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Abstract

Linear temporal logic over finite traces is used as a formalism for temporal specification
in automated planning, process modelling and (runtime) verification. In this paper, we
investigate first-order temporal logic over finite traces, lifting some known results to a
more expressive setting. Satisfiability in the two-variable monodic fragment is shown to
be ExpSpace-complete, as for the infinite trace case, while it decreases to NExpTime
when we consider finite traces bounded in the number of instants. This leads to new
complexity results for temporal description logics over finite traces. We further investigate
satisfiability and equivalences of formulas under a model-theoretic perspective, providing
a set of semantic conditions that characterise when the distinction between reasoning over
finite and infinite traces can be blurred. Finally, we apply these conditions to planning
and verification.
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Abstract

Linear temporal logic over finite traces is used as a
formalism for temporal specification in automated
planning, process modelling and (runtime) verifica-
tion. In this paper, we investigate first-order tem-
poral logic over finite traces, lifting some known
results to a more expressive setting. Satisfiability in
the two-variable monodic fragment is shown to be
EXPSPACE-complete, as for the infinite trace case,
while it decreases to NEXPTIME when we consider
finite traces bounded in the number of instants. This
leads to new complexity results for temporal descrip-
tion logics over finite traces. We further investigate
satisfiability and equivalences of formulas under a
model-theoretic perspective, providing a set of se-
mantic conditions that characterise when the distinc-
tion between reasoning over finite and infinite traces
can be blurred. Finally, we apply these conditions
to planning and verification.

1 Introduction
Since the introduction of linear temporal logic (LTL), several
propositional and first-order LTL-based formalisms have been
developed for applications such as automated planning [Bac-
chus and Kabanza, 2000; Baier and McIlraith, 2006], process
modelling [van der Aalst and Pesic, 2006; Maggi et al., 2011]
and verification of programs [Manna and Pnueli, 1995]. Re-
lated research in knowledge representation has focused on de-
cidable fragments of first-order temporal logic, TUQL [Hod-
kinson et al., 2000; Gabbay et al., 2003], and in particular on
temporal description logics [Wolter and Zakharyaschev, 1998;
Artale and Franconi, 2005] that combine LTL operators with
description logics (DLs). These logics usually lie within the
two-variable monodic fragment of TUQL, TUQL221 , obtained
by restricting to formulas having at most two variables, and
so that the temporal operators are applied only to subformu-
las with at most one free variable. The complexity of the
satisfiability problem ranges from EXPSPACE-complete, for
TUQL221 [Gabbay et al., 2003; Hodkinson et al., 2003], down
to NEXPTIME- or EXPTIME-complete, for temporal exten-
sions of ALC without temporalised roles and with restrictions
on the application of temporal operators [Lutz et al., 2008;

Baader et al., 2012], or even in NP or NLOGSPACE, by mod-
ifying further both the temporal and the DL components, as
in some temporal extensions of DL-Lite for conceptual data
modelling [Artale et al., 2014].

Besides the usual LTL semantics defined over infinite lin-
ear structures, attention has been devoted also to finite traces,
which are linear temporal structures with only a finite number
of time points [Cerrito et al., 1999; De Giacomo and Vardi,
2013; Fionda and Greco, 2016]. Indeed, the finiteness of
the time dimension is a fairly natural restriction. In auto-
mated planning, or when modelling business processes with a
declarative formalism, we consider finite action plans and ter-
minating services, often within a given temporal bound [Bauer
and Haslum, 2010; De Giacomo et al., 2014a; De Giacomo
et al., 2014b; Camacho et al., 2017]. In runtime verifica-
tion, only the current finite behaviour of the system is taken
into account. Infinite models are then considered to check
whether a given requirement is satisfied in the infinite exten-
sions of this finite trace [Giannakopoulou and Havelund, 2001;
Bauer et al., 2010]. Although some recent work has consid-
ered temporal extensions of DLs in the context of runtime
verification [Baader and Lippmann, 2014] and business pro-
cess modelling [van der Aalst et al., 2017], the proposals
developed so far are based on the usual infinite trace semantics
and are limited in expressivity.

This work focuses on first-order temporal logic over finite
traces, T f

U QL [Cerrito et al., 1999], defined by extending the
first-order language with temporal operators interpreted over
finite traces. We obtain the following main results.
• The complexity of the two-variable monodic fragment,

T f
U QL221 , remains EXPSPACE-complete, but lowers

down to NEXPTIME if we restrict to traces with a bound
k on the number of instants. Moreover, T f

U QL221 has the
bounded model property.
• Similar results (including the bounded model property)

also hold for the temporal DL TfUALC, where the com-
plexity further reduces to EXPTIME if only global ax-
ioms and finite traces with a fixed bound on instants are
allowed.
• We establish semantic and syntactic conditions which

characterise when the distinction between reasoning over
finite and infinite traces can be completely blurred, pro-
viding connections with planning and verification.



Concerning this last point, several approaches have been con-
sidered to preserve satisfiability of formulas from the finite to
the infinite case, so to reuse algorithms developed for the infi-
nite case [Bauer and Haslum, 2010; De Giacomo et al., 2014b].
Here, we determine conditions that preserve satisfiability also
in the other direction, from infinite to finite traces, allowing
for the application of dedicated finite traces reasoners [Li et
al., 2014]. We provide a uniform framework for these no-
tions, bridging finite and infinite trace semantics. Proofs are
available at http://publish.lycos.com/ijcai-2019/ijcai-19/.

2 First-order Temporal Logics
The first-order temporal language, TUQL [Gabbay et al.,
2003], is obtained by extending the usual first-order language
with the temporal operator until (U) interpreted over discrete
linear structures, called traces.
Syntax The alphabet of TUQL consists of countably infi-
nite and pairwise disjoint sets of predicates NP (with ar(P ) ∈
N being the arity of P ∈ NP), constants (or individual names)
NI, and variables Var; the logical operators ¬,∧; the existen-
tial quantifier ∃, and the temporal operator U (until). The
formulas of TUQL are of the form:

ϕ,ψ ::= P (τ̄) | ¬ϕ | ϕ ∧ ψ | ∃xϕ | ϕ U ψ,
where P ∈ NP, τ̄ = (τ1, . . . , τar(P )) is a tuple of terms,
i.e., constants or variables, and x ∈ Var. Formulas with-
out the until operator are called non-temporal. We write
ϕ(x1, . . . , xm) to indicate that the free variables of a formula
ϕ are in {x1, . . . , xm}. For p ∈ N, the p-variable fragment of
TUQL, denoted by TUQLp, consists of TUQL formulas with
at most p variables (TUQL0 is simply propositional LTL). The
monodic fragment of TUQL, denoted by TUQL21 , consists of
formulas such that all subformulas of the form ϕ U ψ have at
most one free variable.
Semantics A first-order temporal interpretation is a struc-
ture M = (∆M, (In)n∈T), where T is an interval of the form
[0,∞) or [0, l], with l ∈ N, and each In is a classical first-
order interpretation with domain ∆M (or simply ∆): we have
P In ⊆ ∆ar(P ), for each P ∈ NP, and aIi = aIj ∈ ∆ for all
a ∈ NI and i, j ∈ N, i.e., constants are rigid designators (with
fixed interpretation, denoted simply by aI ). The stipulation
that all time points share the same domain ∆ is called the
constant domain assumption (meaning that objects are not
created or destroyed over time), and it is the most general
choice in the sense that increasing, decreasing, and varying
domains can all be reduced to it [Gabbay et al., 2003]. An as-
signment in M is a function a from terms to ∆: a(τ) = a(x),
if τ = x, and a(τ) = aI , if τ = a ∈ NI (given a tuple of m
terms τ̄ = (τ1, . . . , τm), we set a(τ̄) = (a(τ1), . . . , a(τm)).
Satisfaction of a formula ϕ in M at time point n ∈ T under
assignment a (written M, n |=a ϕ) is inductively defined as:

M, n |=a P (τ̄) iff a(τ̄) ∈ P In ,
M, n |=a ¬ϕ iff not M, n |=a ϕ,
M, n |=a ϕ ∧ ψ iff M, n |=a ϕ and M, n |=a ψ,

M, n |=a ∃xϕ iff M, n |=a′ ϕ for some assignment a′
that can differ from a only on x,

M, n |=a ϕ U ψ iff ∃m ∈ T,m > n : M,m |=a ψ and
∀i ∈ (n,m) : M, i |=a ϕ.

We say that ϕ is satisfied in M (and M is a model of ϕ),
writing M |= ϕ, if M, 0 |=a ϕ, for some a. Moreover, ϕ is
said to be satisfiable if it is satisfied in some M. A formula
ϕ logically implies a formula ψ if every M that satisfies ϕ
satisfies also ψ, and we write ϕ |= ψ. We say that ϕ and ψ are
equivalent, writing ϕ ≡ ψ, if ϕ |= ψ and ψ |= ϕ.

In the following, we call finite trace a first-order tempo-
ral interpretation with T = [0, l], often denoted by F =
(∆F, (Fn)n∈[0,l]), while infinite traces, based on T = [0,∞),
will be denoted by I = (∆I, (In)n∈[0,∞)). Thus, by T i

UQL
we denote the language interpreted over infinite traces, T f

U QL
is the language interpreted over finite traces, while, for a fixed
k ∈ N, k > 0, the semantics of T k

UQL is restricted to finite
traces based on T = [0, l], with l ≤ k − 1.

Let F = (∆F, (Fn)n∈[0,l]) and I = (∆I, (In)n∈[0,∞))

be, respectively, a finite and an infinite trace s.t. ∆F = ∆I

(writing ∆) and aF = aI , for all a ∈ NI. We denote by
F · I = (∆F·I, (F · In)n∈[0,∞)) the extension of F with I,
defined as the infinite trace with ∆F·I = ∆, aF·I = aF , for
all a ∈ NI, and for P ∈ NP, n ∈ N:

PF·In =

{
PFn , if n ∈ [0, l]

P In−(l+1) , if n ∈ [l + 1,∞).

In addition to the standard Boolean equivalences, we will
use the following equivalences for formulas: ⊥ ≡ ∃x(P (x) ∧
¬P (x)), > ≡ ¬⊥; ©ϕ ≡ ©1ϕ ≡ ⊥ U ϕ; ©qϕ ≡ ©©q−1ϕ,
with q > 1; 3ϕ ≡ > U ϕ; 2ϕ ≡ ¬3¬ϕ; 3+ϕ ≡ ϕ ∨ 3ϕ;
and 2+ϕ ≡ ¬3+¬ϕ. Over finite traces, last ≡ ¬©> is
satisfiable in the last time point.

3 Satisfiability over Finite Traces
In the following we show how to reduce the formula satisfiabil-
ity problem over finite traces to the same problem over infinite
traces. Similar to the encoding proposed in [De Giacomo and
Vardi, 2013] for propositional LTL, to capture the finiteness
of the temporal dimension, we introduce a fresh predicate E
(standing for the end of time) with the following properties:
(i) there is a least one instant before the end of time; (ii) the
end of time comes for all objects; (iii) the end of time comes
at the same time for every object; (iv) the end of time never
goes away. We axiomatise these properties as follows:

ψf1 = ∀x¬E(x) (Point (i)),
ψf2

= (∀x¬E(x)) U (∀xE(x)) (Points (ii), (iii)),
ψf3

= 2∀x(E(x)→ ©E(x)) (Point (iv)).

We now characterise models satisfying the end of time for-
mula ψf = ψf1

∧ ψf2
∧ ψf3

. Let F = (∆, (Fn)n∈[0,l]) and
I = (∆, (In)n∈[0,∞)) be, respectively, a finite and an infinite
trace with the same domain ∆ and such that aF = aI , for all
a ∈ NI. We denote by F ·E I the end extension of F with I,
defined as the extension F ·I, for all P ∈ NP \ {E}, such that:

EF·EIn =

{∅, if n ∈ [0, l]

∆, if n ∈ [l + 1,∞)

Clearly, the extension of E characterises the satisfiability of
ψf . We formalise this in the next lemma.



Lemma 1. For every infinite trace I, I |= ψf iff I = F ·E I′,
for some finite trace F and some infinite trace I′.

We now introduce a translation ·† from T f
U QL to T i

UQL
formulas, such that, together with the end of time formula,
ψf , it captures those formulas satisfiable over finite traces.
More formally, a T f

U QL formula ϕ is satisfiable if and only
if its translation ϕ† is satisfiable in a T i

UQL model that also
satisfies the formula ψf . The translation ·† is defined as:

(P (τ̄))† 7→ P (τ̄), (¬ϕ)† 7→ ¬ϕ†,
(ϕ ∧ ψ)† 7→ ϕ† ∧ ψ†, (∃xϕ)† 7→ ∃xϕ†,

(ϕ U ψ)† 7→ ϕ† U (ψ† ∧ ψf1).

Lemma 2 states the correctness of ·†.
Lemma 2. Let F ·E I be an end extension of a finite trace F.
For every T f

U QL formula ϕ and every assignment a, F |=a

ϕ iff F ·E I |=a ϕ†.
From the previous lemmas, we obtain a reduction of the
T f
U QL satisfiability problem to the same problem for T i

UQL.

Theorem 3. Let ϕ be a T f
U QL formula. Then ϕ is satisfiable

iff ϕ† ∧ ψf is a satisfiable T i
UQL formula.

We use the translation to transfer the EXPSPACE upper
bound for TUQL221 over infinite traces to finite traces [Hod-
kinson et al., 2003]. The lower bound can be proved using
similar ideas as those used to prove hardness of TUQL221 .

Theorem 4. Satisfiability in T f
U QL221 is EXPSPACE-

complete.
We now study the satisfiability in T k

UQL221 , where we re-
strict the problem to traces with at most k time points, with k
given in binary, as part of the input. We show that in this case
the complexity of the satisfiability problem decreases from
EXPSPACE to NEXPTIME. Hardness follows from the fact
that: (1) one can translate ALC-LTL with rigid concepts to
T k
UQL221 ; and (2) satisfiability in ALC-LTL with rigid con-

cepts is NEXPTIME-hard [Baader et al., 2012, Lemma 6.2].
For the upper bound, we resort to a classical abstraction of
models called quasimodels [Gabbay et al., 2003]. One can
show that there is a model with at most k time points iff there
is a quasimodel with a sequence of states (sets of subformulas
with certain constraints) of length at most k. Then, our upper
bound is obtained by guessing an exponential size sequence
of states which serves as a certificate for the existence of a
quasimodel (and therefore a model) for the input formula.

Theorem 5. Satisfiability in T k
UQL221 is NEXPTIME-

complete.

We end this section by establishing that T f
U QL221 enjoys the

bounded model property and the bounded domain property.
If there is a finite trace which satisfies a T f

U QL221 formula ϕ
then there is a finite trace with at most k time points, with k
double exponentially large w.r.t. the size of ϕ. This bound
follows from the fact that (1) if there is a quasimodel for ϕ
then there is a quasimodel for ϕ where there is no repetition of
states [Gabbay et al., 2003], except for the last state; and (2)

the fact that the length of the finite non-repeting sequence of
states is correlated with the number of time points in a finite
trace. The number of distinct states of a T f

U QL221 formula
is the same as for a TUQL221 formula, which is known to
be double exponential [Gabbay et al., 2003]. This directly
implies that T f

U QL221 enjoys the bounded trace property.

Theorem 6. Satisfiability of ϕ in T f
U QL221 implies satisfiabil-

ity of ϕ in T k
UQL221 with k double exponential in |ϕ|.

We now establish that a T k
UQL221 formula has the bounded

domain property: if it is satisfiable, then there is a model with
the size of the domain exponential in k (meaning that it is
double exponential in the binary representation of k).

Theorem 7. Satisfiability of ϕ in T k
UQL221 implies the exis-

tence of a model with domain size exponential in k and ϕ.

Since satisfiability in T f
U QL221 implies satisfiability in

T k
UQL221 for some k > 0, the formula

2+∀x(P (x)→©2+(¬P (x) ∧ ∃yR(x, y) ∧ P (y))), (*)

which only admits models with an infinite domain [Lutz et al.,
2008], is unsatisfiable over finite traces.

4 Finite vs. Infinite Traces
While certain formulas, such as 2>, are satisfiable both over fi-
nite and infinite traces, others, e.g., 3last and 2+©>, are only
satisfiable over finite traces and over infinite traces, respec-
tively. One then wonders, when does satisfiability over finite
and infinite traces coincide so that solvers can simply stop
trying to build the lasso of an infinite trace when a finite trace
is built? A similar question can be posed for the problem of
equivalences between formulas. For example, 32(ϕ∨ψ) and
(32ϕ) ∨ (32ψ) are equivalent over finite traces but not over
infinite traces [Bauer and Haslum, 2010]. Moreover, 2+3+ϕ
and 3+2+ϕ are not equivalent over infinite traces, whereas
over finite traces they are both equivalent to 3+(last∧ϕ) [De
Giacomo and Vardi, 2013]. Conversely, ⊥ and last are only
equivalent over infinite traces.

In this section we address these questions and investigate
the distinction between reasoning over finite and over infi-
nite traces. More specifically, we propose semantic properties
which guarantee that formula satisfiability and equivalences
between formulas are preserved, and thus, the distinction can
be blurred. Given a finite trace F, we define the set of exten-
sions of F as the set Ext(F) = {I | I = F · I′, for some I’}.
Instead, given an infinite trace I, the set of prefixes of I is
the set Pre(I) = {F | I = F · I′, for some I’}. For a TUQL
formula ϕ and a quantifier Q ∈ {∃,∀}, we say that ϕ is FQ
if, for all finite traces F and all assignments a, it satisfies the
finite trace property:

F |=a ϕ⇔ QI ∈ Ext(F).I |=a ϕ,

and, similarly, ϕ is IQ if, for all infinite traces I and all assign-
ments a, it satisfies the infinite trace property:

I |=a ϕ⇔ QF ∈ Pre(I).F |=a ϕ.



Property Formulas

F∃
3+last ∨3P (x);

3+last ∨3P (x) ∨ (*).

F∀
3+P (x);

3+P (x) ∨ (*).

I∃
2©> ∨ last;

2©> ∨©last.

I∀
2+P (x) ∨3+(P (x) ∧ last);

2+P (x) ∨3+(P (x) ∧©last).

Table 1: Formulas satisfying exactly one of the properties (Formula
(*) is from Section 3).

Examples of formulas satisfying F∃ and I∀ are formulas of the
form 2+ϕ, where ϕ is a formula without temporal operators
(formulas of the form 2ϕ are also I∀ but not F∃ because of,
e.g., 2⊥). On the other hand, the semantic properties F∀
and I∃ capture formulas of the form 3+ϕ, where ϕ is again a
formula without temporal operators (formulas of the form 3ϕ
are also I∃ but not F∀ because of, e.g., 3>).

The semantic properties, FQ and IQ, capture different
classes of TUQL formulas, as we illustrate in Table 1. We
formalise this statement with the following theorem.

Theorem 8. Let TUQL(P ) denote the set of TUQL formulas
which satisfy property P . The sets TUQL(F∃), TUQL(F∀),
TUQL(I∃), and TUQL(I∀) are mutually incomparable.

One can also restrict to the ‘one directional’ version of the
above properties. We denote by F◦Q and I◦Q, where ◦ ∈ {⇒
,⇐}, the corresponding ‘⇒’ and ‘⇐’ directions of the FQ
and IQ properties, respectively. On the relationship between
these one directional properties, we have the following. Given
two different quantifiers Q and Q′ (among ∃ and ∀), a TUQL
formula ϕ is F⇒Q if, and only if, its negation ¬ϕ is F⇐Q′ .
Similarly, ϕ is I⇒Q if, and only if, ¬ϕ is I⇐Q′ . Moreover, if
a TUQL formula ϕ is F⇒∀, then it is also F⇒∃, and if ϕ is
I⇒∀, it is I⇒∃ as well. However, the sets of formulas satisfying
F⇒∀ and I⇒∃ are incomparable. Indeed, the formula 2+©>
is F⇒∀ and not I⇒∃. On the other hand, the sets of formulas
satisfying I⇒∃ and F⇒∀ are also incomparable. To see this,
consider 3last, which is I⇒∃ but not F⇒∀.

In Theorem 3, we have proved that T f
U QL formulas can be

translated into equisatisfiable T i
UQL formulas. Such transla-

tion is not always needed, since for some classes of formulas
satisfiability is already preserved. Indeed, for a TUQL for-
mula ϕ: if ϕ is F⇒∃, then it is T f

U QL satisfiable only if it
is T i
UQL satisfiable; moreover, if ϕ is I⇒∃, then it is T i

UQL
satisfiable only if it is T f

U QL satisfiable.
We now consider the problem of formula equivalence, by

showing under which semantic properties equivalence between
formulas can be blurred. Given TUQL formulas ϕ and ψ, we
write ϕ ≡I ψ if ϕ and ψ are T i

UQL equivalent, and ϕ ≡F ψ

if they are T f
U QL equivalent. The following theorem provides

sufficient conditions to preserve formula equivalence from the
infinite to the finite case (cf. the notion of LTL compliance
in [Bauer et al., 2010]).

Theorem 9. Given TUQL formulas ϕ and ψ, ϕ ≡I ψ implies
ϕ ≡F ψ whenever both ϕ and ψ are (1) F∃; or (2) F∀; or (3)
F⇒∃ and I⇒∀.

Theorem 9 does not hold for formulas that satisfy only I∃ or I∀.
Consider the formulas 2©> ∨ last and 2©> ∨©last, which
are I∃. These formulas are equivalent only over infinite traces.
Also, 2+P (x)∨3+(P (x)∧ last) and 2+P (x)∨3+(P (x)∧
©last) are I∀, and equivalent over infinite but not over finite
traces. This example also shows that the condition I⇒∀ alone is
not sufficient for Theorem 9. Moreover, F⇒∃ alone is also not
sufficient. To see this, consider, e.g., 2+3>∨ (P (x)∧3last)
and 2+3>∨ (3last) , which are F⇒∃ but are equivalent only
over infinite traces. We now present sufficient conditions to
preserve equivalences from the finite to the infinite case.

Theorem 10. Given TUQL formulas ϕ and ψ, ϕ ≡F ψ im-
plies ϕ ≡I ψ whenever both ϕ and ψ are (1) I∃; or (2) I∀; or
(3) F⇒∀ and I⇒∃.

We point out that F∃ or F∀ are not sufficient to ensure that
formula equivalence over finite traces implies formula equiva-
lence over infinite traces. To illustrate this, consider for exam-
ple the formulas Φ = 3+last ∨ 3P (x), and the union of Φ
and Formula (*) from Section 3. These formulas are F∃, how-
ever, they are only equivalent over finite traces. Moreover, if
we take 3+P (x) and the union of 3+P (x) with Formula (*),
we have that they are both F∀, though equivalent only over
finite traces. This example also shows that the condition F⇒∀
alone is not sufficient for Theorem 10. We now argue that
I⇒∃ alone is also not sufficient. To see this, consider, e.g.,
(P (x)∧2+3>)∨3last and 2+3>∨3last, which are I⇒∃
but are equivalent only over finite traces.

From Theorems 9 and 10 we have that if both ϕ and ψ
are F∃ or F∀, and I∃ or I∀ TUQL formulas, then, ϕ ≡F ψ iff
ϕ ≡I ψ. In particular, the above examples show that if, from a
given pair of conditions FQ and IQ′ , we remove any of the two
properties, then formula equivalences over finite and infinite
traces may not coincide. We now analyse syntactic features of
the properties introduced so far, providing a class of formulas
satisfying them.

Theorem 11. All non-temporal TUQL formulas satisfy the
finite/infinite trace properties F∃, F∀, I∃, and I∀.

3+-formulas ϕ,ψ are built according to (with P ∈ NP):

3+ϕ | ϕ ∨ ψ | ϕ ∧ ψ | ∃xϕ | P (~τ) | ¬P (~τ)

We now show that the language generated by the grammar
rule for 3+-formulas contains only formulas which are F∀
and I∃. We call 3-formulas the set of formulas generated
by the result of further allowing 3ϕ in the grammar rule for
3+-formulas; and call 3+∀-formulas the result of allowing
∀xϕ in the grammar rule for 3+-formulas.

Theorem 12. All 3+-formulas are F∀ and I∃. Moreover, all
3+∀-formulas are F∀ and all 3-formulas are I∃.

The results of Theorem 12 are tight in the sense that we
cannot extend the grammar rule for 3+-formulas with ∀xϕ;
and we cannot extend the grammar rule for 3+∀-formulas
with 3ϕ. Simple counterexamples are ∀x3+P (x) and 3>,
which are not I∃ and F∀, respectively. To see that ∀x3+P (x)



is not I∃ consider the model with an infinite (and countable)
domain, where one element is in P exactly at time point n ∈ N,
another one exactly at time point n+ 1 and so on. There is no
finite prefix where ∀x3+P (x) holds.

2+-formulas ϕ,ψ are built according to (with P ∈ NP):

2+ϕ | ϕ ∨ ψ | ϕ ∧ ψ | ∀xϕ | P (~τ) | ¬P (~τ)

We call 2-formulas the set of formulas generated by the result
of further allowing 2ϕ in the grammar rule for 2+-formulas;
and call 2+∃-formulas the result of allowing ∃xϕ in the gram-
mar rule for 2+-formulas.
Theorem 13. All 2+-formulas are F∃ and I∀. Moreover, all
2+∃-formulas are F∃ and all 2-formulas are I∀.

The results of Theorem 13 are also tight in the sense that we
cannot extend the grammar rule for 2+-formulas with ∃xϕ;
and we cannot extend the grammar rule for 2+∃-formulas
with 2ϕ. Simple counterexamples are ∃x2+¬P (x) and 2⊥,
which are not I∀ and F∃, respectively. To see that ∃x2+¬P (x)
is not I∀, consider again the model described above with an
infinite (and countable) domain, where each element is in P at
a specific time point n ∈ N. The formula ∃x2+¬P (x) holds
in every finite prefix but it does not hold in this infinite trace.

It follows from our results that there is no distinction be-
tween reasoning over finite and infinite traces whenever a
formula is either a 3+- or a 2+-formula. As already pointed
out, 3+2+ϕ and 2+3+ϕ are only equivalent over finite
traces, and so, the distinction between reasoning over finite
and infinite traces cannot be blurred for the class of formulas
that allow both 3+ and 2+.

5 Applications
The problem considered so far, to determine when the differ-
ences between finite and infinite traces can be safely blurred,
is of interest for several applications. Here we show how it
can be related to planning and verification. Moreover, for
knowledge representation scenarios, we introduce temporal
DLs over finite traces, providing complexity results for the
satisfiability problem.

Planning. In automated planning, the sequence of states gen-
erated by actions is usually finite [Cerrito and Mayer, 1998;
Bauer and Haslum, 2010; De Giacomo and Vardi, 2013;
De Giacomo et al., 2014b]. To reuse temporal logics based on
infinite traces for specifying plan constraints, one approach,
developed by De Giacomo et al. 2014b for LTLf , is based
on the notion of insensitivity to infiniteness. This property is
meant to capture those formulas that can be equivalently inter-
preted over infinite traces, provided that, from a certain instant,
these traces satisfy an end event forever and falsify all other
atomic propositions. The motivation for this comes from the
fact that propositional letters represents atomic tasks/actions
that cannot be performed anymore after the end of a process.

In order to lift this notion of insensitivity to our first-order
temporal setting, and to provide a characterisation analogous
to the propositional one, we introduce the following definitions.
Let F = (∆F, (Fn)n∈[0,l]) be a finite trace, and let E =

(∆E, (En)n∈[0,∞)) be the infinite trace such that ∆E = ∆F

(we write just ∆), aE = aF for all a ∈ NI, and for all P ∈

NP \ {E}, P En = ∅, while EEn = ∆, where n ∈ [0,∞). The
end extension (see Section 2) of F with E, F ·E E, will be
called the insensitive extension of F. A TUQL formula ϕ is
insensitive to infiniteness (or simply insensitive) if, for every
finite trace F and all assignments a, F |=a ϕ iff F ·E E |=a ϕ.
Clearly, all insensitive TUQL formulas are also F⇒∃.

Now, let Σ be a finite subset of NP. Assume w.l.o.g. that
the T f

U QL formulas we mention in this subsection have pred-
icates in Σ, and that Σ contains the end of time predicate E.
Recalling the definition of ψf , we define χf = ψf ∧χf1

, with

χf1
= 2∀x∀ȳ(E(x)→

∧

P∈Σ\{E}
¬P (x, ȳ)).

The next characterisation result extends Theorem 4 in [De
Giacomo et al., 2014b] to TUQL.

Theorem 14. A TUQL formula ϕ is insensitive to infiniteness
iff the T i

UQL logical implication χf |= ϕ↔ ϕ† holds.

Insensitive formulas allow us to blur the distinction between
finite and infinite traces as soon as infinite traces satisfy χf .
Thus, we can check satisfiability of insensitive T f

U QL221 (or
other decidable languages) formulas by using satisfiability
algorithms for the infinite case without the need to apply the
·† translation.

We now analyse some syntactic features of this property.
Firstly, non-temporal TUQL formulas, are insensitive. More-
over, this property is preserved under non-temporal operators.
We generalise Theorem 5 in [De Giacomo et al., 2014b] in
our setting as follows.

Theorem 15. Let ϕ,ψ be insensitive TUQL formulas. Then
¬ϕ, ∃xϕ, and ϕ ∧ ψ are insensitive.

Concerning temporal operators, in [De Giacomo et al.,
2014b] it is shown how several standard temporal patterns
derived from the declarative process modelling language DE-
CLARE [van der Aalst and Pesic, 2006] are insensitive. On
the other hand, negation affects the insensitivity of temporal
formulas. For instance, given a TUQL formula P (x), we have
that 3+P (x) is insensitive while 3+¬P (x) is not. Dually,
2+¬P (x) is insensitive, while 2+P (x) is not. Therefore, if
a TUQL formula ϕ is insensitive, it cannot be concluded that
formulas of the form 3+ϕ or 2+ϕ are insensitive.

Finally, as a consequence of Theorem 14, we show that in-
sensitivity is sufficient to ensure that if formulas are equivalent
over infinite traces then they are equivalent over finite traces.

Theorem 16. Let ϕ and ψ be insensitive TUQL formulas.
Then ϕ ≡I ψ implies ϕ ≡F ψ.

However, the viceversa does not hold. Consider, e.g., For-
mula (*), which is trivially insensitive: this formula is equiva-
lent to ⊥ only over finite traces. We can obtain the converse
direction using Theorem 10. For instance, 3+P (x)∨3+R(x)
and 3+(P (x) ∨ R(x)) are insensitive and I∃ formulas for
which equivalence over finite and infinite traces coincides.

Verification. In this section we show how our comparison
between finite and infinite traces can be related to the litera-
ture on temporal logics for verification. We point out some
connections between the finite/infinite trace properties and: (i)



the definition of safety in LTLi (over infinite traces); (ii) some
notions related to the construction of monitoring functions in
runtime verification.

(i) Safety. Recall that a safety property intuitively asserts
that bad things never happen during the execution of a pro-
gram. In verification, LTLi is often used as a specification
language for such properties, and the notion of safety is de-
fined accordingly over infinite traces [Sistla, 1994]. Let ϕ
be a TUQL formula asserting that some “bad thing” never
happens. According to the literature, we say that ϕ denotes
a safety property if, whenever ϕ does not hold for an infinite
run of a program, then it must be violated already after a finite
execution. That is, the infinite trace contains a finite prefix in
which the bad thing (the violation of ϕ) has already happened.
More formally, we say that a TUQL formula ϕ expresses a
safety property iff, for an infinite trace I and an assignment a:

(∀F ∈ Pre(I).F |=a ϕ)⇒ I |=a ϕ.

In other words, safety is captured in TUQL by I⇐∀ formulas.
In particular, all 2+-formulas of Section 4 are I∀ and thus they
express safety properties.

(ii) Runtime verification. We recall that in runtime verifi-
cation the task is to evaluate a property with respect to the
current history (which is finite at each given instant) of a
dynamic system, and to check whether this property is satis-
fied in all its possible future evolutions [Bauer et al., 2010;
Baader and Lippmann, 2014; De Giacomo et al., 2014a]. Here
we discuss the relationship between our semantic conditions
and the maxims for runtime verification introduced by Bauer
et al. 2010 which relate finite trace semantics to the infinite
case. The authors suggest that every semantics to be used in
runtime verification should satisfy the following requirements.

• Impartiality: never evaluate to true or false a formula on
a finite trace, if one of its infinite extensions can possibly
change its value.

• Anticipation: if a formula has the same truth value on
every infinite extension of a finite trace, then it is equally
evaluated also on that finite prefix.

Impartiality cannot be guaranteed for T f
U QL: 2+P (x) is an

example of a formula violating this maxim. On the other hand,
3> is a formula that violates anticipation. Impartiality, as
formalised in [Bauer et al., 2010], is captured by F⇒∀ and
F⇐∃ properties. Instead, the formal version of anticipation
corresponds to properties F⇐∀ and F⇒∃ in our setting. There-
fore, any set of TUQL formulas satisfying both impartiality
and anticipation should belong to the intersection of F∀ and
F∃ formulas. Concerning the possibility to syntactically char-
acterise these formulas, we have that, due to Theorems 12
and 13, impartiality and anticipation are not guaranteed to be
preserved for 3+- or 2+-formulas.

Temporal Description Logics. We now consider tempo-
ral description logics. We define the temporal language
TUALC as a temporal extension of the description logic
ALC [Gabbay et al., 2003]. Let NC,NR ⊆ NP be, respec-
tively, sets of unary and binary predicates called concept and
role names. A TUALC concept is an expression of the form:
C,D ::= A | ¬C | C uD | ∃R.C | C U D, where A ∈ NC

and R ∈ NR. A TUALC axiom is either a concept inclusion
(CI) of the form C v D, or an assertion, α, of the form
A(a) or R(a, b), where C,D are TUALC concepts, A ∈ NC,
R ∈ NR, and a, b ∈ NI. TUALC formulas have the form:
ϕ,ψ ::= α | C v D | ¬ϕ | ϕ ∧ ψ | ϕ U ψ. Since a TUALC
formula can be mapped into an equisatisfiable TUQL221 for-
mula [Gabbay et al., 2003] we can transfer the upper bounds of
Theorems 4 and 5 to TfUALC and TkUALC; the lower bounds
can be obtained in a similar way as in the mentioned theorems.
Moreover, from Theorems 6 and 7, we obtain immediately that
TfUALC has both the bounded trace and domain properties.

We now consider the satisfiability problem in TkUALC re-
stricted to global CIs, defined as the fragment of TkUALC in
which formulas can only be of the form T ∧2(T )∧ φ, where
T is a conjunction of CIs and φ does not contain CIs. The
EXPTIME upper bound we provide has a rather challenging
proof that uses a form of type elimination [Gabbay et al., 2003;
Lutz et al., 2008; Gutiérrez-Basulto et al., 2016], but in a set-
ting where the number of time points is bounded by a natural
number k > 0. The main challenge in solving this problem
when the number of time points is arbitrarily large but finite is
mainly due to the presence of last sub-formulas (i.e., formulas
of the form ¬©⊥) that can hold just in the last instant of the
model. The complexity is tight since satisfiability in ALC is
already EXPTIME-hard [Gabbay et al., 2003].
Theorem 17. Satisfiability in TfUALC is EXPSPACE-complete
and in TkUALC is NEXPTIME-complete. Moreover, satisfiabil-
ity in TkUALC restricted to global CIs is EXPTIME-complete.

6 Conclusion
We investigated first-order temporal logic over finite traces,
studying satisfiability of its two-variable monodic fragment,
T f
U QL221 . While being EXPSPACE-complete over arbitrary fi-

nite traces, it lowers down to NEXPTIME in case of T k
UQL221 ,

interpreted over traces with at most k time points. Similar
results have been shown for a temporal extension of the descrp-
tion logic ALC, with TkUALC restricted to global CIs being
EXPTIME-complete. Moreover, in an effort to systematically
clarify the correlations between finite vs. infinite reasoning we
introduced various semantic conditions that allow to formally
specify when it is possible to blur the distinction between
finite and infinite traces. Grammars for TUQL formulas sat-
isfying some of these conditions have been provided as well.
In particular, we have shown that for 3+- and 2+-formulas,
equivalence over finite and infinite traces coincide. Some
notions used in planning (particularly, insensitivity to infinite-
ness [De Giacomo et al., 2014b]) and verification have been
lifted to the first-order setting, and related to our semantic
conditions for blurring the distinction between reasoning over
finite and infinite traces.

As future work, we plan to apply the semantic conditions
to study the specific case where infinite extensions of finite
traces are obtained by repeating the last instant forever [Bauer
and Haslum, 2010], as well as to the analysis of monitor-
ing functions for runtime verification [Bauer et al., 2010;
Baader and Lippmann, 2014; De Giacomo et al., 2014a]. It
would also be interesting to study the precise complexity of
the satisfiability problem for TfUALC with just global CIs.
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A Proofs for Section 3
Lemma 1. For every infinite trace I, I |= ψf iff I = F ·E I′,
for some finite trace F and some infinite trace I′.

Proof. ψf is satisfied in I iff there is k > 0 such that, for all
d ∈ ∆, it holds that: d 6∈ EIj , for all j ∈ [0, k); and d ∈ EIi ,
for all i ∈ [k,∞). That is, I = F ·E I′, for some finite trace
F and some infinite trace I′.

Lemma 2. Let F ·E I be an end extension of a finite trace F.
For every T f

U QL formula ϕ and every assignment a, F |=a

ϕ iff F ·E I |=a ϕ†.

Proof. Let F = (∆F, (Fn)n∈[0,l]) be a finite trace and let
F ·E I = (∆F·I, (F · In)n∈[0,∞)) be an end extension of F.
Firstly, we prove, by induction on subformulas ψ of ϕ, that
for all n ∈ [0, l] and all assignments a:

F, n |=a ψ iff F ·E I, n |=a ψ†.

If ψ = P (τ̄), the statement follows immediately from the
definition of F ·E I and ·†. The proof of the inductive cases
ψ = ¬χ, ψ = (χ ∧ ζ), and ψ = ∃xχ is straightforward. The
remaining case is proved as follows.

ψ = (χU ζ). We have that F, n |=a χU ζ iff there ism ∈ (n, l]
such that F,m |=a ζ and for all i ∈ (n,m), F, i |=a χ. By i.h.
and definition of F ·E I this happens iff there is m ∈ (n, l] s.t.
F ·E I,m |=a ζ† and for all i ∈ (n,m), F ·E I, i |=a χ†. Since
EF·EIj = ∅ for all j ∈ [0, l], this means that F ·E I, n |=a

χ† U (ζ† ∧ ∀x¬E(x)). That is, F ·E I, n |=a (χ U ζ)† (recall
that ∀x¬E(x) = ψf1

).

Thus, in particular, we have: F |= ϕ iff F ·E I |= ϕ†.

Theorem 3. Let ϕ be a T f
U QL formula. Then ϕ is satisfiable

iff ϕ† ∧ ψf is a satisfiable T i
UQL formula.

Proof. If ϕ is satisfied in some finite trace F, then (by Lem-
mas 1 and 2) any end extension F ·E I satisfies ϕ† ∧ ψf .
Conversely, suppose that ϕ† ∧ ψf is satisfied in some infinite
trace I. By Lemma 1, I = F ·E I′, for some finite trace F and
some infinite trace I′. Since F ·E I′ |= ϕ†, by Lemma 2, we
have that F |= ϕ.

To show Theorem 5 we use standard definitions for quasi-
models [Hodkinson et al., 2000; Gabbay et al., 2003], pre-
sented here for convenience of the reader. Let ϕ be a T f

U QL21
sentence. Let NI(ϕ) be the set of individuals occurring in ϕ
and let sub(ϕ) be the set of subformulas of ϕ. For every
formula ψ(y) of the form ψ1Uψ2 with one free variable y,
we fix a surrogate Rψ(y); and for every sentence ψ of the
form ψ1Uψ2 we fix a surrogate pψ, where Rψ and pψ are
symbols not occurring in ϕ. Given a T f

U QL21 formula ϕ,
we denote by ϕ the result of replacing in ϕ all subformulas
of the form ψ1Uψ2 which are not in the scope of any other
occurrence of U by their surrogates. Thus, ϕ does not contain
occurrences of temporal operators. Let x be a variable not
occurring in ϕ. We write ψ{y} for a sentence ψ or a formula
ψ(y) with (one) free variable y; and ψ{x/y} for a sentence

ψ or the result of replacing free occurrences of y in ψ(y) by
x. Let subx(ϕ) be the closure under single negation of all
ψ{x/y} with ψ{y} ∈ sub(ϕ). A type for ϕ is a subset t of
{ψ | ψ ∈ subx(ϕ)} ∪ NI(ϕ) such that:

• ψ1 ∧ ψ2 ∈ t iff ψ1 ∈ t and ψ2 ∈ t, for every ψ1 ∧ ψ2 ∈
subx(ϕ);

• ¬ψ ∈ t iff ψ /∈ t, for every ¬ψ ∈ subx(ϕ); and

• t contains at most one element of NI(ϕ).

We omit ‘for ϕ’ when there is no risk of confusion. Let
sub0(ϕ) be the set of all ψ with ψ a sentence in subx(ϕ). We
say that the types t, t′ agree on sub0(ϕ) if t ∩ sub0(ϕ) =
t′ ∩ sub0(ϕ). Denote with tp(ϕ) the set of all types for ϕ.
If a ∈ t ∩ NI(ϕ) then t ‘describes’ a named element. We
write ta to indicate this and call it a named type. A state
candidate is a subset C of tp(ϕ) with only types that agree
on sub0(ϕ), containing exactly one ta for each a ∈ NI(ϕ),
and such that {t | ta ∈ C} ⊆ C. Consider a classical first-
order interpretation I with d in the domain ∆. Clearly, the
set tI(d) = {ψ | ψ ∈ subx(ϕ), I |= ψ[d]} ∪ {a ∈ NI(ϕ) |
if aI = d} is a type for ϕ. An interpretation I realizes a state

canditate C if C = {tI(d) | d ∈ ∆}.
C is realisable if there is a structure realizing it. A state

candidate C is realisable iff the sentence

realC =
∧

t∈C
∃x

∧

ψ{x}∈t
ψ{x} ∧ ∀x

∨

t∈C

∧

ψ{x}∈t
ψ{x}

∧
∧

ta∈C

∧

ψ{x}∈ta
ψ{a/x}

is true in some first-order interpretation [Gabbay et al., 2003,
Lemma 11.6]. For TUQL221 formulas, given a state candidate
C, the formula realC is satisfiable iff it is satisfiable by an
interpretation of exponential size.

Lemma 18. [Gabbay et al., 2003, Theorem 11.31] Let C be a
state candidate for a TUQL221 formula ϕ. Then, the formula
realC is satisfiable iff it is satisfiable by an interpretation I of
size exponential in the size of the input formula ϕ.

Let us now turn to our main results for formulas interpreted
over finite traces, i.e., formulas in T f

U QL221 . A quasimodel
for a T f

U QL221 sentence ϕ is a pair (S,R) where S is a fi-
nite sequence S(0), . . . , S(n) of realizable state candidates
S(i), and R is a set of functions r, called runs, mapping each
i ∈ {0, . . . , n} to a type in S(i), satisfying the following
conditions:

1. for every ψ1Uψ2 ∈ subx(ϕ) and every i ∈ [0, n], we
have ψ1Uψ2 ∈ r(i) iff there is j ∈ (i, n] such that ψ2 ∈
r(j) and ψ1 ∈ r(l) for all l ∈ (i, j);

2. for every a ∈ NI(ϕ), every r ∈ R and every i, j ∈ [0, n],
we have a ∈ r(i) iff a ∈ r(j);

3. ϕ ∈ t for some t ∈ S(0); and

4. for every i ∈ [0, n] and every t ∈ S(i) there is a run
r ∈ R such that r(i) = t.



Every quasimodel for ϕ describes an interpretation sat-
isfying ϕ and, conversely, every such interpretation can be
abstracted into a quasimodel for ϕ. We formalise this well-
known notion in the following lemma that follows form an
easy adapation of [Gabbay et al., 2003, Lemma 11.22] to the
case of finite traces.

Lemma 19. Let ϕ be a T f
U QL221 formula. There is a finite

trace satisfying ϕ with at most k time points iff there is a
quasimodel for ϕ with a sequence of quasistates of length at
most k.

We now devise a non-deterministic algorithm to check sat-
isfiability of a T k

UQL221 formula ϕ in NEXPTIME. It follows
from the definition of types, that the number of distinct types
for ϕ is exponential in |ϕ|. First we compute in exponen-
tial time w.r.t. |ϕ| the set of all types for ϕ. We guess a
sequence I(0), . . . , I(n) of first-order interpretations (each of
them of size exponential in |ϕ| by Lemma 18); a sequence
S(0), . . . , S(n) of sets of types for ϕ of length n ≤ k; and
for each type at position i in this sequence we also guess a
sequence of types of length n. Denote by R the set of such
sequences of types. We now check (a) whether each S(i) is a
realizable state candidate (by checking whether I(i) satisfies
S(i)); (b) whether each sequence in R satisfies Conditions (1)
and (2); and (c) whether ϕ is in a type in S(0) (Condition 3).
Condition 4 is satisfied by definition of R.

All these conditions can be checked in exponential time
w.r.t. |ϕ| and |k|. The algorithm returns ‘satisfiable’ iff all
conditions are satisfied. Since the conditions exactly match
the definition of a quasimodel for ϕ, their satisfaction implies
that (S,R) is a quasimodel for ϕ.

Theorem 5. Satisfiability in T k
UQL221 is NEXPTIME-

complete.

Proof. Hardness follows from Lemma 6.2 in [Baader et al.,
2012], proved for ALC-LTL with rigid concepts, which can
be expressed in T k

UQL221 . The proof is by reduction from the
bounded version of the domino problem. The same reduction
applies for satisfiability in T k

UQL221 since a k-bounded solu-
tion for the problem can be mapped into a finite trace with
at most k time points (assuming that k is given in binary the
solution is exponential w.r.t. the size of the input).

For the upper bound, by Lemma 19, there is a finite trace
with at most k time points iff there is a quasimodel with at
most k quasistates. Then, we can decide satisfiability using
the non-deterministic algorithm.

Theorem 7. Satisfiability of ϕ in T k
UQL221 implies the exis-

tence of a model with domain size exponential in k and ϕ.

Proof. By Lemma 19 there is a model with at most k time
points iff there is a quasimodel for ϕ with a sequence of
quasistates (for ϕ) of length at most k. This means that runs
have size at most k. Since each run is a sequence of types,
the number of possible runs is bounded by |tp(ϕ)|k. The
correspondence between models and quasimodels (Lemma 19)
maps each run to a domain element. Thus, there is a model
with domain size bounded by |tp(ϕ)|k.

B Proofs for Section 4
Lemma 20. Let ϕ be a TUQL formula, and Q,Q′ ∈ {∃,∀},
with Q 6= Q′. Then, ϕ is F⇒Q iff ¬ϕ is F⇐Q′ . Moreover, ϕ is
I⇒Q iff ¬ϕ is I⇐Q′ .

Proof. Suppose that ϕ is F⇒Q, i.e.: ∀F(F |=a ϕ ⇒ QI ∈
Ext(F).I |=a ϕ), for all assignments a. This is equivalent
to: ∀F(Q′I ∈ Ext(F).I |=a ¬ϕ ⇒ F |=a ¬ϕ), for all as-
signments a. That is, ¬ϕ is F⇐Q′ . The remaining case is
analogous.

Lemma 21. Let ϕ and ψ be TUQL formulas. If ϕ ∧ ¬ψ and
ψ ∧ ¬ϕ are F⇒∃, then ϕ ≡I ψ implies ϕ ≡F ψ. Moreover, if
ϕ ∧ ¬ψ and ψ ∧ ¬ϕ are I⇒∃, then ϕ ≡F ψ implies ϕ ≡I ψ.

Proof. Suppose that ϕ ∧ ¬ψ and ψ ∧ ¬ϕ are F⇒∃. We have
ϕ ≡I ψ iff ϕ ∧ ¬ψ and ψ ∧ ¬ϕ are not T i

UQL satisfiable.
Assume ϕ ≡I ψ. By F⇒∃, the previous step implies: ϕ ∧ ¬ψ
and ψ ∧ ¬ϕ are not T f

U QL satisfiable, which is equivalent to
ϕ ≡F ψ. Moreover, suppose that ϕ∧¬ψ and ψ ∧¬ϕ are I⇒∃.
We have that ϕ ≡F ψ iff ϕ ∧ ¬ψ and ψ ∧ ¬ϕ are not T f

U QL
satisfiable If ϕ ≡F ψ, by I⇒∃ we have ϕ ∧ ¬ψ and ψ ∧ ¬ϕ
are not T i

UQL satisfiable. Thus, ϕ ≡I ψ.

Lemma 22. Let ϕ and ψ be TUQL formulas. If ϕ and ψ are
F∃ or F∀, then ϕ ∧ ¬ψ and ψ ∧ ¬ϕ are F⇒∃. Moreover, if ϕ
and ψ are I∃ or I∀, then ϕ ∧ ¬ψ and ψ ∧ ¬ϕ are I⇒∃.

Proof. Suppose that ϕ and ψ are F∃ (the case for F∀ is sim-
ilar), and let χ ∈ {ϕ,ψ}. Since, in particular, χ is F⇐∃, by
Lemma 20 we have that ¬χ is also F⇒∀, and thus F⇒∃. Thus,
we have that both χ and ¬χ are F⇒∃. Suppose now, towards a
contradiction, that ϕ ∧ ¬ψ is not F⇒∃. This means that there
is a finite trace F such that F |=a ϕ and F 6|=a ψ, and for all
I ∈ Ext(F): I 6|=a ϕ or I |=a ψ. Given that ϕ is F⇒∃, there
is a I′ ∈ Ext(F) such that I′ |=a ϕ. Also, since ψ is F⇐∃,
we have that for all I ∈ Ext(F), I 6|=a ψ. Consider now an
arbitrary I ∈ Ext(F): if I |=a ψ, we have a contradiction
from the fact that for all I ∈ Ext(F), I 6|=a ψ. Then, for all
I ∈ Ext(F), we have I 6|=a ϕ, which contradicts the fact that
there is a I′ ∈ Ext(F) such that I′ |=a ϕ. This absurd shows
that ϕ ∧ ¬ψ is F⇒∃ (the proof for ψ ∧ ¬ϕ is analogous).

Moreover, suppose ϕ and ψ are I∃ (the case for I∀ is similar),
and again let χ ∈ {ϕ,ψ}. Since, in particular, χ is I⇐∃, by
Lemma 20 we have that ¬χ is also I⇒∀, and thus I⇒∃. Thus,
we have that both χ and ¬χ are I⇒∃. Suppose now, towards
a contradiction, that ϕ ∧ ¬ψ is not I⇒∃. We have that there
is an infinite trace I and an assignment a such that I |=a ϕ
and I |=a ¬ψ, and for all F ∈ Pre(I): F 6|=a ϕ or F |=a ψ.
Since ϕ is I⇒∃, there is a F′ ∈ Pre(I) such that F′ |=a ϕ.
Moreover, since ¬ψ is I⇒∀, we have that for all F ∈ Pre(I),
F |=a ¬ψ. Given an arbitrary F ∈ Pre(I), if F |=a ψ, we
contradict the fact that for all F ∈ Pre(I), F 6|=a ψ. Thus, for
all F ∈ Pre(I), we have F 6|=a ϕ, contradicting the fact that
there is a F′ ∈ Pre(I) such that F′ |=a ϕ. This absurd proves
that ϕ ∧ ¬ψ is I⇒∃ (the proof for ψ ∧ ¬ϕ is analogous).

Theorem 9. Given TUQL formulas ϕ and ψ, ϕ ≡I ψ implies
ϕ ≡F ψ whenever both ϕ and ψ are (1) F∃; or (2) F∀; or (3)
F⇒∃ and I⇒∀.



Proof. Points (1) and (2) follow from Lemma 21 and
Lemma 22. We provide also a direct proof. Assume ϕ and ψ
to be F∃ (the proof for F∀ is analogous). Given an assignment
a, let F be a finite trace such that F |=a ϕ. By F∃, there is an
infinite trace I ∈ Ext(F) such that I |=a ϕ Since ϕ ≡I ψ, we
have that I |=a ψ. By F∃, F |=a ψ. The converse direction
can be obtained analogously, by swapping ϕ and ψ.

We now show Point (3). Given a finite trace F and an
assignment a, suppose that F |=a ϕ. Since ϕ is F⇒∃, we
have that for some I ∈ Ext(F), I |=a ϕ. By assumption,
ϕ ≡I ψ, so I |=a ψ. As ψ is I⇒∀, I |=a ψ implies that, for
all F′ ∈ Pre(I), F′ |=a ψ. Thus, in particular, F |=a ψ. The
other direction can be obtained by swapping ϕ and ψ.

Theorem 10. Given TUQL formulas ϕ and ψ, ϕ ≡F ψ im-
plies ϕ ≡I ψ whenever both ϕ and ψ are (1) I∃; or (2) I∀; or
(3) F⇒∀ and I⇒∃.

Proof. Points (1) and (2) follow again from Lemma 21 and
Lemma 22. Here we give a direct proof as well. Suppose that
ϕ and ψ are I∃ (the proof for for I∀ is analogous). Given an
assignment a, let I be an infinite trace such that I |=a ϕ. By
I∃, there is F ∈ Pre(I) such that F |=a ϕ. As ϕ ≡F ψ, this
means that F |=a ψ. Since ψ is I∃, we have I |=a ψ. The
converse direction is obtained analogously, by swapping ϕ
and ψ.

We now show Point (3). Let I be an infinite trace and a
be an assignment such that I |=a ϕ. As ϕ is I⇒∃, there is
F ∈ Pre(I) such that F |=a ϕ. Given that ϕ ≡F ψ, F |=a ψ.
By F⇒∀, for all I′ ∈ Ext(F): I′ |=a ψ. Therefore, we have
also I |=a ψ. The converse direction is obtained in a similar
way by swapping ϕ and ψ.

Theorem 11. All non-temporal TUQL formulas satisfy the
finite/infinite trace properties F∃, F∀, I∃, and I∀.

Proof. Clearly, assuming that ϕ has no temporal operators,
for any finite/infinite trace M, M satisfies ϕ iff any exten-
sion/prefix of M satisfies ϕ.

In the proofs of Theorems 12 and 13 we use the following
notation. Given a finite trace F = (∆,Fn∈[0,l]), we denote by
Fω the extension of F with the infinite trace (Fl)ω , where Fl is
the finite trace with only the last instant of F. Also, given and
assignment a and an element d of a domain ∆ (of a finite or
infinite trace), we write ad for the result of modifying a so that
x maps to d. The next lemma is useful to prove Theorem 12.

Lemma 23. Let F be a finite trace and let F′ be a prefix of F.
For all assignments a, and all 3-formulas ϕ, if F′ |=a ϕ then
F |=a ϕ .

Proof. The proof is by induction. In the base case we have
all non-temporal 3-formulas. Assume that the lemma holds
for a 3-formula ϕ. Let F be a finite trace, let F′ be a prefix
of F and let a be an assignment. If F′ |=a 3ϕ then there is
n > 0 such that F′, n |=a ϕ. As F′ is a prefix of F, we have
that F, n |=a ϕ. This means that there is n > 0 such that
F, n |=a ϕ. Thus, F |=a 3ϕ. Other cases can be proved by
straightforward applications of the inductive hypothesis.

Theorem 12. All 3+-formulas are F∀ and I∃. Moreover, all
3+∀-formulas are F∀ and all 3-formulas are I∃.

Proof. We first show that all 3+∀-formulas are F∀. In
Claim 1, we show that all 3+∀-formulas are F⇒∀ (in fact
for the⇒ we can also allow 3ϕ in the grammar). Then, in
Claim 2, we show that all 3+∀-formulas are F⇐∀.

Claim 1. For all finite traces F, all assignments a, and all
3+∀-formulas ϕ, if F |=a ϕ then, for all I ∈ Ext(F), I |=a ϕ.

Proof of Claim 1 The proof is by induction. In the base case we
have all non-temporal 3+∀-formulas (Theorem 11). Assume
that the claim holds for ϕ and ψ, and there is a finite trace F
and an assignment a such that F |=a ϕ′. We now argue that,
for all I ∈ Ext(F), I |=a ϕ′, where ϕ′ is as follows.

• For ϕ′ = 3ϕ: by assumption F |=a 3ϕ. This means that
there is n ∈ (0, l] such that F, n |=a ϕ. In other words,
Fn |=a ϕ, where Fn is the suffix of F starting from time
point n. By the inductive hypothesis, if Fn |=a ϕ then,
for all I ∈ Ext(Fn), I |=a ϕ. This implies that for all
I ∈ Ext(F), there is n ∈ (0,∞) such that I, n |=a ϕ. So,
I |=a 3ϕ for all I ∈ Ext(F).

• For ϕ′ = ∀xϕ: by assumption F |=a ∀xϕ. This means
that for all d ∈ ∆, F |=ad ϕ[d], where ad extends a by
mapping x to d. By applying the inductive hypothesis on
every ϕ[d] with d ∈ ∆, we have that, for all d ∈ ∆ and
all I ∈ Ext(F), I |=ad ϕ[d]. By semantics of ∀, for all
I ∈ Ext(F), I |=a ∀xϕ.

• For ϕ′ = ∃xϕ: by assumption F |=a ∃xϕ. This means
that there is d ∈ ∆ such that F |=ad ϕ[d], where ad
extends a by mapping x to d. By applying the inductive
hypothesis, we have that, for all I ∈ Ext(F), I |=ad ϕ[d].
By semantics of ∃, for all I ∈ Ext(F), I |=a ∃xϕ.

• The remaining cases can be proved in a straightforward
way using the inductive hypothesis.

We observe that problematic formulas for this claim are, e.g.,
3last. This formula holds in any finite trace F but it does
not on any extension of F. Claim 1 relies on the fact that
the grammar rule for 3-formulas does not allow last. The
boolean case ϕ ∨ ψ also relies on the fact that the claim is for
3-formulas, since, e.g., the formula 32+P (x) ∨32+Q(x)
holds on any finite trace (with more than one time point) where
P (x) ∨ Q(x) is satisfied in the last time point but there are
extensions which do not satisfy 32+P (x) ∨32+Q(x).

Claim 2. For all finite traces F, all assignments a, and all
3+∀-formulas ϕ, if, for all I ∈ Ext(F), I |=a ϕ then F |=a ϕ.

Proof of Claim 2 If, for all I ∈ Ext(F), I |=a ϕ then, in
particular, Fω |=a ϕ. We show that Fω |=a ϕ implies F |=a ϕ.
The proof is by induction. In the base case we have all non-
temporal 3+∀-formulas. Assume that the lemma holds for a
3+∀-formula ϕ.

• If Fω |=a 3+ϕ then there is n ≥ 0 such that Fω, n |=a ϕ.
By definition of Fω , there is a suffix F′ of F such that F′ω
corresponds to the suffix of Fω starting at n. By inductive
hypothesis, F′ |= ϕ. As F′ is a suffix of F, we have that
F |=a 3+ϕ.



• If Fω |=a ∀xϕ. This means that, for all d ∈ ∆, Fω |=a

ϕ[d]. By the inductive hypothesis, for all d ∈ ∆, F |=a

ϕ[d]. So, F |=a ∀xϕ.

• If Fω |=a ∃xϕ. This means that there is d ∈ ∆ such that
Fω |=a ϕ[d]. By the inductive hypothesis, F |=a ϕ[d].
This means that F |=a ∃xϕ.

• The remaining cases can be proved in a straightforward
way using the inductive hypothesis.

We point out that this claim does not hold for 3-formulas
(only for 3+-formulas). To see this consider the formula 3>,
which holds in any infinite trace but not on a finite trace with
only one time point.

We now show that all 3-formulas are I∃. In Claim 3, we
show that all 3-formulas are I⇒∃. Then, in Claim 4, we show
that all 3-formulas are I⇐∃.

Claim 3. For all infinite traces I, all assignments a, and all
3-formulas ϕ, if I |=a ϕ then there is F ∈ Pre(I) such that
F |=a ϕ.

Proof of Claim 3 The proof is by induction as in Claim 1. In the
base case we have all non-temporal 3-formulas (Theorem 11).
Assume that the claim holds for ϕ and ψ.

• For formulas of the form 3ϕ the argument is as follows.
Let I be an infinite trace. By assumption I |=a 3ϕ. This
means that there is n ∈ (0,∞) such that I, n |=a ϕ.
In other words, In |=a ϕ, where In is the suffix of I
starting from time point n. By the inductive hypothesis, if
In |=a ϕ then there is F ∈ Pre(In) such that F |=a 3ϕ.
Then, there is F′ ∈ Pre(I) such that F′ |=a 3ϕ.

• For formulas of the form ∃xϕ the argument is as fol-
lows. Let I = (∆, In∈[0,∞)) be an infinite trace. By
assumption I |=a ∃xϕ. This means that there is d ∈ ∆
such that I |=a ϕ[d]. By the inductive hypothesis, if
I |=a ϕ[d] then there is F ∈ Pre(I) such that F |=a ϕ[d].
So, F |=a ∃xϕ.

• For formulas of the form ϕ∧ψ the argument is as follows.
Let I be an infinite trace. By assumption I |=a ϕ ∧ ψ.
This means that I |=a ϕ and I |=a ψ. By the inductive
hypothesis, there are F,F′ ∈ Pre(I) such that F |=a ϕ
and F′ |=a ψ. By definition of F and F′, either F′ is a
prefix of F or vice versa. Assume w.l.o.g. that F′ is a
prefix of F. By Lemma 23, if F′ |=a ψ then F |=a ψ.
Then, F |=a ϕ and F |=a ψ, and so, F |=a ϕ ∧ ψ.

• The remaining cases are a straightforward application of
the inductive hypothesis.

Claim 4. For all infinite traces I, all assignments a, and all
3-formulas ϕ, if there is F ∈ Pre(I) such that F |=a ϕ then
I |=a ϕ.

Proof of Claim 4 The proof is by induction as in Claim 1. In the
base case we have all non-temporal 3-formulas (Theorem 11).
Assume that the claim holds for ϕ and ψ.

• For formulas of the form 3ϕ the argument is as follows.
Let I be an infinite trace. By assumption there is F ∈
Pre(I) such that F |=a 3ϕ. This means that there is

n ∈ (0, l] such that F, n |=a ϕ. In other words, Fn |=a ϕ,
where Fn is the suffix of F starting from time point n.
By the inductive hypothesis, if Fn |=a ϕ then In |=a ϕ,
where In is the suffix of I starting from time point n.
This implies that there is n ∈ (0,∞) such that I, n |=a ϕ.
So, I |=a 3ϕ.
• For formulas of the form ∃xϕ the argument is as follows.

Let I = (∆, In∈[0,∞)) be an infinite trace. By assump-
tion there is F ∈ Pre(I) such that F |=a ∃xϕ. This
means that there is d ∈ ∆ such that F |=a ϕ[d]. By the
inductive hypothesis, if F |=a ϕ[d] then I |=a ϕ[d]. So,
I |=a ∃xϕ.
• The remaining cases can be proved by a straightforward

application of the inductive hypothesis.

The next lemmas are useful to prove Theorem 13.
Lemma 24. Let F be a finite trace and let F′ be a prefix of F.
For all assignments a, and all 2-formulas ϕ, if F′ 6|=a ϕ then
F 6|=a ϕ.

Proof. The proof is by induction. In the base case we have
all non-temporal 2-formulas. Assume that the lemma holds
for a 2-formula ϕ. Let F be a finite trace, let F′ be a prefix
of F and let a be an assignment. If F′ 6|=a 2ϕ then there is
n > 0 such that F′, n 6|=a ϕ. As F′ is a prefix of F, we have
that F, n 6|=a ϕ. This means that there is n > 0 such that
F, n 6|=a ϕ. Thus, F 6|=a 2ϕ. Other cases can be proved by
straightforward applications of the inductive hypothesis.

Lemma 25. For all finite traces F, all infinite traces I ∈
Ext(F), all assignments a, and all 2+∃-formulas ϕ, if F |=a

2+ϕ then Fω |=a 2+ϕ.

Proof. The proof is by induction. In the base case we have all
non-temporal 2+∃-formulas. Assume that the lemma holds
for ϕ and ψ. We now argue that if F |=a 2+2+ϕ then Fω |=a

2+2+ϕ, by the inductive hypothesis and the semantics of
2+. The remaining cases can be proved in a straightforward
way using the inductive hypothesis.

Recall that, given and assignment a and an element d of a
domain ∆ (of a finite or infinite trace), we write ad for the
result of modifying a so that x maps to d.
Theorem 13. All 2+-formulas are F∃ and I∀. Moreover, all
2+∃-formulas are F∃ and all 2-formulas are I∀.

Proof. We first show that all 2+∃-formulas are F∃. In Claim 1
we show that all 2+∃-formulas are F⇒∃. Then, in Claim 2
we show that all 2+∃-formulas are F⇐∃.

Claim 1. For all finite traces F, all assignments a, and all
2+∃-formulas ϕ, if F |=a ϕ then there is I ∈ Ext(F) such
that I |=a ϕ.

Proof of Claim 1 We show that F |=a ϕ implies Fω |=a ϕ.
The proof is by induction. In the base case we have all non-
temporal 2+∃-formulas (Theorem 11). Assume that the claim
holds for ϕ.
• The case for 2+ϕ is by Lemma 25.



• If F |=a ∀xϕ. This means that, for all d ∈ ∆, F |=a ϕ[d].
By the inductive hypothesis, for all d ∈ ∆, Fω |=a ϕ[d].
So, Fω |=a ∀xϕ.

• If F |=a ∃xϕ. This means that there is d ∈ ∆ such that
F |=a ϕ[d]. By the inductive hypothesis, Fω |=a ϕ[d].
This means that Fω |=a ∃xϕ.

• The remaining cases can be proved in a straightforward
way using the inductive hypothesis.

We observe that the problematic operator for this claim is 2,
e.g., 2⊥ holds in a finite trace F with only one time point but
it does not on any extension, in particular, not on Fω. This
claim relies on the fact that the grammar rule for 2+-formulas
does not allow the 2 operator.

Claim 2. For all finite traces F, all assignments a, and all
2+∃-formulas ϕ, if there exists I ∈ Ext(F) such that I |=a ϕ
then we have that F |=a ϕ.

Proof of Claim 2 The proof is by induction, as in Claim 1.
In the base case we have all non-temporal 2+∃-formulas
(Theorem 11). Assume that the claim holds for ϕ and ψ.

• For formulas of the form 2+ϕ the argument is as follows.
Let F = (∆,Fn∈[0,l]) be a finite trace and let I be an
element of Ext(F). Assume I |=a 2+ϕ. If I |=a 2+ϕ
then, for all n ∈ [0,∞), I, n |=a ϕ. By applying the
inductive hypothesis on every point in [0, l], we have that,
for all n ∈ [0, l], F, n |=a ϕ. So, F |=a 2+ϕ.

• The case for formulas of the form ∀xϕ is as follows. Let
F = (∆,Fn∈[0,l]) be a finite trace. Assume that there is
I ∈ Ext(F) such that I |=a ∀xϕ. By semantics of ∀, we
have that, for all d ∈ ∆, I |=ad ϕ[d]. By applying the
inductive hypothesis on every ϕ[d] with d ∈ ∆ we have
that F |=ad ϕ[d], for all d ∈ ∆. So, F |=a ∀xϕ.

• The case for formulas of the form ∃xϕ is as follows. Let
F = (∆,Fn∈[0,l]) be a finite trace. Assume that there
is I ∈ Ext(F) such that I |=a ∃xϕ. By semantics of ∃,
there is d ∈ ∆ such that I |=ad ϕ[d]. By applying the
inductive hypothesis, we have that F |=ad ϕ[d], for some
d ∈ ∆. So, F |=a ∃xϕ.

• The remaining cases are a straightforward application of
the inductive hypothesis.

We now show that all 2-formulas are I∀. In Claim 3, we
show that all 2-formulas are I⇒∀. Then, in Claim 4, we show
that all 2-formulas are I⇐∀.

Claim 3. For all infinite traces I, all assignments a, and all
2-formulas ϕ, if I |=a ϕ then, for all F ∈ Pre(I), we have
that F |=a ϕ.

Proof of Claim 3 The proof is by induction as in Claim 1. In the
base case we have all non-temporal 2-formulas (Theorem 11).
Assume that the claim holds for ϕ and ψ.

• For formulas of the form 2ϕ the argument is as follows.
Let I be an infinite trace such that I |=a 2ϕ and let
F = (∆,Fn∈[0,l]) be an arbitrary element of Pre(I). If
I |=a 2ϕ then, for all n ∈ (0,∞), I, n |=a ϕ. By

applying the inductive hypothesis on every point in (0, l],
we have that, for all n ∈ (0, l], F, n |=a ϕ. This means
that F |=a 2ϕ. Since F was an arbitrary element of
Pre(I), the argument holds for all F ∈ Pre(I).

• The case for formulas of the form ∀xϕ is as follows. Let
I = (∆, In∈[0,∞)) be an infinite trace and let F be an
arbitrary element of Pre(I). Assume I |=a ∀xϕ. By
semantics of ∀, we have that, for all d ∈ ∆, I |=ad

ϕ[d]. By applying the inductive hypothesis on every ϕ[d]
with d ∈ ∆ we have that F |=ad ϕ[d], for all d ∈ ∆.
By semantics of ∀, F |=a ∀xϕ. As F was an arbitrary
element of Pre(I), the argument holds for all F ∈ Pre(I).

• The remaining cases can be proved by a straightforward
application of the inductive hypothesis.

Claim 4. For all infinite traces I, all assignments a, and all
2-formulas ϕ, if for all F ∈ Pre(I), F |=a ϕ then I |=a ϕ.

Proof of Claim 4 The proof is by induction as in Claim 1. In the
base case we have all non-temporal 2-formulas (Theorem 11).
Assume that the claim holds for ϕ and ψ.

• The case for formulas of the form 2ϕ is by the semantics
of 2 (since I 6|=a 2ϕ implies that there is F ∈ Pre(I)
such that F 6|=a 2ϕ for finite traces with more than one
time point, which contradicts the assumption).

• The case for formulas of the form ∀xϕ is as follows.
Let I = (∆, In∈[0,∞)) be an infinite trace. Assume
F |=a ∀xϕ, for all F ∈ Pre(I). By semantics of ∀, for
all F ∈ Pre(I) and all d ∈ ∆, F |=ad ϕ[d]. By applying
the inductive hypothesis on every ϕ[d] with d ∈ ∆, we
obtain I |=ad ϕ[d], for all d ∈ ∆. So, I |=a ∀xϕ.

• The case for formulas of the form ϕ ∨ ψ is as follows.
Assume that, for all F ∈ Pre(I), F |=a ϕ∨ψ and suppose
to the contrary that I 6|=a ϕ ∨ ψ. Then, there are F,F′ ∈
Pre(I) such that F 6|=a ϕ and F′ 6|=a ψ (otherwise we
contradict the inductive hypothesis). By definition of F
and F′, either F′ is a prefix of F or vice versa. Assume
w.l.o.g. that F′ is a prefix of F. By Lemma 24, F 6|=a ψ.
Then, F 6|=a ϕ ∨ ψ, which contradicts the assumption
that, for all F′′ ∈ Pre(I), F′′ |=a ϕ ∨ ψ.

• The remaining cases can be proved by a straightforward
application of the inductive hypothesis.

C Proofs for Section 5
C.1 Planning
For the proofs of the next theorems, we will use the following
definitions. Let Σ be a finite subset of NP. Assume w.l.o.g.
that the T f

U QL formulas we mention in this subsection have
predicates in Σ, and that Σ contains the end of time predicate
E. Given an infinite trace I, the Σ-reduct of I is the infinite
trace I|Σ coinciding with I on Σ and such that XIn|Σ = ∅,
for X 6∈ Σ and n ∈ [0,∞).

Lemma 26. For every infinite trace I, I |= χf iff I|Σ =
F ·E E, for some finite trace F.



Proof. (⇐) If I|Σ = F ·E E, by Lemma 1, F ·E E |= ψf .
Moreover, where l is the last time point of F, we have by
definition: for all n ∈ [0, l], EF·EEn = ∅; for all n ∈ [l +
1,∞),EF·EEn = ∆, and for every P ∈ NP\{E}, PF·EEn =
∅. Thus, for all n ∈ (0,∞), for all objects d and all tuples
of objects d̄ in ∆, we have: if d ∈ EF·EEn , then (d, d̄) /∈ P ,
for all P ∈ Σ \ {E}. Therefore, F ·E E |= χf1

, and hence
F ·E E |= χf .

(⇒) Suppose I |= χf . Since in particular it satisfies ψf ,
by Lemma 1, we have that I = F ·E I′, for some finite trace
F = (∆, (Fn)n∈[0,l]) and some infinite trace I′. Thus:

EF·I
′
n =

{∅, for all n ∈ [0, l]

∆, for all n ∈ [l + 1,∞)

Since I |= χf1 , for all n ∈ [l+ 1,∞), for all objects d and all
tuples of objects d̄ in ∆, we have that: if d ∈ EF·EEn = ∆,
then (d, d̄) /∈ P , for all P ∈ Σ \ {E}. This is equivalent
to P In = ∅, for all P ∈ Σ \ {E}. Therefore, we have that
I|Σ = F ·E E.

Lemma 27. Let ϕ be a TUQL formula, F a finite trace, and
a an assignment. We have that: F |=a ϕ iff F ·E E |=a ϕ†.

Proof. By definition of F ·E E and as a consequence of
Lemma 2.

Theorem 14. A TUQL formula ϕ is insensitive to infiniteness
iff the T i

UQL logical implication χf |= ϕ↔ ϕ† holds.

Proof. (⇒) Assume that ϕ is insensitive. We want to prove
that, for every infinite trace I and all assignments a, if
I |=a χf , then I |=a ϕ ↔ ϕ†. Suppose I |=a χf . By
Lemma 26, I|Σ = F ·E E, for a finite trace F. Moreover,
thanks to Lemma 27, F |=a ϕ if and only if F ·E E |=a ϕ†.
Since ϕ is by hypothesis insensitive, for every finite trace F
and all assignments a, F |=a ϕ if and only if F ·E E |=a ϕ.
Thus, F ·E E |=a ϕ if and only if F ·E E |=a ϕ†. That is,
F ·E E |=a ϕ↔ ϕ†, and therefore I |= ϕ↔ ϕ† (since all the
predicates occurring in ϕ,ϕ† are in Σ).

(⇐) Assume that χf |= ϕ↔ ϕ†. By Lemma 26, for every
infinite trace I and every assignment a, I |=a χf means that
I|Σ = F ·E E, for a finite trace F. Given our assumption,
this implies F ·E E |=a ϕ ↔ ϕ†, that is F ·E E |=a ϕ if and
only if F ·E E |=a ϕ†, for all assignments a. By Lemma 27,
F ·E E |=a ϕ† if and only if F |=a ϕ. In conclusion, we obtain
that, for all assignments a, F ·E E |=a ϕ if and only if F |=a ϕ,
meaning that ϕ is insensitive.

Theorem 15. Let ϕ,ψ be insensitive TUQL formulas. Then
¬ϕ, ∃xϕ, and ϕ ∧ ψ are insensitive.

Proof. Let F be a finite trace and a be an assignment. For ¬ϕ,
we have that F |=a ¬ϕ iff F 6|=a ϕ. Since ϕ is insensitive
by hypothesis, this means that F ·E E 6|=a ϕ. Therefore, ¬ϕ
is insensitive as well. For ∃xϕ, we have that F |=a ∃xϕ iff
F |=a′ ϕ[d], for some d ∈ ∆. Given that ϕ is insensitive, this
is equivalent to F ·E E |=a′ ϕ[d], for some d ∈ ∆. That is,
F ·E E |=a ∃xϕ, and so ∃xϕ is insensitive. For ϕ ∧ ψ, we
have that F |=a ϕ ∧ ψ is equivalent to F |=a ϕ and F |=a ψ.

Since both ϕ and ψ are assumed to be insensitive, the previous
step is equivalent to: F ·E E |=a ϕ and F ·E E |=a ψ, i.e.,
F ·E E |=a ϕ ∧ ψ.

Theorem 16. Let ϕ and ψ be insensitive TUQL formulas.
Then ϕ ≡I ψ implies ϕ ≡F ψ.

Proof. The result can be seen as a consequence of Theorem 14.
We provide also a direct proof. Given a finite trace F and an
assignment a, if F |=a ϕ then, as ϕ is insensitive, F ·EE |=a ϕ.
By assumption, ϕ ≡I ψ, so F ·E E |=a ψ. As ψ is insensitive,
F ·E E |=a ψ implies F |=a ψ. The converse direction is
obtained by swapping ϕ and ψ.

C.2 Temporal Description Logics
To prove Theorem 17 we use quasimodels [Gabbay et al.,
2003], which have been used to prove the satisfiability of
various temporal DLs. Our definitions here are similar to
those in Section A, now adapted to temporal ALC. Our upper
bound is obtained by a type elimination procedure.
Theorem 17. Satisfiability in TfUALC is EXPSPACE-complete
and in TkUALC is NEXPTIME-complete. Moreover, satisfiabil-
ity in TkUALC restricted to global CIs is EXPTIME-complete.

Proof. We show that satisfiability in TkUALC restricted to
global CIs is in EXPTIME. Let ϕ be a TkUALC formula re-
stricted to global CIs. Assume w.l.o.g. that ϕ does not contain
abbreviations (i.e., it only contains the logical connectives ¬,
u, ∧, the existential quantifier ∃, and the temporal operator U ).
Let NI(ϕ) be the set of individuals occurring in ϕ. Following
the notation provided by Baader et al. 2017, denote by clf(ϕ)
the closure under single negation of the set of all formulas oc-
curring in ϕ. Similarly, we denote by clc(ϕ) the closure under
single negation of the set of all concepts union the concepts
Aa,∃R.Aa, for any a ∈ NI(ϕ) and R a role occurring in ϕ,
where Aa is fresh. A concept type for ϕ is any subset t of
clc(ϕ) ∪ NI(ϕ) such that:
T1 ¬C ∈ t iff C 6∈ t, for all ¬C ∈ clc(ϕ);
T2 C uD ∈ t iff C,D ∈ t, for all C uD ∈ clc(ϕ); and
T3 t contains at most one individual name in NI(ϕ).

Similarly, we define formula types t ⊆ clf(ϕ) for ϕ with the
conditions:
T1′ ¬φ ∈ t iff φ 6∈ t, for all ¬φ ∈ clf(ϕ); and

T2′ φ ∧ ψ ∈ t iff φ, ψ ∈ t, for all φ ∧ ψ ∈ clf(ϕ).
We omit ‘for ϕ’ when there is no risk of confusion. A concept
type describes one domain element at a single time point, while
a formula type expresses constraints on all domain elements.
If a ∈ t ∩ NI(ϕ), then t describes a named element. We write
ta to indicate this and call it a named type.

The next notion captures how sets of types need to be
constrained so that the DL dimension is respected. We
say that a pair of concept types (t, t′) is R-compatible if
{¬F | ¬∃R.F ∈ t} ⊆ t′. A quasistate for ϕ is a set S
of concept or formula types for ϕ such that:
Q1 S contains exactly one formula type tS ;
Q2 S contains exactly one named type ta for each a ∈ NI(ϕ);



Q3 for all C v D ∈ clf(ϕ), we have C v D ∈ tS iff C ∈ t
implies D ∈ t for all concept types t ∈ S;

Q4 for all A(a) ∈ clf(ϕ), we have A(a) ∈ tS iff A ∈ ta
Q5 t ∈ S and ∃R.D ∈ t implies there is t′ ∈ S such that

D ∈ t′ and (t, t′) is R-compatible;

Q6 for all R(a, b) ∈ clf(ϕ), we have R(a, b) ∈ tS iff (ta, tb)
is R-compatible.

A (concept/formula) run segment for ϕ is a finite sequence
σ = σ(0) . . . σ(n) composed exclusively of concept or for-
mula types, respectively, such that:

R1 for all a ∈ NI(ϕ) and all i ∈ (0, n], we have a ∈ σ(0) iff
a ∈ σ(i);

R2 for all αU β ∈ cl∗(ϕ) and all i ∈ [0, n], we have α U β ∈
σ(i) iff there is j ∈ (i, n] such that β ∈ σ(j) and α ∈
σ(m) for all m ∈ (i, j),

where cl∗ is either clc or clf (as appropriate), and R1 does
not apply to formula run segments. Intuitively, a concept run
segment describes the temporal dimension of a single domain
element, whereas a formula run segment describes constraints
on the whole DL interpretation.

Finally, a quasimodel for ϕ is a pair (S,R), with S a finite
sequence of quasistates S(0)S(1) . . . S(n) and R a non-empty
set of run segments such that:

M1 ϕ ∈ tS where tS is the formula type in S(0);

M2 for every σ ∈ R and every i ∈ [0, n], σ(i) ∈ S(i); and,
conversely, for every t ∈ S(i), there is σ ∈ R with
σ(i) = t.

By M2 and the definition of a quasistate for ϕ, R always
contains exactly one formula run segment and one named run
segment for each a ∈ NI(ϕ).

Every quasimodel for ϕ describes an interpretation satis-
fying ϕ and, conversely, every such interpretation can be ab-
stracted into a quasimodel for ϕ. We formalise this notion for
finite traces with the following claim.
Claim 1. There is a finite trace satisfying ϕ with at most k
time points iff there is a quasimodel for ϕ with a sequence of
quasistates of length at most k.

Assume w.l.o.g. that the TkUALC formula ϕ restricted to
global CIs, which is equivalent to a formula of the form T ∧
2(T ) ∧ φ where φ does not contain inclusions and T is a
conjunction of inclusions, has T equivalent to > v CT (and
CT is of polynomial size w.r.t. the size of T ). We compute
in exponential time w.r.t. the size of ϕ the set tp(ϕ) of all
formula types for φ and the set of all concept types for ϕ
satisfying the following condition (in addition to T1-T3):

T4 CT ∈ t.
There is a quasimodel for φ with all concept types satisfying
this last condition iff there is a quasimodel for ϕ. We formalise
this statement with the following straightforward claim.
Claim 2. There is a quasimodel for φ with all concept types
satisfying T4 iff there is a quasimodel for ϕ.

We say that a pair (t, t′) of (concept/formula) types is U-
compatible if:

• α U β ∈ t iff either β ∈ t′ or {α, α U β} ⊆ t′, for all
α U β ∈ cl∗(ϕ),

where cl∗ is either clc or clf (as appropriate).
Our type elimination algorithm iterates over the values in

[1, k− 1] to determine in exponential time in |k|, with k given
in binary, the length of the sequence of quasistates of a quasi-
model for ϕ, if one exists. For each l ∈ [1, k − 1], the l-th
iteration starts with sets:

S0, . . . , Sl−1, Sl

and each Si is initially set to tp(ϕ). We start by exhaustively
eliminating concept types t from some Si, with i ∈ [0, l], if t
violates one of the following conditions:
E1 for all ∃R.D ∈ t, there is t′ ∈ Si such that D ∈ t′ and

(t, t′) is R-compatible;
E2 if i > 0, there is t′ ∈ Si−1 such that (t′, t) is U-

compatible;
E3 if i < l, there is t′ ∈ Si+1 such that (t, t′) is U-

compatible;
E4 if i = l then there is no C U D ∈ t.
For each a ∈ NI(ϕ), if t is a named type ta then, in E2
and E3, we further require that the mentioned types in a U-
compatible pair contain a. This phase of the algorithm stops
when no further concept types can be eliminated. Next, for
each formula type t, we say that a function ft, mapping each
a ∈ NI(ϕ) to a named type containing a, is consistent with t
if: (i) for all A(a) ∈ clf(ϕ), A(a) ∈ t iff A ∈ ft(a); and (ii)
for all R(a, b) ∈ clf(ϕ), R(a, b) ∈ t iff (ft(a), ft(b)) is R-
compatible. We are going to use these functions to construct
our quasimodel as follows. We first add to each Si all ft con-
sistent with each t ∈ Si such that the image of ft is contained
in Si. We then exhaustively eliminate such functions ft from
some Si, with i ∈ [0, l], if ft violates one of the following
conditions:
E1′ if i < l, there is ft′ ∈ Si+1 such that (t, t′) is U-

compatible and, for all a ∈ NI(ϕ), (ft(a), ft′(a)) is
U-compatible;

E2′ if i = l then there is no ψ U ψ′ ∈ t.
It remains to ensure that each Si contains exactly one for-

mula type ti and one named type ta for each a ∈ NI(φ) (and
no functions ft). For this choose any formula type function ft0
in S0 such that φ ∈ t0 (if one exists) and remove formula types
t′0 6= t0 from S0. Then, for each i ∈ [1, l], select a formula
type function fti ∈ Si such that (ti−1, ti) is U -compatible and
for all a ∈ NI(ϕ), (fti−1

(a), fti(a)) is U-compatible, remov-
ing formula types t′i 6= ti from Si, where fti is the selected
function. The existence of such fti is ensured by E1′. For
each selected function fti and each a ∈ NI(ϕ), with i ∈ [1, l],
we remove from Si all named types ta containing a such that
ta 6= fti(a). We now have that each Si contains exactly one
formula type ti and one named type ta for each a ∈ NI(φ).
Finally, we proceed removing all functions ft. We have thus
constructed a sequence of quasistates. Until concepts/formulas
α U β are satisfied thanks to the U-compatibility conditions
and the fact that there are no expressions of the form α U β in
concept/formula types in the last quasistate.



This last step does not affect Conditions E1-E4 (in par-
ticular E1) for the remaining concept types since for each
named type there is an unnamed (concept) type which is the
result of removing the individual name from it, and if the
named type was not removed during type elimination then the
corresponding unnamed type was also not removed. If the al-
gorithm succeeds on these steps with a surviving concept type
t ∈ S0 and a formula type tS0

in S0 such that φ ∈ tS0
then

it returns ‘satisfiable’. Otherwise, it increments l or returns
‘unsatisfiable’ if l = k− 1 (i.e., there are no further iterations).
Claim 3. The type elimination algorithm returns ‘satisfiable’
iff there is a quasimodel for ϕ.
Proof of Claim 3. For (⇒), let S∗ = S∗0 , . . . , S

∗
l be the result

of the type elimination procedure. Define (S∗,R) with R as
the set of sequences σ of (concept/formula) types such that,
for all i ∈ [0, l]:

1. σ(i) ∈ S∗i , and for every t ∈ S∗i , there is σ ∈ R with
σ(i) = t;

2. for all a ∈ NI(ϕ), we have a ∈ σ(0) iff a ∈ σ(i);
3. for all α U β ∈ cl∗(ϕ), we have α U β ∈ σ(i) iff there

is j ∈ (i, l] such that β ∈ σ(j) and α ∈ σ(n) for all
n ∈ (i, j).

where cl∗ is either clc or clf (as appropriate). We now argue
that (S∗,R) is a quasimodel for φ. We first argue that S∗ is
a sequence of quasistates for φ. E1 ensures Condition Q5,
while Condition Q3 is satisfied since φ does not have concept
inclusions. For Conditions Q4 and Q6, we have the fact
that named types are taken from functions consistent with
the formula types. The last step of our algorithm consists
in eliminating formula and named types so that we satisfy
Conditions Q1 and Q2. Thus, S∗ is a sequence of quasistates
for φ. Concerning the construction of R, Point 2 can be
enforced thanks to our selection procedure for named types,
while Point 3 is a consequence of
• Conditions E2, E3 and E4, for concept types; and
• Conditions E1′ and E2′, for formula types, together with

the selection procedure.
Points 2 and 3 coincide with Conditions R1 and R2, so R is a
set of run segments for φ. Finally, when the algorithm returns
‘satisfiable’ then Condition M1 holds, while Point 1 ensures
that Condition M2 holds. Thus, (S∗,R) is a quasimodel for
φ. Since it satisfies Condition T4, by Claim 2, there is a
quasimodel for ϕ.

For the other direction (⇐), assume there is a quasimodel
for ϕ. By Claim 2, this implies the existence of a quasimodel
(S′,R) for φ satisfying Condition T4. Assume S′ is of the
form S′0 . . . S

′
l−1S

′
l , for some l ∈ [1, k − 1]. Let S∗0 , . . . , S

∗
l

be the result of the type elimination at the l-th iteration. Since
(S′,R) is a quasimodel, each concept type satisfies E1. More-
over, Conditions E2-E4 are consequences of the existence of
run segments through each type (by M2). Then, for all un-
named (concept) types t, if t ∈ S′i then t ∈ S∗i , i ∈ [0, l]. If t
is a formula type or a named type then t ∈ S′i does not neces-
sarily imply that t ∈ S∗i , i ∈ [0, l]. However, the existence of
such types implies that the algorithm should find a sequence
of functions ft satisfying E1′ and E2′ which is then used

to select formula and named types satisfying the quasimodel
conditions. In particular, the selection procedure will select a
function ft0 associated with a formula type t0 ∈ S∗0 contain-
ing φ. So there is a surviving formula type in S∗0 containing φ.
If the formula contains individuals, then the named types in
the image of the selected function are in S∗0 and the algorithm
returns ‘satisfiable’. Otherwise, since (S′,R) is a quasimodel,
there is an unnamed concept type t ∈ S′0 which is also in S∗0
by definition of our type elimination procedure for unnamed
concept types.

This finishes the proof of Claim 3.
We now argue that our type elimination algorithm runs in

exponential time. Since there are polynomially many individu-
als (w.r.t. the size of φ) occurring in φ, the number of functions
ft consistent with a formula type is exponential. As the num-
ber of (concept/formula) types is exponential the total number
of functions and types to consider is exponential. In every
step some concept type or function is eliminated (by E1-E4 or
by E1′-E2′, respectively). Conditions E1-E4 and E1′-E2′

can clearly be checked in exponential time. Also, the selection
procedure of functions for each Si, which determine the for-
mula and named types in the result of the algorithm, can also
be checked in exponential time since we can pick any function
in Si+1 satisfying the U-compatibility relation, which is a lo-
cal condition. As this can also be implemented in exponential
time, we finish our proof.

We leave satisfiability in TfUALC restricted to global CIs,
analogously defined as the fragment of TfUALC with only
formulas of the form T ∧ 2(T ) ∧ φ, as an open problem. It
is known that the complexity of the satisfiability problem in
this fragment over infinite traces is EXPTIME-complete [Lutz
et al., 2008; Baader et al., 2017]. Though, the end of time
formula ψf is not expressible in this fragment. We cannot use
the same strategy of defining a translation for the semantics
based on infinite traces, as we did in Section ‘Satisfiability
over Finite Traces’ The upper bound in [Lutz et al., 2008] is
based on type elimination. The main difficulty of devising a
type elimination procedure is that the number of time points is
not fixed and the argument in [Lutz et al., 2008] showing that
there is a quasimodel iff there is a quasimodel (S,R) such
that S(i+ 1) ⊆ S(i), for all i ≥ 0, is not applicable to finite
traces. A type with a concept equivalent to ¬©> can only
be in the last quasistate of the quasimodel. So it is not clear
whether one can show that if there is a quasimodel then there
is a quasimodel with an exponential sequence of quasistates,
as in Theorem 17.


