objects appeared along a run we get decid-
ability under the assumption that the fresh data introduced along a
run are bounded, though they might not be bounded in the overall
system. In fact we tie such a result to a notion related to weak
acyclicity studied in data exchange. Then, we move to nondetermin-
istic services and we investigate decidability under the assumption
that knowledge of objects is preserved only if they are continuously
present. We show that if infinitely many values occur in a run but
do not accumulate in the same state, then we get again decidability.
We give syntactic conditions to avoid this accumulation through
the novel notion of “generate-recall acyclicity”, which ensures that
every service call activation generates new values that cannot be
accumulated indefinitely.
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1. INTRODUCTION
Business process management is central to the operation of organi-

zations in various domains, ranging from business to governmental,
scientific, and beyond. Business process specification frameworks
have recently evolved from the traditional process-centric approach
towards data-awareness. Process-centric formalisms focus on con-
trol flow while under-specifying the underlying data and its ma-
nipulations by the process tasks, often abstracting them away com-
pletely. In contrast, data-aware formalisms treat data as first-class
citizens [37, 30, 19, 16, 40, 1]. The holistic view of data and pro-
cesses together promises to avoid the notorious discrepancy between
data modeling and process modeling of more traditional approaches
that consider these two aspects separately [9]. In particular, this
separation precludes the development of data-aware automatic tools
for formal verification, i.e., static analysis and run-time monitoring.
Such tools are desperately needed given the complexity of modern
business processes, much of which is due to subtle interactions
between business process tasks and data.

A notable exponent of the data-aware class of specification frame-
works is the artifact-centric model pioneered in [37], deployed
by IBM in commercial products and consulting services, and fur-
ther studied in a line of follow-up works [8, 28, 29, 9, 32, 23, 20,
21]. Business artifacts (or simply “artifacts”) model key business-
relevant entities, updated by a set of business process tasks (actions).
This modeling approach has been successfully deployed in prac-
tice, yielding proven savings when performing business process
transformations [8] to expand and/or streamline the process.

Data-aware processes deeply challenge formal verification by
requiring simultaneous attention to both data and process: on the
one hand they deal with full-fledged processes and require analysis
in terms of sophisticated temporal properties [18]; on the other hand,
the presence of possibly unbounded data makes the usual analysis
based on finite-state model checking impossible in general, since,
when data is taken into account, the system becomes infinite-state.

In this work we focus on data-aware static verification, selecting
the artifact-centric model as a natural vehicle for our investigation
due to its practical relevance. Given the family of variations on this
model found in the literature, for the sake of a uniform terminology
we introduce our own pristine formalization, which captures the
artifact-centric dialects in [7, 24, 25, 23, 21]. We call our business
process formalism “Data-Centric Dynamic Systems” (DCDSs). The
correspondence between DCDSs and the family of artifact models
is discussed in Sections 6 and 7. DCDSs comprise (i) a data layer,
which holds the relevant information to be manipulated by the sys-
tem and technically can be seen as a relational database, and (ii) a
process layer formed by invokable (atomic) actions and a process
based on them. Such a process characterizes the dynamic behavior
of the system. Executing an action has effects on the data manip-
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ulated by the system, on the process state, and on the information
exchanged with the external world.

Our setting is in line with recent industrial artifact model pro-
posals [19] and research papers [7, 24, 25, 23] and it subsumes
particular case variations in which the artifact is a record, modeled
as a single-tuple database [20]. The execution of actions may in-
volve calls to external services, providing fresh data inserted into
the system. As a result such systems are infinite-state in general.

As verification formalism, we adopt a FO variant of µ-calculus
[34, 38, 26, 14]. µ-calculus is well known to be more expressive
than virtually all temporal logics used in verification, including
widely adopted logics such as CTL, LTL, and CTL*. Our variant
of µ-calculus is based on first-order queries over data in the states
of the DCDS, and allows for first-order quantification across states
(within and across runs), though in a controlled way. No limitations
whatsoever are instead put on the fixpoint formulae, which are the
key element of the µ-calculus.

In particular we consider two FO variations of µ-calculus. The
first, called µLA, requires that first-order quantification across states
is always bounded to the active domain of the state where the quan-
tification is evaluated. This quantification mechanism indirectly
preserves, at any point, knowledge of objects that appeared in the
history so far, even if they disappeared in the meantime. The second,
called µLP , further restricts the first-order quantification in µLA
by stating that only quantified objects that are still present in the
current domain remain of interest as we move from one state to the
next. That is, knowledge of objects is preserved only if they are
continuously present. We define novel notions of bisimulation that
characterize the forms of quantification used in the two logics.

Verification of data-aware processes, including artifact systems
and DCDSs, is undecidable even for very simple system speci-
fications and propositional CTL/LTL properties [7, 25, 23, 17].
However, we isolate two notable sufficient conditions over DCDSs,
which respectively guarantee decidability of full µLA and µLP
verification under specific assumptions about the external services.

Specifically we start by considering service calls that return val-
ues deterministically (depending only on passed parameters). We
show that verification of µLA properties is decidable under the as-
sumption that the cardinality of fresh data introduced along each run
is bounded (run-bounded DCDSs), though it need not be bounded
across runs. Decidability is not obvious, since the logic permits
quantification over values occurring across (potentially infinitely
many) branching run continuations. Run-boundedness is an undecid-
able semantic property for which we propose a sufficient syntactic
condition related to the notion of weak acyclicity studied in data
exchange [27]. Then, we move to nondeterministic services where
same-argument calls possibly return different values at different
time moments. To exploit the results on run-bounded DCDSs in this
case we would have to limit the number of service calls that can
be invoked during the execution, which would be a too restrictive
condition on the form of DCDSs. We show that if infinitely many
values occur in a run but do not accumulate in the same state (our
system is then called state-bounded) then µLP verification is decid-
able (while µLA is not). This is remarkable, since when compared
to run-boundedness, state-boundedness permits an additional kind
of data unboundedness (within the run, as opposed to only across
runs). State-boundedness is also an undecidable semantic property,
for which we provide a novel sufficient syntactic condition called
“generate-recall acyclicity”.

The decidability results come with an EXPTIME upper bound on
the size of the initial database of the DCDS data layer. This is in
line with previously known complexity bounds on systems that can
be seen as special cases of our framework [7, 24, 25, 23, 17]. While

at a first sight this seems an obstacle for practical verification, we
observe that when DCDSs represent artifacts, which is our main
use case, verification is affected only by the specific data needed
to progress the artifacts along their lifecycle (process). The size of
such data is in practice small when compared to the size of the entire
data layer. Verification of data aware processes according to algo-
rithms exponential in the initial state has already been successfully
implemented in systems such as [24]. This is a strong indication of
feasibility potential even in the more general setting presented here.

The rest of the paper is organized as follows. Section 2 intro-
duces DCDSs. Section 3 introduces verification of DCDSs and the
two variants of µ-calculus that we consider. Section 4 focusses the
analysis of DCDSs under the assumption that external service calls
behave deterministically. Section 5 considers the case in which ex-
ternal service calls behave nondeterministically. Section 6 discusses
the various notions introduced. Section 7 reports on related work.
Finally, Section 8 concludes the paper.

An extended version of this paper with full proofs is available [4].

2. DATA-CENTRIC DYNAMIC SYSTEMS
We base our investigation on a model called (relational) data-

centric dynamic system, or simply DCDS, which can be seen as
a pristine version of several proposals in the literature [7, 24, 25,
23], and is in particular equivalent in expressive power to the most
expressive artifact model variations, such as [21] (see Section 6).

A DCDS is a pair S = 〈D,P〉 formed by two interacting layers:
a data layer D and a process layer P over D. Intuitively, the data
layer keeps all the data of interest, while the process layer modifies
and evolves such data. We keep the structure of both layers to
the minimum, in particular we do not distinguish between various
possible components providing the data, nor those providing the
subprocesses running concurrently.
Data Layer. The data layer represents the information of interest in
our application. It is constituted by a relational schemaR equipped
with equality constraints1 E , e.g., to state keys of relations, and an
initial database instance I0, which conforms to the relational schema
and the equality constraints. The values stored in this database
belong to a countably infinite domain C. The elements of this
domain are treated as constants, interpreted as themselves, blurring
the distinction between constants and values. We will use the two
terms interchangeably.

Given a database instance I, its active domain ADOM(I) is the
subset of C such that c ∈ ADOM(I) if and only if c occurs in I.

Formally, a data layer is a tuple D = 〈C,R, E , I0〉 where:
• R = {R1, . . . , Rn} is a database schema, constituted by a

finite set of relation schemas;
• E is a finite set {E1, . . . , Em} of equality constraints. Each Ei

has the form Qi →
∧
j=1,...,k zij = yij , where Qi is a do-

main independent FO query overR, possibly using constants
from ADOM(I0), whose free variables are ~x, and zij and yij
are either variables in ~x or constants in ADOM(I0).2

• I0 is a database instance that represents the initial state of
the data layer, which conforms to the schema R and sat-
isfies the constraints E : namely, for each constraint Qi →∧
j=1,...,k zij=yij and for each tuple (i.e., substitution for the

free variables) θ ∈ ans (Qi, I), it holds that zijθ = yijθ.3

1Other kinds of constraints can also be included without affecting
the results reported here (cf. Section 6).
2For convenience, and without loss of generality, we assume that all
constants used inside formulae appear in I0.
3We use the notation tθ (resp., ϕθ) to denote the term (resp., the
formula) obtained by applying the substitution θ to t (resp., ϕ).
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Process Layer. The process layer constitutes the progression mech-
anism for the DCDS. We assume that at every time the current
instance of the data layer can be arbitrarily queried, and can be up-
dated through action executions, possibly involving external service
calls to get new values from the environment. Hence, the process
layer is composed of three main notions: actions, which are the
atomic update steps on the data layer; external services, which can
be called during the execution of actions; and processes, which are
essentially nondeterministic programs that use actions as atomic
instructions. While we require the execution of actions to be sequen-
tial, we do not impose any such constraints on processes, which in
principle can be formed by several concurrent branches, including
fork, join, and so on. Concurrency is to be interpreted by interleav-
ing and hence reduced to nondeterminism, as often done in formal
verification [5, 26]. There can be many ways to provide the control
flow specification for processes. Here we adopt a simple rule-based
mechanism, but our results can be immediately generalized to pro-
cesses whose control flow is finite-state. Observe that this does not
imply that the transition system associated to a process over the data
layer is finite-state as well, since the data manipulated in the data
layer may grow over time in an unbounded way.

Formally, a process layer P over a data layer D = 〈C,R, E , I0〉,
is a tuple P = 〈F ,A, %〉 where:
• F is a finite set of functions, each representing the interface

to an external service. Such services can be called, and as
a result the function is activated and the answer is produced.
How the result is actually computed is unknown to the DCDS
since the services are external.
• A is a finite set of actions, whose execution updates the data

layer, and may involve external service calls.
• % is a finite set of condition-action rules that form the spec-

ification of the overall process, which tells at any moment
which actions can be executed.

The crucial aspect of actions is how they affect the data layer. Ac-
tions query the current state of the data layer and use the results
of such queries, together with the data returned from the external
service calls, to instantiate the data layer in the new state. To specify
the action effects, we resort to rules that resemble tuple generating
dependencies (TGDs) [2], except that we allow for negation when
querying the database and we use results of service calls instead of
labeled nulls. Note that negation is key to capturing “if-then-else”
style business rules, while service calls are used for modeling the
input of new data from the external environment.

Formally, an action α ∈ A is an expression α(p1, . . . , pn) :
{e1, . . . , em}, where: (i) α(p1, . . . , pn) is its signature, constituted
by a name α and a sequence p1, . . . , pn of parameters, to be substi-
tuted with values when the action is invoked, and (ii) {e1, . . . , em},
also denoted as EFFECT(α), is a set of specifications of effects,
which are assumed to take place simultaneously. Each ei has the
form q+

i ∧Q
−
i  Ei, where:

• q+
i ∧Q

−
i is a query overR whose terms are variables, action

parameters, and constants from ADOM(I0), where q+
i is a

union of conjunctive queries, and Q−i is an arbitrary FO for-
mula whose free variables are among those of q+

i . Intuitively,
q+
i selects the tuples to instantiate the effect with, and Q−i

filters away some of them4.

Furthermore, given a FO query Q and a database instance I, the
answer ans (Q, I) to Q over I is the set of assignments θ from
the free variables of Q to ADOM(I), such that I |= Qθ. We treat
Qθ as a boolean query, and with some abuse of notation, we say
ans (Qθ, I) ≡ true if and only if I |= Qθ.
4Note that while in principle we could replace q+

i ∧Q
−
i with any

domain independent FO query, distinguishing between q+
i and Q−i

• Ei is the effect, i.e., a set of facts for R, which includes
as terms: terms in ADOM(I0), free variables of q+

i and Q−i
(including action parameters), and Skolem terms formed by
applying a function f∈F to one of the previous kinds of terms.
Such Skolem terms involving functions represent external
service calls and are interpreted as the returned value chosen
by an external user/environment when executing the action.

The process % is a finite set of condition-action rules, of the form
Q 7→ α, where α is an action in A and Q is a FO query over R
whose free variables are exactly the parameters of α, and whose
other terms can be quantified variables or constants in ADOM(I0).

Semantics via Transition System. The semantics of a DCDS is
defined in terms of a possibly infinite transition system whose states
are labeled by databases. Such a transition system represents all
possible computations that the process layer can do on the data layer.
A transition system Υ is a tuple 〈∆,R,Σ, s0, db,⇒〉, where:
• ∆ is a countably infinite set of values;
• R is a database schema;
• Σ is a set of states;
• s0 ∈ Σ is the initial state;
• db is a function that, given a state s ∈ Σ, returns the database

of s, which is made up of values in ∆ and conforms toR;
• ⇒ ⊆ Σ× Σ is a transition relation over states.

In order to precisely build the transition system associated to a
DCDS, we need to better characterize the behavior of the external
services, which are called in the effects of actions. This is done in
Sections 4 and 5.

EXAMPLE 2.1. (Travel Reimbursement DCDS) We model the
process of reimbursing travel expenses in a university, and the corre-
sponding audit system, in two different subsystems. In particular,
the first subsystem, called the request system manages the submis-
sion of reimbursement requests by an employee, and preliminary
inspection and approval of the request by a monitor working in the
accounting department. The log of accepted requests will be submit-
ted to the second subsystem, the audit system, in which requests can
be accumulated, and they can be checked for accuracy by calling
external web services (for instance to obtain the exchange rate from
foreign currency to USD on a past date, or to check that the em-
ployee actually was on the declared flight). Here we model selected
parts of the request system (the full-fledged example, including the
whole audit system, is developed in [4]).

A request is associated with the name of the employee and com-
prises information related to the corresponding flight and hotel costs.
The monitor decides to accept or reject the request. In case of re-
jection, the employee needs to modify the information regarding
hotel and flight. After the update by the employee, the monitor
checks again the request, and the reject-check loop continues until
the monitor accepts the request. After a request is accepted a log
of the request is sent to the audit system, and the request system is
ready to process the next travel request.

We model the request system by a DCDS SR = 〈D,P〉, where
D = 〈C,R, E , I0〉, I0 contains the fact Status(‘readyForRequest’)
as well as the initial state of the ApprHotel relation, and R is a
database schema including
• Status = 〈status〉, a unary relation that keeps the state of

the request subsystem, and can take three different values:
‘readyForRequest’, ‘readyToVerify’, and ‘readyToUpdate’,
• Travel = 〈eName〉, holding the name of the employee;

gives us leverage (under the control of the designer) for singling out
interesting syntactic conditions for decidability (see Sections 4.3
and 5.3).
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• Hotel = 〈hName, date, price, currency, priceInUSD〉, hold-
ing the hotel cost information of the employee’s travel, which
might have been paid in some other currency than USD,
• Flight = 〈date, fNum, price, currency, priceInUSD〉, hold-

ing the flight cost information,
• ApprHotel = 〈hName〉, holding a list of approved hotels.

The process layer is defined as P = 〈F ,A, %〉, where F is a set
of service calls, modeling an input of an external value by the
employee for each attribute of the request. For instance, F includes
INHNAME() for the hotel name, INHDATE() for the arrival date,
etc. DECIDE() models the decision of the human monitor, returning

‘accepted’ if the request is accepted, and ‘readyToUpdate’ if the
request needs to be updated by the employee.

The set A of actions includes InitiateRequest, VerifyRequest,
UpdateRequest, and AcceptRequest. When a request is initiated
(modeled by the action InitiateRequest), (i) the system changes state
to “waiting for verification”, (ii) a travel event is generated and the
employee fills in his name, and (iii) the employee fills in hotel and
flight information. Action VerifyRequest models the preliminary
check by the monitor. Travel event, hotel, and flight information are
copied unchanged to the next state, and this is necessary to preserve
such information according to our semantics (see Sections 4 and 5).
The system status is set as follows: if the hotel is on the approved list,
then the request is automatically accepted. Otherwise, the request is
handled by a human monitor, modeled by the non-deterministic ser-
vice call DECIDE(). If the monitor rejects, she sets the next state to
‘readyToUpdate’, triggering the action UpdateRequest, which col-
lects once again the hotel and flight information from the employee,
moving the status to ‘readyToVerify’. Finally, action AcceptRequest
returns the system in the state ‘readyForRequest’, in which it is
ready to accept a new request. The condition-action rules in the set
% below guard the actions by the current system’s state:

Status(‘readyForRequest’) 7→ InitiateRequest
Status(‘readyToVerify’) 7→ VerifyRequest

Status(‘readyToUpdate’) 7→ UpdateRequest
Status(‘accepted’) 7→ AcceptRequest

We conclude the example by detailing VerifyRequest:

Hotel(x1, . . . , x5) ∧ ApprHotel(x1) Status(‘accepted’)

Hotel(x1, . . . , x5) ∧ ¬ApprHotel(x1) Status(DECIDE())

Travel(n) Travel(n)

Hotel(x1, . . . , x5) Hotel(x1, . . . , x5)

Flight(x1, . . . , x5) Flight(x1, . . . , x5)

ApprHotel(x) ApprHotel(x)

3. VERIFICATION
To specify dynamic properties over a DCDS, we use µ-calculus

[26, 39, 14], one of the most powerful temporal logics for which
model checking has been investigated in the finite-state setting. In-
deed, such a logic is able to express both linear time logics such as
LTL and PSL, and branching time logics such as CTL and CTL*
[18]. The main characteristic of µ-calculus is the ability of express-
ing directly least and greatest fixpoints of (predicate-transformer)
operators formed using formulae relating the current state to the next
one. By using such fixpoint constructs one can easily express so-
phisticated properties defined by induction or co-induction. This is
the reason why virtually all logics used in verification are essentially
fragments of µ-calculus. From a technical viewpoint, µ-calculus
separates local properties, i.e., properties asserted on the current
state or on states that are immediate successors of the current one,

and properties that talk about states that are arbitrarily far away from
the current one [14]. The latter are expressed using fixpoints.

In this work, we use a first-order extension of the µ-calculus [38],
called µL and defined as follows:

Φ ::= Q | ¬Φ | Φ1 ∧ Φ2 | ∃x.Φ | 〈−〉Φ | Z | µZ.Φ

where Q is a possibly open FO query, and Z is a second order
predicate variable (of arity 0). We make use of the following ab-
breviations: ∀x.Φ = ¬(∃x.¬Φ), Φ1 ∨ Φ2 = ¬(¬Φ1 ∧ ¬Φ2),
[−]Φ = ¬〈−〉¬Φ, and νZ.Φ = ¬µZ.¬Φ[Z/¬Z].

As usual in µ-calculus, formulae of the form µZ.Φ (and νZ.Φ)
must obey to the syntactic monotonicity of Φ w.r.t. Z, which states
that every occurrence of the variable Z in Φ must be within the
scope of an even number of negation symbols. This ensures that
both µZ.Φ and νZ.Φ always exist.

Since µL also contains formulae with both individual and pred-
icate free variables, given a transition system Υ, we introduce an
individual variable valuation v, i.e., a mapping from individual vari-
ables x to ∆, and a predicate variable valuation V , i.e., a mapping
from predicate variables Z to subsets of Σ. With these three notions
in place, we assign meaning to formulae by associating to Υ, v, and
V an extension function (·)Υ

v,V , which maps formulae to subsets of
Σ. Formally, the extension function (·)Υ

v,V is defined inductively as
shown in Figure 1. When Φ is a closed formula, (Φ)Υ

v,V depends
neither on v nor on V , and we denote the extension of Φ simply
by (Φ)Υ. We say that a closed formula Φ holds in a state s ∈ Σ if
s ∈ (Φ)Υ. In this case, we write Υ, s |= Φ. We say that a closed
formula Φ holds in Υ, denoted by Υ |= Φ, if Υ, s0 |= Φ, where s0

is the initial state of Υ. We call model checking verifying whether
Υ |= Φ holds. In particular, we are interested in formally verifying
properties of a DCDS. Given the transition system ΥS of a DCDS S
and a µL dynamic property Φ,5 we say that S verifies Φ if ΥS |= Φ.

EXAMPLE 3.1. It is easy to write µL formulae that express
typical temporal properties such as:
• liveness (on a run): there exists a run such that α eventually

holds, i.e. µZ.α ∨ 〈−〉Z;
• liveness (on all runs): eventually in the future α will hold,

i.e., µZ.α ∨ [−]Z;
• safety (on all runs): for all (future) situations α holds, i.e.,
νZ.α ∧ [−]Z;
• response (on all runs): always when α then eventually β, i.e.,
νZ1.(α→ µZ2.β ∨ [−]Z2) ∧ [−]Z1;
• strong fairness (on a run): there exists a run where α is true

infinitely often, i.e., νX.µY.(α ∧ 〈−〉X) ∨ 〈−〉Y .

EXAMPLE 3.2. Consider the µL formula:

∃x1, . . . , xn.
∧
i6=j

xi 6= xj ∧
∧

i∈{1,...,n}

µZ.(Stud(xi) ∨ 〈−〉Z)

It asserts that there are at least n distinct objects/values, each of
which eventually denotes a student along some execution path. The
formula does not imply that all of these students will be in the same
state, nor that they will all occur in a single run. It only says that in
the entire transition system there are (at least) n distinct students.

The challenging point is that ΥS is in general infinite-state, so
we would like to devise a finite-state transition system to model
check, which is a faithful abstraction of ΥS in the sense that it
5We remind the reader that, without loss of generality, we as-
sume that all constants used inside formulae Φ appear in the initial
database instance of the DCDS.
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(Q)Υ
v,V = {s ∈ Σ | ans (Qv, db(s))}

(¬Φ)Υ
v,V = Σ− (Φ)Υ

v,V

(Φ1 ∧ Φ2)Υ
v,V = (Φ1)Υ

v,V ∩ (Φ2)Υ
v,V

(∃x.Φ)Υ
v,V = {s ∈ Σ | ∃t.t ∈ ∆ and s ∈ (Φ)Υ

v[x/t],V
}

(〈−〉Φ)Υ
v,V = {s ∈ Σ | ∃s′.s⇒ s′ and s′ ∈ (Φ)Υ

v,V }
(Z)Υ

v,V = V (Z)

(µZ.Φ)Υ
v,V =

⋂
{S ⊆ Σ | (Φ)Υ

v,V [Z/S]
⊆ S}

Figure 1: Semantics of µL.

preserves the truth value of all µL formulae. Unfortunately, this
program is doomed if we insist on using full µL as the verification
formalism. Indeed, there are µL formulae, such as the one shown in
Example 3.2, that defeat any kind of finite-state abstraction (in the
precise sense of Theorem 4.5). So next we introduce two interesting
sublogics of µL that better serve our objective.

3.1 History-Preserving Mu-Calculus
The first fragment of µL that we consider is µLA, which is

characterized by the assumption that quantification over objects is
restricted to objects that are present in the current database. To
enforce such a restriction, we introduce a special predicate LIVE(x),
which states that x belongs to the current active domain. The logic
µLA is defined as follows:

Φ ::= Q | ¬Φ | Φ1 ∧ Φ2 | ∃x.LIVE(x) ∧ Φ | 〈−〉Φ | Z | µZ.Φ

We make use of the usual abbreviations, including ∀x.LIVE(x)→
Φ = ¬(∃x.LIVE(x)∧¬Φ). Formally, the extension function (·)Υ

v,V

is defined inductively as in Figure 1, with the new special predicate
LIVE(x) interpreted as follows:

(LIVE(x))Υ
v,V = {s ∈ Σ | x/d ∈ v implies d ∈ ADOM(db(s))}

EXAMPLE 3.3. µLA requires the bindings of quantified vari-
ables to be live in the step when the quantification is evaluated. This
can be done by using LIVE or simply by using any relation, such as
Stud and Grad in the following formula:

νX.(∀x.Stud(x)→ µY.(∃y.Grad(x, y) ∨ 〈−〉Y ) ∧ [−]X)

The formula states that, along every path, it is always true, for each
student x, that there exists an evolution that eventually leads to the
graduation of x (with some final mark y).

We are going to show that under suitable conditions we can get
a faithful finite abstraction for a DCDS that preserves all formulae
of µLA, and hence enables us to use standard model checking
techniques. Towards this goal, we introduce a notion of bisimulation
between two transition systems, which is suitable for the kind of
transition systems we consider here. In particular, we have to take
into account that the two transition systems are over different data
domains, and hence we have to consider the correspondence between
the data in the two transition systems and how such data evolve over
time. To do so, we introduce the following notions.

Given two domains ∆1 and ∆2, a partial bijection h between ∆1

and ∆2 is a bijection between a subset of ∆1 and ∆2. Given a partial
function f : S → S′, we denote with DOM(f) the domain of f , i.e.,
the set of elements in S on which f is defined, and with IM(f) the
image of f , i.e., the set of elements s′ in S′ such that s′ = f(s) for
some s ∈ S. A partial bijection h′ extends h if DOM(h) ⊆ DOM(h′)
(or equivalently IM(h) ⊆ IM(h′)) and h′(x) = h(x) for all x ∈
DOM(h) (or equivalently h′−1(y) = h−1(y) for all y ∈ IM(h)).
Let db1 and db2 be two databases over two domains ∆1 and ∆2

respectively, both conforming to the same schemaR. We say that a
partial bijection h induces an isomorphism between db1 and db2 if

ADOM(db1) ⊆ DOM(h), ADOM(db2) ⊆ IM(h), and h projected on
ADOM(db1) is an isomorphism between db1 and db2.

Let Υ1 = 〈∆1,R,Σ1, s01, db1,⇒1〉 and Υ2 =
〈∆2,R,Σ2, s02, db2,⇒2〉 be transition systems and H the
set of partial bijections between ∆1 and ∆2 that are the identity
between ADOM(db1(s01)) and ADOM(db2(s02)). A history
preserving bisimulation between Υ1 and Υ2 is a relation
B ⊆ Σ1 ×H × Σ2 such that 〈s1, h, s2〉 ∈ B implies that:

1. h is a partial bijection between ∆1 and ∆2 that induces an
isomorphism between db1(s1) and db2(s2);

2. for each s′1, if s1 ⇒1 s
′
1 then there is an s′2 with s2 ⇒2 s

′
2

and a bijection h′ that extends h, such that 〈s′1, h′, s′2〉 ∈ B.
3. for each s′2, if s2 ⇒2 s

′
2 then there is an s′1 with s1 ⇒1 s

′
1

and a bijection h′ that extends h, such that 〈s′1, h′, s′2〉 ∈ B.
A state s1 ∈ Σ1 is history-preserving bisimilar to s2 ∈ Σ2

w.r.t. a partial bijection h, written s1 ≈h s2, if there exists a
history-preserving bisimulation B between Υ1 and Υ2 such that
〈s1, h, s2〉 ∈ B. A state s1 ∈ Σ1 is history-preserving bisimilar to
s2 ∈ Σ2, written s1 ≈ s2, if there exists a partial bijection h and
a history-preserving bisimulation B between Υ1 and Υ2 such that
〈s1, h, s2〉 ∈ B. A transition system Υ1 is history-preserving bisim-
ilar to Υ2, written Υ1 ≈ Υ2, if s01 ≈ s02. The next theorem gives
us the classical invariance result of µ-calculus w.r.t. bisimulation, in
our setting.

THEOREM 3.1. Consider two transition systems Υ1 and Υ2

such that Υ1 ≈ Υ2. For every µLA closed formula Φ, we have:
Υ1 |= Φ if and only if Υ2 |= Φ.

3.2 Persistence-Preserving Mu-Calculus
The second fragment of µL that we consider is µLP , which

further restricts µLA by requiring that individuals over which
we quantify must continuously persist along the system evolu-
tion for the quantification to take effect. In the following, we use
LIVE(x1, . . . , xn) as an abbreviation for

∧
i∈{1,...,n} LIVE(xi).

The logic µLP is defined as follows:

Φ ::= Q | ¬Φ | Φ1 ∧ Φ2 | ∃x.LIVE(x) ∧ Φ | LIVE(~x) ∧ 〈−〉Φ |
LIVE(~x) ∧ [−]Φ | Z | µZ.Φ

where the following assumption holds: in LIVE(~x) ∧ 〈−〉Φ and
LIVE(~x) ∧ [−]Φ, the variables ~x are exactly the free variables
of Φ, once we substitute to each bounded predicate variable Z
in Φ its bounding formula µZ.Φ′. We use the usual abbrevia-
tions, including: LIVE(~x) → 〈−〉Φ = ¬(LIVE(~x) ∧ [−]¬Φ) and
LIVE(~x)→ [−]Φ = ¬(LIVE(~x) ∧ 〈−〉¬Φ). Intuitively, the use of
LIVE(·) in µLP ensures that individuals are only considered if they
persist along the system evolution, while the evaluation of a formula
with individuals that are not present in the current database trivially
leads to false or true.

EXAMPLE 3.4. Consider the µLA formula in Example 3.3.
µLP can express two variations of such a formula. The first one,

νX.(∀x.Stud(x)→
µY.(∃y.Grad(x, y) ∨ (LIVE(x) ∧ 〈−〉Y )) ∧ [−]X)

strengthens the original formula stating that, along every path, it
is always true, for each student x, that there exists an evolution in
which x persists in the database until she eventually graduates (with
some final mark y). The second variation,

νX.(∀x.Stud(x)→
µY.(∃y.Grad(x, y) ∨ (LIVE(x)→ 〈−〉Y )) ∧ [−]X)
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weakens the original formula stating that, along every path, it is
always true, for each student x, that there exists an evolution in
which if x persists, she eventually graduates (with final mark y).

The bisimulation relation that captures µLP is as fol-
lows. Let Υ1 = 〈∆1,R,Σ1, s01, db1,⇒1〉 and Υ2 =
〈∆2,R,Σ2, s02, db2,⇒2〉 be transition systems, and H the set
of partial bijections between ∆1 and ∆2, which are the identity
between ADOM(db1(s01)) and ADOM(db2(s02)). A persistence-
preserving bisimulation between Υ1 and Υ2 is a relation B ⊆
Σ1 ×H × Σ2 such that 〈s1, h, s2〉 ∈ B implies that:

1. h is an isomorphism between db1(s1) and db2(s2);6

2. for each s′1, if s1 ⇒1 s′1 then there exists an
s′2 with s2 ⇒2 s′2 and a bijection h′ that extends
h|ADOM(db1(s1))∩ADOM(db1(s′1)), such that 〈s′1, h′, s′2〉 ∈ B;7

3. for each s′2, if s2 ⇒2 s′2 then there exists an
s′1 with s1 ⇒1 s′1 and a bijection h′ that extends
h|ADOM(db1(s1))∩ADOM(db1(s′1)), such that 〈s′1, h′, s′2〉 ∈ B.

We say that a state s1 ∈ Σ1 is persistence-preserving bisimilar to
s2 ∈ Σ2 w.r.t. a partial bijection h, written s1 ∼h s2, if there exists
a persistence-preserving bisimulation B between Υ1 and Υ2 such
that 〈s1, h, s2〉 ∈ B. A state s1 ∈ Σ1 is persistence-preserving
bisimilar to s2 ∈ Σ2, written s1 ∼ s2, if there exists a partial
bijection h and a persistence-preserving bisimulation B between
Υ1 and Υ2 such that 〈s1, h, s2〉 ∈ B. A transition system Υ1

is persistence-preserving bisimilar to Υ2, written Υ1 ∼ Υ2, if
s01 ∼ s02. The next theorem shows that µLP enjoys invariance
under this notion of bisimulation.

THEOREM 3.2. Consider two transition systems Υ1 and Υ2

such that Υ1 ∼ Υ2. Then for every µLP closed formula Φ, we
have that Υ1 |= Φ if and only if Υ2 |= Φ.

EXAMPLE 3.5. We illustrate some µLP properties pertaining
to the proper operation of the request system of Example 2.1. Recall
that µLP requires the bindings of quantified variables to be continu-
ously live between the step when the quantification was evaluated
and the step when the variable is used. This can be done by using
LIVE or by using any relation, in our example Travel.

A property of interest is that once initiated, a request will even-
tually be decided by the monitor, and the decision can only be

‘readyToUpdate’ or ‘accepted’ (a liveness property):

νX.(∀n.Travel(n)→
µY.(Status(‘readyToUpdate’) ∨ Status(‘accepted’)

∨ Travel(n) ∧ [−]Y )) ∧ [−]X

Another property of interest is that if the flight cost is not specified,
then the request is not accepted (a safety property):

νX.(¬(∃x1, . . . , x4.Status(‘accepted’) ∧
Flight(x1, x2,⊥, x3, x4))) ∧ [−]X

where the special constant ⊥ denotes a “non-specified” value (this
need not be treated specially in the semantics, any value of the
domain can be reserved for this purpose).

4. DETERMINISTIC SERVICES
We revisit the semantics of DCDSs, and analyze them under the

assumption that external services behave deterministically. This
6Notice that this implies DOM(h) = ADOM(db1(s1)) and IM(h) =
ADOM(db2(s2)).
7Given a set D, we denote by f |D the restriction of f to D, i.e.,
DOM(f |D) = DOM(f) ∩ D, and f |D(x) = f(x) for every x ∈
DOM(f) ∩D.

means that the evaluation of functions f ∈ F , representing the
services in the process layer, is independent from the moment in
which the function is called: if an external service is called twice
with the same parameters, it must return the same value. So, for
example, if the function invocation f(a) returned b at a certain time,
then in all successive moments the call f(a) will return b again.
In particular, stateless services can be modeled with deterministic
service calls. In Example 2.1 (and its extended version in [4]) all
web services invoked by the audit system (e.g., to determine the
monetary conversion rate on a given date, or to check whether the
employee took a specific flight), are inherently deterministic.

4.1 Semantics
We now define the transition system of a DCDS under the as-

sumption of deterministic services. We call such a transition system
“concrete” to avoid confusion with an “abstract” transition system
that we are going to introduce for our verification technique.

Let S = 〈D,P〉 be a DCDS with data layer D = 〈C,R, E , I0〉
and process layer P = 〈F ,A, %〉.

First we focus on what is needed to characterize the states of
the concrete transition system. One such state obviously needs to
maintain the current instance of the data layer. This instance is a
database made up of values in C, which conforms to the schemaR
and satisfies the equality constraints in E . Together with the current
instance, however, we also need to remember all answers we had so
far when calling the external services.

To meet the requirement that service calls behave deterministi-
cally, the states of the transition system keep track of all results
of the service calls made so far, in the form of equalities between
Skolem terms (involving functions in F and arguments in C) and
returned values in C.8 More precisely, we define the set of (Skolem
terms representing) service calls as SC = {f(v1, . . . , vn) | f/n ∈
F and {v1, . . . , vn} ⊆ C}, where f/n stands for a function f of
arity n. Then we introduce a service call map, which is a partial
function M : SC → C. Now we are ready to formally define
states of the concrete transition system. A (concrete) state is a pair
〈I,M〉, where I is a relational instance ofR over C satisfying each
equality constraint in E , andM is a service call map. The initial
concrete state is 〈I0, ∅〉.

Next we look at the result of executing an action in a state. Let
α be an action in A with parameters p1, . . . , pm, α(p1, . . . , pm) :
{e1, . . . , em} where ei = q+

i ∧Q
−
i  Ei. Let σ be a substitution

for p1, . . . , pm with values taken from C. We say that σ is legal for
α in state 〈I,M〉 if there exists a condition-action rule Q 7→ α in
% such that 〈p1, . . . , pm〉σ ∈ ans (Q, I).

We denote with DO(I, α, σ) the instance obtained by evaluating
the effects of action α with parameters σ on instance I, i.e.:

DO(I, α, σ) =
⋃

q+i ∧Q
−
i  Ei∈EFFECT(α)

⋃
θ∈ans ((q+i ∧Q

−
i )σ,I)

Eiσθ

Intuitively, the returned instance is the union of the results of apply-
ing the effects specifications EFFECT(α), where the result of each
effect specification q+

i ∧Q
−
i  Ei is, in turn, the set of facts Eiσθ

obtained from Eiσ grounded on all the assignments θ that satisfy
the query q+

i ∧Q
−
i over I.

8Notice that we assume no knowledge of the specific functions
adopted by the external services, and we simply assume that such
functions return some value from C. Services returning values
from an enumerated subset of C, such as DECIDE() in Ex. 2.1, are
syntactic sugar that we can simulate in our model. We are going to
have different executions of the system corresponding to each way
to assign values to the Skolem terms representing the service calls.
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DO() generates an instance over values from C and over Skolem
terms, which model service calls. For any such instance Ī, we
denote with CALLS(Ī) the set of calls it contains. For a given set
D ⊆ C, we denote with EVALSD(I, α, σ) the set of substitutions
that replace all service calls in DO(I, α, σ) with values in D,

EVALSD(I, α, σ) = {θ | θ is a total function
θ : CALLS(DO(I, α, σ))→ D}.

Each substitution in EVALSD(I, α, σ) models the simultaneous eval-
uation of all service calls, which replaces the calls with results
selected arbitrarily from D. In the following, we refer to these
substitutions as evaluations.
Concrete action execution. To capture what happens when α is
executed in a state using a substitution σ for its parameters, we intro-
duce a transition relation D-EXECS between states, called concrete
execution of ασ, such that 〈〈I,M〉, ασ, 〈I′,M′〉〉 ∈ D-EXECS if
the following holds:

1. σ is a legal parameter assignment for α in state 〈I,M〉,
2. there exists θ ∈ EVALSC(I, α, σ) that is compatible withM

(i.e., θ andM agree on the common values in their domains),
3. I′ = DO(I, α, σ)θ, and I′ satisfies E ,
4. M′ =M∪ θ.

In the above definition, the purpose ofM is to record the history
of service calls and their results, while θ contains the service calls
invoked in the current transition, with their results (arbitrary values
from C). The compatibility of M and θ in condition (2) forces
the current invocation of a call to return the same result as its past
invocations, thus realizing the intended deterministic semantics.
Concrete transition system. The concrete transition sys-
tem ΥS for S is a (possibly infinite-state) transition system
〈C,R,Σ, s0, db,⇒〉 where: s0 = 〈I0, ∅〉; db is such that
db(〈I,M〉) = I; Σ and⇒ are defined by simultaneous induction
as the smallest sets satisfying the following properties: (i) s0 ∈ Σ;
(ii) if 〈I,M〉 ∈ Σ , then for all substitutions σ for the parame-
ters of α and for all 〈I′,M′〉 such that 〈〈I,M〉, ασ, 〈I′,M′〉〉 ∈
D-EXECS , we have 〈I′,M′〉 ∈ Σ and 〈I,M〉 ⇒ 〈I′,M′〉.

Intuitively, to define the concrete transition system of the DCDS
S we start from the initial state s0 = 〈I0, ∅〉, and calculate all states
s such that 〈s0, ασ, s〉 ∈ D-EXECS . Then we repeat the same steps
considering each s, and so on. The computation of successor states
is done by: getting all legal substitutions of the action parameters
according to the condition-action rule in the process; executing
the instantiated actions; picking all the possible combinations of
resulting values for the newly introduced service calls; and filtering
away those successors that violate the equality constraints. It is
worth noting that the number of successors can be countably infinite
because the service call results come from C.

4.2 Run-Bounded Systems
We now study the verification of DCDSs with deterministic

services. In particular, we are interested in the following prob-
lem: given a DCDS S and a temporal property Φ, check whether
ΥS |= Φ. Not surprisingly, given the expressive power of DCDS as
a computation model, the verification problem is undecidable for all
the µ-calculus variants introduced in Section 3. In fact, we can show
an even stronger undecidability result, namely for safety properties
expressible in both propositional LTL and CTL [5].

THEOREM 4.1. There exists a DCDS S with deterministic ser-
vices, and a propositional safety property Φ expressible in LTL ∩
CTL, such that checking ΥS |= Φ is undecidable.

Next, we isolate a notable class of DCDS for which verification
of µLA is not only decidable, but can also be reduced to standard

finite-state model checking. Consider a transition system Υ =
〈∆,R,Σ, s0, db,⇒〉. A run τ in Υ is a (finite or infinite) sequence
of states s0s1s2 · · · rooted at s0, where si ⇒ si+1. We use τ(i)
to denote si and τ [i] to represent the finite prefix s0 · · · si of τ . A
run τ = s0s1s2 · · · is (data) bounded if the total number of values
occurring in its databases is bounded, i.e., there exists a finite bound
b > |

⋃
s state of τ ADOM(db(s))|. This is equivalent to saying that,

for every finite prefix τ [i] of τ , |
⋃
j∈{0,...,i} ADOM(db(sj))| < b.

We say that Υ is run-bounded if there exists a bound b such that
every run in Υ is (data) bounded by b. A DCDS S is run-bounded
if its concrete transition system ΥS is run-bounded.

Intuitively, a (data) unbounded run represents an execution of
the DCDS in which infinitely many distinct values occur because
infinitely many different service calls are issued. Since we model
deterministic services whose number is finite, this can only happen
if some service is repeatedly called with arguments that are the
result of previous service calls. This means that the values of the
run indirectly depend on arbitrarily many states in the past.

Notice that run boundedness does not impose any restriction about
the branching of the transition system; in particular, ΥS is typically
infinite-branching because new service calls may return any possible
value. We show that this restriction guarantees decidability of µLA
verification for run-bounded DCDSs with deterministic services.

THEOREM 4.2. Verification of µLA properties on run-bounded
DCDSs with deterministic services is decidable.

We get this result by showing that for run-bounded DCDSs we
can always construct, without knowing the bound beforehand, an
abstract finite-state transition system that is history-preserving bisim-
ilar to the concrete one, and hence satisfies the same µLA formulae
as the concrete transition system.

PROPOSITION 4.3. Let S be a run-bounded DCDS with deter-
ministic services and ΥS its concrete transition system. Then there
exists an (abstract) finite-state transition system ΘS such that ΘS
is history-preserving bisimilar to ΥS , i.e., ΘS ≈ ΥS .

Let Σ be the set of states of ΘS and ADOM(ΘS) =⋃
si∈Σ ADOM(db(si)). If ΘS is finite-state, then there exists a

bound b such that |ADOM(ΘS)| < b. Consequently, it is possible
to transform a µLA property Φ into an equivalent finite propo-
sitional µ-calculus formula PROP(Φ), where PROP(Φ) is induc-
tively defined by recurring over the structure of Φ and substi-
tuting PROP(∃x.LIVE(x) ∧ Ψ(x)) with

∨
ti∈ADOM(ΘS) LIVE(ti) ∧

PROP(Ψ(ti)). Clearly, ΘS |= Φ if and only if ΘS |= PROP(Φ).

THEOREM 4.4. Verification of µLA properties for run-bounded
DCDSs with deterministic services can be reduced to model check-
ing of propositional µ-calculus over a finite transition system.

By the above theorem, and recalling that model checking of proposi-
tional µ-calculus formulae over finite transition systems is decidable
[26], we get Theorem 4.2.

We conclude the section by observing that the approach presented
above for µLA does not extend to full µL.

THEOREM 4.5. There exists a run-bounded DCDS S for which
it is impossible to find a faithful finite-state abstraction that satisfies
the same µL properties as S.

Theorem 4.5 is proved by exhibiting, for every n, a µL property that
requires the existence of at least n objects in the transition system,
such as the one in Example 3.2. While this result does not imply
undecidability of model checking µL properties over run-bounded
DCDSs, it dashes any hope of reducing this problem to standard,
finite-state model checking.
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4.3 Weakly Acyclic DCDSs
The decidability results in Section 4.2 rely on the hypothesis that

the DCDS is run-bounded, which is a semantic condition. A natural
question is whether it is possible to check run-boundedness of a
DCDS. We provide a negative answer to this question.

THEOREM 4.6. Checking run-boundedness of DCDSs with de-
terministic services is undecidable.

To mitigate this issue, we investigate a sufficient syntactic condition
that can be effectively tested over the process layer of the DCDS:
if the condition is met, then the DCDS is guaranteed to be run-
bounded, otherwise nothing can be said. To this end, we recast the
approach of [17] and [3] in the more expressive framework here
presented. To derive a sufficient condition for S to be run-bounded,
we exploit a correspondence between (a carefully constructed ap-
proximation of) the execution of an action and a step in the chase
of a set of TGDs in data exchange [2, 27]. In particular, we resort
to a well-known result in data exchange, namely chase termination
for weakly acyclic TGDs [27]. In our setting, the weak acyclicity of
a process layer P is a property over a dataflow graph constructed
from P , where we consider only the contribution of the union of
conjunctive queries q+ in each action effect. We omit the definition
of weak acyclicity and provide an intuition here (see [4] for details).
The problem of non run-bounded DCDSs comes from services that
are repeatedly called, every time using fresh values that are directly
or indirectly obtained by manipulating previous results produced by
the same service. This self-dependency can potentially lead to in-
corporating unboundedly many results of these service calls into the
run. Weak acyclicity rules out such self dependencies, being in fact a
sufficient, polynomially-checkable condition for run-boundedness.9

THEOREM 4.7. Every weakly acyclic DCDS with deterministic
services is run-bounded.

This, together with Theorem 4.4, gives us an effective way to verify
DCDSs by reduction to conventional model checking.

THEOREM 4.8. Verification of µLA properties for weakly
acyclic DCDSs with deterministic services is decidable.

5. NONDETERMINISTIC SERVICES
We now consider DCDSs under the assumption that services

behave nondeterministically, i.e., two calls of a service with the
same arguments may return distinct results during the same run.
This case captures both services that model a truly nondeterministic
process (e.g., human operators, random processes), and services
that model stateful servers. In Example 2.1, all the reimbursement
system services (e.g., DECIDE() and INHNAME()) are inherently
nondeterministic as they model human input. In the remainder of
this section, services are implicitly assumed nondeterministic.

5.1 Semantics
As in the case of deterministic services, we define the semantics

of a DCDS S in terms of a (possibly infinite) transition system ΥS .
Let S = 〈D,P〉 be a DCDS with data layer D = 〈C,R, E , I0〉

and process layer P = 〈F ,A, %〉. A state is simply a relational
instance ofR over C satisfying each constraint in E . We denote the
initial state with I0.

Next, we define the semantics of action application. Let α be an
action in A with parameters p1, . . . , pm. Let σ be a substitution
for p1, . . . , pm with values taken from C, that is legal according
9Notice that we can also use other variants of weak acyclicity [35].

to the process %. We recall the definitions of DO() and EVALSD()
from Section 4.1. DO(I, α, σ) denotes the instance obtained by
evaluating the effects of action α with parameters σ on instance I.
For a given set D ⊆ C, EVALSD(I, α, σ) is the set of substitutions
that replace all service calls in DO(I, α, σ) with values in D.
Concrete action execution. We introduce a transition relation
N-EXECS between states, called concrete execution of ασ, such that
〈I, ασ, I′〉 ∈ N-EXECS if we have:

1. σ is a legal parameter assignment for α in state I,
2. there exists θ ∈ EVALSC(I, α, σ),
3. I′ = DO(I, α, σ)θ, and I′ satisfies the constraints E .

In contrast to the deterministic services case, the choice of evaluation
θ is not subject to the requirement that it evaluates a service call
to the same result across concrete execution steps (indeed, we no
longer accumulate the successive choices of θ in the service call
mapM). However, notice that within a concrete execution step,
all occurrences of the same service call evaluate to the same result
(modeling the fact that a call with given arguments is invoked only
once per transition, and the returned result is copied as needed).
Concrete transition system. The concrete transition system ΥS
for S is a transition system whose states are labeled by databases.
More precisely, ΥS = 〈C,R,Σ, s0, db,⇒〉 where s0 = I0 and
db is such that db(I) = I. Σ and⇒ are defined by simultaneous
induction as the smallest sets satisfying the following properties:
(i) I0 ∈ Σ; (ii) if I ∈ Σ , then for all α, σ and I′ such that
〈I, ασ, I′〉 ∈ N-EXECS , we have that I′ ∈ Σ, and I ⇒ I′.

5.2 State-Bounded Systems
We consider the verification problem for DCDS with nondeter-

ministic services. As in the deterministic case, an analogous unde-
cidability result to Theorem 4.1 holds.

THEOREM 5.1. There exists a DCDS S with nondeterministic
services, and a propositional safety property Φ expressible in LTL
∩ CTL, such that checking ΥS |= Φ is undecidable.

Towards devising interesting decidable cases we start by observing
that, with nondeterministic services, the run-boundedness restriction
of Section 4.2 is very limiting on the form of the DCDS, as it boils
down to imposing a bound on how many times each service may
be called with the same arguments. Contrast this with deterministic
services, where unlimited same-argument calls are allowed, as they
all return the same result. We propose a less restrictive alternative.
We say that DCDS S is state-bounded if there is a finite bound b
such that for each state I of ΥS , |ADOM(I)| < b. In contrast to run-
boundedness, state-boundedness allows for runs in which infinitely
many distinct values occur because infinitely many service calls are
issued. These call results are distributed across states of the run, but
may not accumulate within a single state. For example, the request
system in Example 2.1 is not run-bounded, since a user can update
the request information with an unbounded number of new values
during a run. However, it is state-bounded, since each state contains
exactly one request. µLA can record past values in the run through
quantification even if they are not present in the system anymore.
The following result shows that this leads to undecidability.

THEOREM 5.2. Verification of µLA properties on state-
bounded DCDSs with nondeterministic services is undecidable.

We therefore focus on to the logic µLP (presented in Section 3.2),
in which this recording through quantification is disallowed.

THEOREM 5.3. Verification of µLP properties by state-
bounded DCDS with nondeterministic services is decidable.
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We give the main ideas behind the proof of this theorem. Given
a DCDS S, we show that if concrete transition system ΥS is state-
bounded, then there is a finite-state abstract transition system ΘS
that is persistence-preserving bisimilar to ΥS (and hence satisfies
the same µLP properties, by Theorem 3.2). Since ΘS is finite-state,
the verification of µLP properties on ΥS reduces to finite-state
model checking on ΘS , and hence is decidable.

THEOREM 5.4. Verification of µLP properties for state-
bounded DCDSs with nondeterministic services can be reduced to
model checking of propositional µ-calculus over a finite transition
system.

The existence of ΘS follows from the key fact that if two states of
ΥS are isomorphic, then they are persistence-preserving bisimilar.
This implies that one can construct a finitely-branching transition
system ΘS (i.e. with finite number of successors per state), such that
ΘS is persistence-preserving bisimilar to ΥS , by dropping sibling
states from ΥS as follows: instead of listing among the successors of
s one state for each possible instantiation of the service call results,
just keep a representative state for each isomorphism type. Since the
number of service calls made in each state is finite, the number of
distinct isomorphism types is finite, so the finite branching follows.
We call a transition system ΘS obtained as above a pruning of ΥS .

Despite being finitely-branching, any pruning ΘS can still have
infinitely many states, as it may contain infinitely long simple runs
τ (a simple run is one in which no state appears more than once),
along which the service calls return in each state “fresh” values,
i.e., values distinct from all values appearing in the predecessors
of this state on τ . This problem is solved by judiciously selecting
which representatives to keep in ΘS for the successors of a state s.
Namely, whenever the representatives of a given isomorphism type
T include states generated exclusively by service calls that “recycle”
values, select only such states (finitely many thereof, of course). By
recycled values we mean values appearing on a path leading into s.

If ΥS is state-bounded, then the number of service calls per state
is bounded, and due to the construction’s preference for recycling, it
follows that all simple runs in ΘS must have finite length. Together
with the finite branching, this implies finiteness of ΘS .

Notice that proving the existence of ΘS does not suffice for
decidability, as the proof is non-constructive. We therefore provide
an algorithm for constructing ΘS (cf. algorithm RCYCL in [4]).
One of the technical problems we need to overcome in developing
the algorithm is that we cannot start from the infinite-state concrete
transition system, and instead need to explore a portion thereof. This
means that it is not obvious how to decide whether the successors of
a state are generated by recycling service calls, since these calls may
recycle from paths that the algorithm has not explored yet. Therefore,
the algorithm may sometimes select non-recycling service calls even
when a recycling alternative exists. However, we can prove that it
constructs what we call an eventually recycling pruning, which in
essence means it may fail to detect recycling service calls, but only
a bounded number of times. We note that the algorithm does not
need to know a priori the bound on the state size; its mere existence
guarantees that the construction terminates. This, together with
Theorem 3.2, directly implies Theorem 5.3.

5.3 GR-Acyclic DCDSs
As with run-boundedness in the deterministic services case, for

nondeterministic services state-boundedness is a semantic property,
which in general is undecidable.

THEOREM 5.5. Checking state-boundedness of DCDSs is unde-
cidable.

Consequently we propose a sufficient syntactic condition. Intuitively,
for a run to have unbounded states, it must issue unboundedly many
service calls. Since there are only a bounded number of effects in the
process layer specification, there must exist some service-calling ef-
fect that “cyclically generates” fresh values (i.e., is invoked infinitely
many times during the run). Notice that unbounded generation of
fresh values does not break state-boundedness per se: these values
must also accumulate in the states to do so. But by definition of the
DCDS semantics, a transition drops (“forgets”) all values that are
not explicitly copied (“recalled”) into the successor. Therefore, to
accumulate, a value must be “cyclically recalled” throughout the
run (copied infinitely many times).

GR-acyclicity is stated in terms of a dataflow graph constructed
by analyzing the process layer. The graph identifies how service
calls and value recalls can chain. In essence, GR-acyclicity requires
the absence of a “generate cycle” that feeds into a “recall cycle”.
GR-acyclicity. We call dataflow graph of a set A of actions the
directed edge-labeled graph 〈N,G〉 whose set N of nodes is the set
of relation names occurring inA, and in which each edge inG is a 4-
tuple (R1, id , R2, b), where R1 and R2 are two nodes in N , id is a
(unique) edge identifier, and b is a boolean flag used to mark special
edges. Formally, G is the minimal set satisfying the following
condition: for each effect e in A of the form q+ ∧Q−  E, each
R in q+, each Q(t1, . . . , tm) in E, and each i ∈ {1, . . . ,m}:
• if ti is either an element of ADOM(I0) or a free variable, then

(R, id , Q, false) ∈ G, where id is a fresh edge identifier.
• if ti is a service call, then (R, id , Q, true) ∈ G, where id is

a fresh edge identifier.
We say that A is GR-acyclic if there is no path π = π1π2π3 in
the dataflow graph of A, such that π1, π3 are simple cycles and
π2 is a path containing a special edge, and having at least some
edge disjoint from the edges of π1: edges(π2) \ edges(π1) 6= ∅.
We say that a process layer P = 〈F ,A, %〉 is GR-acyclic, if A is
GR-acyclic. A DCDS GR-acyclic if its process layer is GR-acyclic.

Note that GR-acyclicity is a purely syntactic notion. It can be
checked in coNP since the dataflow graph is polynomial in the size
of the process layer specification, and since, if there is a violation of
GR-acyclicity, then there is a polynomial-sized one as well.

THEOREM 5.6. Any GR-acyclic DCDS is state-bounded.

We give the main ideas behind the proof of this theorem, noting
that the dataflow analysis is significantly more subtle than suggested
above. First, note that ordinary edges correspond to an effect copy-
ing a value from a relation of the current state to a relation of the
successor state. Special edges correspond to feeding a value of the
current state to a service call and storing the result in a relation of
the successor state. Note that the cycles π1 and π3 allow both kinds
of edges, reflecting the insight that the size of the state is affected
in the same way regardless of whether a value is copied to the suc-
cessor, or it is replaced with a service call result. π1, π3 are both
“recall cycles”: the number of values moving around them does not
decrease (this is of course a conservative statement; reality depends
on the semantics of queries in the effects, which is abstracted away).
Note that π2 contains a special edge G, which means that the values
moving around π1 are cyclically fed into the service call f of G.
The key insight here is that, even if the set of values moving around
π1 does not change (no special edges in π1 replace them), and thus
the service call f sees the same bounded set of distinct arguments
over time, it can still generate an unbounded number of fresh values
because f is nondeterministic. π1π2 constitute the “generate cycle”
we mention above. The generated values are stored in the recall
cycle π3, where they accumulate and force the size of the relations
of π3 to grow unboundedly.
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We observe that GR-acyclicity is not related to weak acyclicity.
In particular, a DCDS may be GR-acyclic but not weakly acyclic.
GR+-acyclicity. GR-acyclicity can be relaxed based on the insight
that, for a cycle ΥS in the dataflow graph to truly preserve the
number of values moving in it, ΥS ’s edges must not all be simul-
taneously inactive. We say that an edge is active in a step of the
run when the action corresponding to it executes. By the DCDS
semantics, if all edges of ΥS are simultaneously inactive, then none
of the corresponding copy/call operations are executed and all re-
lations involved in ΥS forget their value in the next state. ΥS is
effectively flushed. GR+-acyclicity is the relaxation that does allow
a path π = π1π2π3 as in the definition of GR-acyclicity, provided
that π2 contains an edge e that cannot be active at the same time
as any of the subsequent edges e′ in π2π3. Formally, we asso-
ciate with every edge ε in the dataflow graph the action action(ε)
it corresponds to (computed via simple inspection of the process
layer). Then for every e ∈ π2, e

′ ∈ π2π3 as above, we require that
action(e) 6= action(e′). Semantically this ensures that in order
for the generate cycle π1π2 to push fresh values toward recall cycle
π3, the action corresponding to e must execute, and in the meantime
all actions maintaining the values in cycle π3 are disabled, thus
flushing π3. π3 thus receives an unbounded number of waves of
fresh values from π1π2, but it forgets each wave before the next
arrives. GR+-acyclicity can also be checked in coNP. Theorem 5.6
extends to GR+-acyclicity.

THEOREM 5.7. Every GR+-acyclic DCDS is state-bounded.

This, together with Theorem 5.3, implies:

THEOREM 5.8. Verification of µLP properties for GR+-acyclic
DCDS with nondeterministic services is decidable.

EXAMPLE 5.1. The dataflow graph for the request system of
Example 2.1 is depicted in Figure 2, where special edges are starred.

Notice that there can be multiple normal/special edges between
the same two nodes (these are distinguished by unique edge ids;
to avoid clutter in the figure we omit the ids, and show edge mul-
tiplicities in square brackets; missing brackets denote multiplicity
1). For example, the red simple edge from Hotel to Status is due
to the first effect of action VerifyRequest, while the special edge in
parallel with it is due to the DECIDE() call in the second effect. The
red self-loops on Flight, Hotel, Travel and ApprHotel reflect the
remaining effects of VerifyRequest. The five black special edges
from the true node (with the obvious meaning) to the Hotel node
correspond to the employee filling in the hotel information in action
UpdateRequest, modeled by calls to such services as INHNAME().
We refer to [4] for a complete treatment of the example. An inspec-
tion of this dataflow graph reveals that the request system is not
GR-acyclic, since it contains several instances of two simple cycles
connected by a path that includes a special edge: for instance, the
path π comprised of the normal self-loops around Hotel and Status
and the special edge between them. However, the request system is
GR+-acyclic, confirming that the system is indeed state-bounded:
all edges of cycles downstream of special edges e are due to actions
(colors) disjoint from e’s.

6. DISCUSSION
Summary of results. We summarize our results in Table 1 where,
for completeness, we add additional results that can be proven
analogously to the ones in the body of the paper (see [4]). Arrows
denote implications between results. We note that exhibiting a
finite faithful abstraction of a concrete transition system is more

true TravelFlight

Status HotelApprHotel

* [5]

*

* [5]

*

* [5]

* [5]

[5][5]

Figure 2: Dataflow graph for Example 5.1: colors black, red,
green, blue correspond respectively to actions InitiateRequest,
VerifyRequest, UpdateRequest, and AcceptRequest.

than a means towards showing decidability, being a desirable goal
in its own right as the most promising avenue towards practical
implementation. We list as open the verification of µL properties
on run-bounded DCDSs, but recall from Section 4.2 that in this case
there exists no faithful finite-state abstract transition system.
Complexity. Both in the case of weakly acyclic DCDSs with
deterministic services and of GR+-acyclic DCDSs with non-
deterministic services, our construction generates a finite transition
system whose number of states is exponential in the size of the initial
database. Let Φ be a µLA or µLP formula of size ` with k alternat-
ing nested fixpoints. The proofs of Theorems 4.7 and 5.7 guarantee
that the total number of values appearing in the abstract transition
system is bounded by a polynomial P (n) of the size n of the DCDS
initial database. Then, considering the complexity of propositional
µ-calculus model checking on finite transition systems [26], the
complexity of verification of Φ is O(2P (n)a · P (n)`)k, where a is
the maximum arity of the database schema. Hence, verification is in
EXPTIME in the size n of the initial database.

Mixed semantics. It is possible to integrate into a unique system
both deterministic and nondeterministic services, and to extend our
verification results to this case. The request and audit modules of
the running example are part of such a mixed system (see [4]).

Support for arbitrary integrity constraints. Note that the defini-
tion of DCDS semantics is independent of the type of constraints
used, as it simply requires their satisfaction by each state of the
concrete transition system. Our decidability results hold even in
the presence of integrity constraints on the database expressed as
arbitrary FO sentences under the active domain semantics (see [4]
for how we can model them without changes to the DCDS model).

Connection with the artifact model. In terms of expressive capa-
bilities, our DCDS model is equivalent to the artifact-centric model
[37, 21] (see Section 7). The reductions between the DCDS and
artifact models are sketched in [4].

7. RELATED WORK
As mentioned in Section 6, the unrestricted artifact-centric and
DCDS models have equivalent expressive capabilities. Our work
is therefore most closely related to prior work on verification of

DETERMINISTIC NONDETERMINISTIC
µL µLA µLP µL µLA µLP

un- U ← U ← U1(Th.4.1) U ← U ←U1(Th.5.1)
restricted ↑ ↑ ↑ ↑

state- U ← U [4] D [4] U ←U (Th.5.2) D3(Th.5.3)
bounded ↓ ↓

run- ?2(Th.4.5) D3(Th.4.2)→ D ?2(Th.4.5) D3 [4] → D
bounded

1Holds even for propositional LTL/CTL.
2Decidability cannot rely on faithful finite-state abstraction.
3Via reduction to finite-state model checking.

Table 1: Summary of our (un)decidability results
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artifact-centric business processes. The difference lies in how each
work trades off between restricting the class of business processes
versus the class of properties to verify.
Artifact-centric processes with no database. Work on formal
analysis of artifact-based business processes in restricted contexts
has been reported in [28, 29, 9]. Properties investigated include
reachability [28, 29], general temporal constraints [29], and the ex-
istence of complete execution or dead end [9]. For each considered
variant, verification is generally undecidable; decidability results
were obtained only under rather severe restrictions, e.g., restricting
all pre-conditions to be “true" [28], restricting to bounded domains
[29, 9], or restricting the pre- and post-conditions to be proposi-
tional, and thus not referring to data values [29]. [16] adopts an
artifact model variation with arithmetic operations but no database.
It proposes a criterion for comparing the expressiveness of specifi-
cations using the notion of dominance, based on the input/output
pairs of business processes. Decidability relies on restricting runs
to bounded length. [41] addresses the problem of the existence of a
run that satisfies a temporal property, for a restricted case with no
database and only propositional LTL properties. All of these works
model no underlying database (and hence no integrity constraints).
Artifact-centric processes with underlying database. More re-
cently, two lines of work have considered artifact-centric processes
that also model an underlying relational database. One considers
branching time, one only linear time.

Branching time. Our approach for deterministic services stems
from a line of research that started with [17] and continued with
[3] in the context of artifact-centric processes. These works, how-
ever, considered a limited form of deterministic services, and use
as verification formalism, first-order µ-calculus without first-order
quantification across states. The connection between evolution of
data-centric dynamic systems and data exchange that we exploit
in this paper was first devised in [17]. There the dynamic system
transition relation itself is described in terms of TGDs mapping the
current state to the next, and the evolution of the system is essen-
tially a form of chase. Under suitable weak acyclicity conditions
such a chase terminates, thus making the DCDS transition system
finite. Notice the role of getting new objects/values from the exter-
nal environment, played here by service calls, is played there by
nulls. These ideas where further developed in [3], where TGDs were
replaced by action rules with the same syntax as here. Semantically
however the dynamic system formalism there is deeply different:
what we call here service calls are treated there as uninterpreted
Skolem terms. This results in an ad-hoc interpretation of equality
which sees every Skolem term as equal only to itself (as in the case
of nulls [17]). A form of weak acyclicity gives a sufficient condition
for getting finite-state transition systems and decidability.

Differently from [3], in our framework we do interpret service
calls. This decision is motivated by our goal of modeling real-life
external services, for which two distinct service calls may very well
return equal results, even under the deterministic semantics (for
instance if the same service is called with different arguments, or
if distinct services are invoked). Interpreting service calls raises a
major challenge: even under the run-bounded restriction, the con-
crete transition system is infinite, because it is infinitely branching
(a service call can be interpreted with any of the values from the
infinite domain). In contrast to [3], what we show in this case is not
that the concrete transition system is finite (it never is), but that it is
bisimilar to a finite abstract transition system. This leads to a proof
technique that is interesting in its own right, being based on novel
notions of bisimilarity for the considered µ-calculus variants. The
reason standard bisimilarity is insufficient is that our logics µLP
and µLA allow first-order quantification across states, so bisimilar-

ity must respect the connection between values appearing both in
the current and successor state. Our decision to include first-order
quantification across states was motivated by the need to express
liveness properties that refer to the same data at various points in
time (e.g. “if student x is enrolled now and continues to be enrolled
in the future, then x will eventually graduate”).

For our treatment of non-deterministic services, the most related
work is [6]. Inspired by [3], [6] builds a similar framework where
actions are specified via pre- and post-conditions given as FO for-
mulae interpreted over active domains which include new values
passed through action parameters. The verification logic consid-
ered is an FO variant of CTL, which precludes expressing certain
desirable properties such as fairness. [6] shows that if each state
has a bounded active domain, one can construct an abstract finite
transition system that can be checked instead of the original concrete
transition system, which is infinite-state in general. [6] develops in-
dependently an approach that is similar to ours for nondeterministic
services. Indeed, the results we present here on state-boundedness
apply to the setting of [6] as well. In contrast to [6], we investigate
non-trivial, sufficient syntactic conditions for state-boundedness.
Moreover, as opposed to [6], the bound on the state size need not be
a priori known to our abstraction building algorithm. The bound’s
mere existence guarantees the algorithm’s convergence. On the other
hand, [6] presents an interesting result that applies to our setting:
verifying formulas corresponding to CTL is decidable.

Linear time. [23] considers an artifact model that has the same ex-
pressive capabilities as an unrestricted class of DCDS in which the
infinite domain is equipped with a dense linear order, which can be
mentioned in pre-, post-conditions, and properties. Runs can receive
unbounded external input from an infinite domain, and this input
corresponds to nondeterministic services in a DCDS. Verification
is decidable even if the input accumulates in states, and runs are
neither run-bounded, nor state-bounded. However, this expressive
power requires restrictions that render the result incomparable to
ours. First, the property language is a first-order extension of LTL,
and it is shown that extension to branching time (CTL∗) leads to
undecidability. Second, pre-, post-conditions and properties access
read-only and read-write database relations differently, querying
the latter only in limited fashion. In essence, data can arbitrarily
accumulate in read-write relations, but these can be queried only by
checking that they contain a given tuple of constants. It is shown
that this restriction is tight, as even the ability to check emptiness of
a read-write relation leads to undecidability. In addition, no integrity
constraints are supported as it is shown that allowing a single func-
tional dependency leads to undecidability. [20] disallows read-write
relations entirely (only the artifact variables are writable), but this
allows the extension of the decidability result to integrity constraints
expressed as embedded dependencies with terminating chase, and
to any decidable arithmetic. Again the result is incomparable to
ours, as our modeling needs to include read-write relations and their
unrestricted querying.

Infinite-state systems. DCDSs are a particular case of infinite-state
systems. Research on verification of infinite-state systems has also
focused on extending classical model checking techniques (e.g., see
[15] for a survey). However, in much of this work the emphasis is on
studying recursive control rather than data, which is either ignored
or finitely abstracted. More recent work has focused specifically
on data as a source of infinity. This includes augmenting recursive
procedures with integer parameters [12], rewriting systems with
data [11], Petri nets with data associated to tokens [33], automata
and logics over infinite alphabets [36, 10, 11], and temporal logics
manipulating data [13, 22, 31]. However, the restricted use of data
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and the particular properties verified have limited applicability to
the business process setting we target with the DCDS model.

8. CONCLUSIONS
We believe that DCDSs are a natural and expressive model for

business processes powered by an underlying database, and thus are
an ideal vehicle for foundational research with potential to transfer
to alternative models. The design space for FO extensions of propo-
sitional µ-calculus is broad, and notoriously contains bounded-state
settings for which satisfiability of even modest extensions of propo-
sitional LTL is highly undecidable (e.g. LTL with freeze quantifier
over infinite data words [22]). In light of this, our decidability results
come as a pleasant surprise, and the two µL variants studied here,
paired with the respective DCDS classes, strike a fortuitous balance
between expressivity and verification feasibility.
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