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Abstract

Ontology-based data access (OBDA) is a popular paradigm for querying heterogeneous
data sources by connecting them through mappings to an ontology. In OBDA, it is
often difficult to reconstruct why a tuple occurs in the answer of a query. We address
this challenge by enriching OBDA with provenance semirings, taking inspiration from
database theory. In particular, we investigate the problems of (i) deciding whether a
provenance annotated OBDA instance entails a provenance annotated conjunctive query,
and (ii) computing a polynomial representing the provenance of a query entailed by a
provenance annotated OBDA instance. Differently from pure databases, in our case these
polynomials may be infinite. To regain finiteness, we consider idempotent semirings, and
study the complexity in the case of DL-Lite ontologies. We implement Task (ii) in a
state-of-the-art OBDA system and show the practical feasibility of the approach through
an extensive evaluation against two popular benchmarks.
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1KRDB Research Centre, Free University of Bozen-Bolzano, Italy
2University of Milano-Bicocca, Italy

Abstract
Ontology-based data access (OBDA) is a popular
paradigm for querying heterogeneous data sources
by connecting them through mappings to an ontol-
ogy. In OBDA, it is often difficult to reconstruct
why a tuple occurs in the answer of a query. We ad-
dress this challenge by enriching OBDA with prove-
nance semirings, taking inspiration from database
theory. In particular, we investigate the problems of
(i) deciding whether a provenance annotated OBDA
instance entails a provenance annotated conjunctive
query, and (ii) computing a polynomial representing
the provenance of a query entailed by a provenance
annotated OBDA instance. Differently from pure
databases, in our case these polynomials may be in-
finite. To regain finiteness, we consider idempotent
semirings, and study the complexity in the case of
DL-LiteR ontologies. We implement Task (ii) in a
state-of-the-art OBDA system and show the practi-
cal feasibility of the approach through an extensive
evaluation against two popular benchmarks.

1 Introduction
Ontology-based data access (OBDA) [Xiao et al., 2018] is by
now a popular paradigm which has been developed in recent
years to overcome the difficulties in accessing and integrating
legacy data sources. In OBDA, users are provided with a high-
level conceptual view of the data in the form of an ontology
that encodes relevant domain knowledge. The concepts and
roles of the ontology are associated via declarative mappings
to SQL queries over the underlying relational data sources.
Hence, user queries formulated over the ontology can be auto-
matically rewritten, taking into account both ontology axioms
and mappings, into SQL queries over the sources.

When issuing a query, in many settings it is crucial to
know not only its result but also how it was produced,
how many different ways there are to derive it, or how de-
pendent it is on certain parts of the data [Senellart, 2017;
Zimmermann et al., 2012; Buneman and Kostylev, 2010].
To address these issues, which are of importance already for
plain relational database management systems (RDBMSs),
provenance semirings [Green et al., 2007; Green and Tannen,
2017] were introduced as an abstract tool to record and track

provenance information; that is, to keep track of the specific
database tuples that are responsible for deriving an answer
tuple, and of additional information associated to them. In
OBDA, determining provenance is made even more challeng-
ing by the fact that answers are affected by implicit conse-
quences derived through ontology axioms, and by the use
of mappings. Such elements come indirectly into play in
query rewriting, hence provenance information must be re-
constructed from the rewritten queries used in the answering
process [Borgida et al., 2008].

In this work, we start from the semiring approach introduced
for RDBMSs, and extend it to the full-fledged OBDA setting.
To do so, we assume that not only database tuples are anno-
tated with a label representing provenance information (e.g.,
the data source or the relation in which the tuple is stored), but
also mappings and ontology axioms. Then, our task is to de-
rive which combinations of these labels lead to the answer of
a query. Such information is expressed through a provenance
polynomial, as illustrated in the following example.
Example 1. Let Mayors[Person,City] be a database rela-
tion with the tuples (Renier,Venice) and (Brugnaro,Venice),
annotated with (sources) p and q, respectively. As-
sume two mappings City(Y ) ← Mayors(X,Y ) and
headGov(X,Y ) ← Mayors(X,Y ), annotated with m and n,
respectively. The mappings and the database induce
(i) two times the DL assertion City(Venice), one annotated
with p × m and one with q × m, (ii) the DL assertion
headGov(Renier,Venice), annotated with p× n, and (iii) the
assertion headGov(Brugnaro,Venice), annotated with q × n.

Now consider the inclusion ∃headGov v Mayor annotated
with s. The answer true to the Boolean conjunctive query
∃x.(Mayor(x)) can be derived using this inclusion and any of
the last two DL assertions. This information can be expressed
through the provenance polynomial ((p×n) + (q×n))× s./
In our OBDA setting, concept and role inclusions of the on-
tology affect query results, as illustrated in Example 1. By
annotating the inclusions and the mappings, in addition to
the tuples, we can distinguish which inclusions and mappings
were involved in the derivation of a query result. This differs
from the approach proposed for attributed DL-LiteR [Bour-
gaux and Ozaki, 2019], where the inclusions are used to ex-
press constraints on the provenance information.

We investigate the problems of (i) deciding whether a prove-
nance annotated OBDA instance entails a provenance anno-



tated conjunctive query (CQ), and (ii) computing a prove-
nance polynomial of a CQ entailed by a provenance annotated
OBDA instance. Differently from plain databases, in our case
these polynomials may be infinite. To regain finiteness, we
consider idempotent semirings, and study the complexity for
DL-LiteR ontologies [Calvanese et al., 2007]. We implement
task (ii) in the state-of-the-art OBDA system Ontop [Calvanese
et al., 2017], and show the practical feasibility of our approach
through a detailed evaluation against two popular benchmarks.

This article is an extended version of [Calvanese et al.,
2019], with selected proofs and additional information pro-
vided in an appendix.

2 Basic Definitions
We represent the provenance information via a positive algebra
provenance semiring (or provenance semiring for short), orig-
inally introduced for databases [Green et al., 2007]. Given a
countably infinite set NV of variables, the provenance semiring
is the algebra K = (N[NV],+,×, 0, 1), where N[NV] denotes
the space of polynomials with coefficients in N and variables
in NV, the product × and the addition + are two commu-
tative and associative binary operators over N[NV], and ×
distributes over +. A monomial from K is a finite product
of variables in NV. NM and NP denote the sets of all mono-
mials from K, and of all finite sums of monomials in NM,
respectively; i.e., NP contains only polynomials of the form∑

1≤i≤n
∏

1≤ji≤mi
ai,ji , with ai,ji ∈ NV, and n,mi > 0.

Since all coefficients are in N, they disappear in this expanded
form; e.g., 2a is a + a. A polynomial in expanded form is a
finite sum of monomials, each formed by a finite product of
variables. By distributivity, every polynomial can be equiv-
alently rewritten in expanded form; however, the expanded
form of a polynomial may become exponentially larger. By
our definitions, NV ⊆ NM ⊆ NP.

Annotated OBDA. The provenance information of each ax-
iom in an ontology, each mapping, and each tuple in a data
source, is stored as an annotation. For this paper, we consider
the standard OBDA setting with ontologies written in DL-
LiteR [Calvanese et al., 2007], standard relational databases
as data sources, and mappings given by GAV rules. Consider
three mutually disjoint countable sets of concept names NC,
role names NR, and individual names NI. Assume that these
sets are also disjoint from NV. DL-LiteR role and concept
inclusions are expressions of the form S v T and B v C,
respectively, where S, T are role expressions and B, C are
concept expressions built through the grammar rules

S ::= R | R−, T ::= S | ¬S, B ::= A | ∃S, C ::= B | ¬B,
with R ∈ NR and A ∈ NC. A DL-LiteR axiom is a DL-LiteR
role or concept inclusion. An annotated DL-LiteR ontology
is a finite set of annotated axioms of the form (α, p), where α
is a DL-LiteR axiom and p ∈ NM.

A schema S is a finite set of predicate symbols disjoint
from NC ∪ NR with ar(P ) the arity of P ∈ S. An annotated
data instance D over S maps every P ∈ S to a finite subset
PD of NI

ar(P ) × NV. An annotated mapping is a finite set of
annotated rules (ρ, p), where ρ is a (GAV) rule and p ∈ NV.
A rule ρ is of the form E(~x)← ϕ(~x, ~y, ~z), with E ∈ NC∪NR

and ϕ(~x, ~y, ~z) a conjunction of atoms P (~t, t), with P ∈ S, ~t
an ar(P )-tuple of terms in ~x ∪ ~y, and t ∈ ~z. We restrict ϕ to a
conjunction of atoms for simplicity of our theoretical devel-
opment, also in line with the idea that semirings capture the
provenance of positive queries [Green et al., 2007]. See Sec. 5
for handling arbitrary OBDA mappings in our implementation.

An annotated OBDA specification P is a triple (O,M,S),
where O is an ontology with annotated axioms, S is a data
source schema whose signature is disjoint from the signature
of O, andM is a set of annotated mappings, connecting S
to O [Xiao et al., 2018]. The pair (P,D) of an annotated
OBDA specification P and an annotated data instance D is
an annotated OBDA instance. In OBDA, data sources and
mappings induce virtual assertions. In annotated OBDA, vir-
tual assertions are annotated with the provenance information
of the mapping and of matching tuples in the data instance.
Formally, an annotated assertion (E(~a), p) is an expression
of the form (A(a), p) or (R(a, b), p), with A ∈ NC, R ∈ NR,
a, b ∈ NI, and p ∈ NM. We write ϕ(µ(~x, ~y, ~z)) ⊆ D if µ is a
function mapping ~x, ~y to NI, ~z to NV, and (µ(~t, t)) ∈ PD, for
every atom P (~t, t) in ϕ(~x, ~y, ~z). Given an annotated mapping
M and data instance D, the setM(D) of annotated assertions

(E(µ(~x)), p×∏
z∈~z µ(z)), satisfying

(E(~x) ← ϕ(~x, ~y, ~z), p) ∈ M and ϕ(µ(~x, ~y, ~z)) ⊆ D is the
set of virtual annotated assertions forM over D.

The semantics of annotated OBDA instances is based on in-
terpretations over the signature of the ontology, extending clas-
sical DL-LiteR interpretations to track provenance, when rele-
vant. An annotated interpretation is a triple I = (∆I ,∆Im, ·I)
where ∆I and ∆Im are non-empty disjoint sets (called the do-
main of I and the domain of monomials of I, respectively),
and ·I is the annotated interpretation function mapping
• every a ∈ NI to some aI ∈ ∆I ;
• every p, q ∈ NM to some pI , qI ∈ ∆Im s.t. pI = qI iff

the monomials p and q are mathematically equal (modulo
associativity and commutativity, e.g., (p×q)I = (q×p)I
by commutativity);
• every A ∈ NC to some AI ⊆ ∆I ×∆Im; and
• every R ∈ NR to some RI ⊆ ∆I ×∆I ×∆Im.

We extend ·I to further DL-LiteR expressions as natural:

(R−)I = {(e, d, pI) | (d, e, pI) ∈ RI} ,
(¬S)I = (∆I ×∆I ×∆Im) \ SI ,
(∃S)I = {(d, pI) | ∃e ∈ ∆I : (d, e, pI) ∈ SI} , and
(¬B)I = (∆I ×∆Im) \BI .

The annotated interpretation I satisfies:

(A(a), p), if (aI , pI) ∈ AI ;
(R(a, b), p), if (aI , bI , pI) ∈ RI ;
(B v C, p), if, for all q ∈ NM, (d, q

I) ∈ BI
implies that (d, (q × p)I) ∈ CI ; and

(S v T , p), if, for all q ∈ NM, (d, e, q
I) ∈ SI

implies that (d, e, (q × p)I) ∈ T I .
I satisfies an annotated ontology O, in symbols I |= O, if it
satisfies all annotated axioms in O. I satisfies an annotated
OBDA instance ((O,M,S),D) if I |= O and I |=M(D).
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Example 2. Consider the OBDA instance of Ex-
ample 1 and an annotated interpretation I with
∆I = {Renier,Venice,Brugnaro}, ∆Im containing p× n,
q × n, p×m, q ×m, p× n× s, q × n× s, with such
individuals and monomials interpreted by themselves, and

headGovI = {(R,V, p× n), (B,V, q × n)},
MayorI = {(R, p× n× s), (B, q × n× s)},
CityI = {(V, p×m), (V, q ×m)}.

I is a model of such OBDA instance, where R, V, and B stand
for Renier, Venice, and Brugnaro, respectively. /

Following the database approach [Green et al., 2007; Green
and Tannen, 2017], we annotate facts in interpretations with
provenance information. However, in Green et al.’s setting,
the database “is” the (only) interpretation, while in our case
we adopt the open world assumption (as in OBDA), so the
semantics is based on multiple interpretations. Our semantics
ensures that, if we have a tuple (d, pI) ∈ CI and (C v D) is
annotated with n, then (d, (p×n)I) ∈ DI . So derivations are
also represented in interpretations, and thus can be entailed.
Each derivation is independent of the others.

Regarding the semantics of negation, we point out that, at
the level of an interpretation, the lack of provenance infor-
mation is a support for the negation of a fact. This apparent
counterintuitive behaviour does not hold in all interpretations,
hence it does not manifest in the entailments. In fact, our focus
in this paper is query entailment (defined next), negations are
only defined to comply with the usual syntax and semantics of
DL-LiteR. They do not affect query results, as in DL-LiteR.

Annotated Queries. We extend the notion of conjunctive
queries in DLs by allowing binary and ternary predicates,
where the last term of a tuple may contain provenance in-
formation represented as a monomial (by definition of the
semantics of annotated OBDA instances, the last element of
a tuple can only contain monomials, not sums). More specif-
ically, a Boolean conjunctive query (BCQ) q is a sentence
∃~x.ϕ(~x,~a, ~p), where ϕ is a conjunction of (non-repeating)
atoms of the form A(t1, t), R(t1, t2, t), and ti is either an
individual name from ~a, or a variable from ~x, and t (the last
term of each tuple) is either an element of NM in the list ~p or
a variable from ~x. We often write P (~t, t) to refer to an atom
which can be either A(t1, t) or R(t1, t2, t) and P (~t, t) ∈ q if
P (~t, t) is an atom occurring in q.

A match of the BCQ q = ∃~x.ϕ(~x,~a, ~p) in the annotated
interpretation I is a function π : ~x∪~a∪ ~p→ ∆I ∪∆Im, such
that π(b) = bI , for all b ∈ ~a ∪ ~p, and π(~t, t) ∈ P I , for every
P (~t, t) ∈ q. I satisfies the BCQ q, written I |= q, if there is a
match of q in I. A BCQ is entailed by an annotated OBDA
instance if it is satisfied by every model of it. For a BCQ q
and an interpretation I, νI(q) denotes the set of all matches
of q in I. The provenance of q on I, denoted provI(q), is the
(potentially infinite) expression:

∑
π∈νI(q)

∏
P (~t,t)∈q π

−(t)

where π(t) is the last element of the tuple π(~t, t) ∈ P I ; and
π−(t) is any v ∈ NM s.t. vI = π(t). For p ∈ NP, we write

p ⊆ provI(q) if p is a sum of monomials and for each oc-
currence of a monomial in p we find an occurrence of it in
provI(q). I satisfies q with provenance p ∈ NP, written
I |= (q, p), if I |= q and p ⊆ provI(q). The annotated
OBDA instance (P,D) entails q, (P,D) |= q, if for all an-
notated interpretations I, if I |= (P,D) then I |= q; and
(P,D) |= (q, p), if (P,D) |= q and p ⊆ provI(q), for all I
satisfying (P,D).

In our syntax, the atoms of the queries contain an additional
parameter which may either be a variable or a monomial.
As a result, one can filter query results based on provenance
information by specifying constraints in the last parameter of
the atoms, which was not possible in the original approach by
Green et al. [Green et al., 2007; Green and Tannen, 2017]. For
example, ∃xy.A(x, p)∧B(x, y) can be used to specify that we
are only interested in matches of the query where the first atom
is associated with a particular provenance. Variables can also
be repeated, e.g. ∃xy.A(x, y) ∧ B(x, y). One can fall back
to the original setting from databases, where no constraints
are imposed, by simply associating the last term of each atom
with a fresh variable (see standard queries in Section 4).

The size |X| of an annotated OBDA instance, a polynomial
or a BCQ X is the length of the string that represents X .
We assume a binary encoding of elements of NC,NR,NI and
NP occurring in X . We may omit ‘annotated’ in front of
terms such as ‘OBDA,’ ‘queries,’ ‘inclusions,’ ‘assertions,’
and others, whenever this is clear from the context.

Reasoning Problems. Annotating OBDA instances with
provenance information does not impact consistency checking.
That is, an annotated OBDA instance is satisfiable precisely
when the OBDA instance that results from removing the anno-
tations is satiafiable. We thus focus on the problem of query
entailment w.r.t. a provenance polynomial: given an (anno-
tated) OBDA instance (P,D), a query q and a polynomial
p ∈ NP decide if (P,D) |= (q, p). Another important and re-
lated problem is to compute the provenance of a query: given
an OBDA instance (P,D) and a query q, compute the set of
all p ∈ NP such that (P,D) |= (q, p). In our formalism, the
latter problem depends on whether there is a finite set of poly-
nomials which we can compute. As shown next, in DL-LiteR
the set of provenance polynomials may be infinite.

Example 3. Consider an OBDA instance (P,D) as in Ex. 1,
but where now O of P contains also (Mayor v ∃headGov, t).
For all i ∈ N, (P,D) |= (Mayor(Renier), p× n× si+1 × ti).
Indeed, for any model I of (P,D), (Renier, (p× n× s)I) ∈
MayorI implies (a, (p×n× s× t)I) ∈ (∃headGov)I , which
implies (Renier, (p× n× s2 × t)I) ∈ MayorI , and so on. /

In Section 3 we consider the problem of query entailment
w.r.t. a provenance polynomial. Note that in Example 3, if the
semiring is multiplicatively idempotent (i.e., s× s = s), the
set of provenance polynomials is finite: the only polynomial is
p× n× s× t. This is not a coincidence; under multiplicative-
idempotency, the set of provenance polynomials is always
finite. The following proposition states that multiplicative-
idempotency is indeed sufficient to guarantee a finite set of
polynomials.
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Proposition 1. Under multiplicative idempotency, for any sat-
isfiable OBDA instance (P,D) and BCQ q, the set of polyno-
mials p ∈ NP such that (P,D) |= (q, p) is finite.

In Section 4 we study idempotent semirings and consider
the problem of computing the provenance of a query.

3 Provenance Annotated Query Entailment
We establish complexity results for the problem of decid-
ing whether an OBDA instance entails a (provenance anno-
tated) query. For clarity of presentation, we split our proof in
two parts. We first show that for an OBDA instance (P,D)
and a query (q, p), there is an OBDA instance (Pm,Dm)
and a set Tr(qm, pm) of (non-annotated) queries such that
(P,D) |= (q, p) iff (Pm,Dm) entails some q′ ∈ Tr(qm, pm).
Moreover, the sizes of (Pm,Dm) and q′ are polynomial in the
sizes of (P,D) and (q, p). Then, we adapt the query rewrit-
ing algorithm PerfectRef [Calvanese et al., 2007] to decide
whether (Pm,Dm) |= q′.

Part 1: Characterization. Lemma 1 states that, given an
OBDA instance (P,D) and a query (q, p), there is an OBDA
instance (Pm,Dm) and a query (qm, pm) that can be used to
decide (P,D) |= (q, p) and, moreover, all monomials in pm
are mathematically distinct (modulo associativity, commuta-
tivity, and distributivity).

Lemma 1. Given a satisfiable OBDA instance (P,D) and a
query (q, p), there are (Pm,Dm) and (qm, pm) such that

• any two monomials p1, p2 appearing in pm are mathe-
matically distinct;
• (P,D) |= (q, p) iff (Pm,Dm) |= (qm, pm); and
• |(Pm,Dm)| + |(qm, pm)| is polynomially bounded by
|(P,D)|+ |(q, p)|.

We show that, given (Pm,Dm) and (qm, pm) as in
Lemma 1, (qm, pm) can be translated into a set of queries
such that (Pm,Dm) entails (qm, pm) iff it entails at least one
of these queries. We first define the translation of a BCQ where
all terms are variables (no individual names and no polynomi-
als), and then adapt the translation for the general case. Given
the BCQ qm = ∃~x. ϕ(~x) with k atoms and pm ∈ NP with n
monomials, define Tr(qm, pm) as the set of all BCQs:

∃~y. ∧1≤i≤n ϕi(~xi), (1)

where ~y = ~x1, . . . , ~xn and each qi = ∃~xi. ϕi(~xi) is a ‘copy’
of q in which we replace each variable x ∈ ~x by a fresh vari-
able xi ∈ ~xi. We check whether we can find the monomials
of the polynomial in these matches by replacing the last vari-
able in each j-th atom of qi by a monomial pi,j ∈ NM built
from symbols occurring in pm such that

∏
1≤j≤k pi,j = pi for

some pi ∈ NP, with 1 ≤ i ≤ n; and
∑

1≤i≤n pi = p.
The translation of a BCQ with individual names is similar,

except that we must add such individual names in each copy of
the query; that is, we would replace the corresponding variable
in the translation with the individual name occurring in the
query. Theorem 1 formalises the correctness of our translation,
where we write (P,D) |= Tr(q, p) to express that there is
q′ ∈ Tr(q, p) such that (P,D) |= q′.

Example 4. Consider the query

q = ∃xyzw.(headGov(x, y, z) ∧ City(y, w))

and the polynomial p = (s× t) + (s× r). Then,

∃x1y1x2y2.(headGov(x1, y1, s) ∧ City(y1, t) ∧
headGov(x2, y2, s) ∧ City(y2, r))

is in Tr(q, p). /

Theorem 1. Let (P,D) be an OBDA instance, q a BCQ and
p ∈ NP a polynomial formed of mathematically distinct mono-
mials. (P,D) |= (q, p) iff (P,D) |= Tr(q, p).

Without assuming that p ∈ NP is formed of mathematically
distinct monomials, we would need to add inequalities to the
queries in Tr(q, p) (there is no way to distinguish Tr(q, p+ p)
from Tr(q, p)). By Lemma 1, given the OBDA instance (P,D)
and query (q, p), there are (Pm,Dm) and (qm, pm), satisfying
the assumption of Theorem 1, which we can use to decide
whether (P,D) |= (q, p). This is crucial for query entailment
since entailment of conjunctive queries with inequalities in
DL-LiteR is undecidable [Gutiérrez-Basulto et al., 2015].

Part 2: Query Rewriting. We adapt the classical query
rewriting algorithm PerfectRef [Calvanese et al., 2007] to
decide whether (P,D) |= q′, for q′ ∈ Tr(q, p), where (P,D)
and (q, p) are as in Theorem 1. When possible, we use the
definitions and terminology from [Calvanese et al., 2007, Sec.
5.1], adapting some of them to our setting if needed.

For simplicity, for each role R− occurring in an OBDA
instance ((O,M,S),D), we add to O the annotated role in-
clusions (R− v R, pR) and (R v R−, p′R), where R is a
fresh role name and pR, p′R are fresh variables of a provenance
semiring. We assume w.l.o.g. that inverse roles only occur in
such role inclusions by replacing other occurrences ofR− with
R. The symbol “−” denotes non-distinguished non-shared
variables. A positive inclusion I is a provenance annotated
role or concept inclusion without negations. I is applicable
to A(x, p) if I is annotated with v occurring in p and it has A
in its right-hand side. A positive inclusion I is applicable to
R(x, y, p) if (i) x =−, I is annotated with v occurring in p,
and the right-hand side of I is ∃R, or (ii) I is a role inclusion
annotated with v occurring in p and its right-hand side is R
or R−. Given p ∈ NM and v ∈ NV occurring in p, we denote
by p|v the result of removing one occurrence of v from p.
Definition 1. Let g be an atom and I a positive inclusion
applicable to g. The atom obtained from g by applying I ,
denoted by gr(g, I), is defined as follows:
• gr(A(x, p), (A1 v A, v)) = A1(x, p|v);
• gr(A(x, p), (∃R v A, v)) = R(x,− , p|v);
• gr(R(x,− , p), (A v ∃R, v)) = A(x, p|v);
• gr(R(x,− , p), (∃R1 v ∃R, v)) = R1(x,− , p|v);
• gr(R(x, y, p), (R1 v R, v)) = R1(x, y, p|v);
• gr(g, I) = R1(y, x, p|v), if g = R(x, y, p) and either
I = (R1 v R−, v) or I = (R−1 v R, v). /

We use PerfectRef (Algorithm 1) originally presented in
[Calvanese et al., 2007], except that the applicability of a pos-
itive inclusion I to an atom g is as previously described and
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Algorithm 1 PerfectRef

Input: a BCQ q, a set of positive inclusions OT
Output: a set of BCQs PR

1: PR := {q}
2: repeat
3: PR′ := PR
4: for all q ∈ PR′, all g, g1, g2 ∈ q and all I ∈ OT do
5: if {q[g/gr(g, I)]} /∈ PR and I ∈ OT is applicable

to g ∈ q then
6: PR := PR ∪ {q[g/gr(g, I)]}
7: if there are g1, g2 ∈ q such that g1 and g2 unify then
8: PR := PR ∪ {τ(reduce(q, g1, g2))}
9: until PR′ = PR

10: return PR

gr(g, I) follows Definition 1. Let q[g/g′] denote the BCQ ob-
tained from q by replacing the atom g with a new atom g′; let τ
be a function that takes as input a BCQ q and returns a new
BCQ obtained by replacing each occurrence of an unbound
variable in q with the symbol ‘−’; and let reduce be a function
that takes as input a BCQ q and two atoms g1, g2 and returns
the result of applying to q the most general unifier of g1 and g2
(unifying mathematically equal terms). PerfectRef(q,OT ) is
the output of the algorithm PerfectRef over q (with a mono-
mial in NM in the last parameter of each atom) and a set OT
of positive inclusions of an OBDA instance ((O,M,S),D).
Example 5. Consider an OBDA instance ((O,M,S),D) as
in Ex. 1. We call Algorithm 1 with OT and the query q =
∃x.Mayor(x, p×n× s) as input. Since I is applicable to g =
Mayor(x, p×n×s), in Line 6, Alg. 1 adds to PR the result of
replacing g by gr(g, I) = headGov(x,− , p× n) in q. Hence,
q‡ = ∃x, y. headGov(x, y, p × n) ∈ PerfectRef(q,OT ). In-
deed q‡ is a rewriting of q. /

Our next theorem states the correctness of Algorithm 1.
Theorem 2. Let q be a BCQ and OT the set of positive in-
clusions of an OBDA specification P = (O,M,S). Given
q and OT as input, Algorithm 1 terminates and outputs a
set of BCQs PR such that, for all data instances D where
(P,D) is satisfiable, (P,D) |= q iff there is q‡ ∈ PR such
that ((∅,M,S),D) |= q‡.

Termination of our modified version of PerfectRef is analo-
gous to [Calvanese et al., 2007, Lemma 34], except that now
the number of terms is exponential in the size of monomials
occurring in the query, and thus in the size of the query. This
is due to Definition 1, where we ‘break’ the monomial into
a smaller one. Our modification does not change the upper
bounds obtained with the algorithm, since for data complexity
the query is not part of the input and the upper bound for
combined complexity, which we establish in Theorem 3, is
obtained by a non-deterministic version of the algorithm.
Theorem 3. Answering provenance annotated queries w.r.t.
OBDA instances is NP-complete (combined complexity).

4 Computing the Provenance of a Query
We now consider the problem of computing the provenance
of a query. To avoid the case of an infinite provenance, we

focus on the special case where the provenance semiring is
fully idempotent, which is a sufficient condition for finite
provenance (Proposition 1). The semiring is fully idempotent
if for every polynomial p ∈ NP, p×p = p and p+p = p. This
is the case, e.g., if the provenance refers to the name of the
source of the knowledge; having several times the same name
does not affect the result. Alternatively, one can model access
rights and observe whether certain pieces of knowledge are
needed for the entailment of a query w.r.t. an OBDA instance.

For fully idempotent semirings, the task corresponds to
computing relevant monomials. More precisely, in this spe-
cial case we want to compute all monomials p such that
(P,D) |= (q, p). The provenance of the query w.r.t. the OBDA
instance is the addition of all these monomials. This definition
is equivalent to the general one since the semiring is idempo-
tent: repetitions of a monomial do not affect the result, and
repetitions of a variable within a monomial can be removed. If
the semiring is only multiplicatively idempotent, then comput-
ing monomials does not suffice, as some of them may appear
several times. However, the problem is still simplified to find
the (finite) number of repeated monomials to be observed. In
general, the query polynomial may be composed of exponen-
tially many monomials, even if the query is a simple one of
the form ∃x.A(a, x), with A ∈ NC.
Proposition 2. There exists an OBDA instance (P,D) and a
simple query q such that the provenance polynomial of q w.r.t.
(P,D) is formed of exponentially many monomials.

For some queries, provenance cannot be expressed by a
provenance polynomial of polynomial length in the size of
the ontology, even if an expanded form is not required. This
follows from known results in monotone complexity [Karch-
mer and Wigderson, 1990]: there is no monotone Boolean
formula (i.e., propositional formula using only the connec-
tives ∧ and ∨) of polynomial length expressing all the simple
paths between two nodes in a graph. This holds already for
complete graphs. Graphs can be described in DL-LiteR (and
simpler logics) using basic inclusion axioms, and monotone
Boolean formulas are provenance polynomials over an idempo-
tent semiring, where the ∧ and ∨ serve as product and addition.
Hence we have the following result [Peñaloza, 2009].
Proposition 3. There exist an OBDA instance (P,D) and a
query q such that the provenance of q w.r.t. (P,D) cannot be
represented in polynomial space. This holds even for idempo-
tent semirings, and if every axiom has a unique label.

On the other hand, if every axiom is labeled with a unique
variable, then the provenance polynomial for instance queries
can be computed efficiently, whenever its length does not
increase greatly; that is, it can be computed in polynomial
time in the size of the input and the output. The proof of this
claim follows the same ideas from [Peñaloza and Sertkaya,
2017], based on the fact that all the relevant monomials from
the provenance are enumerable with polynomial delay.
Lemma 2. The provenance p of an instance query w.r.t. an
OBDA instance (P,D) can be computed in polynomial time
in the size of (P,D) and of the polynomial p.

We give an algorithm for computing the provenance of a
BCQ w.r.t. an OBDA instance. We focus on BCQs that do
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Algorithm 2 ComputeProv

Input: a BCQ q0, an OBDA instance ((O,M,S),D)
Output: the provenance p of q w.r.t. ((O,M,S),D)

1: PR := PerfectRef?(q?0 ,OT ),
2: for all q ∈ PR do
3: for all matches π of q~y in IM(D) do
4: PR := PR ∪ {q−?~y,π}
5: PR := PR \ {q}
6: return p :=

∑
q∈PR

∏
P (~t,t)∈q t

not have monomials in the last term of the atom. A BCQ
q = ∃~x.ϕ(~x,~a) is standard if, for all P (~t, t) ∈ q, t is a
fresh variable in ~x. Algorithm 2 computes the provenance
of a standard BCQ w.r.t. an OBDA instance. We adopt the
same notation used for describing PerfectRef [Calvanese et
al., 2007] (also used in Section 3). PerfectRef? is a variant of
PerfectRef (Algorithm 1), where the notions of applicability
of an inclusion I w.r.t. an atom g and the definition of gr(g, I)
are as follows. I is applicable to an atom A(x, p) if I has A
in its right-hand side. A positive inclusion I is applicable to
an atom R(x, y, p) if (i) x =−, and the right-hand side of I is
∃R, or (ii) the right-hand side of I is either R or R−. Given
p ∈ NM and v ∈ NV, we define pv as p× v if v does not occur
in p, and we define pv as p, otherwise. E.g., vwv = vw.
Definition 2. Let g be an atom and I a positive inclusion
applicable to g. The atom obtained from g by applying I ,
denoted by gr(g, I), is defined as follows:
• gr(A(x, p), (A1 v A, v)) = A1(x, pv);
• gr(A(x, p), (∃R v A, v)) = R(x,− , pv);
• gr(R(x,− , p), (A v ∃R, v)) = A(x, pv);
• gr(R(x,− , p), (∃R1 v ∃R, v)) = R1(x,− , pv);
• gr(R(x, y, p), (R1 v R, v)) = R1(x, y, pv);
• gr(g, I) = R1(y, x, pv), if g = R(x, y, p) and either
I = (R1 v R−, v) or I = (R−1 v R, v). /

For standard BCQs, Algorithm 2 is sound and complete.
Termination of Algorithm 2 is an easy consequence of termina-
tion of PerfectRef. The main difference between Algorithm 2
and Algorithm 1 (Section 3) is that here we assume that a
standard BCQ is given (without any provenance information)
and we aim at computing its provenance. Instead of removing
variables of the semiring while applying positive inclusions
(Definition 1), we add the variables of the semiring whenever
the associated positive inclusion is applied (Definition 2). In
Line 1, we write q? to denote the result of replacing each t in
P (~t, t) ∈ q by ?, where ? is a fresh symbol from NV. This
transformation ensures that in Definition 2 the last term is
always an element of NM. In Line 3, we denote by q~y the
result of replacing, for each P (~t, t) ∈ q, the last term t by a
fresh variable from ~y (i.e., q~y is a standard BCQ). We perform
another transformation in Line 4, denoted by q−?~y,π, which is
the result of replacing, for each P (~t, t) ∈ q, the symbol ?
in t by u ∈ NM such that uI = π(y) (if there are multiple
mathematically equal such u, we simply choose u arbitrarily),
where y is the last term of the corresponding atom in q~y (that
is, P (~t, y) ∈ q~y). Observe that π is a match of q~y in IM(D).

Example 6. Assume Algorithm 2 receives as input the stan-
dard query q0 = ∃xz.Mayor(x, z) and an OBDA instance
((O,M,S),D) with O = {(∃headGov v Mayor, s)} and

M(D) = {(headGov(Renier,Venice), u),
(headGov(Brugnaro,Venice), v)}.

In Line 1, Algorithm 2 calls PerfectRef?, defined as a variant
of PerfectRef (Algorithm 1), where the notions of applica-
bility of an inclusion I w.r.t. an atom g and the definition
of gr(g, I) are as in Section 4. The return of PerfectRef? is
PR = {∃x.Mayor(x, ?),∃xz.headGov(x, z, ? × s)}. Then,
for all q ∈ PR and all matches π of q~y in IM(D) (if
they exist) the algorithm adds q−?~y,π to PR. In this exam-
ple, assume q = ∃xz.headGov(x, z, ? × s). We have two
matches of q~y = ∃xzy.headGov(x, z, y) inM(D), one map-
ping y to u (call this match π) and the other mapping y to
v (call it π′). So, q−?~y,π = ∃xz.headGov(x, z, u × s) and
q−?~y,π′ = ∃xz.headGov(x, z, v × s). In Line 5, Algorithm 2
removes q?0 from PR. Finally, in Line 6, it returns the polyno-
mial u× s+ v × s. /

Theorem 4. Let q be a standard BCQ and (P,D) an OBDA
instance. Given q and (P,D) as input to Algorithm 2, it
outputs the provenance of q w.r.t. (P,D).

The upper bounds from the previous section for the general
case obviously apply in the restricted idempotent case as well.

5 Evaluation
To evaluate the feasibility of our approach, we implemented a
prototype system (OntoProv) that extends the state-of-the-art
OBDA system Ontop [Calvanese et al., 2017] with the support
for provenance. Ontop supports SPARQL query answering
over ontologies in OWL 2 QL, the W3C standard correspond-
ing to DL-LiteR [Motik et al., 2012]. The algorithm of Ontop
has two stages, an offline stage, which classifies the ontol-
ogy and saturates the input set of mappings, and an online
stage, which rewrites the input queries according to the sat-
urated set of mappings. OntoProv enriches these steps by
taking into account provenance information, and relies on
ProvSQL [Senellart et al., 2018] to handle provenance from
the database and queries in the mappings that go beyond the
CQ fragment. We compare Ontop v3.0.0-beta-3 and Onto-
Prov over the BSBM [Bizer and Schultz, 2009] and the NPD
[Lanti et al., 2015] benchmarks. Experiments were run on a
server with 2 Intel Xeon X5690 Processors (24 logical cores
at 3.47 GHz), 106 GB of RAM and five 1 TB 15K RPM HDs.
As RDBMS we have used PostgreSQL 11.2.

Evaluation with the BSBM Benchmark. The BSBM bench-
mark is designed to test the different features of SPARQL.
It provides a baseline for our tests, since it comes with an
empty ontology and therefore it does not require ontological
reasoning. In this experiment we restrict to a set of parametric
queries (called here query mix) in the benchmark (9 in total)
that are supported by our theoretical framework.

Table 1 compares the average time (over three test runs) to
evaluate the query mix with both Ontop and OntoProv, on two
datasets containing 10k and 1M products (resp., bsbm10k and
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Dataset mixTime Ontop mixTime OntoProv

bsbm10k 2.0s 3.2s
bsbm1M 326s 364s

Table 1: BSBM Experiment

Ontop OntoProv
Q #unf t t10 #unf #uinst tinst tinst10 #prov #prov10

1 0 29.5 172.4 16 16 5.2 1.7 1524 49
2 0 .5 3.1 32 32 .3 .4 28 60
3 24 5.0 51.1 16 16 248.0 296.5 84 153
4 0 3.2 24.3 16 16 437.6 297.3 90 53
5 0 .1 .2 0 0 .1 1.5 1 1
6 13 107.5 804.3 369 369 1439.3 tout 426 tout
7 0 .4 .2 0 0 .1 .3 1 1
9 15 6.8 53.4 64 55 .3 .9 5 5
10 1 .4 25.4 4 4 .8 11.3 1 7
11 6 53.6 760.8 184 184 1342.6 tout 474 tout
12 8 69.1 1215.5 185 185 1248.1 tout 476 tout
31 21 60.3 633.0 248 239 1.9 5.3 120 60

Table 2: NPD Experiment (times in seconds)

bsbm1M ). Evaluation times for both systems are very close.
Hence, without a complex ontology or complex mappings, the
overhead for computing provenance is rather small.

Evaluation with the NPD Benchmark. As opposed to
BSBM, the NPD Benchmark is specifically tailored to OBDA
systems; it comes with a complex ontology, complex map-
pings, and queries of various kinds. We restrict to 12 user
queries that are supported by our framework. We use the
dataset NPD, containing real-world data about the oil extrac-
tion domain, and the dataset NPD10, which is 10 times the
size of NPD and is generated by a data scaler [Lanti et al.,
2019]. Differently from the BSBM benchmark, in NPD we
observed many timeouts (set to 40 minutes) when running the
benchmark queries with OntoProv. This is due to the fact that,
in NPD, the optimizations performed by Ontop over the query
unfoldings are crucial for getting reasonably compact SQL
queries. Such optimizations, however, need to be disabled in
OntoProv to guarantee completeness. In fact, we are interested
in all the possible ways to derive a result, and cannot identify
and discard redundant derivations. For a broader discussion
about these aspects, please refer to the additional material.

We assume that a user of OntoProv is more interested in
understanding the reason for a specific answer tuple, rather
than getting in bulk all possible explanations for all possible
answer tuples. To simulate such user interaction, in our tests
we have instantiated the NPD queries with answer tuples, and
have run the obtained instantiated queries (which are, in fact,
BCQs) over OntoProv. Table 2 contains the aggregate results
of our runs. For each of our tests, we performed 5 test runs.

The columns #unf and #uinst denote the number of times
a UNION operator appears in the unfolding of an NPD query
and an instantiated query, respectively. This measure gives an
idea on the complexity of the unfolding, and we can observe
that the unfoldings produced by OntoProv are much more
complex than those produced by Ontop. As argued above, this
is because OntoProv disallows some optimizations. Columns t

and t10 denote the average execution times of the queries over
the datasets NPD and NPD10, respectively, and for instanti-
ated queries these values are respectively denoted by tinst and
tinst10. The execution times for OntoProv are generally much
higher than for Ontop. We attribute this to the increased com-
plexity of the unfoldings. Columns #prov and #prov10 denote
the number of results for the instantiated queries, respectively
over NPD and NPD10. These numbers can be interpreted as
the number of possible ways an answer tuple can be derived,
and give an indication on the complexity of the benchmark
itself. For instance, for query 1 over the NPD dataset there
are on average 1524 explanations for a single answer tuple.

This test shows that the approach is feasible even with
complex ontologies and mappings, but also that more work is
needed in order to devise optimization techniques dedicated
to a setting with provenance.

6 Conclusions and Discussion
We investigated the problem of dealing with provenance within
OBDA, based on the provenance semiring approach intro-
duced for databases. In our case, every element of an OBDA in-
stance is annotated with provenance information. We showed
that query rewriting techniques can be applied to deal with
provenance as well. An evaluation based on a prototypical im-
plementation shows that our methods are feasible in practice.

A key difference between the problem of provenance com-
putation (or its decision version) and that of axiom pinpoint-
ing [Schlobach and Cornet, 2003; Kalyanpur et al., 2007;
Baader et al., 2007] and query explanation [Calvanese et al.,
2013; Croce and Lenzerini, 2018; Bienvenu et al., 2019] is
that axiom pinpointing and query explanation focus on tracing
the minimal causes of a consequence (or the lack of it). In
contrast, all possible derivations are relevant for provenance,
independently of whether a cause is minimal or not.

As future work, we plan to investigate provenance with
the monus operator. We will also study the provenance of
SPARQL query answering [Geerts et al., 2013] in OBDA. Our
implementation computes the provenance of a query assuming
that the semiring is multiplicatively idempotent. While this
assumption is useful to identify which parts of the knowledge
base contribute to the query result, it restricts the applicability
of our approach to other settings, in particular, to the numerical
ones. For capturing probabilities, it is important to distinguish
repetitions, so (multiplicative) idempotency is not suitable. In
our setting, dropping the idempotency condition leads to cases
where the polynomial can be infinite. It would be interesting to
investigate whether the polynomial can be finitely represented,
so that its computation could be applied in a numerical setting.
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A Proofs for Section 2
Proposition 1. Under multiplicative idempotency, for any sat-
isfiable OBDA instance (P,D) and BCQ q, the set of polyno-
mials p ∈ NP such that (P,D) |= (q, p) is finite.

PROOF (SKETCH). Under multiplicative-idempotency, for
any OBDA instance (P,D) and BCQ q, the number of possi-
ble monomials occurring p ∈ NP such that (P,D) |= (q, p) is
finite. Thus, the only possibility for this set to be infinite is if
the monomials repeat an unlimited number of times.

To entail such polynomials, arbitrarily many repetitions
should happen in all models of (P,D). However, under
multiplicative-idempotency, any OBDA instance (based on
an annotated DL-LiteR ontology) enjoys the finite domain
property [Artale et al., 2009]. That is, if an OBDA instance
has a model then it has a model I with ∆I finite. �

B Proofs for Section 3
To show Lemma 1 we use the following notation. An OBDA
instance (Pm,Dm) is marked for an OBDA instance (P,D)
if it is the result of:

1. replacing each (R(a, b), p) by (Ra,b(a, b), p), where
Ra,b is a fresh role name;

2. for all a, b ∈ NI and all R ∈ NR occurring in (P,D),
adding a concept inclusion (∃R(−)

a,b v C, v) for each
(∃R(−) v C, u) occurring in it, where v ∈ NV;

3. for all a, b ∈ NI and all R,S ∈ NR occurring in
(P,D), adding a role inclusion (R

(−)
a,b v S

(−)
a,b , v) for

each (R(−) v S(−), u) occurring in it, where v ∈ NV;
4. replacing the annotation of each axiom, mapping and

tuple in a relation of D by fresh v ∈ NV (including the
axioms of items above), so that each v is unique.

Intuitively, we want to ensure that there is a model of
(Pm,Dm) where elements in the anonymous part (i.e., not
in the image of NI) connected (via roles) to the image of an
individual are associated with monomials containing at least
one variable of the semiring, which is not shared by anony-
mous elements connected to the image of another individual.
In other words, we want to ‘mark’ monomials associated to
elements derived from assertions of named individuals.

Conditions 1–4 are necessary and sufficient to ensure that
we cannot find two monomials which are mathematically equal
in I(P,D). Clearly, if Condition 4 does not hold we may find
monomials mathematically equal in I(P,D). As we show in
the following example, this may also happen if 4 holds but not
1–3.
Example 7. Let ((O,M,S),D) be an OBDA instance with

(∃R v ∃S, u) (∃R− v ∃S−, r)
(∃S v ∃R−, s) (∃S− v ∃R, t)

in O and (R(a, b), p) ∈M(D). Then there are two tuples in
RI(P,D) with the annotation p× r × s× u× t. /

To show Lemma 1 we use the classical notion of a canonical
model of an OBDA instance. As in Section 3, for each roleR−
in the OBDA instance ((O,M,S),D), we extend O with the

role inclusions (R− v R, pR) and (R v R−, p′R), where R
is a fresh role name and pR, p′R are fresh variables of a prove-
nance semiring. Assume w.l.o.g. that inverse roles only occur
in such equivalences. Let NMmin be a minimal subset of NM

such that for all p ∈ NM there is q ∈ NMmin where p and q are
mathematically equal. We define the canonical model I(P,D)

of a marked OBDA instance (P,D), with P = (O,M,S), as
the union of I0, I1, . . ., where the Ins are inductively defined
as follows. For n = 0, I0 is defined by:

∆I0 = NI,
∆I0m = NMmin,
AI0 = {(a, p) | (A(a), p) ∈M(D)},
RI0 = {(a, b, p) | (R(a, b), p) ∈M(D)},

for all A ∈ NC and all R ∈ NR, aI0 = a for every a ∈ NI

and pI0 = q ∈ NMmin, with p and q mathematically equal, for
every p ∈ NM. Assume now that In is defined. We define
In+1 by choosing a positive inclusion I ∈ O and applying
one of the following rules,

• if I = (A1 v A, p), (a, vIn) ∈ AIn1 , and ~t = (a, (p ×
v)In) 6∈ AIn , then add ~t to AIn ,

• if I = (R1 v R, p), (a, b, vIn) ∈ RIn1 , and ~t = (a, b, (p ×
v)In) 6∈ RIn , then add ~t to RIn ,

• if I = (R1 v R−, p) or I = (R−1 v R, p), (a, b, vIn) ∈
RIn1 , and ~t = (b, a, (p× v)In) 6∈ RIn , then add ~t to RIn ,

• if I = (∃R v A, p), there is b such that (a, b, vIn) ∈ RIn ,
and ~t = (a, (p× v)In) 6∈ AIn , then add ~t to AIn ,

• if I = (A v ∃R, p), (a, vIn) ∈ AIn , and there is no b such
that ~t = (a, b, (p× v)In) ∈ RIn then add a fresh element b
to ∆In and add ~t to RIn ,

• if I = (∃R1 v ∃R, p), there is b such that (a, b, vIn) ∈
RIn1 , and there is no c such that ~t = (a, c, (p×v)In) ∈ RIn
then add a fresh element c to ∆In , add ~t to RIn .

We assume that rule application is fair, i.e., if a rule is
applicable at a certain place, it will eventually be applied
there. I(P,D) is defined as the union of all such In, where
xI(P,D) = xI0 for every x ∈ NI ∪ NM.

Importantly, the last element of each tuple in I(P,D) is math-
ematically distinct from the others. This holds for I0 since
each axiom of O is associated with a variable of a semiring
appearing in at most one axiom. For n > 0, we have to con-
sider tuples created using fresh anonymous elements. The
interpretation of each individual from NI occurring in O can
be connected via roles to an anonymous part of I(P,D). We
propagate the annotations (which are unique) associated to an
individual to this anonymous part. Clearly, if these individ-
uals are not connected, annotations associated to them form
disjoint sets and the monomials are mathematically distinct.
For connected individuals, we use the assumption that O is
marked. Our assertions are of the form (Ra,b(a, b), p) and
since we add only concept and role inclusions of the form
(∃R(−)

a,b v C, v) and (R
(−)
a,b v S

(−)
a,b , v), the extension of the

fresh roles Ra,b can only have elements in the image of named
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individuals and the extension of R can only have tuples where
at least one element is anonymous. So R

I(P,D)

a,b ∩RI(P,D) = ∅.
With this separation, if an anonymous element is connected

to a after applying, e.g., an inclusion (∃Ra,b v ∃S, p) in the
construction of I(P,D), then we know that p must occur in the
monomials associated to tuples containing this anonymous in-
dividual. On the other hand, if another anonymous element is
connected to b after applying an inclusion (∃R−a,b v ∃S, v) in
the construction of I(P,D), then we know that now v must oc-
cur in the monomials associated to tuples containing this other
anonymous individual. We never re-apply these inclusions
containing fresh roles. So p and v mark the anonymous part
of I(P,D) connected to a and b, respectively. By definition of
(P,D), v and u are distinct variables of a semiring, this means
that the last element of each tuple in I(P,D) is mathematically
distinct from the others.

Let I,J be annotated interpretations. A homomorphism is
a function h : I → J from ∆I to ∆J such that:
• h(aI) = aJ for all a ∈ NI ∪ NM; and
• (~a, pI) ∈ EI implies (h(~a), h(pJ )) ∈ EJ , for all E ∈
NC ∪ NR and p ∈ NM;

where ~a = aI , if E ∈ NC, and ~a = (aI , a′I), with h(~a) =
(h(aI), h(a′I)), if E ∈ NR, for a, a′ ∈ NI. We write I → J
if there is a homomorphism from I to J .
Lemma 3. Let (P,D) be a satisfiable marked OBDA instance
(for some OBDA instance), q a BCQ and p ∈ NP a polynomial.
(P,D) |= (q, p) if, and only if, I(P,D) |= (q, p).

PROOF. By assumption, (P,D) is satisfiable and so, by con-
struction, I(P,D) is a model of (P,D). So (P,D) |= (q, p)
implies I(P,D) |= (q, p). The converse direction follows
from the standard notion that if an interpretation J (here
annotated) satisfies (P,D) then there is a homomorphism
I(P,D) → J . Since the last element of each tuple in I(P,D)

is mathematically distinct from the others I(P,D) → J can
only be injective. So not only J |= q but there is also a
1 to 1 correspondence between the matches of q in I(P,D),
with the respective annotations, and the matches of q in J .
Thus, if I(P,D) |= (q, p) then J |= (q, p). As J is an arbi-
trary annotated intepretation satisfying (P,D), it follows that
(P,D) |= (q, p). �

We are now ready to prove Lemma 1.
Lemma 1. Given a satisfiable OBDA instance (P,D) and a
query (q, p), there are (Pm,Dm) and (qm, pm) such that
• any two monomials p1, p2 appearing in pm are mathe-

matically distinct;
• (P,D) |= (q, p) iff (Pm,Dm) |= (qm, pm); and
• |(Pm,Dm)| + |(qm, pm)| is polynomially bounded by
|(P,D)|+ |(q, p)|.

PROOF. We first argue that if (Pm,Dm) is marked for some
OBDA instance (P,D) then (Pm,Dm) only entails annotated
queries (qm, pm) such that any two monomials p1, p2 appear-
ing in pm are mathematically distinct. By assumption (P,D)
is satisfiable, so (Pm,Dm) is satisfiable and, moreover, I(P,D)

is a model of (P,D). Assume that p ∈ NP contains two mono-
mials which are mathematically equal. Then, for any BCQ

q, (P,D) |= (q, p) iff (P,D) |= q and for every model I of
(P,D), p ⊆ provI(q). This means that for each occurrence
of a monomial in p we find an occurrence of it in provI(q).
However, for I = I(P,D), we know that we cannot find two
monomials which are mathematically equal in provI(q).

Now we argue about the second point of this lemma. Let
(Pm,Dm) be a marked OBDA instance for (P,D) and let
† : NV → NV be the function that maps v ∈ NV occurring in
(Pm,Dm) to †(v) in (P,D). Given pm ∈ NP and a function
† : NV → NV, p†m is the result of simultaneously replacing
each occurrence of v ∈ NV in pm by †(v). Similarly, given
a query qm and q†m is the result of simultaneously replacing
each occurrence of v ∈ NV in qm by †(v) and, in addition, we
replace each Ra,b by R, where R ∈ NR and a, b ∈ NI. We
use † to define a mapping between interpretations. Given an
annotated interpretation I = (∆I ,∆Im, ·I), we define I† as
(∆I ,∆Im, ·I

†
) with ·I† satisfying:

• aI† = aI ∈ ∆I ;
• pI† = (p†)I ∈ ∆Im;

• AI† = {(d, (p†)I) | (d, pI) ∈ AI};
• RI† = {(d, e, (p†)I) | (d, e, pI) ∈ RI} ∪

{(aI , bI , (p†)I) | (aI , bI , pI) ∈ RIa,b},
for every a, b ∈ NI, p ∈ NM, A ∈ NC and R ∈ NR. The
following claim can be proved by structural induction.
Claim 1. Let (Pm,Dm) be a marked OBDA instance for
(P,D) and let † : NV → NV be the function that maps v ∈ NV

occurring in (Pm,Dm) to †(v) in (P,D). For every annotated
interpretation I, the following holds:

• if I |= (Pm,Dm) then I† |= (P,D); and

• if I |= (P,D) then there is J such that I = J † and
J |= (Pm,Dm).

We first show that if (Pm,Dm) |= (qm, pm) and (q†m, p
†
m) =

(q, p) hold, then (P,D) |= (q, p). Assume that (Pm,Dm) |=
(qm, pm) and (q†m, p

†
m) = (q, p). If I |= (P,D) then, by

Claim 1, there isJ such that I = J † andJ |= (Pm,Dm). As
(Pm,Dm) |= (qm, pm), we have that I(Pm,Dm) |= (qm, pm)
and there is a homomorphism from I(Pm,Dm) to J . By defini-
tion of (Pm,Dm), a tuple (in a relation) can only be associated
with multiple annotations in I(Pm,Dm) if this tuple is in I0,
meaning that it is in the image of an assertion inMm(Dm),
with Pm = (Om,Mm,Sm). Moreover, (Pm,Dm) has the
same number of assertions as in (P,D), the only difference
is the renaming of roles in Point 1, and the renaming of an-
notations in Point 4. Thus, if a tuple (in a relation) is as-
sociated with k annotations in I0 then the corresponding
assertion is also associated with k annotations in (P,D),
where the mapping between annotations is given by †. So
I†(Pm,Dm) respects the multiplicity of assertions in I(Pm,Dm).

Thus, I(Pm,Dm) |= (qm, pm) implies I†(Pm,Dm) |= (q†m, p
†
m).

By definition of I†(Pm,Dm), there is a homomorphism from

I†(Pm,Dm) to J †. Since (q†m, p
†
m) = (q, p) and J † = I we

have that I |= (q, p). As I is an arbitrary annotated interpre-
tation satisfying (P,D), we conclude that (P,D) |= (q, p).
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We now show that if (P,D) |= (q, p) holds, then
(Pm,Dm) |= (qm, pm), for some query (qm, pm) and func-
tion † : NV → NV mapping v ∈ NV in (Pm,Dm) to
†(v) in (P,D) and such that (q, p) = (q†m, p

†
m). Assume

(P,D) |= (q, p). In this lemma we assume that (P,D) is
satisfiable, and so, for any marked (Pm,Dm) for (P,D), it
follows from the definition that (Pm,Dm) is satisfiable. This
means that a canonical model I(Pm,Dm) of (Pm,Dm) sat-
isfies (Pm,Dm). Then, by Claim 1, I†(Pm,Dm) |= (P,D).

As (P,D) |= (q, p), we have that I†(Pm,Dm) |= (q, p). The
fact that I(Pm,Dm) |= (qm, pm) for some (qm, pm) such that
(q, p) = (q†m, p

†
m) follows from the construction of I†(Pm,Dm).

Since I(Pm,Dm) is a canonical model of (Pm,Dm), by
Lemma 3, (Pm,Dm) |= (qm, pm).

Finally, as (Pm,Dm) is marked for (P,D), it is easy to see
that |(Pm,Dm)| is polynomial in |(P,D)|, and therefore, also
in |(P,D)|+ |(q, p)|. Regarding the size of (qm, pm), one can
easily see that it depends polynomially on the size of (q, p),
since (q, p) is the result of replacing role names and variables
from NV in (qm, pm). Dependence on |(P,D)| is due to the
function † and the requirement that annotations are unique
in (Pm,Dm), which affects the number of bits necessary to
encode the annotations occurring in (qm, pm). �

With the help of this lemma, we can state the main result of
this section; namely, that the translation for marked ontologies
is correct.

Theorem 1. Let (P,D) be an OBDA instance, q a BCQ and
p ∈ NP a polynomial formed of mathematically distinct mono-
mials. (P,D) |= (q, p) iff (P,D) |= Tr(q, p).

PROOF. By definition of entailment from an ontology, it suf-
fices to show that, for every annotated interpretation I,

I |= (q, p) iff I |= Tr(q, p). (∗)
Indeed, if (∗) holds, then (P,D) |= (q, p) iff for every model
I of (P,D) we have I |= (q, p) iff for every model I of
(P,D) we have I |= Tr(q, p) iff (P,D) |= Tr(q, p).

We now show the claim (∗). Let I be an arbitrary annotated
interpretation.

Assume first that I |= (q, p), and let n be the number
of monomials in p. Then, I |= q and p ⊆ provI(q). By
definition of provI(q), there is a set χI(q) consisting of n
matches of q in I such that:

p =
∑

π∈χI(q)

∏

P (~t,t)∈q
π−(t). (2)

Consider first the case that all terms in q are variables. By
definition of Tr(q, p), there is a function ε mapping χI(q)
to {1, . . . , n} and a BCQ q′ of the form presented in Equa-
tion 1 such that the last term t of atom P (~t, t) in qε(π) is any
monomial v ∈ NM such that vI = π−(t). Let π′ε(π) be the
result of replacing each x ∈ ~x in the domain of πε(π) by
xε(π) ∈ ~xε(π). By definition of qε(π), each π′ε(π) is a match of
qε(π) in I. Then,

⋃
1≤ε(π)≤n π

′
ε(π) is a match of q′ in I. So,

I |= Tr(q, p).

Conversely, assume that I |= Tr(q, p). Then there is a
match π =

⋃
1≤i≤n πi of some q′ ∈ Tr(q, p) in I, where

each πi is a match if the ‘copy’ qi of q in I, 1 ≤ i ≤ n.
Let π′i be the result of replacing each variable xi ∈ ~xi by
x ∈ ~x, 1 ≤ i ≤ n. By definition of qi and q, each π′i is
a match of q in I. Moreover, since any two monomials in
p are not mathematically equal, π′1, . . . , π

′
n are all distinct.

By definition of qi, the product pi of the polynomials in the
domain of π′i is a monomial in p, and the sum of the monomials
p1, . . . , pn is equal to p. We then obtain the same equality of
Equation 2. Thus, p ⊆ provI(q). The proof for BCQs with
individual names is similar, except that ‘copies’ of the query
contain individual names in the corresponding positions. �

Theorem 2 establishes the main properties Algorithm 1.
As already mentioned, termination can be proved using a
similar argument as the one used for PerfectRef [Calvanese
et al., 2007, Lemma 34]. The important point is about the
correctness of the rewritings, which we argue next, as part of
our proof for Theorem 3.
Theorem 3. Answering provenance annotated queries w.r.t.
OBDA instances is NP-complete (combined complexity).
PROOF. The lower bound follows from NP-hardness of con-
junctive query answering in relational databases. We argue
that the problem is in NP. Let (P,D) be an OBDA instance
and let (q, p) be a query. By Lemma 1, there is (Pm,Dm) and
(qm, pm) such that
• (P,D) |= (q, p) iff (Pm,Dm) |= (qm, pm);
• for any two monomials p1, p2 appearing in pm, it holds

that p1 and p2 are mathematically distinct; and
• |(Pm,Dm)| + |(qm, pm)| is polynomially bounded by
|(P,D)|+ |(q, p)|.

By Theorem 1, for such polynomials pm ∈ NP, (Pm,Dm) |=
(qm, pm) iff there is q′ ∈ Tr(qm, pm) s.t. (Pm,Dm) |= q′.
Then, to establish our upper bound we proceed as follows.

Given an OBDA instance (P,D) and a query (q, p), we first
check in LOGSPACE ⊆ PTIME satisfiability of (P,D) [Artale
et al., 2009]. If (P,D) is unsatisfiable then for all queries
(q, p), we have that (P,D) |= (q, p) holds trivially. Then,
assume (P,D) is satisfiable. We guess an OBDA instance
(Pm,Dm) marked for (P,D), a query (qm, pm), and q′ ∈
Tr(qm, pm) such that (P,D) |= (q, p) iff (Pm,Dm) |= q′.
By construction of q′, |q′| is polynomial in |(qm, pm)|, which
in turn is polynomial in |(P,D)|+ |(q, p)| (Lemma 1).

We now adapt the query rewriting algorithm
PerfectRef [Calvanese et al., 2007] to decide whether
(Pm,Dm) |= q′. We guess a rewriting q‡ of q′, and guess
a sequence of pairs (I, n) where I is a positive inclusion
and n is an identifier for an atom position in a query. Each
(I, n) represents a transformation of PerfectRef on a query.
There is a non-deterministic version of PerfectRef which
would follow this sequence of transformations and return
q‡, with q′ as input. The sequence of transformations is of
polynomial size, since every query returned by PerfectRef
can only be generated after a polynomial number of trans-
formations of the initial query. By definition of PerfectRef,
each q‡ ∈ PerfectRef(q′,OT ) is polynomial in |q′|, where
P = (O,M,S) and OT is the set of positive inclusions in O.
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Membership in NP follows from the fact that we can check
in polynomial time that:

1. q′ ∈ Tr(qm, pm);

2. q‡ ∈ PerfectRef(q′,OT ) (using the sequence of transfor-
mations);

3. p is the result of replacing each occurrence of v ∈ NV

in pm by †(v), where † is a function that maps v ∈ NV

occurring in (Pm,Dm) to †(v) in (P,D);

4. q is the result of each occurrence of v ∈ NV in qm by †(v),
in addition to replacing roles Ra,b by R in qm, where †
is as in Point (3); and

our modified algorithm is correct. Correctness is shown as
in [Calvanese et al., 2007], but here we change the notion of
applicability of a positive inclusion I to an atom g and the
definition of gr(g, I) (Definition 1) to ensure that each trans-
formation respects the semantics of annotated DL-LiteR. �

C Proofs for Section 4
Proposition 2. There exists an OBDA instance (P,D) and a
simple query q such that the provenance polynomial of q w.r.t.
(P,D) is formed of exponentially many monomials.

PROOF. Consider the OBDA instance with the ontology O
containing the axioms,

(A v B1, x), (A v C1, x), (Bn v D,x),

(Bi v Bi+1, xi), (Bi v Ci+1, yi), (Ci v Bi+1, xi),

(Ci v Ci+1, yi), (Cn,v D,x),

for 1 ≤ i < n, and M(D) = {(A(a), p)}. Consider the
simple query q = D(a). Every monomial p = x×∏n

i=1 zi,
where each zi ∈ {xi, yi}, is such that O |= (q, p) (and none
other). Hence, the polynomial of the query q is formed by the
sum of 2n different monomials; that is, it is exponential on the
size of the ontology. �
Proposition 3. There exist an OBDA instance (P,D) and a
query q such that the provenance of q w.r.t. (P,D) cannot be
represented in polynomial space. This holds even for idempo-
tent semirings, and if every axiom has a unique label.

PROOF. Let N be a set with n concept names such that
A,B ∈ N . Let ((O,M,S),D) be an OBDA instance with

O = {(C v D,xCD) | C,D ∈ N}, M(D) = {A(a), xA}.
Consider the query q = B(a). We have that O simulates a
complete graph over the nodes in N . Every derivation of B(a)
represents a path from A to B in this graph. Hence, if the
provenance of q could be expressed with polynomial space,
there would be a monotone Boolean formula representing all
the paths fromA toB in the complete graph with n nodes, con-
tradicting the results from [Karchmer and Wigderson, 1988;
Karchmer and Wigderson, 1990]. �
Theorem 4. Let q be a standard BCQ and (P,D) an OBDA
instance. Given q and (P,D) as input to Algorithm 2, it
outputs the provenance of q w.r.t. (P,D).

PROOF. Recall that in Section 4 we consider idempotent
semirings. Assume a standard BCQ q and an OBDA instance
(P,D) is given as input to Algorithm 2 and it returns p ∈ NP.
Then, it suffices to show that every monomial m ∈ NM in
p is such that (P,D) |= (q,m) and, conversely, if there is
m′ ∈ NM such that (P,D) |= (q,m′) then there is a mono-
mial in p that is mathematically equal to m′ (by ‘monomial
in a polynomial p’ we mean that the monomial is one of the
elements of the sum of monomials, given that p is in expanded
form).

By definition of Algorihm 2, if m ∈ NM is a monomial
in p then there is a match of q′~y where q′ is a rewriting of
q? in IM(D). By Definition 2, the last term of each atom of
the rewriting q′ is associated with the product of ? and the
annotations of the inclusions used to derive the atom. We
then replace ? in each atom by the corresponding annotation
of the tuple in the match. By soundness of the algorithm
PerfectRef [Calvanese et al., 2007] and the semantics of an-
notated interpretations, (P,D) |= (q,m).

Conversely, if (P,D) |= (q,m) then, by the semantics of
annotated interpretations, m corresponds to a derivation of q
using axioms of (P,D). By completeness of the algorithm
PerfectRef [Calvanese et al., 2007], there is a query rewriting
q′ of q? in PR, following Definition 2, and a match of q′~y in
IM(D) such that m is the product of the annotations resulting
from replacing ? in the last term of each atom of q′ by the cor-
responding annotation of the tuple in the match. By definition
of Algorihm 2, m is added to the polynomial returned by the
algorithm. �

D Algorithm for Section 5
We first briefly recall the query answering algorithm used in
Ontop, and introduce the ProvSQL extension of PostgreSQL.
Then we explain how OntoProv extends Ontop with the sup-
port for provenance.

D.1 ProvSQL
The ProvSQL project is a PostgreSQL extension to add support
for (m-)semiring provenance. It supports semiring provenance,
with or without monus (m-semiring). Note that the monus
operator is beyond the semiring framework considered here.
ProvSQL adds an extra provsql column to each table in the
database. This column associates to each tuple a universally
unique identifier (UUID) as a provenance token. Likewise,
each answer is also associated to a UUID. ProSQL providdes
several functions to intepret these tokens into several kinds
of provenance information. The next example shows how
ProvSQL works.

Example 8. Consider the following two tables

EMP

EMPNO ENAME JOB DEPTNO provsql

7367 SMITH CLERK 10 t11
9527 JOHN HR 10 t12
4839 MARY PROGR 10 t13
4839 RALPH SYSADM 10 t14
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Algorithm 3 Ontop
Input: a query q, an OBDA instance I = ((O,M,S),D)
Output: the answer to q w.r.t. I

1: // offline
2: O′ = classify(O)
3: Msat = saturate(M,O′)
4: Msat = optimizeM(Msat)
5: // online
6: q′ = unfold(q,Msat)
7: Q = optimizeQ(q′, S)
8: return eval(Q,D)

DEPT

DEPTNO DNAME LOC provsql

10 APPSERVER NEW YORK t21

By calling the add provenance functions, ProvSQL adds
a column provsql to both tables, add generates a unique
provenance token for each tuple.

Consider the SQL query:

SELECT e.ENAME, d.DNAME
FROM EMP e, DPT d
WHERE e.DEPTNO = d.DEPTNO

AND JOB=’PROGR’

To this query ProvSQL returns the following result

ENAME DNAME provsql

Mary APPSERVER t31

The additional column provsql is added automatically
by ProvSQL, and it contains a fresh token which encodes
the provenance information for the tuple in the result.
Such token can be then fed to ProvSQL functions, such
as the where provenance function, to decode the de-
sired provenance information. In our example, by using
where provenance(’t31’) we would get

{[EMP:t13:2],[DEPT:t21:2]}

saying that the result tuple has been derived from the second
attributes of the two tuples t13 and t21 in the tables EMP and
DEPT. /

D.2 Algorithm of Ontop
In Ontop, tree-witness rewriting is switched off by default.

This because it is recognized that queries which trigger tree-
witness rewriting are mostly of theoretical relevance, and ex-
tremely rare in practice (actually we are not aware of any
real-world scenario in which such queries are utilized). A rea-
son for this is that whereas in CQs it is natural to write queries
with existentially quantified variables (non-answer variables
are always existentially quantified), in SPARQL (under the
OWL 2 QL entailment regime) doing so is more difficult.

Ontop is an OBDA system that operates over OWL 2 QL
ontologies [Motik et al., 2012] and SPARQL [Harris and
Seaborne, 2013] queries. The standard semantics for such
setting is the OWL 2 QL entailment regime [Glimm and Og-
buji, 2013], which slightly diverges from the one adopted in

the DL context [Kontchakov et al., 2014]. For performance
reasons, Ontop does not rely on PerfectRef, but instead adopts
a mixed strategy based on mapping saturation and tree-witness
rewriting [Calvanese et al., 2017]. Mapping saturation simu-
lates the saturation of the ABox with respect to basic concept
and role inclusions, whereas tree-witness rewriting rewrites
the query so as to take into account those axioms with an
existential on the right-hand side.

In Ontop, tree-witness rewriting is switched off by default.
Indeed, for compliance with the OWL 2 QL entailment regime,
also non-answer variables in a SPARQL query have to match
known individuals (and not existentially implied ones). There-
fore, SPARQL queries for which applying tree-witness rewrit-
ing may actually result in additional answers are rather un-
natural (they are obtained by constructing a complex concept
expression that makes use of value restriction within the query
itself), and it is commonly recognized that they are rare in prac-
tical scenarios (actually we are not aware of any real-world sce-
nario in which such queries are utilized). Note that this differs
from the semantics of CQs, where every non-answer variable
can match also existentially implied individuals. Therefore it
is more natural to write CQs for which applying tree-witness
rewriting has a concrete impact on query answering.

We have adapted the mapping saturation process to our
setting with provenance, so as to support query answering
with provenance in relevant practical scenarios, and be able to
measure the performance in them. A full implementation that
also adapts the tree-witness rewriting is nevertheless important
and will be part of future work, but it is not relevant for the
(real-world) tests in this work. The Ontop algorithm, limited
to the mapping saturation approach, is outlined in Algorithm 3.
The algorithm takes as inputs an OBDA instance I and a
SPARQL query q, and returns the answers to q w.r.t. I . The
workflow can be divided into an offline stage and an online
stage. During the offline stage (i.e., system start-up), Ontop
first classifies the ontologyO. The result of the classification is
a complete hierarchy of classes and properties, which is stored
in-memory as a directed acyclic graph. Then it compiles the
classified ontology into the input mappingM, thus obtaining
the saturated mappingMsat, also known as the T-mapping.

During the online stage (i.e., query execution), Ontop trans-
forms the input SPARQL query q into an SQL query q′ by
exploiting the saturated-mappingMsat, and then produces an
optimized SQL query Q by exploiting the database integrity
constraints S. Finally, Q is evaluated over the database in-
stance D.

Next example shows the steps from Algorithm 3.
Example 9. Consider the setting from Example 8. Consider
the following ontology stating that programmers are employ-
ees.

ax1 SubClassOf(:Programmer, :Employee).

Consider the following mapping assertions:

MapID: m1
Target: triple(:emp/{EMPNO},rdf:type,:Employee).

triple(:emp/{EMPNO},ex:name,{ENAME}).
triple(:emp/{EMPNO},ex:dept,:dept/{DEPTNO}).

Source: SELECT * FROM EMP

MapID: m2
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Target: triple(:dept/{DEPTNO},rdf:type,:Department).
triple(:dept/{DEPTNO},ex:name,{DNAME}).
triple(:dept/{DEPTNO},ex:loc, {LOC}).

Source: SELECT * FROM DEPT

MapID: m3
Target: triple(:emp/{EMPNO},rdf:type,:Programmer).
Source: SELECT * FROM EMP WHERE JOB=’PROGR’

After ontology classification and mapping saturation, the
saturated set of mappings will contain the original mappings
plus the following mapping:

MapID: m3_ax1
Target: triple(:emp/{EMPNO},rdf:type,:Employee).
Source: SELECT * FROM EMP WHERE JOB=’PROGR’

This mapping is derived from mapping m3 and axiom ax1.
Since the SQL query in m3 ax1 is contained in the SQL query
in m1, the mapping is in fact redundant and gets removed in
the optimizeM step. Therefore, the final saturated set of
mappings will coincide with the original set of mappings.

Consider the following SPARQL query relating employees
to departments they work in:

SELECT ?eName ?dName WHERE {
?e rdf:type :Employee;

ex:name ?eName;
ex:dept ?d .

?d ex:name dName.
}

Such query has the following algebra tree:

SELECT ?eName ?dName
JOIN

triple(?e, rdf:type, :Employee).
triple(?e, ex:name, ?eName).
triple(?e, ex:dept, ?d).
triple(?d, ex:name, ?dName).

In the unfold step, each triple in the algebra tree is
replaced by the corresponding source part in the mapping.
The query q′ look like:

SELECT e1.ENAME as eName, d.DNAME as dName,
FROM EMP e1, EMP e2, EMP e3, DPT d
WHERE e1.EMPNO=e2.EMPNO AND

e1.EMPNO=e3.EMPNO AND
e1.DEPTNO = d.DEPTNO AND
e1.JOB=’PROGR’

In the optimizeQ step, the redundant self-joins are re-
moved and the final query Q will be:

SELECT e.ENAME as eName, d.DNAME as dName,
FROM EMP e, DPT d
WHERE e.DEPTNO = d.DEPTNO

AND JOB=’PROGR’

D.3 The OntoProv System
OntoProv accepts a BGP query, possibly with a FILTER con-
dition, and returns the answer of the query together with the
provenance for each answer tuple.

Algorithm 4 outlines the OntoProv approach. The main
workflow is the same, but now each step has to deal also with
the provenance information.

We explain the algorithm by means of an example.

Algorithm 4 OntoProv
Input: a query q, an OBDA instance I = ((O,M,S),D)
Output: the answer to q w.r.t. I

1: // offline
2: O′ = classifyAndStorePaths(O)
3: Mprov = addMappingsProvenance(M)
4: M′ =M∪Mprov

5: Msat = saturate(M′,O′)
6: Msat = optimizeM(Msat)
7: // online
8: qM

sat

= unfold(q,Msat)

9: Q = optimizeQ(qM
sat

, S)
10: return eval(Q,D)

Example 10. Consider the scenario from Example 9. The
function classifyAndStorePaths classifies the ontol-
ogy and stores, for each (basic) concept and role in the ontol-
ogy, the paths to their descendants. For our example, it stores
the path:

p[:Employee,:Engineer]

In addMappingsProvenance, the mappings are used
to generate new mappings encoding the provenance informa-
tion (i.e., mappings IDs and provenance returned by ProvSQL)
in their target parts (which are now quadruples). For our
example, these mappings are:

MapID: m1quad
Target: quad(:emp/{EMPNO},rdf:type,:Employee,

:prov/mkey-m1/dkey-{provsql}).
quad(:emp/{EMPNO},ex:name,{ENAME},

:prov/mkey-m1/dkey-{provsql}).
quad(:emp/{EMPNO},ex:dept,:dept/{DEPTNO},

:prov/mkey-m1/dkey-{provsql}).
Source: SELECT * FROM EMP

MapID: m2quad
Target: quad(:dept/{DEPTNO},rdf:type,:Department,

:prov/mkey-m2/dkey-{provsql}).
quad(:dept/{DEPTNO},ex:name,{DNAME},

:prov/mkey-m2/dkey-{provsql}).
quad(:dept/{DEPTNO},ex:loc, {LOC},

:prov/mkey-m2/dkey-{provsql}).
Source: SELECT * FROM DEPT

MapID: m3quad
Target: quad(:emp/{EMPNO},rdf:type,:Programmer,

:prov/mkey-m3/dkey-{provsql}).
Source: SELECT * FROM EMP WHERE JOB=’PROGR’

The saturated set of mappings is derived as in Example 9.
Hence, it will contain the following mapping assertion:

MapID: m3_ax1quad
Target: quad(:emp/{EMPNO},rdf:type,:Employee,

:prov/mkey-m3/okey-p[:Programmer,:Employee
]/dkey-{provsql}).

Source: SELECT * FROM EMP WHERE JOB=’PROGR’

Such mapping encodes also the ontology axioms that have
been used to derive it. In particular, it encodes the path

okey-p[:Programmer,:Employee]

Observe that, although the SQL query in m3 ax1quad is
contained in the SQL query in m1quad, the target parts of
such mappings do not coincide. Therefore, the added mapping
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is not redundant, and it will not be removed by the function
optimizeM.

The input query gets rewritten into an equivalent query
containing named graphs patterns:

SELECT ?eName ?dName ?p1 ?p2 ?p3 ?p4 WHERE {
GRAPH ?p1 {?e rdf:type :Employee.}
GRAPH ?p2 {?e ex:name ?eName.}
GRAPH ?p3 {?e ex:dept ?d .}
GRAPH ?p4 {?d ex:name dName.}

}

The algebra tree for such query is:

SELECT ?eName ?dName ?p1 ?p2 ?p3 ?p4
JOIN

quad(?e, rdf:type, :Employee, ?p1).
quad(?e, ex:name, ?eName, ?p2).
quad(?e, ex:dept, ?d, ?p3).
quad(?d, ex:name, ?dName, ?p4).

The unfolding and optimizations proceed in the same way
as for Example 9. Due to the presence of the mapping
m3 ax1quad, the final SQL query will contain a union:

SELECT e.ENAME as eName, d.DNAME as dName,
’:prov/mkey-m1/dkey-’ || e.provsql as p1,
’:prov/mkey-m2/dkey-’ || e.provsql as p2

FROM EMP e, DPT d
WHERE e.DEPTNO = d.DEPTNO
UNION
SELECT e.ENAME as eName, d.DNAME as dName,

’:prov/mkey-m3/okey-p[:Programmer,:Employee]/dkey-’
|| e.provsql as p1,

’:prov/mkey-m2/dkey-’ || e.provsql as p2
FROM EMP e, DPT d
WHERE e.DEPTNO = d.DEPTNO

AND JOB=’PROGR’

Such union keeps track of the fact that employees can either
be derived by the mapping m1 alone, or by exploiting m3
together with the ontology axiom. /
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