
Faculty of Computer Science, Free University of Bozen-Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy

Tel: +39 04710 16000, fax: +39 04710 16009

KRDB Research Centre Technical Report:

SHACL Constraint Validation over
Ontology-enhanced KGs via Rewriting

[Extended Version]

Ognjen Savković1, Evgeny Kharlamov2, Steffen Lamparter 3

Affiliation 1: Free University of Bozen-Bolzano, Bolzano, Italy
2: University of Oslo, Oslo, Norway
3: Siemens CT, Siemens AG, Munich, Germany

Corresponding author Ognjen Savković: ognjen.savkovic@unibz.it

Keywords SHACL, Ontologies RDF Graph Validation, Graph Constraints,
RDF, DL-Lite

Number KRDB18-03

Date December, 2018

URL http://www.inf.unibz.it/krdb/

c©KRDB Research Centre. This work may not be copied or reproduced in whole or
part for any commercial purpose. Permission to copy in whole or part without payment
of fee is granted for non-profit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by
permission of the KRDB Research Centre, Free University of Bozen-Bolzano, Italy; an
acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying, reproducing, or republishing for any other
purpose shall require a license with payment of fee to the KRDB Research Centre.

Acknowledgments

This work has been partially funded by the FUB projects QUEST and OBATS.

3

SHACL Constraint Validation over
Ontology-enhanced KGs via Rewriting

Ognjen Savković1, Evgeny Kharlamov2, and Steffen Lamparter3

1 Free University of Bozen-Bolzano, Bolzano, Italy
2 University of Oslo, Oslo, Norway

3 Siemens CT, Siemens AG, Munich, Germany

Abstract. Constraints have traditionally been used to ensure data quality. Recently,
several constraint languages, among which the W3C recommendation SHACL, have
been proposed for Knowledge Graphs (KGs), together with validation mechanisms.
An important feature of KGs is that they are often enhanced with ontologies
that define relevant background knowledge in a formal language such as OWL
2 QL. At the same time, existing systems for constraint validation either ignore
these ontologies, or compile ontologies and constraints into rules that should
be executed by some rule engine. In the latter case, one has to rely on different
systems when validating constrains over KGs and over ontology-enhanced KGs. In
this work, we address this problem by defining rewriting techniques that allow to
compile an OWL 2 QL ontology and a set of SHACL constraints into another set
of SHACL constraints. In particular, we show that in the general case of OWL 2
QL and SHACL the rewriting may not be possible, and establish restrictions to
these languages for which rewriting always exists and also establish complexity
bounds as well as identify tractable cases. Our rewriting techniques allow to
validate constraints over KGs with and without ontologies using the same SHACL
validation engines.

1 Introduction

Constraints has traditionally been used to ensure quality of data in relational [5] and
semi-structured databases [4]. Recently constraints have attracted a considerable attention
in the context of graph data [18, 17], and in particular for Knowledge graphs (KGs)
(e.g, [27, 30, 25]), that is, large collections of interconnected entities that are annotated
with data values and types [6]. KGs have become powerful assets for enhancing search
and data integration and they are now widely used in both academia and industry [29, 1,
2, 21, 22]. Prominent examples of constraint languages for KGs include SHACL [23]4,
ShEx5; examples of constraint validation systems include Stardog6 and TopBraid7.

KGs are often enhanced with OWL 2 ontologies [3] that capture the relevant domain
background knowledge with axioms over the terms from the KGs vocabulary e.g., by
assigning attributes to classes, defining relationships between classes, composing classes,

4 https://www.w3.org/TR/shacl/
5 https://www.w3.org/2001/sw/wiki/ShEx
6 https://www.stardog.com/
7 https://www.topquadrant.com/technology/shacl/

2 Ognjen Savković, Evgeny Kharlamov, and Steffen Lamparter

class hierarchies, etc. We will refer to ontology enhanced KGs as Knowledge Bases, or
KBs. Ontologies significantly impact constraint validation over KGs. Indeed, constraints
over KGs have Closed-World semantics, or Assumption (CWA) in the sense that their
validation over a KG boils down to checking whether sub structures of the KG comply
with the patterns encoded in the constraints [9, 16, 12]. On the other hand, KBs have
open-world semantics (OWA) in the sense that ontologies allow to derive information
from a KG that is not explicitly there.

As a result, constraint validation over KGs in the presence of ontologies requires
to bridge the CWA of constraints and OWA of ontologies [25, 30, 20]. A promising
semantics that offers such bridge was proposed in [25]: given a set of constraints C,
an ontology O, and a KG G, validating the KB 〈O,G〉 against C requires validating all
first-order logic models of O and G that are set-inclusion minimal against C. In practice
this can be implemented via a rewriting mechanism: in order to validate 〈O,G〉 against C,
one can compileO and C into a (possibly disjunctive) logic program and then evaluate the
program over G [25, 20]. A disadvantage of such approach is that constraint validation in
presence of ontologies requires a different evaluation engine than in their absence: it
requires an engine for disjunctive logic programs, rather than an engine for validating
graph constraints. It is preferable to have a mechanism that allows to evaluate constraints
over KBs using the same engine as over KGs.

In this work we address this issue. We first formally formulate the problem of
constraints rewriting over ontologies: we require that the result of rewriting is again a set
of constraints C′ in the same formalism as the original C. We then study the existence of
such a rewriting function for the constraint language SHACL and OWL 2 QL, commonly
used profile of OWL 2. Our results show that rewriting may not exist in the general
case unless CO-NP = NP, since constraint validation in presence of ontologies is
CO-NP-complete, while in absence it is NP-complete.

We next turn our attention to restrictions, on the one hand, of the SHACL language
and, on the other hand, of OWL QL. We do this by observing that a source of non-
existence of the rewiring function comes from the combination of two factors: (1) the
capacity of OWL QL to express the existence of entities that are not explicitly mentioned
in a knowledge graph, and (2) the capacity of SHACL to express negation. We then study
how elimination of the first factor for OWL 2 QL or the second one for SHACL solves
the rewriting problem and propose a corresponding rewriting algorithms.8 Moreover, we
show that if both factors are eliminated for OWL 2 QL, then constraint validation in
presence of constraints can be performed in polynomial time, and show both a PTIME
rewriting algorithm as well as a PTIME constraint validation algorithm.

The paper is organised as follows: in Section 2 we give preliminaries. In Section 3
we introduce our notion of constrain rewriting over ontologies, and show negative results
for SHACL and OWL 2 QL. In Section 4 we present our rewriting algorithms for
restricted SHACL constrains and restricted OWL 2 QL ontologies. In Section 5 we put
all complexity results together. In Section 6 we discuss related work and extensions our
results to other ontology languages. In Section 7 we conclude.

8 We note that elimination of the first factor brings OWL 2 QL close to the W3C recommended
ontology language RDFS [6] and thus the resulting language is still useful in practice.

SHACL Constraint Validation over Ontology-enhanced KGs via Rewriting 3

An extended version of the paper with detailed proofs can be found on-line at: https:
//www.inf.unibz.it/krdb/KRDB%20files/tech-reports/KRDB18-03.pdf.

2 Preliminaries and Running Example

In this section we recall required definitions. We assume a signature Σ that consists of
three infinite countable sets of constants, that correspond to entities, classes of unary
predicates, that correspond to types, and properties or binary predicates that correspond
to object properties or a special predicate “a” that essentially labels entities with classes.
Note that we consider neither datatypes nor data properties in this work and leave them
for the future study. We also consider an infinite countable domain ∆ of entities.

2.1 Knowledge Graph

A Knowledge Graph (KG) G in our work is a possibly infinite directed label graph that
consists of triples of the form (s, p, o) over Σ, where s is a constant, p is a property, and
o is either a constant or a class and only in the latter case p is the special predicate “a”.

Example 1. Consider the following fragment of the Siemens KG GSIEM from [22], which
describes Siemens industrial assets including two turbines with the identifiers :t177 and
:t852 and one power plant (PPlant) with the identifier :p063, as well as information
about equipment (turbine) categories (hasTuCat, hasCat), their deployment sites (deplAt),
and enumeration of turbines at plants (hasTurb):

{(:p063, a, :PPlant), (:p063, :hasTurb, :t852),

(:t852, a, :Turbine), (:t852, :deplAt, :p063), (:t852, :hasCat, :SGT-800),

(:t177, :deplAt, :p063), (:t177, :hasTuCat, :SGT-800), }. ut

2.2 SHACL Syntax

We next briefly recall relevant notions of SHACL using a compact syntax of [12] which
is equivalent to SHACL’s “Core Constraint Components” [12]. SHACL stands for Shapes
Constraint Language. Each SHACL constraint in a set of constraints C, usually referred
to as shape, is defined as a triple: 〈s, τs, φs〉, where

– s is the name,
– τs is the target definition, a SPARQL query with one output variable whose purpose

is to retrieve target entities of s from G, i.e., entities (nodes) occurring in G for which
the following constraint of the shape should be verified,

– and φs is the constraint, an expression defined according to the following grammar:

φ ::= > | s′ | c | φ1 ∧ φ2 | ¬φ | ≥n r.φ | EQ(r1, r2), (1)

where > stands for the Boolean truth values, s′ is a shape name occurring in C, c
is a constant, r is a SPARQL property path, and n ∈ N+; moreover, ∧ denotes the
conjunction, ¬ – negation, “≥n r.φ”–“must have at least n-successors in G verifying
φ”, and “EQ(r1, r2)”–“r1 and r2-successors of a node must coincide”.9

9 One may also use ∨ and ≤n r.φ as syntactic sugar, with their expected meaning.

4 Ognjen Savković, Evgeny Kharlamov, and Steffen Lamparter

With a slight abuse of notation we identify the shape with its name. We note that the
syntax for constraints allows for shapes to reference each other. We call a set of constraints
recursive if it contains a shape that reference itself, either directly or via a reference cycle.

Example 2. Consider CSIEM = {〈si, τsi , φsi〉 | i = 1, 4}, where:

τs1 = ∃y(:deplAt(x, y)), φs1 = (≥1 :hasCat.>),
τs2 = ∃y(:hasTuCat(x, y)), φs2 = (≥1 a.:Turbine),

τs3 = :PPlant(?x), φs3 = (≥1 :hasTurb.s4),

τs4 = :Turbine(?x), φs4 = (≥1 :deplAt.s3).

Here s1 essentially says that any deployed artifact should have a category, and s2 says
that only turbines can have a turbine category. The last two shapes s3 and s4 are mutually
recursive, and they respectively say that each power plant should have at least one turbine
and each turbine should be deployed in at least one location. ut

2.3 SHACL Semantics

Given a shape s, a KG G, and an entity e occurring G, we say that e verifies s in G
if the constraint φs applied to e is valid in G. Finally, G is valid against C if for each
s ∈ C, each target entity retrieved by τs from G verifies s in G. Since a constraint φs may
refer to a shape s′, the definition of validity for KGs is non-trivial. Indeed, the SHACL
specification leaves the difficult case of recursion up to the concrete implementation10 and
a formal semantics via so-called shape assignments has only recently been proposed [12].
Intuitively, G is valid against C if one can label its entities with shape names, while
respecting targets and constraints. A shape assignment σ is a function mapping each
entity of G to a set of shape names in C. We call an assignment target-compliant if it
assigns (at least) each shape to each of its targets, constraint-compliant if it complies
with the constraints, and valid if it complies with both targets and constraints. Then,
G is valid against C if there exists a valid assignment for G and C.

Example 3. Observe that GSIEM is not valid against CSIEM. Shape s1 has targets :t852
and :t177, since both are deployed. :t852 satisfies the constraint for s1, since it has a
category, but :t177 violates it. Shape s2 has target :t177 only, which violates it, since it
is not declared to be a turbine. Shape s3 has no target in GSIEM. The case of shape s4 is
more involved. It has only :t852 as target, and one may assign s4 to :t852 and s3 to
:p063, in order to satisfy the recursive constraint. But since :t177 violates s1 and s2,
there is no “global” valid shape assignment for G and S, i.e. which would satisfy all
targets and constraints simultaneously. ut

2.4 OWL 2 QL

We now recall the syntax and semantics of OWL 2 QL relying on the the Description
Logics DL-LiteR [11] that is behind this profile. (Complex) classes and properties in
OWL 2 QL are recursively defined as follows:

B ::= A | ∃R, C ::= B | ¬B, R ::= P | P−, and E ::= R | ¬R,
10 https://www.w3.org/TR/shacl/

SHACL Constraint Validation over Ontology-enhanced KGs via Rewriting 5

where A is a class from Σ, P a property from Σ, and P− the inverse of P . A DL-LiteR
ontology is a finite set of axioms of the form B v C or R v E. A Knowledge Base (KB)
is a pair 〈O,G〉 of an ontology and a KG. The formal semantics of DL-LiteR is given in
terms of standard first-order logic interpretations I = (∆, ·I) over ∆ in the standard
way.

Example 4. Consider the following OWL 2 QL ontology OSIEM:

{:hasTuCat v :hasCat, ∃:hasTuCat.> v :Turbine},

that says tat if x has y as a turbine category, then x has y as a category, and also x can be
inferred to be a turbine. ut

A useful property of DL-LiteR exploited in Section 4, is the existence, for any satisfiable
KB 〈O,G〉, of a so-called canonical model, which can be homomorphically mapped to
any model of 〈O,G〉.

2.5 Constraint Validation over Ontology-Enhanced KGs

Consider the semantics of [25], that naturally extends constraint validation from KGs to
ontology-enhanced KGs and has been adopted in, e.g., [20]. Given a KG G, ontology O,
and a set of constraints C, the idea of this semantics is to validate C over all set inclusion
minimal models of G and O. Formally, G enhanced with O is valid against C if for each
minimal modelM of G with O, the KG skol(M) is valid against C, where skol(M) is
the Skolemization of models.

Example 5. Observe that 〈O,G, 〉 is valid agains CSIEM. Indeed, shape s1 is still satisfied
by :t852, since no new information can be entailed about :t852 from 〈OSIEM,GSIEM〉.
But it is not violated anymore by :t177, since 〈OSIEM,GSIEM〉 entails that :t177 has
a category. Similarly, shape s2 is not violated anymore by :t177, which can now be
inferred to be a turbine. As for shape s4, it now has an additional target (:t177), and it is
verified by both its targets, thanks to the following assignment:

{s1 7→ {:t852, :t177}, s2 7→ {:t177}, s3 7→ {:p063}, s4 7→ {:t852, :t177}}.

3 The Problem of Constraint Rewriting

We now formalise and discuss the problem of constraint rewriting over ontologies.

3.1 SHACL-Rewriting

Our notion adapts the notion of rewriting (or reformulation) of queries over ontologies
from [11, 19].

Definition 1. Let C be a set of constraints and O an ontology. A set of constraints C′ is a
constraint-rewriting of C over O if for any KG G it holds that:

〈O,G〉 is valid against C iff G is valid against C′.

We now illustrate this notion on the following example.

6 Ognjen Savković, Evgeny Kharlamov, and Steffen Lamparter

Example 6. Consider a set of SHACL constraints and an OWL 2 QL ontology:

C = {〈s, τs, φs〉}, where τs = :MechDevice(x) and φs = (≥1 :hasModel.>),
O = {:Turbine v :MechDevice,∃:hasTuCat v ∃:hasCat}.

One can show that a rewiring of C over O is S ′ = {〈s, τ ′s, φ′s〉}, where

τ ′s = :MechDevice(x) ∨ :Turbine(x) and φ′s = (≥1 :hasCat.>) ∨ (≥1 :hasTuCat.>)ut

Observe that in the example both the target definition τs and the constraint definition
φs were rewritten over O in order to guarantee that the ontology O can be safely ignored.
In particular, the rewriting of τs guarantees that in any graph G, each instance of :Turbine
should also be verified against s, whereas the rewriting of φs guarantees that any entity
in G with a :hasTuCat-successor validates s, even if it has no :hasCat-successor.

Thus, despite the similarity of query and constraint rewriting overt ontologies there
are significant differences. 11 The first difference as illustrated above is that a shape
contains a target definition and a constraint that in the general case should be rewritten
independently. But more importantly, as opposed to queries, SHACL constraints can
be recursive which makes the rewriting significantly more involved (see Section 4 for
details).

In what follows we study rewritability for SHACL, i.e. SHACL-rewritability, for
different fragments of SHACL. Before proceeding we show that in the general case
rewriting does not exist.

3.2 Non-Existence of SHACL-Rewritings

We start with the hardness of SHACL validation.

Theorem 1. There exists an DL-LiteR ontology, a set of SHACL constraints C, and a KG
G such that deciding whether 〈O,G〉 is valid against C is CO-NP-hard in the size of G.

Proof (Sketch). The proof is based on encoding the 3-coloring co-problem. For a given
undirected graph F = 〈V,E〉 (with vertices V and edges E), we construct the following
KG GF :

{(vi, a, V) | vi ∈ V } ∪ {(vi, E, vj) | (vi, vj) ∈ E}
∪ {(v′, U, vi) | vi ∈ V } ∪ {(v′, a, T)},

where v′, U and T are needed for technical reasons as will be explained below.
Then, we define O = {V v ∃R.C,Cred v C,Cblue v C,Cred v ¬Cblue}, where the

axiom V v ∃R.C enforces that in each minimal modelM of 〈O,GF 〉, each vertex vi
has an R-successor ai, which intuitively stands for the color of vertex vi in F 12. The

11 Recall that for query rewriting the input is a query q and ontology O and the output is another
query q′ such that for any database D so-called certain answers of q over 〈O,D〉 coincide with
the answers of q′ over D alone [11].

12 The axiom of kind V v ∃R.C in syntactically not in DL-LiteR but can be expressed by using
fresh role R1 and three axioms: V v ∃R1, R1 v R and ∃R−1 v C.

SHACL Constraint Validation over Ontology-enhanced KGs via Rewriting 7

two other axioms intuitively enforce that either (ai, a, Cred) ∈M or (ai, a, Cblue) ∈M,
or none of the two. Intuitively, vi is either red, or blue or none of the two (i.e. green).

Now we introduce a singleton set of constraints C = {〈s, τs, φs〉} that requires that
at least one pair of adjacent vertices has the same color:

τs = T (x), and φs = (≥1 U.(φ1 ∨ φ2 ∨ φ3)), where

φ1 = (≥1 R. ≥1 a.Cred) ∧ (≥1 E. ≥1 R. ≥1 a.Cred)

φ2 = (≥1 R. ≥1 a.Cblue) ∧ (≥1 E. ≥1 R. ≥1 a.Cblue)

φ3 = (≥1 R. ≥1 a.(¬Cred ∧ ¬Cblue)) ∧ (≥1 E. ≥1 R. ≥1 a.(¬Cred ∧ ¬Cblue)).

Intuitively, formula φ1 evaluates to true at node vi node if vi is colored red and has a red
neighbor. Formulas φ2 and φ3 evaluate similarly, but for blue and green. Finally, shape
s has node v′ as a unique target, and v has every other node in GF as a U -successor,
ensuring that GF is valid against C iff there is no 3-colouring for F . ut

In [13] it has been shown that validation of SHACL constraints over KG without
ontologies is NP-complete in the size of the graph. Thus, we can immediately conclude
the following negative result that holds under the assumption that CO-NP 6⊆ NP.

Corollary 1. There exists an DL-LiteR ontology and a set of SHACL constraints for
which no SHACL-rewriting over this ontology exists.

In order to overcome the non-existence problem for OWL 2 QL we found possible
restrictions on both the ontology language and SHACL (we leave the study of restrictions
for OWL 2 EL for future work). In particular, a combination of DL-LiteR axioms of
the form A v ∃R on the one hand, and SHACL constraints with negation on the other
hand is sufficient to show that a SHACL-rewriting may not exist. In the next section we
investigate rewritability for fragments where such combinations are ruled out.

4 Shape Rewriting

In this section we introduce our rewriting algorithms. As discussed above, a rewriting
may not exist for an arbitrary set of SHACL shapes and a DL-LiteR ontology. Thus to
gain rewritability, one needs to restrict the expressivity of either SHACL or the ontology
language.

In Section 4.1, we define DL-LiteR−, the fragment of DL-LiteR where extensional
quantification (i.e. concepts of the form ∃R) is not allowed on the right-hand side of a
general concept inclusion (GCI). DL-LiteR− is interesting from a practical point of view,
since it corresponds to RDFS. We also define positive SHACL as the fragment of SHACL
without negation (but where disjunction is allowed). For DL-LiteR− and whole SHACL
we developed a rewriting algorithm Algorithm 1.

In Section 4.2 we restrict SHACL to positive SHACL shapes while we do not restrict
DL-LiteR. For this setting we develop Algorithm 2 that allows to compute constraint
rewritings. Note that this algorithm is more involved that Algorithm 1 since DL-LiteR
KBs may have canonical models of arbitrary size (even infinite).

We observe that the PERFREF algorithm defined in [11] to rewrite (unions of)
conjunctive queries in the presence of a DL-LiteR ontology cannot be applied in general

8 Ognjen Savković, Evgeny Kharlamov, and Steffen Lamparter

to SHACL shapes, since they may be recursive or contain negations. We nonetheless
use PERFREF below when applicable (in particular, for rewriting target definitions). If
O is a DL-LiteR ontology and ψ a conjunctive query (resp. if C is a DL-LiteR concept)
then PERFREF(ψ,O) (resp. PERFREF(C,O)) designates the rewriting of ψ (resp. the
conjunctive query corresponding to C) w.r.t. to O.

In order to make notation more concise, we use G, C |= φ(v) below to indicate
that node v satisfies constraint φ in graph G given a set C of shapes. Similarly, we use
〈O,G〉, C |= φ(v) to indicate that node v satisfies constraint φ in graph that corresponds
to the canonical model 〈O,G〉 given a set C of shapes.

We also assume w.l.o.g. that shape constraints in C are normalised, i.e. contain at
most one operator, which can always be obtained by introducing nested shape names.

4.1 Rewriting for DL-LiteR−

In this section, we introduce a rewriting algorithm for DL-LiteR− ontologies and full
SHACL. We observe that a DL-LiteR− KB 〈O,G〉, because it has no existential quantifier
on the right-hand side of a GCI, must have a canonical model can(O,G) of finite
size. This makes rewriting significantly simpler than for arbitrary DL-LiteR ontologies
(investigated in Section 4.2).

Given an ontology O and set C of shapes, the rewriting C′ of 〈O, C〉 is the union of
two sets of shapes: a set CO built out of O, which is used to mimic ontological reasoning,
and a set C′′ built out of C and O, obtained by (i) rewriting target definitions w.r.t. O, and
(ii) rewriting constraints w.r.t. C and O.

Constructing CO For every concept of the form A (resp. ∃R) in O, we introduce a
shape sA (resp. s∃R), with no target (i.e. τsA = τs∃R = ⊥(x)) and with constraint:

φsA = (≥1 a.A) ∨
∨

CvA∈O
sC , φs∃R = (≥1R.>) ∨

∨

Cv∃R∈O
sC ∨

∨

R′vR∈O
s∃R′ ,

where R,R′ may be inverse roles.
Further, we introduce shapes that encode negative assertions. For each GCI of the

form (C v ¬D) in O, we introduce one shape sCv¬D, whose targets are all instances
of C and D in G, and whose constraint is always violated. To this end, we exploits
results based on PERFREF (see [11]). Namely τsCv¬D = PERFREF(C(x) ∧ D(x),
O), and φsCv¬D = ⊥. Similarly, for negative role inclusions, we use sR1v¬R2 , with
τsR1v¬R2

= PERFREF(∃yR1(x, y) ∧R2(x, y),O), and φsR1v¬R2
= ⊥.

We denote the set of shapes produced above with CO, and the corresponding transla-
tion function as SHAPET, i.e., SHAPET(O) = CO. Then the following holds:

Lemma 1 (Finite Canonical model). Let O be a DL-LiteR ontology, C a DL-LiteR
concept, G a graph, v a node in G, can(O,G) the canonical model of O and G. Then
G, CO ∪ C′′ |= φsC (v) iff (v, a, C) ∈ can(O,G).

Next, we rewrite the shapes in C. If s is an initial shape in C, its rewriting will be
designated with s′. As already illustrated, both target definitions and constraints need to
be rewritten. We start with target definitions.

SHACL Constraint Validation over Ontology-enhanced KGs via Rewriting 9

Algorithm 1 CONSTRAINT REWRITING FOR DL-LiteR−

Input: DL-LiteR− ontology O, set C of shapes
1: CO ← SHAPET(O)
2: C′′ ← {〈s′, PERFREF(τs,O),REWRITESIM(φs,O)〉 | s ∈ C}
3: return CO ∪ C′′

Rewriting of Constraints In the absence of ontology, the targets of s are retrieved
by evaluating the target definition τs over graph G, written JτsKG . In SHACL, a target
definition is a monadic query with a single atom that corresponds to a basic concept in an
ontology.

In the presence of an ontology, we follow the semantics described in Section 2.5,
and retrieve targets over all minimal models, or equivalently over the canonical model,
written JτK〈O,G〉. To achieve this, since τs is a unary conjunctive query, one can apply
PERFREF.

Lemma 2. For any shape s, ontology O and graph G:
JτsK〈O,G〉 = JPERFREF(τs,O)KG

Proof (Sketch). Follows from the properties of the canonical model and query answering
over DL-LiteR ontologies (see [11])

In other words, the targets of s according to the KB 〈O,G〉 can be retrieved by
evaluating the query PERFREF(τs,O) over G alone.

Rewriting of Constraints Finally, we rewrite the constraints in C. We replace each
shape s by shape s′ such that:

φs′ = s′1 ∧ s′2 if φs = s1 ∧ s2, φs′ = s′1 ∨ s′2 if φs = s1 ∨ s2,
φs′ = ¬s′1 if φs = ¬s1, φs′ = I if φs = I,

φs′ = (≥kR.s
′
1) ∨

∨

R′vR∈O
(≥kR

′.s′1) if φs = (≥kR.s1),

sR1,R2
=

∧

O|=R′1vR1,R′2vR2

EQ(R′1, R
′
2) if φs = EQ(R1, R2).

Theorem 2. Given a DL-LiteR− ontology O, graph G, node v in G, set C of shapes and
shape s in C:

〈O,G〉, C |= φs(v) iff G, CO ∪ C′′ |= φs′(v)

We denote with REWRITESIM this constraint rewriting function, i.e.
REWRITESIM(φs,O) = φs′ for each s in C.

Algorithm 1 summarise the whole (ontology and shape) rewriting procedure. As an
illustration, the SHACL-rewriting described in Example 6 is the one produced by this
procedure.

10 Ognjen Savković, Evgeny Kharlamov, and Steffen Lamparter

4.2 Rewriting for DL-LiteR
We now consider the case of an arbitrary DL-LiteR O, together with a set C of positive
shapes. For any graph G, can(O,G) may now be arbitrary large (even infinite) and it
may introduce fresh nodes that may be needed to check constraint. This makes rewriting
significantly more involved.

Example 7. Consider the ontology O = {A v ∃U,∃U− v ∃P} and graph G = {(v,
a, A)}. Then can(O,G) = {(v, a, A), (v, U, a1), (a1, P, a2)} where a1 and a2 are fresh
nodes. Now consider shapes 〈s1, A(x), (≥1 U.s2)〉 and 〈s2,⊥(x), (≥1 P.>)〉. It is not
hard to see that C is valid over (O,G).

Since SHACL constraints cannot express fresh values, we need to introduce additional
shapes that mimic the construction of the canonical model.

We start by introducing additional technical notions. Let cl(O,G) be the maximal
subset of can(O,G) which contains no fresh node. We observe that facts in cl(O,G)
can be validated using C ∪ SHAPET(O). Now we need to introduce additional shapes to
validates facts in G′ = can(O,G) \ cl(O,G). Graph G′ is in fact a forest (follows from
the construction of can(O,G)) where each tree has a root in some assertion in cl(O,G).
We call this root the witness of the tree. In example above, (v, a, A) is the only witness.

Then for each concept C appearing in a GCI inO, we introduce a shape svirtualC , such
that, for a node v in G, verifies svirtualC (v) iff there is a node v′ in G′ with v as witness
such that G′ |= C(v′). For instance, in Example 7, we introduce shape svirtual∃R which is
verified by witness v. Note that from this definition, v′ is not necessarily an immediate
successor of v in G′.

More formally, for concept C, the virtual shape 〈svirtualC ,⊥(x), sC〉 is created. Then
a function similar to REWRITESIM is applied to each φsvirtualC

, in order to ensure the
above property. In our running example, this yields φsvirtualA

= sA, i.e. φsvirtualA
remains

unchanged, but φsvirtual∃U
= s∃U ∨ svirtualA ∨ svirtual∃U− . Here, sub-formula svirtualA is added

because of the GCI A v U , and s∃U− is added because if ∃U holds at some node a1
in the tree of G′ rooted in v, then ∃U− must hold at some U -successor a2 of a1. Let
SHAPEVIRTUAL be the function which produces (and rewrites) these “virtual” shapes.

A second kind of shape is needed in order to check if two roles are concatenated in
the same tree in G′. For each pair of roles R1 and R2 in O, we introduce shape ssuccR1,R2

such that a node v ∈ G verifies φssuccR1,R2
iff (a1, R1, a2) and (a2, R2, a3) are on the

subtree with witness v, for some a1, a2, a3 in G′. In our running example, v verifies
φssuccR,P

, but not φssuccP,R
. Formally, for every two roles R1 and R2 in O, τssuccR1,R2

= ⊥(x),
and if O |= ∃R−1 v R2, then φssuccR1,R2

= s∃R1 , otherwise φssucc∃R1,∃R2
= ⊥. The special

case R2 = R−1 , is also covered by the definition φssucc
R1,R

−
1

= s∃R1 . Let SUCCESSORT

denote the function creating these fresh shapes.
Finally, we need to rewrite the shapes in C. To this end, we extend the pro-

cedure REWRITESIM in the following way. For each shape s in C, we set s′ =
REWRITECOMPL(s) ∨ svirtual where REWRITECOMPL is identical to REWRITESIM
for operators ∧, ∨ and constant I but it changes for φs = (≥kR.s1) as follows:

φ′s = (≥kR.s
′
1) ∨ svirtual where φsvirtual = svirtual∃R ∧ svirtual1 ∧ s∃R,s1

SHACL Constraint Validation over Ontology-enhanced KGs via Rewriting 11

Algorithm 2 CONSTRAINT REWRITING 2
Input: ontology O possible with existential rules, set of positive shapes C
1: CO ← SHAPET(O)
2: CvO ← SHAPEVIRTUAL(O)
3: CsO,C ← SUCCESSORT(O, S)
4: C′′ ← {〈PERFREF(τs,O),REWRITECOMPL(φs,O)〉 | s ∈ C}
5: return CO ∪ CvO ∪ CsO,C ∪ C′′

In other words, witness v verifies svirtual if it verifies both svirtual∃R and svirtual1 (that is,
both are verified by some anonymous node with v as witness), and the range of R can be
validated against s1, expressed with the new shape s∃R,s1 . Then φs∃R,s1

= s∃R,s2∧s∃R,s3

if φs1 = s2 ∧ s3 (and similarly for ∨). If φs1 = (≥k P.s2) then φ∃R,s1 = ssuccR,P , that
is P has to be successor of R in G′. Let REWRITECOMPLT denote the corresponding
rewriting of C.

We summarise the rewriting procedure in Algorithm 2.

Lemma 3. Let O be a DL-Lite ontology, C a concept in O, R and P properties in O, G
a graph, v a node in G, can(O,G) the canonical model of O and G, C a set of positive
shapes and C′ the shapes returned by Algorithm 2. Then the following holds:

– G, C′ |= φsvirtualC
(v) iff there is a node a1 in can(O,G) with witness v s.t.

can(O,G) |= C(a1)
– G, C′ |= φssucc

R,P (v) iff there are nodes a1, a2, a3 in can(O,G) with witness v s.t.
can(O,G) |= R(a1, a2) and can(O,G) |= R(a2, a3)

Example 8. We illustrate the rewriting of the running example. Shapes that are not
relevant for reasoning are omitted. The presented shapes are ordered in the way one
would reason with them, starting bottom-up (which is possible if C is not recursive). To
illustrate the reasoning, we underline in each formula the disjuncts for which one can
construct a satisfying shape assignment.

φsvirtualA
= sA, φsvirtual∃U

= s∃U ∨ svirtualA ∨ svirtual∃U− ,

φs∃U = (≥1U.>) ∨ svirtual∃U , φssuccU,P
= s∃U , φs∃U,s2

= ssuccU,P ,

φsvirtual1
= svirtual∃U ∧ svirtual2 ∧ s∃U,s2 , φs′1 =≥1U.s

′
2 ∨ svirtual1 ,

φsvirtual2
= svirtual∃P , φsvirtual∃P

= s∃P ∨ svirtual∃U− ∨ svirtual∃P− , φsvirtual∃U−
= svirtual∃U .

The only target of s is v, and v verifies φs w.r.t the rewritten set of shapes.

Theorem 3. Let O be a DL-Lite ontology, C a set of positive shapes, s a shape in C, C′
the shapes returned by Algorithm 2, and s′ the rewriting of s in C′.
For any graph G and node v in G

〈O,G〉, C |= φs(v) iff G, C′ |= φ′s(v)

We also note that the size of the returned rewriting is polynomial in size of O and C.

12 Ognjen Savković, Evgeny Kharlamov, and Steffen Lamparter

Full SHACL Positive SHACL

DL-LiteR DP-hard PTIME-complete
DL-Lite−R NP-complete PTIME-complete

Table 1. Combined complexity of graph validation against a (compact) SHACL-rewriting, for
different fragments of SHACL and DL-Lite

5 Complexity of Validation

In this section we discuss the complexity of validating a KB against SHACL constraints
as summarised in Table 1. These results follow from Sections 3 and 4 and previous results
about SHACL constraint validation.

We start by observing that despite the fact that for full SHACL and DL-LiteR,
rewriting in general does not exist, we can still provide a lower-complexity bound on
validation of KBs over constraints. We show that the problem is DP-hard [26]. We
remind the reader that DP = NP ∧ CO-NP = {L1 ∩ L2 | L1 ∈ NP and L2 ∈ CO-NP}
Then, from Theorem 1, validation is at least CO-NP-hard in data complexity. Since it is
also at least NP-hard (shown by SAT encoding in [12]) for full SHACL, it is not hard to
combine two encodings into single one and obtain the problem that is DP-hard.

It was shown in [12] that in the case without ontologies validation for the full
SHACL language is NP-complete in both data (i.e. the size of the graph) and combined
(i.e. graph and constraints) complexity, e.g., due to the combination of recursion and
negation. At the same time tractability can be gained by restricting their usage as in
positive SHACL, for which the validation is PTIME-complete in both data and combined
complexity. Another way to gain the tractability is as [14] where the notion of strict
stratification for SHACL constraints was introduced and it strengthen the classical notion
of stratification in Datalog. It was shown that validation for such constraints is also
in PTIME. In Section 4.1 our rewriting over ontologies of disjointness constraints for
DL-LiteR and positive SHACL is strictly stratified, and this is the only possible source of
negation. Since our rewriting is of polynomial size, we can conclude that validating a
DL-LiteR KB against positive SHACL constraints is in PTIME.

6 Discussion And Related work

In this section we discuss what we thinks are interesting properties of SHACL rewritings
as well as related work.

6.1 On Compactness of Rewriting

The rewriting technique presented in this paper also have a desirable property of com-
pactness. Compactness of rewritability has been studied query rewriting over OWL 2 QL
ontologies [8], and it has been shown (under some separation assumptions) that a polyno-
mial rewriting cannot exist in general for several non-recursive languages (including
non-recursive Datalog). In comparison, our techniques take the advantage of recursive
shape references to produce a worst-case polynomial SHACL-rewriting.

SHACL Constraint Validation over Ontology-enhanced KGs via Rewriting 13

6.2 General Rewriting Algorithm

In general, rewriting of OWL 2 QL can be seen a special case of general backward-
chaining algorithm [24] algorithm over so-called ∀∃-rules (where the body and the head
are conjunctions of atoms, and variables that occur only in the head are existentially
quantified). The existence of a rewriting is undecidable in general for arbitrary rules, and
even for some decidable fragments, this algorithm may not terminate. Nevertheless, since
it is a general one it is a good starting point to investigate terminations and optimizations
when applied to more restrictive ontologies.

6.3 Beyond OWL 2 QL

So far we focused on restricting SHACL constraints to gain rewritability. A natural
question to ask what if we go beyond DL-LiteR even if for restricted SHACL constraints
or consider languages like OWL 2 EL. First, observe that for OWL 2 EL one can prove
the non existence of rewriting of constraints over ontologies using the same argument is
in Theorem 1. Still, compact rewriting in case of positive SHACL may be possible and
we leave it as an open question. Then, consider ALC [7], a DL that is contained in OWL
2, has been long studied and that properly contains both QL and EL profiles of OWL 2.
One can show thatALC is too expressive so that can be rewritten into SHACL even if we
are given a single shape of the formula of the form “>”. For example, one can reduce the
problem of “concept satisfiability” in ALC into checking validity of SHACL constraints
of over the same ALC KB. Since the former is known to be PSPACE-complete [7], we
have a problem that cannot be encoded as SHACL validation problem (which is worst
case NP-complete). The Datalog± family [10] is another popular family of ontological
languages that extend the idea of first-order query rewritability to ∀∃-rules but under
certain syntactic restrictions. For Datalog± despite the fact that instance checking is very
efficient in data complexity (AC0) meaning that the query answering can be reduced to
evaluation of first-order queries, the price of the combined complexity of the problem
is rather high (EXPTIME-hard) and thus one cannot obtain polynomial rewritings in
SHACL.

6.4 Translating SHACL to known query language

Alternative idea of rewriting SHACL is to relate SHACL in some know ontological
(query) language and then apply rewriting algorithm. Since SHACL may contain recur-
sion such query language cannot be of conjunctive queries. Naturally, one may think of
relating SHACL to Datalog programs [15]. However, Datalog programs can at most have
one unique minimal model, and SHACL constraints are checking for all possible assign-
ments [12] (including also non-minimal one). If we consider more expressive version of
Datalog like Datalog with negation under the stable model semantics (SMS) [15], then
relating it to SHACL is more promising, while the actual relation is not obvious as SMS
is also based on minimal models. A possible way to relate the two semantics, at least for
SHACL with single maximal assignments, is to reason about shape “complements” under
SMS. Nevertheless, our preliminary results show that this is not straightforward.

14 Ognjen Savković, Evgeny Kharlamov, and Steffen Lamparter

7 Conclusion
In this work, we study the problem of rewriting constraints over ontologies. We focused
on a prominent language for graph constraints, namely SHACL, and on ontologies from
the widely used OWL 2 QL ontology language. We defined semantics for constraint
rewriting, showed the non-existence of such rewritings in the general case, and identified
restrictions of OWL 2 QL and SHACL for which they always exist. For these restricted
cases, we showed how to rewrite ontologies and SHACL into unique set of SHACL
constraints. Moreover, validation over OWL 2 QL is tractable for the positive (but still
recursive) fragment of SHACL. And validation with full SHACL expressivity becomes
NP-complete. For the case where the existence of rewritings cannot be guaranteed, we
established lower complexity bound.

We see this work as an important step towards practical constraint rewriting algorithms
and systems. In particular, instead of combining OWL reasoning and SHACL validation
as an additional layer may create an unnecessary overhead, our rewritings allow the
validation that could be performed against a single set shapes. Next, we plan to analyze
optimization techniques in order to obtain more efficient rewritings. For instance, we plan
to consider datatypes. They can be used to optimize eliminate unnecessary rewritings,
but this need to be done in a controlled way to ensure tractability (e.g., [28]). Finally, in
the future we plan to extend this work to account for OWL 2 EL. Moreover, we plan to
implement our approach and evaluate it.

Bibliography
[1] Freebase: an open, shared database of the world’s knowledge. www.freebase.

com/.
[2] Google KG. google.co.uk/insidesearch/features/search/knowledge.

html.
[3] W3C: OWL 2 Web Ontology Language. http://www.w3.org/TR/

owl2-overview/.
[4] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations to

Semistructured Data and XML. Morgan Kaufmann, 1999.
[5] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,

1995.
[6] M. Arenas, C. Gutiérrez, and J. Pérez. Foundations of RDF Databases. In Reasoning

Web. Semantic Technologies for Information Systems, pages 158–204, 2009.
[7] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider. The

description logic handbook: theory, implementation and applications. Cambridge
university press, 2003.

[8] M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev.
Ontology-mediated queries: Combined complexity and succinctness of rewritings
via circuit complexity. Journal of the ACM (JACM), 65(5):28, 2018.

[9] I. Boneva, J. E. Labra-Gayo, and E. G. Prud’hommeaux. Semantics and Validation
of Shapes Schemas for RDF. In ISWC, 2017.

[10] A. Calì, G. Gottlob, and A. Pieris. Query answering under non-guarded rules in
datalog+/-. In RR.

[11] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
JAR, 2007.

SHACL Constraint Validation over Ontology-enhanced KGs via Rewriting 15

[12] J. Corman, J. L. Reutter, and O. Savkovic. Semantics and validation of recursive
shacl. ISWC, 2018.

[13] J. Corman, J. L. Reutter, and O. Savkovic. Semantics and validation of recursive
shacl (extended version). Technical Report KRDB18-1, KRDB Research Center,
Free Univ. Bozen-Bolzano, 2018.

[14] J. Corman, J. L. Reutter, and O. Savkovic. A tractable notion of stratification for
SHACL. In (ISWC, 2018.

[15] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and expressive
power of logic programming. ACM Comput. Surv., 33(3):374–425, 2001.

[16] F. J. Ekaputra and X. Lin. SHACL4p: SHACL constraints validation within Protégé
ontology editor. In ICoDSE, 2016.

[17] W. Fan, Z. Fan, C. Tian, and X. L. Dong. Keys for graphs. PVLDB, 8(12):1590–1601,
2015.

[18] W. Fan, Y. Wu, and J. Xu. Functional dependencies for graphs. In SIGMOD, pages
1843–1857, 2016.

[19] P. Hansen, C. Lutz, I. Seylan, and F. Wolter. Efficient query rewriting in the
description logic EL and beyond. In IJCAI, pages 3034–3040, 2015.

[20] E. Kharlamov, B. C. Grau, E. Jiménez-Ruiz, S. Lamparter, G. Mehdi,
M. Ringsquandl, Y. Nenov, S. Grimm, M. Roshchin, and I. Horrocks. Capturing
industrial information models with ontologies and constraints. In ISWC, pages
325–343, 2016.

[21] E. Kharlamov, D. Hovland, M. G. Skjæveland, D. Bilidas, E. Jiménez-Ruiz, G. Xiao,
A. Soylu, D. Lanti, M. Rezk, D. Zheleznyakov, M. Giese, H. Lie, Y. E. Ioannidis,
Y. Kotidis, M. Koubarakis, and A. Waaler. Ontology Based Data Access in Statoil.
J. Web Sem., 44:3–36, 2017.

[22] E. Kharlamov, T. Mailis, G. Mehdi, C. Neuenstadt, Ö. L. Özçep, M. Roshchin,
N. Solomakhina, A. Soylu, C. Svingos, S. Brandt, M. Giese, Y. E. Ioannidis,
S. Lamparter, R. Möller, Y. Kotidis, and A. Waaler. Semantic Access to Streaming
and Static Data at Siemens. J. Web Sem., 44:54–74, 2017.

[23] H. Knublauch and A. Ryman. Shapes constraint language (SHACL). W3C
Recommendation, 11:8, 2017.

[24] M. König, M. Leclère, M. Mugnier, and M. Thomazo. Sound, complete and minimal
ucq-rewriting for existential rules. Semantic Web, 6(5):451–475, 2015.

[25] B. Motik, I. Horrocks, and U. Sattler. Bridging the gap between OWL and relational
databases. Web Semantics: Science, Services and Agents on the World Wide Web,
7(2):74–89, 2009.

[26] C. M. Papadimitriou. Computational complexity. Addison-Wesley, Reading,
Massachusetts, 1994.

[27] P. F. Patel-Schneider. Using Description Logics for RDF Constraint Checking and
Closed-World Recognition. In AAAI, 2015.

[28] O. Savkovic and D. Calvanese. Introducing datatypes in dl-lite. In ECAI, pages
720–725, 2012.

[29] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of semantic knowledge.
In Proc. of WWW, pages 697–706, 2007.

[30] J. Tao, E. Sirin, J. Bao, and D. L. McGuinness. Integrity Constraints in OWL. In
AAAI, 2010.

SHACL Constraint Validation over
Ontology-enhanced KGs via Rewriting

Ognjen Savković1, Evgeny Kharlamov2, and Steffen Lamparter3

1 Free University of Bozen-Bolzano, Bolzano, Italy
2 University of Oslo, Oslo, Norway

3 Siemens CT, Siemens AG, Munich, Germany

Table of Contents

1 Appendix Structure . 17
2 Auxiliary Properties . 17
3 Proofs of the Properties from the Paper . 20

3.1 Proof of Lemma 1 . 20
3.2 Proof of Lemma 2 . 20
3.3 Proof of Theorem 2 . 20
3.4 Proof of Lemma 3 . 22
3.5 Proof of Theorem 3 . 22

SHACL Constraint Validation over Ontology-enhanced KGs via Rewriting 17

1 Appendix Structure

The structure of the appendix we organize as follows. In Section 2 we introduce a
axillary notions and properties that we use to prove main lemmas and theorems from
the paper. Then in Section 3 we show the proofs for Lemma 1, Theorem 2 that are
proving SHACL rewritings for with DL-LiteR− and then for Lemma 2, Theorem 3 that
are proving rewritings for DL-LiteR. When it is clear from the context we just named
them as DL-Lite ontologies or just ontologies.

We remind the reader that expression 〈O,G, C〉 |= s(v) is defined as follows. For
each minimal model of G′ of 〈O,G〉 there exists a satisfying shape assignment σ over G′
to shape names in C. Here, σ is satisfying shape assignment means if for each node v in
G and each assigned shape s to v, written, s ∈ σ(v), the shape formula φs evaluates to
true over given graph G, written JφsKG,v,σ = true, or shortly σ(v, s) = true when it is
clear from the context.

2 Auxiliary Properties

First we show that to check validity over all minimal models it is sufficient to check
validity over the canonical model. In particular, this holds for our two cases for which we
establish SHACL rewritings: (i) DL-Lite without existentials and whole SHACL and
(ii) DL-Lite and positive SHACL.

First we introduce an axillary property that shows that it is sufficient to consider only
satisfiable KGs.

Lemma 4. Let O be a DL-Lite ontology and G a graph. If 〈O,G〉 is unsatisfiable then
for any shape s and any node in v in G there is exists no satisfying shape assignment
over G and the set of shapes CO that validates s(v).

Proof. Assume that 〈O,G〉 is unsatisfiable. Wlog we assume that cause of being
unsatisfiable is the following: it holds 〈O,G〉 |= C(a) ∧D(a) for some node a in G and
some basic concepts C and D, and at same time O |= C v ¬D (similarly it can be
shown for role disjointness).

Since 〈O,G〉 |= C(a) ∧D(a) we have (from the properties on PERFREF in [1]) that
G |= PERFREF(C(a) ∧D(a),O). Then, since we have τsCv¬D

= PERFREF(C(x) ∧
D(x),O) it follows that a is the target of shape sCv¬D. On the other hand φsCv¬D

= ⊥,
thus for every shape assignment σ it must be σ(sCv¬D) = ⊥, i.e., there exist no satisfying
assignment for sCv¬D. Hence, there exist no satisfying assignment over G and CO that
also validates s(v). ut

Lemma 5 (canonical model characterization I). For a DL-Lite ontology without ex-
istential rules T , a basic concept C, a graph G, node v in G, set S of shapes and
shape s defined in S. Then if 〈T ,G〉 is satisfiable we have that the following holds:
〈T ,G,S〉 |= φs(v) iff can(T ,G),S |= φs(v).

Proof. SinceO is without existential rules, 〈O,G〉 has the unique minimal model and that
model is the same as canonical model. Thus the property follows from there directly. ut

If a DL-Lite ontology has existentials it can have many different minimal models. The
canonical model is one them, but the canonical model is also the most “conservative” one,

18 Ognjen Savković, Evgeny Kharlamov and Steffen Lamparter

in the sense that formulas that hold over canonical model would hold in all models but
not vice-versa. To show this property we rely on the notion of homomorphism between
models.

Definition 1 (FO-homomorphism). Given two interpretations I = (∆I , ·I) and J =
(∆J , ·J) over the same set P of predicate symbols, a homomorphism µ from I to J is a
mapping µ : ∆I → ∆J such that, for each predicate P ∈ P of arity n and each tuple
(o1, . . . , on) ∈ (∆I)n, if (o1, . . . , on) ∈ P I , then (µ(o1), . . . , µ(on)) ∈ PJ .

In [1], the authors showed that a canonical model of a KB can be homomorphically
mapped to any other model of that KB. Now we extend this notion to shapes.

Definition 2 (SHACL-homomorphism). Given two graphs G1 and G2 with set of con-
stants ∆1 and ∆2 respectively, and set of shapes C, a SHACL-homomorphism µ from G
and G′ is a mapping µ : ∆1 → ∆2 such that, for each shape s ∈ C and each constant
v ∈ ∆1, if G1, C |= φs(v) then G2, C |= φs(µ(v)).

Lemma 6 (canonical homomorphism for positive shapes). Let O be an ontology, G
a graph, and letM be a minimal model of 〈O,G〉. Let C be a set of positive shapes. Then,
there is a SHACL-homomorphism from can(O,G) toM given C. In particular, there
exists a SHACL-homomorphism that maps every node from G to itself.

Proof. From [1], we have that there exists a homomorphism µ from can(O,G) to
M such that for a basic concept C and node v it holds if C(v) ∈ can(O,G) (resp.
R(v1, v2) ∈ can(O,G)) then C(µ(v)) ∈M (resp. R(µ(v1), µ(v2)) ∈M. In particular,
it is possible to select µ such that µ(v) = v for v ∈ G. We also notice that µ has to be
surjective; otherwise the µ-image of can(O,G) would be “smaller” minimal model than
M which is contradiction.

Assume now that can(O,G), C |= φs(v) for some shape s from C and node
v in can(O,G). Let σ be a satisfying assignment for can(O,G), C such that
JφsKcan(O,G),σ,v = true. We define an assignment σ′ overM, C in the following way:
for a shape s1 and node v1 inM we set s1 ∈ (v1, σ

′) iff exists a node v2 in can(O,G)
such that µ(v2) = v1 and s1 ∈ (v2, σ). Now analyzing different cases for s: φs = >,
φs = I , φs =≥k R.s1, φs = s1 ∧ s2, φs = s1 ∨ s2 and φs = EQ(r1, r2), it is not hard
to show that if JφsKcan(O,G),σ,v = true then JφsKM,σ′,µ(v) = true. ut

Using the lemmas above we are able to show the following property of the canonical
model.

Lemma 7 (canonical model characterization II). For a DL-Lite TBox O, a basic
concept C, a graph G, node v in G, set S of positive shapes and shape s defined in C we
have that: 〈O,G, C〉 |= φs(v) iff can(O,G), C |= φs(v).

Proof. (⇐) Statement 〈O,G, C〉 |= φs(v) is true ifM, C |= φs(v) is true each minimal
modelsM. Since can(O,G) is one minimal model the claim follows directly.

(⇒) LetM be a minimal model of 〈O,G〉. From Lemma 6 we have that there is a
homomorphism µ from can(O,G) toM such thatM, C |= φs(µ(v)) where µ(v) = v.

ut
The following lemma characterizes “virtual” shapes.

SHACL Constraint Validation over Ontology-enhanced KGs via Rewriting 19

Lemma 8. Assume we are given a DL-Lite ontology O, a graph G, node v in G, a set
C of positive shapes and shape s defined in C. Then let C′′, CO, CvO and CO be sets of
shapes constructed from C and O as defined in Algorithm 2. It holds:

G, C′′ ∪ CO ∪ CvO ∪ CsO |= φsvirtual (v) iff
there is a node a1 in can(O,G) with witness v s.t. can(O,G), C |= φs(a1).

Proof. (⇒) Let σ′ be a satisfying assignment for G, C′′ ∪ CO ∪ CvO ∪ CsO.
We set σ to be an assignment for C over can(O,G) to be based on σ′ by replacing

each svirtual with s and eliminating assignments for shapes in CO ∪ CvO ∪ CsO.
From Lemma 3 we have that each shape ssuccR,P in CsO is true in v iff there are

nodes a1, a2, a3 in can(O,G) with witness v s.t. can(O,G) |= R(a1, a2) and can(O,
G) |= R(a2, a3), and (ii) each shape svirtualC in CvO is true in v iff there is a node a1 in
can(O,G) with witness v s.t. can(O,G) |= C(a1). Thus, for cases φs = >, φs = I ,
φs =≥1 a.C1 for some basic concept C1 it is clear that σ(v, s) is true iff σ′(v, s′) is true.

Cases φs = φ1 ∧ φ2, φs = φ1 ∨ φ2 and φs = EQ(r1, r2) can be shown in the same
way as in the proof of Theorem 1.

For φs = (≥kR.s1) we have the following rewriting: φ′s = (≥kR′.s′1) ∨ svirtual .
Then φsvirtual evaluates to true if either (≥kR′.s′1) is true or φsvirtual is true.

Assume first that ≥kR′.s′1 evaluates to true. Since R′ = R1| . . . |Ri| . . . |Rn where
O |= Ri v R there must be at least k facts of the form (v,Ri, vi) in G. So there are at
least k R-successors in can(O, T) (actually, there are already in cl(O,G)). The we set
a1 = v and ≥kR.s1(v) evaluates to true since s1 ∈ σ′(v) iff s1 ∈ σ(v).

Assume now that svirtual evaluates to true. First we analyze the shapes of the form
s∃R,s1 . We observe that such shapes are forming a propositional Datalog program where
φs∃R,s1

= s∃R,s2 ∧ s∃R,s3 if φs1 = s2 ∧ s3 (and similarly for ∨) and φ∃R,s1 = ssuccR,P if
φs1 = (≥kP.s2) . The program that only depends on O and not on shapes in C since
literals are defined as: ssuccR,P = svirtual∃R if O |= ∃R− v ∃P and ssuccR,P = ⊥ if O |=
∃R− v ∃P . Special cases are φs1 =≥1 a.A and φs1 =≥1R.>. then φ∃R,s1 = svirtualA

and φ∃R,s1 = svirtual∃R respectively.
Overall, formula of a shape φ∃R,s1 evaluates to true (in any node in G) if (i) all

successors necessary for s1 and other shapes references by s1 exist in canonical model,
(ii) “terminating” shape with formulas φs1 =≥1 a.A and φs1 =≥1R.> are also true in
v.

Second, shape svirtual∃R evaluates to true in v and thus from Lemma 3 we have that
canonical model contains a tree with root in v that branch is of the form (v,R, v′) for
some fresh v′ introduced when generating canonical model. From Lemma 3 we have that
there exists a node a1 in can(O,G) where s∃R evaluates to true.

Thus all “necessary successors” of s are in can(O,G) and we set σ accordingly so
σ(a1, s) = true.

(⇐) Let σ be a satisfying assignment for can(O,G), C |= φs(v). Let now σ′ be the
same as σ where each shape name s is replaced with s′. In addition, we extend σ′ to shape
names in CO ∪ CvO ∪ CsO. In particular, a shape ssuccR,P in CsO are assigned to every node in
G such that σ′(ssuccR,P , v) = true iff O |= ∃R− v ∃P . This determines the assignment for
shapes of kind s∃R,s1 by setting σ′(s∃R,s1 , v) = true iff propositional s∃R,s1 is true in
the Datalog program that contains shapes CsO and shapes of the kind “s∃R,s2”. For the

20 Ognjen Savković, Evgeny Kharlamov and Steffen Lamparter

shapes on form “φsvirtualC
” we set to evaluate to true in a node v iff there is a node a1 in

can(O,G) with witness v s.t. can(O,G) |= C(a1). Then, we extend σ′ to shape names
in CO and “virtual” CO. For each shape name sA and node v ∈ G we add sA ∈ σ′(v)
iff (v, a, A) ∈ cl(O,G). Similarly, we add s∃R ∈ σ′(v) iff (v,R, v′) ∈ cl(O,G) for
v, v′ ∈ G. Similarly, we extend σ′ for shape of the form svirtualA and svirtual∃R .

Finally, one can show for each shape type in C′′∪CO ∪CvO ∪CsO that σ′ is a satisfying
assignment given graph G and that σ′φsvirtual (v). This can be shown similarly to the
opposite direction by analyzing each shape type and operator. ut

3 Proofs of the Properties from the Paper

3.1 Proof of Lemma 1

Proof. (⇒) By assumption there exists a satisfying assignment σ over shape names
in CO ∪ C′′ such that JφsC KG,v,σM = true. Wlog assume C is an atomic concept A By
definition φsA = (≥1 a.A) ∨ ∨

O|=C′vA
sC′ and thus either (≥1 a.A) evaluates to true or

for some C ′, (≥1 a.C ′) evaluates to true if C ′ = B or (≥1 R.>) if C ′ = ∃R. In either
case we have G |= C ′(v). Then since O |= C ′ v A by construction of the canonical
model it must be (v, a, A) ∈ can(O,G).

(⇐) We construct an assignment for CO in the following way: sC ∈ σ(v) iff (v, a,
C) ∈ can(O,G). Now we have to show that it is a satisfying assignment. Wlog C = A
where A is a basic concept. Then by definition target query of τsA = PERFREF(A).
Assume that v′ is returned by PERFREF(A) over G′. Then must exits a fact (v′, a, A′) ∈ G
for a atomic concept A′ or (v,R, v′′) ∈ G for some role R such that O |= A′ v A
or O |= ∃R v A respectively. If the former then σ(v, sA′) = true, or if the latter
σ(v, s∃R) = true. In either case, it follows that σ(v, sA) = true. Similarly, we can show
the case C = ∃R. ut

3.2 Proof of Lemma 2

Proof. The authors in [1] established the correspondence between certain answers of
conjunctive queries over knowledge graphs and perfect reformulation (Lemma 35):
For a KG 〈O,G〉 and conjunctive query q we have that certain answers of q over the
KG corresponds to perfect reformulation, cert(q, 〈O,G〉) = JPERFREF(q,O)KG . Here,
certain answer means that tuple a ∈ cert(q, 〈O,G〉) iff for every minimal modelM of
〈O,G〉 it holds a ∈ JqKM.

Formula JτsK〈O,G〉 defines target nodes over graph and ontology. In other words,
JτsK〈O,G〉 returns node v iff for every minimal modelM of 〈O,G〉 we have that v is
in the answer of JτsKM, thus corresponds to certain query answering. Since τs is a
conjunctive query, it holds JτsK〈O,G〉 = JPERFREF(τs,O)KG ut

3.3 Proof of Theorem 2

Proof. First we consider the case when 〈O,G〉 is unsatisfiable. Then there exists no
minimal model thus the left-hand side is false. On the other hand from Lemma 4 there is
no satisfying assignment for G, CO and hence neither for G, CO∪C′′. Thus, the right-hand
side is also false.

SHACL Constraint Validation over Ontology-enhanced KGs via Rewriting 21

Assume now that 〈O,G〉 is satisfiable. Then, from Lemma 5 we have that: 〈O,G,
C〉 |= φs(v) iff can(O,G), C |= φs(v). Thus it is sufficient to show:

can(O,G), C |= φs(v) iff G, CO ∪ C′′ |= φs′(v).

(⇒) Let σ be a satisfying assignment for can(O,G), C |= φs(v). We define σ′ as
a shape assignment for C′ ∪ CO over G. In particular, let σ′ be the same as σ where
each shape name s is replaced with s′. In addition, we extend σ′ to shape names in CO.
For each shape name sA and node v ∈ G we add sA ∈ σ′(v) iff (v, a, A) ∈ can(O,G).
Similarly, we add s∃R ∈ σ′(v) iff (v,R, v′) ∈ can(O,G) for v, v′ ∈ G. We observe that
σ′ is an assignment from G to shape names in CO ∪ C′′.

First we show that σ′ is satisfying assignment for shape names in CO. From Lemma 1
we have that G, CO |= φsC (v) iff (v, a, C) ∈ can(O,G). Wlog assume C = A then for
each node v such that (v, a, A) ∈ can(O,G) we have that sA ∈ σ′(v) (and similarly for
the shape names of kind “s∃R”). Thus σ′ is an satisfying assignment for shapes in CO.

Now we are going to show that σ′ is also a satisfying assignment such that

σ(v, s) = true iff σ′(v, s′) = true

We note that σ(v, s) = JφsKcan(O,G),v,σ and σ′(v, s′) = Jφs′KG,v,σ
′
.

We analyze s case by case. For the cases: φs = >, φs = I , and φs = ¬s1 it is clear
that σ(v, s) is true iff σ′(v, s′) is true.

If φs =≥k R.s1 then σ(v, s) = true if there are at least k R-successors in the
canonical model. By construction of canonical model there must be then at least k facts
of the form (v,Ri, vi) in can(O, C) such that O |= Ri v R. Since, φs′ = ≥k R′.s′1
where R′ = R1| . . . |Ri| . . . |Rn then v must have at least k R′-successors. Moreover,
σ(vi, s1) = true iff σ′(vi, s′1) = true. Then it holds σ(v, s′) = true.

Two syntactically special cases are φs =≥1 a.A and φs =≥kR.>, however they are
not covered by the case ≥kR.s1. The reasons is that concept inclusions in O that create
new facts in the canonical model Assume sφ =≥1 a.A. If σ(v, s) = true then according
to the construction of can(O,G) there must be a finite chain of concept and role inclusion
that starting from a fact of form (v, a, A0) or (v,R0, v1) in G creates the fact (v, a, A) in
can(O,G). If (v, a, A0) is the case we have that O |= A0 v A, otherwise we have that
O |= ∃R v A. In either case, we have that Jφs′KG,v,σ

′
= true. Similarly, we can reason

in the case φs =≥kR.>.
If φs = EQ(r1, r2) then we set φs′ = EQ(r′1, r

′
2) where r′1 and r′2 are obtained by

replacing each occurrence of property R with R1 | . . . | Rn where O |= Ri v R. Then a
fact (v1, R, v2) is in can(O,G) iff for some i a fact (v1, Ri, v2) is in G, that is R′ returns
v1 and v2 over G. Thus, paths in r1 corresponds to one in r′1 and the same for r2, and so
σ(v, s) is true iff σ′(v, s′) is true.

If φs = s1 ∧ s2. then σ(v, s) = true iff σ(v, s1) = σ(v, s2) = true which by
definition of σ is the case iff σ′(v, s′1) = σ′(v, s′2) = true iff σ′(v, s′) = true. Similarly,
one can show the same property for the case φs = φ1 ∨ φ2.

(⇐) Let σ′ be an satisfying assignment for G, CO ∪ C′′ |= φs′(v). We construct an
satisfying assignment σ for can(O,G), C |= φs(v). We set that σ is obtained from σ′

by replacing each s′ with s and eliminating shape names from CO. Then analogously

22 Ognjen Savković, Evgeny Kharlamov and Steffen Lamparter

to the direction (⇒) for each node v in G and shape name we can show that it holds:
σ(v, s) = true iff σ′(v, s′) = true.

We analyze s case by case. For the cases: φs = >, φs = I , and φs = ¬s1 it is clear
that σ(v, s) is true iff σ′(v, s′) is true.

Again we have two special cases when sφ =≥1 a.A and sφ =≥k R.>. Let us
consider that sφ =≥1 a.A and that s′ ∈ σ(v). Then from Lemma 1 we have that s′ ∈
σ(v) iff (v, a, A) ∈ can(O,G) and thus JsφKcan(O,G),σ,v = true. So, σ(v, s) = true.
Similarly, we can show the same property for the case sφ =≥kR.>.

Finally for the cases φs = EQ(r1, r2), φs = φ1 ∧ φ2, φs = φ1 ∨ φ2, φs =≥k R.s1
we can show similarly to the direction (⇒). ut

3.4 Proof of Lemma 3

Proof. We remind the reader that the virtual shapes are defined as follows:

φsvirtualA
= sA ∨

∨

O|=CvA
svirtualC , φsvirtual∃R

= s∃R∨
∨

O|=Cv∃R
svirtualC ∨

∨

O|=R′vR
svirtual∃R′ .

Then it is sufficient to show that there exists a satisfying assignment over CO∪CvO∪CsO
that verifies svirtualC (v) iff there is a node v′ in G′ with v as witness such that G′ |= C(v′).
This can be shown in a similar fashion to the proof of Lemma 1. The second claim can
also shown in a similar way. ut

3.5 Proof of Theorem 3

Proof. First we consider the case when 〈O,G〉 is unsatisfiable. Then there exists no
minimal model thus the left-hand side is false. On the other hand from Lemma 4 there is
no satisfying assignment for G, CO and hence neither for G, C′. Thus, the right-hand side
is also false.

Assume now that 〈O,G〉 is satisfiable. Then, from Lemma 7 we have that: 〈O,G,
C′〉 |= φs(v) iff can(O,G), C |= φs(v). Thus it is sufficient to show:

can(O,G), C |= φs(v) iff G, C′ |= φs′(v).

(⇒) Let σ be a satisfying assignment for C over can(O,G) such that
JφsKcan(O,G),v,σ = true. We construct a satisfying assignment σ′ for C′ over G such that
JφsKG,v,σ

′
= true.

By definition C′ = CO ∪ CvO ∪ CsO,C ∪ C′′ where shape names in C′′ are referencing
shape in CO ∪ CvO ∪ CsO,C but not vice-versa. So we first define shape assignment for
CO ∪ CvO ∪ CsO,C and then we extend it to C′′.

From Lemma 3 we have that (i) G, CO ∪ CvO ∪ CsO |= φssucc
R,P (v) iff there are nodes a1,

a2, a3 in can(O,G) with witness v s.t. can(O,G) |= R(a1, a2) and can(O,G) |= R(a2,
a3), and (ii) G, CO ∪ CvO ∪ CsO |= φsvirtualC

(v) iff there is a node a1 in can(O,G) with
witness v s.t. can(O,G) |= C(a1). From the proof of Lemma 3 we have that there exists
a satisfying assignment σ1 that is satisfying assignments for the both claims above.

Let σ2 be the satisfying assignment for C′′ that is the same as σ where each s is
replaced with s′. Finally, we set σ′ = σ1 ∪ σ2. Obviously, σ′ is satisfying assignment for
shape names in CO ∪ CvO ∪ CsO. It remains to show that it is satisfying assignment for C′′.

SHACL Constraint Validation over Ontology-enhanced KGs via Rewriting 23

We show this for each case. For the cases: φs = > and φs = I it is clear that σ(v, s)
is true iff σ′(v, s′) is true.

Cases φs = φ1 ∧ φ2, φs = φ1 ∨ φ2 and φs = EQ(r1, r2) can be shown in the same
way as in the proof of Theorem 1.

If φs = ≥k R.s1 the translation is φ′s = (≥k R′.s′1) ∨ svirtual where R′ =
R1| . . . |Ri| . . . |Rn. By definition σ(v, s) = true if there are at least k R-successors in
the canonical model. By construction of canonical model there must be then at least
k facts of the form (v,Ri, vi) in can(O, C) such that O |= Ri v R. We distinguish
between two cases. Either all facts (v,Ri, vi) are in the closure cl(O,G) and thus
(as shown in Theorem 2) formula ≥k R′.s′1 evaluates to true. Otherwise, there are
R-successors necessary for s to evaluate to true that are in can(O,G) \ cl(O,G). The
minimal canonical model introduces at most one node a1 for each node a in can(O, C)
such that R(v, a) ∈ can(O, C). Moreover, all nodes necessary to evaluate σ(v, s) to
true are located on the tree t in can(O,G) \ cl(O,G) that is rooted in v. That is, for
each shape s1 referenced by s that evaluates to true on t with σ there exists a node a1
on t such that can(O,G), C |= φs1(a1). Now we apply Lemma 8, and get that it holds
G, C′′ ∪ CO ∪ CvO ∪ CsO |= φsvirtual1

(v). If we set s1 = s and the node a1 = v and apply
Lemma 8 again, we have that σ′(svirtual , v) = true.

(⇐) Let σ′ be a satisfying assignment for G, C′′∪CO∪CvO∪CsO such that JφsKG,v,σ
′
=

true. We set σ to be an assignment for C over can(O,G) to be based on σ′ by replacing
each svirtual with s and eliminating assignments for shapes in CO ∪ CvO ∪ CsO.

Then this claim can be shown in a similar fashion to the direction “⇒” of Lemma 8
by applying Lemmas 3,4 and 8 for different types of shape definitions. ut

Bibliography

[1] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
JAR, 2007.

