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Abstract

Attributed description logic is a recently proposed formalism, targeted for graph-based
representation formats, which enriches description logic concepts and roles with finite sets
of attribute-value pairs, called annotations. One of the most important uses of annotations
is to record provenance information. In this work, we first investigate the complexity of
satisfiability and query answering for attributed DL-Lite ontologies. We then propose a
new semantics, based on provenance semirings, for integrating provenance information
with query answering. Finally, we establish complexity results for satisfiability and query
answering under this semantics.
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Abstract

Attributed description logic is a recently proposed formal-
ism, targeted for graph-based representation formats, which
enriches description logic concepts and roles with finite sets
of attribute-value pairs, called annotations. One of the most
important uses of annotations is to record provenance infor-
mation. In this work, we first investigate the complexity of
satisfiability and query answering for attributed DL-LiteR
ontologies. We then propose a new semantics, based on prove-
nance semirings, for integrating provenance information with
query answering. Finally, we establish complexity results for
satisfiability and query answering under this semantics.

Introduction
Description logic (DL) (Baader et al. 2007) ontologies allow
to express complex relationships between concepts and roles,
but they are ill-equipped to represent and reason about mul-
tiple and heterogeneous types of meta-knowledge, such as
the temporal validity of a fact, or its source. For instance, the
YAGO ontology (Hoffart et al. 2013) attaches provenance
metadata to its facts (e.g., source and confidence of the extrac-
tion) as well as temporal and geospatial information. Many
practical applications therefore use knowledge graphs, which
consist, like DL assertions, of directed labelled graphs but
that also allow, unlike DLs, to add annotations to vertices
and edges. Property Graph, the data model used in many
graph databases (Rodriguez and Neubauer 2010), and Wiki-
data, the knowledge graph used by Wikipedia (Vrandečić
and Krötzsch 2014), are prominent examples of such la-
belled graphs. To bridge the gap between DL and knowledge
graphs, attributed description logics (Krötzsch et al. 2017;
Krötzsch et al. 2018) have been recently introduced. They en-
rich DL concepts and roles with finite sets of attribute-value
pairs, called annotations, and allow to express constraints on
these annotations in the ontology inclusions. For example,
the attributed DL assertion spouse(taylor, burton)@[start :
1975, end : 1976] states that Liz Taylor was married to
Richard Burton from 1975 to 1976, and the following role in-
clusion expresses that spouse is a symmetric relation, where
the inverse statement has the same start and end dates:

spouse@X v spouse−@[start : X.start, end : X.end].
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

While the work by Krötzsch et al. studied the complexity of
the satisfiability problem for several attributed DL languages,
our focus in this paper is on query answering in attributed DL.
The problem of querying DL ontologies using database-style
queries (in particular, conjunctive queries) is an important
research topic for which tractable DL languages have been
tailored (Bienvenu and Ortiz 2015). We consider here the DL-
LiteR dialect of the DL-Lite family (Calvanese et al. 2007),
which underlies the OWL 2 QL profile (Motik et al. 2009),
and investigate attributed DL-LiteR.

One of the main motivations of attributed DLs is to inte-
grate annotations carrying provenance information, which
are very frequent in knowledge graphs1. Recording and track-
ing provenance information is an important topic in database
theory, where provenance semirings (Green, Karvounarakis,
and Tannen 2007) were introduced as an abstract tool to re-
late the result of a query with information about the original
sources of the data and the ways in which the query was
obtained. Such information comes in the form of a prove-
nance polynomial. It has been useful for many applications,
such as query answer explanation or querying of probabilistic
databases (Senellart 2017; Cheney, Chiticariu, and Tan 2009;
Suciu et al. 2011). Bienvenu, Deutch, and Suchanek (2012)
argued that provenance would be useful for Web data, e.g.,
to establish the authorship or determine the trust in a given
piece of data, or to help to guarantee the privacy of informa-
tion. Provenance has also been investigated for non-relational
databases and Semantic Web (see Conclusion for discussion
of related work). In this work, we propose a new seman-
tics for the attributed DL annotations, based on provenance
semirings, so that queries can be annotated with provenance
polynomials. To the best of our knowledge, this is the first
work where provenance polynomials are embedded into both
the syntax and the semantics of the query.

The first section introduces attributed DL-LiteR, following
the formalism given by Krötzsch et al. (2017; 2018). We then
define attributed conjunctive queries and study the complexity
of satisfiability and query answering in attributed DL-LiteR.
We next present our new semantics for the annotations to
model provenance and analyse the complexity of satisfiabil-
ity and query answering with this new model, considering

1E.g., in Wikidata reference (provenance) is one the most fre-
quent types of annotations https://www.wikidata.org.



queries that can be annotated with provenance polynomials.
In particular, we show that satisfiability and query answering
in attributed DL-LiteR are PSPACE-complete problems. For
the semirings-based semantics and queries annotated with
provenance polynomials, we establish that although satisfia-
bility is EXPTIME-hard in the general case, the new semantics
does not increase the complexity of query answering if the
ontology contains only assertions and a restricted form of
inclusions, which is close to the database setting considered
by Green, Karvounarakis, and Tannen (2007). We also inves-
tigate various restrictions of the general setting. Our results
are for combined complexity, when both the query and the
ontology are considered as the input. Proofs are available in
the appendix.

Attributed DL-Lite
Attributed DLs are defined over the usual DL signature with
countable sets of concept names NC, role names NR, and
individual names NI. We consider an additional set NU of set
variables and a set NV of object variables. Annotation sets
are defined as finite binary relations, understood as sets of
attribute-value pairs. Attributes and values refer to domain
elements and are syntactically denoted by individual names.
To describe annotation sets, we use specifiers. The set S of
specifiers contains the following expressions:

• set variables X ∈ NU;

• closed specifiers [a1 : v1, . . . , an : vn]; and

• open specifiers ba1 : v1, . . . , an : vnc,
where ai ∈ NI and vi is either an individual name in NI,
an object variable in NV, or an expression of the form X.a,
with X a set variable in NU and a an individual name in
NI. We use X.a to refer to the (finite, possibly empty) set
of all values of attribute a in an annotation set X . A ground
specifier is a closed or open specifier that only contains in-
dividual names. Intuitively, closed specifiers define specific
annotation sets whereas open specifiers merely provide lower
bounds (Krötzsch et al. 2017).

Syntax. A DL-LiteR@ role (resp. concept) assertion is an
expression R(a, b)@S (resp. A(a)@S), with R ∈ NR (resp.
A ∈ NC), a, b ∈ NI, and S ∈ S a ground closed speci-
fier. DL-LiteR@ role and concept inclusions are of the form
X :S (P v Q) and X :S (B v C) respectively, where
X ∈ NU, S ∈ S is a closed or open specifier, and P,Q and
B,C are respectively role and concept expressions defined
by the following syntax, where A ∈ NC, R ∈ NR and S ∈ S:

P ::= R@S | R−@S, Q ::= P | ¬P,
B ::= A@S | ∃P, C ::= B | ¬B.

We further require that all variables are safe. For set variables,
this means that if Y ∈ NU occurs on the right side of an inclu-
sion (or in a specifier S such that the prefix of the inclusion
is X :S and X occurs on the right side), then the specifier
of the left side expression is Y . For object variables, if they
occur on the right side of an inclusion then they must also
occur on the left side or in S such thatX :S andX occurs on
the left. Note that if object variables occur in S with X :S in

the prefix and X on the right side, then X is the specifier on
the left by the safety definition. If the prefix of an inclusion is
X :S and X does not occur in the role/concept expressions
of the inclusion, we may ommit X :S.

A DL-LiteR@ ontology is a set of DL-LiteR@ assertions, role
and concept inclusions. Also, we say that a DL-LiteR@ ontol-
ogy is ground if it does not contain variables. To simplify
notation, we omit the specifier bc (meaning “any annotation
set”) in role or concept expressions. In this sense, any DL-
LiteR axiom is also a DL-LiteR@ axiom. Moreover, we omit
prefixes of the form X : b c, which state that there is no re-
striction onX . The size of an ontologyO (or a query, defined
later), which we may denote with |O|, is the length of the
string that represents it.
Example 1. Our running example’s ontology Oex expresses
that those who are married (role spouse) to someone are
married (concept Married), annotated with the same sources
from which the information has been extracted (attribute src):

∃spouse@X v Married@bsrc : X.srcc.
The assertion states that Zsa Zsa Gabor was married to Jack
Ryan and it is annotated with the sources of this information:

spouse(gabor, ryan)@[src : s1, src : s2].

Semantics. An interpretation I = (∆I , ·I) of an attributed
DL consists of a non-empty domain ∆I and a function ·I .
Individual names a ∈ NI are interpreted as elements aI ∈
∆I . To interpret annotation sets, we use the set ΦI := {Σ ⊆
∆I ×∆I | Σ is finite } of all finite binary relations over ∆I .
Each concept name A ∈ NC is interpreted as a set AI ⊆
∆I × ΦI of elements with annotations, and each role name
R ∈ NR is interpreted as a set RI ⊆ ∆I × ∆I × ΦI of
pairs of elements with annotations. Each element (pair of
elements) may appear with multiple different annotations.
I satisfies a concept assertion A(a)@[a1 : v1, . . . , an : vn]

if (aI , {(aI1 , vI1 ), . . . , (aIn, v
I
n)}) ∈ AI . Role assertions are

interpreted analogously. Expressions with free set or object
variables are interpreted using variable assignments Z map-
ping object variables x ∈ NV to elementsZ(x) ∈ ∆I and set
variables X ∈ NU to finite binary relations Z(X) ∈ ΦI . For
convenience, we also extend variable assignments to individ-
ual names, setting Z(a) = aI for every a ∈ NI. A specifier
S ∈ S is interpreted as a set SI,Z ⊆ ΦI of matching anno-
tation sets. We set XI,Z := {Z(X)} for variables X ∈ NU.
The semantics of closed specifiers is defined as:

• [a: v]I,Z := {{(aI ,Z(v))}} where v ∈ NI ∪ NV;

• [a:X.b]I,Z := {{(aI , δ) | (bI , δ) ∈ Z(X)}};
• [a1 : v1, . . . , an : vn]I,Z := {⋃n

i=1 Fi |Fi ∈ [ai : vi]
I,Z}.

SI,Z therefore is a singleton set for set variables and
closed specifiers. For open specifiers, however, we define
ba1 : v1, . . . , an : vncI,Z to be the set:

{F ⊆ ΦI | F ⊇ G for {G} = [a1 : v1, . . . , an : vn]I,Z}.
Now given A ∈ NC, R ∈ NR, and S ∈ S, we define:

(A@S)I,Z := {δ | (δ, F ) ∈ AI for some F ∈ SI,Z},
(R@S)I,Z := {(δ, ε) | (δ, ε, F ) ∈ RI for some F ∈ SI,Z}.



Further DL expressions are defined as usual: (R−@S)I,Z =
{(γ, δ) | (δ, γ) ∈ (R@S)I,Z}, ¬P I,Z = (∆I×∆I)\P I,Z ,
∃P I,Z = {δ | there is (δ, ε) ∈ P I,Z}, ¬CI,Z = ∆I\CI,Z .
I satisfies a concept inclusion X :S (B v C) if, for all
variable assignments Z that satisfy Z(X) ∈ SI,Z , we have
BI,Z ⊆ CI,Z . Satisfaction of role inclusions is defined
analogously. An interpretation I satisfies an ontology O, or
is a model of O, if it satisfies all of its axioms. As usual, |=
denotes the induced logical entailment relation.
Example 2 (Example 1 cont’d). Consider an interpretation
I with domain ∆I = {gabor, ryan, src, s1, s2} and such that
·I maps each individual name to itself and

spouseI = {(gabor, ryan, {(src, s1), (src, s2)})}
MarriedI = {(gabor, {(src, s1), (src, s2)})}.

The interpretation I is a model of Oex.

Reasoning in DL-LiteR@
In this section, we study the complexity of satisfiability and
query answering over DL-LiteR@ ontologies. Our first result is
that the satisfiability problem, which is in NL for DL-LiteR
(Artale et al. 2009), is harder for DL-LiteR@ . The proof is
by reduction from the word problem for polynomially space
bounded deterministic Turing Machines (DTM). Annotations
raise the complexity because they can encode configurations
of a DTM, using expressions of the form X.b to encode the
synchronization of successive configurations.
Theorem 1. In DL-LiteR@ , satisfiability is PSPACE-hard.

To prove the PSPACE upper bound for satisfiability, we use
grounding (Krötzsch et al. 2017), which is a classical tech-
nique that consists in eliminating variables from an ontology
to transform it into an equisatisfiable ground ontology. The
ground ontology can then be translated into an equisatisfiable
DL-LiteR ontology. The grounding leads to an exponential
blowup of the ontology while the translation to DL-LiteR is
polynomial. Since satisfiability of DL-LiteR ontologies is in
NL (Artale et al. 2009), it follows (by (Savitch 1970)) that
satisfiability of DL-LiteR@ ontologies is in PSPACE.

Theorem 2. In DL-LiteR@ , satisfiability is in PSPACE.
We now turn our attention to the problem of querying DL-

LiteR@ ontologies. In the following we only define and deal
with conjunctive queries without free variables, i.e., boolean
conjunctive queries (BCQ), as the problem of finding certain
answers to a query is reducible to BCQ entailment.
Definition 1 (Attributed Queries). An attributed boolean con-
junctive query (BCQ@) q is an expression of the form:

∃x.X1 :S1, . . . , Xn :Sn ϕ(x) (1)

where, for 1 ≤ i ≤ n, Xi are the set variables occurring
in ϕ(x), Si ∈ S, and ϕ(x) is a conjunction of atoms of the
form A(t)@S or R(t, u)@S, with A ∈ NC, R ∈ NR, S ∈ S,
and t, u individual names in NI or variables in x ⊆ NV.

We may write E(t)@S to refer to an atom of any of the
two forms (E ∈ NC ∪ NR and t is a tuple of elements from
NI ∪ x of the arity of E).

An interpretation I = (∆I , ·I) satisfies a BCQ@ q, written
I |= q, if there exists a variable assignment Z such that:

• Z(Xi) ∈ SI,Zi for all 1 ≤ i ≤ n; and
• (Z(t), F ) ∈ EI for some F ∈ SI,Z , for every atom
E(t)@S occurring in q.

A BCQ@ q is entailed by O, written O |= q, iff q is satisfied
by every model of O. A BCQ@ that consists of a single atom
is an attributed boolean atomic query (BAQ@). We say that a
BCQ@ is ground if it contains only ground specifiers.

BCQ@ can express conditions on annotations, for instance
require that there exists an annotation set where a given
attribute is present or has a specific value.
Example 3. We modify Oex to express that those who have
a spouse are married, associated with the same annotations:

∃spouse@X v Married@X.

We also add assertions stating that Zsa Zsa Gabor was mar-
ried to Jack Ryan from 1975 to 1976, while Liz Taylor was
married to Richard Burton from 1975 to 1976, as well as the
sources of this information:

spouse(gabor, ryan)@[start : 1975, end : 1976, src : s1],

spouse(gabor, ryan)@[start : 1975, end : 1976, src : s2],

spouse(taylor, burton)@[start : 1975, end : 1976, src : s3].

The following query expresses that Gabor and Taylor were
married (to someone) with the same start and end dates:

qex = ∃xyMarried(gabor)@bstart : x, end : yc∧
Married(taylor)@bstart : x, end : yc.

By the semantics of DL-LiteR@ , it follows that Oex |= qex.
This other query expresses that a set of sources that includes
s1 and is associated with Gabor’s married status is also
associated with Taylor’s married status:

q′ex = X : bsrc : s1c Married(gabor)@X∧
Married(taylor)@bsrc : X.srcc.

By the semantics of DL-LiteR@ , it follows that Oex 6|= q′ex.

While BCQ entailment is NP-complete in DL-LiteR, it
follows from Theorem 1 that BAQ@ entailment is already
PSPACE-hard. Indeed, satisfiability can be reduced to BAQ@

entailment: O is unsatisfiable iff O |= A(a) where A and
a are respectively a concept and an individual name that do
not occur in O. We show PSPACE-completeness of BCQ@

entailment by describing how to decide O |= q for a BCQ@

q, using only polynomial space w.r.t. the size of O and q.
The main ingredients to prove our result are grounding,

translation to DL-LiteR, and also query rewriting, a promi-
nent query answering technique for DL-LiteR in which the
query is rewritten w.r.t. the concept and role inclusions, to be
evaluated over the assertions as in the classical database set-
ting. However, as the ground version of O is of exponential
size and the number of rewritten queries is exponential, we do
not compute them but instead guess the DL-LiteR translation
dl(qZ) of a grounded version qZ of q together with one of its
rewritings q′. We can verify in NP that q′ is entailed by the
DL-LiteR translation of the assertions of O, in PTIME that
dl(qZ) is the DL-LiteR translation of a grounded version of q,



and in PSPACE that q′ is indeed a rewriting of dl(qZ). For this
last step, we propose a non-deterministic adaptation of the
rewriting algorithm PerfectRef for DL-LiteR by Calvanese
et al. (2007) that takes as input dl(qZ), q′ and O. The main
idea is to rewrite dl(qZ) by guessing at each step an atom
of the query together with a positive inclusion that would
appear in the DL-LiteR translation of the grounding of O,
thus avoiding the computation of the grounding of O.
Theorem 3. In DL-LiteR@ , BCQ@ entailment is in PSPACE.

The result of Theorem 3, which is for combined complex-
ity, contrasts with the EXPTIME-hardness w.r.t. data com-
plexity (only w.r.t. the data size) for MARPL, an attributed
logic based on Datalog (Marx, Krötzsch, and Thost 2017).
Finally, we show lower complexity bounds in the case of
ground ontologies. Indeed, when O is ground, one can build
a DL-LiteR ontology of polynomial size w.r.t. the size of O
that entails the DL-LiteR translation of a grounded version
of q if and only if O |= q.
Theorem 4. For ground DL-LiteR@ ontologies, satisfiability
is in PTIME and BCQ@ entailment is NP-complete.

Querying using Provenance Semirings
In this section, we investigate attributed DL in light of prove-
nance semirings (Green, Karvounarakis, and Tannen 2007)
and enhance the semantics of DL-LiteR@ to deal with prove-
nance information. Semirings generalize formalisms such
as why-provenance, lineages used in view maintenance, or
the lineage used by the Trio uncertain management sys-
tem (Senellart 2017). The main motivation is to use anno-
tations to answer questions such as “Where does the result
come from?”. Assuming that facts are annotated with their
sources, we want to know which combinations of sources
lead to the entailment of a query. Such annotations may rep-
resent various types of information, such as trust, probability,
multiplicity or data classification (see Example 8).
Example 4 (Example 3 cont’d). The result of the query qex
over the ontology Oex can be obtained from source s3 to-
gether with any of s1, s2. Provenance semirings can formalize
this information in the form of a provenance polynomial:

(s1 + s2)× s3.

The intuitive meaning is that + corresponds to alternative
use of data and× to joint use of data. The goal of this section
is to embed the formalism of provenance semirings into the
semantics of DL-LiteR@ , so that we can associate annotations
using provenance polynomials to queries (e.g., associate the
annotation src : (s1 + s2)× s3 to the query qex of Example 3).

We define DL-LiteR@,K as an order-sorted version of DL-
LiteR@ . Elements of different sorts correspond to sets of in-
dividual names NI, provenance sums NS and provenance
polynomials NP. We represent provenance polynomials with
the positive algebra provenance semiring for NI, defined
as the commutative semiring of polynomials with variables
in NI and coefficients from N, with operations defined as
usual: K = (N[NI],+,×, 0, 1). We denote by NP the set of
polynomials of K and by NS the subset of NP containing the
sums of the commutative monoid (N[NI],+, 0). We thus have

NI ⊆ NS ⊆ NP. We may use the symbols
∑

and
∏

to denote
sum and product of elements in NP (which will then also be
in NP). Elements of NS are used as values in the ontology
specifiers while elements of NP appear as values in the query
specifiers. Non-linear polynomials indicate the use of several
assertions to derive a query, while provenance sums indicate
that a query can be derived from different sources.

Role and concept inclusions in DL-LiteR@,K are defined
similarly as in DL-LiteR@ , with the only difference that we
allow elements from NS to be values of attributes in the speci-
fiers. Concept and role assertions are defined as in DL-LiteR@ .
The fact that we do not allow values from NS in the asser-
tions does not change the expressivity of DL-LiteR@,K, since
inclusions can enforce the entailments of such assertions.
Example 5. The following concept inclusion restricts that
of Example 3 by further requiring that the fact that someone
has a spouse has to be associated both with s1 and with s2 to
conclude that this person is married.

X : bsrc : s1 + s2c (∃spouse@X v Married@X)

Provenance Semantics. We now introduce the semantics
of DL-LiteR@,K, based on provenance sums. A provenance-
interpretation I = (∆I , ·I) is such that ·I maps polynomials
a and b in NP to the same element aI = bI in ∆I if and
only if they are mathematically equal2. We denote by ∆II the
domain of individuals and by ∆IS the domain of provenance
sums, which are the subsets of ∆I corresponding to the
image of elements in NI and NS, respectively. Thus ∆II ⊆
∆IS ⊆ ∆I . To capture the semantics of provenance sums we
develop a notion of closure. Intuitively, if a fact is annotated
with n sources then it should also be annotated with the sum
of any subset of these sources, since the fact can be retrieved
alternatively by any source from this subset. For example,
assume (a, F1), . . . , (a, Fn) are in the interpretation of a
concept or a role nameE. If there is (srcI , sIi ) in each Fi and
these annotation sets only differ by such pairs, then for each
subset of {s1, . . . , sn}, the interpretation of E should have
(a, Fs) with Fs differing from Fi only by the pair (srcI , sI),
where s is the sum of the elements of the subset.

We say that G,H ∈ ΦI are differentiated by p in F if

F = G \ {(p, a) | (p, a) ∈ G} = H \ {(p, b) | (p, b) ∈ H}.
In this case, we denote by G+p H the set

F ∪ {(p, (a+ b)I)|{a, b} ⊆ NP,(p, a
I) ∈ G, (p, bI) ∈ H}.

A sum of possibly more than two annotation sets differenti-
ated by p may be denoted by

∑p
1≤i≤nGi and is unique by

the commutative law. For E ∈ NC ∪NR, and a a tuple of the
arity of E, we say that G +p H is non-primitive for a and
EI if {(a, G), (a, H)} ⊆ EI . We denote by EpI,a,F the set
of annotation sets G pairwise differentiated by p in F ∈ ΦI

such that (a, G) ∈ EI with G primitive for a and EI .
Definition 2 (Closure of EI). EI is closed under sum if for
all tuples a (in ∆I or ∆I ×∆I according to the arity of E),

2According to associative, commutative and distributive laws.
E.g., (a+ b)I = (b+ a)I by the commutative law.



{(a,∑p
G∈σ G) | σ ⊆ EpI,a,F , σ 6= ∅} ⊆ EI for every

p ∈ ∆I and every F ∈ ΦI .
A provenance-interpretation I = (∆I , ·I) is well-founded

if EI is closed under sum for all E ∈ NC ∪ NR. For all
E ∈ NC ∪ NR and a with elements in ∆I , we also require
that the support of EI and a defined as {F | (a, F ) ∈ EI}
is finite. This ensures that the sum in Definition 2 is finite. An
interpretation of DL-LiteR@,K is a well-founded provenance-
interpretation. We denote by SS the set of specifiers defined in
the same way as S except that we use NS instead of NI when
defining values of attributes. The semantics of specifiers in
SS is defined as expected following the definition given in
the Section ‘Attributed DL-Lite’ and we use the same notions
of satisfiability and entailment. In Definition 2 we consider
all subsets ofEpI,a,F rather than the sum of its elements. This
is to ensure monotonicity of DL-LiteR@,K. Otherwise, given
for example A(a)@[p : a] and A(a)@[p : b] we would lose
the entailment A(a)@[p : a+ b] by adding A(a)@[p : c].
Example 6. Consider the ontology O with the assertions
spouse(gabor, ryan)@[src : s1], spouse(gabor, ryan)@[src :
s2] and the concept inclusion of Example 5. Let I have do-
main ∆I = {gabor, ryan, src, s1, s2, s1 + s2}, interpret each
individual name by itself, (s1 + s2)

I = s1 + s2, and

spouseI = {(gabor, ryan, G), (gabor, ryan, H),

(gabor, ryan, G+src H)}
MarriedI = {(gabor, G+src H)} where G = {(src, s1)},
H = {(src, s2)} and G+src H = {(src, s1 + s2)}.

spouseI and MarriedI are closed under sum, I is a model of
O and O |= spouse(gabor, ryan)@bsrc : s1 + s2c.

We denote by SP the set of specifiers defined in the same
way as SS except that we use NP instead of NS for the values
of attributes. The semantics of specifiers in SP is as expected
from the Section ‘Attributed DL-Lite’. We assume that all
polynomials occurring in a specifier in SP are of the form
Σ1≤i≤n1

Π1≤j≤n2
ai,j , where all ai,j ∈ NI. Given an inter-

pretation I = (∆I , ·I) and {F,G} ⊆ ΦI , let F ×G be:

{(p,(a× b)I)|{a, b} ⊆ NP,(p, a
I) ∈ F, (p, bI) ∈ G}.

Unlike +p, × is not parameterized by an attribute because
products combine different information, whereas sums rep-
resent alternative ways of obtaining the same information
(i.e., tuple plus the same other attribute-value pairs). A prod-
uct of annotation sets may be denoted by

∏
1≤i≤nGi. We

next define semiring attributed queries, which allow a ground
specifier to be associated to the whole conjunction of atoms.
Definition 3 (Semiring Attributed Queries). A semiring at-
tributed boolean conjunctive query (BCQ@,K) is an expres-
sion of the form:

∃x.X1 :S1, . . . , Xn :Sn (ϕ(x))@S,

where S is a ground specifier in SP, for 1 ≤ i ≤ n, Xi ∈ NU

are the set variables occurring in ϕ(x) and Si ∈ SS, and

ϕ(x) =
∧

1≤j≤m
Ej(tj)@Tj

where for 1 ≤ j ≤ m, Tj ∈ SS, Ej ∈ NC ∪ NR and tj is a
tuple of elements from NI ∪ x.

If S = b c, we say that the BCQ@,K is plain.
Given a BCQ@,K q, let q′ be the BCQ@ that results from

removing the outer specifier from q. Let I = (∆I , ·I) be
an interpretation and let νI(q′) be the set of all variable
assignments Z that fufill the conditions of Definition 1 for
I |= q′. I satisfies q, written I |= q, if there is a non-empty
χ ⊆ νI(q′) such that:

1. for any Z,Z ′ ∈ χ, there exists X ∈ NU occurring in q
such that Z(X) 6= Z ′(X) or there exists x ∈ x such that
Z(x) 6= Z ′(x);

2. for each Z ∈ χ and 1 ≤ j ≤ m, we have that
(Z(tj), FZj ) ∈ EI,Zj for some FZj ∈ T I,Zj ;

3. there is p ∈ ∆I and G ∈ ΦI such that all HZ =∏
1≤j≤m F

Z
j with Z ∈ χ are differentiated by p in G,

and
∑p
Z∈χH

Z ∈ SI,Z .
Essentially, Definition 3 says that: (1) there are different

variable assignments which (2) satisfy the homomorphic con-
ditions and (3) correspond to the interpretation of the outer
specifier. Our semiring attributed queries can be easily ex-
tended so that the outer specifier has fresh and free object
variables. In this case the answer to the query would be the
set of provenance polynomials related with the respective
attribute and the query. Semiring attributed queries can be
used to query a DL-LiteR@,K ontology using provenance poly-
nomials, as we illustrate with the following example.
Example 7 (Example 3 cont’d). We now modify qex, so that
we impose provenance constraints on the result:
∃xy (Married(gabor)@bstart:x, end: yc∧

Married(taylor)@bstart:x, end: yc)@bsrc: γc
where γ is the polynomial (s1 × s3) + (s2 × s3)

By the semantics of DL-LiteR@,K, it follows that Oex |= qex.
All shared attributes are taken into account when com-

bining the annotations, while the non-shared attributes are
irrelevant and lost in the product.
Example 8. The query (Married(a) ∧Married(b))@S with
S = bsrc: s1 × s2, classif : public× confid,mult: 2× 3c

is entailed by {Married(a)@[src: s1, classif : public,mult: 2],
spouse(b, c)@[src: s2, classif : confid,mult: 3, time: t]} and
the inclusion of Example 3.

The fact that a and b are both married is obtained by com-
bining sources s1 and s2, and by having access to both public
and confidential information. Note that using inclusions to
propagate annotations allows the query derived from asser-
tions with multiplicities 2 and 3 to have multiplicity 2× 3, as
it would be under the bag semantics (Nikolaou et al. 2017).

When interpreted over provenance-interpretations, ontolo-
gies in the DL-LiteR@ fragment of DL-LiteR@,K (i.e., without
sums) can entail queries with sums, as in Example 9.
Example 9. Let O be the DL-LiteR@ ontology
{A(a)@[p : a], A(a)@[p : b], A@X v ∃R@X}.

Then the query ∃xy(R(x, y)@[p : a+b])@bc follows fromO
only under the semirings-based semantics.



Reasoning in DL-LiteR@,K
Unfortunately, Theorem 5 shows that provenance sums in-
crease the complexity of the satisfiability problem. The proof
is by reduction from the word problem for a polynomially
space bounded Alternating Turing Machine (ATM) which is
EXPTIME-hard (Chandra, Kozen, and Stockmeyer 1981).

Theorem 5. In DL-LiteR@,K, satisfiability is EXPTIME-hard.

The hardness result of Theorem 5 holds even for DL-
LiteR@,K ontologies without expressions of the form ∃P ,
where P is a role expression. Motivated by this negative
result, we investigate restricted cases for query answering.
We first show that for the class of DL-LiteR@,K ontologies
which do not contain inclusions with expressions of the form
∃P on the right side, we can check the entailment of BCQ@,K
via a transformation to ground and plain BCQ@,Ks. Given
such a DL-LiteR@,K ontologyO, one can translate a BCQ@,K q
into a set of ground and plain BCQ@,Ks gr plain(O, q) such
that O |= q iff there is some qgp ∈ gr plain(O, q) that is
entailed by an equisatisfiable ground ontology.

We can assume w.l.o.g. that if Ej(tj)@Tj occurs in q then
Tj ∈ NU: if Tj is a specifier one can always replace it by a
fresh X ∈ NU and add X :Tj to the prefix of q, that is:

q = ∃x. X1 :S1, . . . , Xm :Sm (
∧

1≤j≤m
Ej(tj)@Xj)@S.

Assume ? ∈ NI does not occur inO nor in q and let NPmin be
a fixed but arbitrary minimal subset of NP such that for each
a ∈ NP, NPmin contains an element b such that a is mathe-
matically equal to b. Let I be a DL-LiteR@,K interpretation
with domain ∆I = NPmin and such that aI = a for every
a ∈ NPmin. We say that a variable assignment Z is compati-
ble with q if Z(Xj) ∈ SI,Zj , 1 ≤ j ≤ m. Let q′ be the result
of removing the outer specifier from q. Given a compatible
Z , a Z-image

∧
1≤j≤mEj(tj)@Tj of q′ is obtained by:

• replacing each Xj with Tj = [a: b | (a, b) ∈ Z(Xj)];
• replacing each object variable x by Z(x);

• if ? occurs in some Tj , replacing ? by ?Tj , where Tj is the
set of attribute-value pairs in Tj that do not contain ?.

Given a ground specifier T , let FT := {(aI , bI) | a :
b occurs in T} ∈ ΦI . We define gr plain(O, q) as the set
of ground plain BCQ@,Ks:

qgp = (
∧

1≤i≤n
(

∧

1≤j≤m
Ej(t

i
j)@Sij ))@b c

where the annotation sets Fi =
∏

1≤j≤m FSi
j

(1 ≤ i ≤ n)
are such that there exists p such that (i) the Fi are differ-
entiated by p in some annotation set, (ii) each Fi contains
some (p, a) with a ∈ NP, and (iii)

∑p
1≤i≤n Fi ∈ SI . Also,∧

1≤j≤mEj(t
i
j)@Sij is a Z-image of q′ with attribute-value

pairs built from elements of NS. By construction, qgp does
not contain variables.

Example 10 (Example 3 cont’d). The query below is a
ground and plain version of the query in Example 7 which is

entailed by Oex.

Married(gabor)@[start : 1975, end : 1976, src : s1 + s2]∧
Married(taylor)@[start : 1975, end : 1976, src : s3].

One can show that, for DL-LiteR@,K ontologies O without
expressions of the form ∃P on the right side of inclusions,
O |= q iff there is qgp ∈ gr plain(O, q) such that Ogr |= qgp,
where Ogr is an equisatisfiable ground ontology, obtained
in a way similar to our construction of gr plain(O, q) but
imposing that the image of the variable assignments is over
a finite set of individual names defined in terms of O. In the
case where O is ground, we further have a polynomial bound
on the size of such qgp.
Lemma 1. Let q be a BCQ@,K and let O be a ground
DL-LiteR@,K ontology without expressions of the form ∃P
on the right side of inclusions. O |= q iff there is qgp ∈
gr plain(O, q) such that (i) Ogr |= qgp, (ii) the size of
qgp is polynomial in |q| and |O| and (iii) deciding qgp ∈
gr plain(O, q) is in PTIME.

Lemma 1 does not hold for arbitrary DL-LiteR@,K ontolo-
gies, as illustrated by Example 11.
Example 11. Let O be the DL-LiteR@,K ontology {A v
∃R,∃R− v A@[p : b],∃R− v ¬B,B(a), A(a)@[p : b]}.
Then, O entails q = ∃x(A(x)@bc)@bp : b+ bc, since there
would be an R-successor in the anonymous part of the model,
but there is no qgp ∈ gr plain(O, q) such that O |= qgp.

We now use the polynomial bound in Lemma 1 to show
an upper bound for a fragment, called simple, where we
only allow inclusions of the form E1@S v E2@T , with E1

and E2 concept/role names and S and T ground specifiers.
We establish the complexity of BCQ@,K entailment from
simple ontologies. This case is close to the classical problem
of query answering over databases, considered by Green,
Karvounarakis, and Tannen (2007). Theorem 6 states that
this complexity remains the same as in the database case.
Theorem 6. BCQ@,K entailment from a simple DL-LiteR@,K
ontology is NP-complete.

Proof. Let O be a simple DL-LiteR@,K ontology. We first
show that one can decide in NP whether E(a)@S is entailed
from O, where S is a ground specifier.
Claim 1. Deciding whether O |= E(a)@S is in NP.
Proof of Claim 1 We first guess the setQ of all atomic queries
of the form E0(a)@T0 entailed by O such that E0@T0 oc-
curs in O and an ordering for the entailment of such queries.
If T0 is an open specifier then replace it inQ by T0,?, defined
as the ground closed specifier containing all attribute-value
pairs in T0 plus ?S : ?S with S the set of attribute-value pairs
in T0. We make the usual assumption that individual names of
the form ?S do not occur in O and E(a)@S. Denote by Qq
the subset of Q containing all atomic queries which preceed
q in the ordering. For each guessed query q = E0(a)@T0:

• Denote by FT the set {(a, b) | a : b occurs in T} for any
ground specifier T and let E0(a)@S1, . . . , E0(a)@Sn be
the assertions and atomic queries inO∪Qq where E0 and
a occur.



• Guess a tree of annotation sets rooted either in FT0 if T0

is a closed specifier, or in a superset F of FT0 if T0 is
an open specifier, where each non-leaf node F is the par-
ent of children G1, . . . , Gm such that F =

∑p
1≤i≤mGi,

for some attribute p, and such that each leaf is either:
one of FS1

, . . . , FSn
, or some FT (or FT?

if T is open)
such that there exist E1@T1 v E0@T and E1(a)@T1 (or
E1(a)@T1,? if T1 is open) in O ∪Qq .

Check in polynomial time whether the trees satisfy the de-
scribed conditions. The size of Q (and so the number of
trees to guess and the size of the ordering) is bounded by the
number of atomic queries E0(a)@T0 that can be built from
concept/role expressions and individual names in O, so it is
polynomial in the size of O.

To check whether O |= E(a)@S, we check whether
E(a)@S ∈ Q (assuming w.l.o.g. that E@S occurs in O).
The size of each guessed tree is polynomial in the size of O
since each leaf corresponds to an assertion/atomic query inO
or Q (or an assertion/atomic query in O or Q together with
an inclusion in O) and they do not repeat in the tree. Thus,
one can decide whether O |= E(a)@S in NP.

By Lemma 1, O |= q iff there exists qgp ∈ gr plain(O, q)
such that Ogr |= qgp. Moreover the size of qgp is polynomial
in the size of q and O and qgp does not contain variables.
We thus get the NP upper bound by guessing qgp as well as
certificates that Ogr |= E(a)@S for each E(a)@S in qgp,
using Claim 1 (indeed,Ogr is also a simple ontology and is of
polynomial size w.r.t. O). The lower bound comes from the
complexity of BCQ entailment in relational databases.

One of the difficulties in showing Theorem 6 for arbitrary
DL-LiteR@,K ontologies is that one can express that elements
in the anonymous part of the model are distinct, as illustrated
in Example 11, and then our translation does not hold. In
this case, gr plain(O, q) needs to include queries with in-
equalities to distinguish anonymous elements, and entailment
of BCQs with inequalities over DL-LiteR ontologies easily
leads to undecidability (e.g., see Theorem 13 in (Gutiérrez-
Basulto et al. 2015)).

We now show an upper bound for satisfiability in DL-
LiteR@,K by translating the ontology into an equisatisfiable
ontology in a DL that we call DL-LiteR,uHorn, which extends
DL-LiteR with conjunctions on the left side of concept and
role inclusions. Our translation is double-exponential since
in DL-LiteR@,K we need to ensure, e.g., that elements in the
extension of E@[src: s1] and E@[src: s2] are also in the
extension of E@[src: s1 + s2].
Theorem 7. In DL-LiteR@,K, satisfiability is in 2EXPTIME.

Sketch. We first ground the ontology and then translate it into
DL-LiteR,uHorn. We encode the semantics of provenance sums
using a double-exponential number of concept and role inclu-
sions with conjunctions on the left side. Since satisfiability in
DL-LiteR,uHorn is in PTIME (Artale et al. 2015) (Theorem 14),
the 2EXPTIME upper bound follows.

We next analyse entailment of plain BCQ@,K w.r.t. DL-
LiteR@,K ontologies: the outer specifier is of the form b c but

inner specifiers can contain provenance sums (as in Ex. 9).
We use the fact that BCQ entailment in DL-LiteR,uHorn is in NP
(Calı̀, Gottlob, and Pieris 2012, proof of Theorem 3.3).

Theorem 8. In DL-LiteR,uHorn, BCQ entailment is in NP.

Theorem 9 establishes an upper bound for plain queries.

Theorem 9. In DL-LiteR@,K, entailment of plain BCQ@,K is
in N2EXPTIME.

Sketch. The proof uses the translation to DL-LiteR,uHorn which
leads to a double-exponential blowup of the ontology. Here,
since queries are plain the translation is as for BCQ@s. The
result then follows from Theorem 8.

Conclusion
We investigated the complexity of satisfiability and query
answering in attributed DL-LiteR, for both the semantics in-
troduced by Krötzsch et al. (2017) and a new semantics based
on provenance semirings, which allows to embed provenance
polynomials into the query. In particular, we show that these
problems are PSPACE-complete for the classical semantics
and that in the case of simple ontologies, even query an-
swering under the semirings-based semantics has the same
complexity as query answering in DL-LiteR. However, satis-
fiability of general DL-LiteR@,K ontologies is EXPTIME-hard.

Related Work. Our attributed ontology language dif-
fers from DL-LiteA (Calvanese et al. 2006), which allows
to associate values to individuals or pairs of individuals,
rather than to assertions, through binary or ternary rela-
tions called attribute concepts or attribute roles. In par-
ticular, while we can use the same attribute name to an-
notate different assertions about the same individual or
pair of individuals, it would be ambiguous in DL-LiteA.
For instance, we can express that Liz Taylor was mar-
ried to Richard Burton from 1964 to 1974 and from 1975
to 1976 with spouse(taylor, burton)@[start : 1964, end :
1974], spouse(taylor, burton)@[start : 1975, end : 1976],
while in DL-LiteA we would need reification. The query
spouse(taylor, burton)@[start : x, end : y] that returns the
start and end dates of the marriages would be more complex
(namely, e.g., ∃z spouse1(z, taylor) ∧ spouse2(z, burton) ∧
start(z, x) ∧ end(z, y)). Another difference is the use in DL-
LiteA of two distinct alphabets and interpretation domains
for the individuals and the values, following the distinction
made in OWL between objects and values.

Regarding provenance, the topic has been extensively stud-
ied for relational databases (Cheney, Chiticariu, and Tan
2009), but has also drawn attention in other settings, e.g.,
for Datalog (Deutch et al. 2014), Datalog+/− (Lukasiewicz
et al. 2014), and Semantic Web data, with numerous works
proposing provenance models based on semirings for the
evaluation of SPARQL queries over annotated RDF, see
e.g., (Theoharis et al. 2011; Zimmermann et al. 2012;
Geerts et al. 2016). In particular, Zimmermann et al. consider
the possibility of having several annotations with different
domains (fuzzy, temporal and provenance) and introduce an
annotated version of SPARQL that manipulates explicitly



annotations, while most work on provenance only implicitly
propagates provenance annotations.

Future Work. Our next step will be the study of the
data complexity and the design of practical algorithms for
querying attributed DL-Lite ontologies. In particular, we
would like to extend the classical DL-Lite rewriting ap-
proach to the attributed setting to avoid grounding the on-
tology. For instance, if an ontology only contains inclusions
of the form E@X v F@X , the rewriting algorithm for
DL-LiteR could be adapted to rewrite an attributed query
where annotations sets are propagated in the rewriting process
(e.g., Married(gabor)@bstart : 1975c in Example 3 could be
rewritten into ∃y spouse(gabor, y)@bstart : 1975c).
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Notation in the Appendix
We introduce here the relevant notation and conventions used
throughout this appendix. We often use:

• A for concept names;

• R for role names;

• E for concept/role names;

• K,L for concept/role expressions;

• F,G,H for annotation sets;

• S, T for specifiers.

For ground specifiers {S, T} ⊆ SS, we write S ⇒ T if T
is an open specifier, and the set of attribute-value pairs a : b
in S is a superset of the set of attribute-value pairs in T .

In Appendix ‘Proofs for Section ‘Reasoning in DL-LiteR@ ”,
we frequently use an invididual name, called ?, to deal with
elements of an interpretation of an ontology (or a query)
which are not in the range of individual names that occur in
the ontology. In Appendix ‘Proofs for Section ‘Reasoning in
DL-LiteR@,K”, we use invididual names of the form ?S , where
S is a set of attribute-value pairs, to deal with elements of an
interpretation of an ontology (or a query) which are not in
the range of individual names that occur in the ontology. The
use of ?S (instead of ?) is important to ensure that when we
replace anonymous individuals by individuals of the form ?S
the resulting interpretation is still a well-founded provenance-
interpretation.

To simplify the presentation, we also make the following
assumptions:

1. whenever we speak about a ground (and plain) query q
and a ground ontology O, we assume w.l.o.g. that if an
annotated concept or role name occurs in q then it also
occurs in O: if it does not occur we can add a tautology
where it occurs. For instance, if A(x)@[a : b] occurs in
q then we assume that A@[a : b] v A@[a : b] is in O.
This is particularly important to ensure that the entailment
relation is preserved by our DL translations in Lemmas 2
and 9.

2. whenever we speak about a query q and an ontology O,
we assume w.l.o.g. that all provenance sums occurring in q
also occur in O. If it is not the case we can add a tautology
where they occur. This is in particular useful to define
groundings.

We may denote with |s| the cardinality of a finite set s.

Proofs for Section ‘Reasoning in DL-LiteR@’
In this section, we provide proofs for the theorems of the
section ‘Reasoning in DL-LiteR@ ’.

Theorem 1. In DL-LiteR@ , satisfiability is PSPACE-hard.

Proof. The proof is by reduction from the word prob-
lem for a polynomially space bounded DTM. Let M =
(Q,Σ,Θ, q0, qf) be a DTM, where: Q is a finite set of
states; Σ is a finite alphabet containing the blank symbol

; Θ : Q × Σ → Q × Σ × {l, r} is the transition function;
and {q0, qf} ⊆ Q are the initial and final states.

Assume thatM is polynomially space bounded on inputs
w0 = σ0 . . . σn−1 of length n. As usual, a configuration
ofM is a word wqw′ with w,w′ ∈ Σ∗ and q ∈ Q, meaning
that the tape contains the word ww′, the machine is in state
q and the head is on the position of the left-most symbol of
w′. We assume w.l.o.g. that all configurations wqw′ satisfy
|ww′| ≤ m+ 1, where m+ 1 is polynomial in n. The notion
of sucessive configurations is defined as usual, in terms of the
transition relation Θ. A computation ofM on an input word
w0 is a sequence of successive configurations α0, α1, . . .,
where α0 = q0w0 is the initial configuration for the input
w0 ∈ (Σ \ { })∗. Also, we assume w.l.o.g. thatM does not
attempt to move to the left (right) when it is on its left-most
(right-most) tape position. We now construct a DL-LiteR@
ontology OM,w0

that is satisfiable iffM accepts w0.
In the reduction, we use the following symbols (recall that

attribute/attribute values are syntactically individual names):

• an individual name a and a concept name A annotated
with attribute-value pairs encodingM;
• attribute values q ∈ Q to represent the states;
• an attribute s with values in Q;
• attribute values 0, . . . ,m to encode the position of the head

in the tape;
• an attribute h with values in {0, . . . ,m} to encode the

head position;
• attribute values σ ∈ Σ to represent the alphabet; and
• attributes p0, . . . , pm with values in Σ to encode the tape.

The following assertion encodes the initial configuration:

A(a)@[s: q0, h: 0, p0 :σ0, . . ., pn−1 :σn−1, pn : , . . ., pm : ].
To encode successive configurations, the main intuition

is as follows. We read the content of the tape cell in the
head position and create a new set of attribute-value pairs
representing a successor configuration where, according to
the transition, we modify the content of the cell in the pre-
vious head position and increment/decrement the previous
head position in this new set of attribute-value pairs. We
also copy all tape values from the previous configuration
to the new configuration, except for the tape value at the
previous head position. We can now encode our transitions
Θ(q, σ) = (q′, τ,D) with concept inclusions of the form (we
explain for D = r, the case D = l is analogous), for each k
with 0 ≤ k ≤ m:

Ω (A@X v A@[s: q′, h: k + 1, pk : τ, PX\k])
where Ω is a shorthand for:

X : bs: q, h: k, pk :σc
and PX\k abbreviates

p0 :X.p0, . . ., pk−1 :X.pk−1, pk+1 :X.pk+1, . . ., pm :X.pm.

M accepts w0 iff the final state is reachable. We formalize
this with the following claim.
Claim. OM,w0

|= A(a)@bs: qfc iffM accepts w0.
Since one can reduce entailment of an assertion to

(un)satisfiability, the above claim implies this theorem.



As defined by Krötzsch et al. (Theorem 4) (2017), the
grounding of an attributed DL ontology consists of all as-
sertions of the ontology together with grounded versions of
inclusion axioms. In this paper we also allow object variables
in specifiers and adapt the definition accordingly. We define
the grounding of a DL-LiteR@ ontology as follows. Let O be a
DL-LiteR@ ontology and let NOI be the set of individual names
occurring in O, extended by the already mentioned fresh in-
dividual name ?. Let I be an interpretation over the domain
∆I = NOI satisfying aI = a, for all a ∈ NOI , and let Z be a
variable assignment mapping object variables x ∈ NV to ele-
ments Z(x) ∈ ∆I and set variables X ∈ NU to finite binary
relations Z(X) ∈ ΦI . Consider a concept or role inclusion I
of the form X :S (K v L). A variable assignment Z is said
to be compatible with I if Z(X) ∈ SI,Z . The Z-instance
IZ of I is the concept or role inclusion K ′ v L′ obtained by:

• replacing each X with [a: b | (a, b) ∈ Z(X)];
• replacing each assignment a:X.b occurring in some speci-

fier by all assignments a: c such that (b, c) ∈ Z(X); and,

• replacing each object variable x by Z(x).

Then, the grounding of O, denoted by gr(O), contains all Z-
instances IZ for all concept or role inclusions I in O and all
compatible variable assignments Z . The resulting ontology
gr(O) can be exponentially larger than O, as there can be (at
most) 2|N

O
I |2 Z-instances for each inclusion.

Theorem 2. In DL-LiteR@ , satisfiability is in PSPACE.

Proof. The proof strategy consists on first translating a DL-
LiteR@ ontology into an equisatisfiable ground DL-LiteR@ on-
tology and then translating it into DL-LiteR. Claims 1 and 2
below, are adaptations to DL-LiteR@ of Theorems 4 and 3
respectively, by Krötzsch et al. (2017).
Claim 1. O is satisfiable iff gr(O) is satisfiable.

A ground ontology Og can be translated into a standard
DL-LiteR ontology dl(Og) as follows: replace every anno-
tated concept/role name E@S (or inverse role R−@S) with
a fresh concept/role name ES (or inverse role R−S ) in all the
assertions and concept or role inclusions ofO, and extend the
obtained DL-LiteR ontology dl(Og) by all axioms ES v ET
where ES and ET occur in translated axioms of dl(Og) and
S ⇒ T .
Claim 2. Og is satisfiable iff dl(Og) is satisfiable.

Let O be a DL-LiteR@ ontology. By Claims 1 and 2, O
is satisfiable iff dl(gr(O)) is satisfiable. The grounding of
O leads to an exponential blowup while the translation of a
ground DL-LiteR@ ontology to DL-LiteR is polynomial. Since
satisfiability of DL-LiteR ontologies is in NL (Artale et al.
2009), it follows (by (Savitch 1970)) that satisfiability of
DL-LiteR@ ontologies is in PSPACE.

The following lemma shows that given a ground DL-LiteR@
ontology and a ground BCQ@, there are polynomial size
translations to a DL-LiteR ontology and a boolean con-
junctive query (BCQ) defined as usual. A ground BCQ@

q = ∃x.ϕ(x) can be translated into a non-attributed BCQ

dl(q) = ∃x.ψ(x) where ψ(x) is obtained from ϕ(x) by
replacing each atom E(t)@S by ES(t).

Given a ground specifier S, the invididual name ? and
an interpretation I with ?I ∈ ∆I , we define F ?S as the
annotation set in the singleton set SI if S is a closed specifier,
and F ?S = {(aI , bI) | a: b occurs in S} ∪ {(?I , ?I)} if S is
an open specifier. We sometimes write I(σ) to denote the
image of σ ⊆ NI in an interpretation I.
Lemma 2. Let O be a ground DL-LiteR@ ontology and let q
be a ground BCQ@. Then, O |= q iff dl(O) |= dl(q).

Proof. We prove this result similarly as Theorem 3 in
(Krötzsch et al. 2017) and recall that we assume that all
annotated concept/role names occurring in q also occur in O.

Assume that dl(O) |= dl(q). Let I be a model of O. We
obtain a model J of dl(O) by interpreting each a ∈ NI by
aI , and each ES by E@SI .

Since dl(O) |= dl(q), J satisfies dl(q), i.e., there exists
a mapping σ from object variables and individual names
of dl(q) into ∆J = ∆I such that σ(a) = aJ for every
a ∈ NI and σ(t) ∈ EJS for every ES(t) that occurs in dl(q).
Let Z be a variable assignment such that Z(x) = σ(x) for
every x ∈ NV. Since for every a ∈ NI, Z(a) = aI = σ(a)
and q is ground, we obtain that (Z(t), F ) ∈ EI for some
F ∈ SI,Z , for every atom E(t)@S that occurs in q. The
condition Z(X) ∈ SI,Z is always true since q is ground.
Hence I |= q. It follows that O |= q.

For the other direction, assume that O |= q. Let J be
a model of dl(O). We obtain a model I of O over ∆I =
∆J ∪ {?I}, with ?I /∈ ∆J , by interpreting each a ∈ NI by
aJ , each concept/role name E by EI = {(a, F ?S) | a ∈
EJS for some specifier S}.

Since O |= q, I satisfies q, that is, there exists a variable
assignment Z such that (Z(t), F ) ∈ EI for some F ∈
SI,Z , for every atom E(t)@S occurring in q. It follows that
Z(a) = aI = aJ for every a ∈ NI andZ(t) ∈ EJS for every
atom ES(t) that occurs in dl(q). Thus, dl(O) |= dl(q).

We now define the grounding of a query in the same way
as for an ontology. Let q be a BCQ@:

∃x. X1 :S1, . . . , Xn :Sn ϕ(x).

W.l.o.g., assume that if an atom E(t)@S occurs in q then
S ∈ NU (recall that if S is a specifier one can always replace
it by a fresh set variable X and add X :S to the prefix of q).
A variable assignment Z is compatible with q if Z(Xi) ∈
SI,Zi , 1 ≤ i ≤ n. The Z-instance qZ of q is obtained by
replacing every set variable Xi and every assignment a:Xi.b
occurring in some specifier as we do for inclusion axioms of
an ontology, as well as replacing every variable x occurring
in some specifier by Z(x) in the whole query (also in the
atoms). Thus, qZ contains only variables that do not appear
in any specifier of q. We call such Z-instance qZ a grounded
version of q and denote by gr(q) the set of all grounded
versions of q. Recall from Section “Notation in the Appendix”
that we assume that individual names in q also occur in O,
and so in NOI . Thus, the set gr(q) is non-empty.

To show that we can indeed use the grounding of a query
q to check entailment of q, in particular, to deal with object



variables occurring in specifiers, we use the classical notion
of a canonical model of a DL-LiteR@ ontology (Definition 5).
As a first step we define the interpretation of a concept/role
expression, which is then used in Definition 5.

Definition 4 (Interpretation of a DL-LiteR@ concept/role).
Given a DL-LiteR@ ontology O, a positive concept or role
inclusion I = X :S (K v L) ∈ O, and a variable assign-
ment Z mapping object variables to ∆Mn and set variables
to ΦMn , we define IZ,Mn

L,I := J as follows:

• if I is a concept inclusion and L = A@T then:

∆J := {ρ} ∪∆Mn , AJ = {(ρ,H)}, EJ = ∅;
• if I is a concept inclusion and L = ∃R@T then:

∆J := {ρ, σ} ∪∆Mn , RJ = {(ρ, σ,H)}, EJ = ∅;

• if I is a concept inclusion and L = ∃R−@T then:

∆J := {ρ, σ} ∪∆Mn , RJ = {(σ, ρ,H)}, EJ = ∅;
• if I is a role inclusion and L = R@T then:

∆J := {ρ, ρ′} ∪∆Mn , RJ = {(ρ, ρ′, H)}, EJ = ∅;

• if I is a role inclusion and L = R−@T then:

∆J := {ρ, ρ′} ∪∆Mn , RJ = {(ρ′, ρ,H)}, EJ = ∅;
for all E ∈ NC ∪ NR such that E 6= A (case 1) or E 6= R

(last 4 cases), where H ∈ TMn,Z if T is closed, H =⋂
F∈TMn,Z F ∪{(?Mn , ?Mn)} if T is open, and σ /∈ ∆Mn .

We write ρ to indicate ρ if I is a concept inclusion and (ρ, ρ′)
if I is a role inclusion.

Definition 5 (Canonical Model of a DL-LiteR@ ontology).
The canonical modelMO? of a DL-LiteR@ ontology O is the
union of interpretationsM0,M1, . . ., withM0 defined as:

∆M0 := NOI , a
M0 = a for every a ∈ NOI

and EM0 := {(aM0 , F ?S) | E(a)@S ∈ O}
for all E ∈ NC ∪ NR. For the inductive definition of the
sequence assumeMn is defined. Then obtainMn+1 by ap-
plying the following rule once:

• if I = X :S (K v L) is a positive concept or role inclu-
sion in O, Z is a variable assignment compatible with I ,
and a ∈ KMn,Z but a 6∈ LMn,Z then take the interpre-
tation J := IZ,Mn

L,I and add it toMn by identifying ρ
with a. In more detail, assume a = ρ and defineMn+1

by setting:

∆Mn+1 := ∆Mn ∪∆J and

EMn+1 := EMn ∪ EJ for all E ∈ NC ∪ NR.

We assume that rule application is fair, that is, if a rule is
applicable in a certain place, then it will indeed eventually be
applied there. We obtainMO? by setting for allE ∈ NC∪NR:

∆M
O
? :=

⋃

n≥0

∆Mn and EM
O
? :=

⋃

n≥0

EMn .

We show in Theorem 10 the main properties of the canon-
ical model. Before that, we show that we can modify an
arbitrary interpretation I so that ?I is the only element not
in the range of individual names that occur in O which can
occur in annotation sets (Definition 6), and that such modi-
fied interpretation does not change the entailment relation of
BCQ@s (Lemma 3) under certain conditions.

Definition 6. Let I = (∆I , ·I) be an interpretation and O
a DL-LiteR@ ontology. Assume w.l.o.g. that there is ?I ∈ ∆I

such that ?I 6= aI for all a ∈ NOI \ {?}. For an annotation
set F ∈ ΦI , we define F? to be the annotation set obtained
from F by replacing all e 6∈ I(NOI \ {?}) in F by ?I and
define IO? = (∆I

O
? , ·IO? ) as follows:

• ∆I
O
? := ∆I; aI

O
? := aI for all a ∈ NI; and

• EIO? := {(a, F?), (a, F? ∪ {(?I , ?I)}) | (a, F ) ∈ EI}
for all E ∈ NC ∪ NR.

Lemma 3. Let I be an interpretation such that ?I appears
only in annotations sets, and, for all annotation sets F in I
and all (a, b) ∈ F , either {a, b} ⊆ I(NOI \ {?}) or {a, b} ∩
I(NOI \{?}) = ∅. Then, for every BCQ@ q without ? and with
concept, role and individual names occurring in a DL-LiteR@
ontology O the following holds: I |= q iff IO? |= q.

Proof. I |= q iff there is Z as in Definition 1. By the con-
ditions of I in this lemma and since ? does not occur in q,
for all x ∈ NV, either x does not occur in a specifier of q or
Z(x) ∈ I(NOI ). Let Z ′ be a mapping from NU ∪ NV to IO?
(Definition 6) defined as follows:

• Z ′(x) = Z(x), for every x ∈ NV; and
• Z ′(X) = Z(X)?, for every X ∈ NU, where the annota-

tion set Z(X)? is as in Definition 6.

By definition of IO? , we can see that for every atom E(t)@S
occurring in q,

• (Z(t), F ) ∈ EI for some F ∈ SI,Z iff (Z ′(t), F?) ∈
EI

O
? for some F? ∈ SI

O
? ,Z′

.

Moreover, Z ′(Xi) ∈ SI
O
? ,Z′

i for each Xi :Si in the prefix
of q. The existence of such Z ′ happens iff IO? |= q.

In our proofs we use the following notion of homomor-
phism.

Definition 7. Let I and J be DL-LiteR@ (or DL-LiteR@,K)
interpretations. A homomorphism h : I → J is a function
from ∆I to ∆J such that:

• h(aI) = aJ for all a ∈ NI (or a ∈ NS), and, for all
E ∈ NC ∪ NR,

• (a, F ) ∈ EI implies h((a, F )) ∈ EJ ,

where h((a, F )) is a shorthand for (h(a), {(h(b), h(c)) |
(b, c) ∈ F})) and h(a) is a shorthand for h(a) if E ∈ NC

and a = a, and (h(a), h(a′)), if E ∈ NR and a = (a, a′).
We write I → J if there is a homomorphism from I to J .

The following lemma is an easy consequence of Defini-
tions 7 and 1 (or 3).



Lemma 4. Let I,J be DL-LiteR@ (or DL-LiteR@,K) interpre-
tations. If I |= q and I → J then J |= q.

We may writeMO? |= gr(q) (or O |= gr(q)) meaning that
there is qZ ∈ gr(q) such thatMO? |= gr(q) (or O |= qZ ).

Theorem 10. Let O be a DL-LiteR@ ontology and let q be
a BCQ@. Assume O is satisfiable and the individual names
that occur in q occur in O. Then, the following holds:

1. O |= q iffMO? |= q;
2. MO? |= q iffMO? |= gr(q).

Proof. Recall that ? is an individual name that does not oc-
cur in O and that we assume that all individual names that
occur in q occur in O, so that ? does not occur in q. For
Point 1, if O is satisfiable then, by construction,MO? is a
model of O. Thus, O |= q impliesMO? |= q. Conversely,
assume MO? |= q. By construction, if an interpretation I
models O then MO? → IO? , where IO? is as in Defini-
tion 6. Then, by Lemma 4, IO? |= q. Moreover, as MO?
only has annotation sets H such that for all (a, b) ∈ H either
(a, b) = (?M

O
? , ?M

O
? ) or {a, b} ⊆ MO? (NOI \ {?}), we can

assume that the image J of the homomorphism from q to
IO? only contains annotation sets of this form. Consider the
interpretation K that is the result of removing from I all
annotations sets H such that there is (a, b) ∈ H with a = ?I

or b = ?I but (a, b) 6= (?I , ?I). We then have that J → KO? .
As J |= q, by Lemma 4, KO? |= q. By Lemma 3, K |= q. By
definition, K → I, and thus by Lemma 4, I |= q.

Finally, for Point 2, assumeMO? |= q. Then there is a vari-
able assignmentZ as in Definition 1. Since all annotation sets
ofMO? contain only elements inMO? (NOI ), the Z-instance
qZ of q is in gr(q). Thus, MO? |= gr(q). Conversely, by
definition of gr(q), if there is some qZ ∈ gr(q) such that
MO? |= qZ then the variable assignment Z satisfies the con-
ditions of Definition 1 for the query q. SoMO? |= q.

Given a DL-LiteR@ ontology O, let NO be the set of con-
cept/role names occurring inO. We defineO? as the union of
O and all concept/role inclusions of the formE@S v E@S?
with E ∈ NO and S an open ground specifier occurring in
O, where S? is the closed specifier with attribute-value pairs
occurring in S plus ?: ?.

Lemma 5. Let O be a DL-LiteR@ ontology and q a BCQ@.
We have that O |= q iff gr(O)? |= gr(q).

Proof. Recall that ? does not occur in O by definition, and
thus neither in q by assumption. Assume O |= q. It is impor-
tant to note that ? may occur in some queries in gr(q), so that
Point 1 of Theorem 10 does not hold for queries from gr(q).
In the following, we therefore use gr(O)? instead of gr(O).
By definition of gr(O)? and construction ofMO? , we have
that MO? = Mgr(O)?

? . Suppose an intepretation I models
gr(O)?. By Point 1 of Theorem 10,MO? |= q and by Point 2,
MO? |= gr(q). Moreover, by our construction, MO? → I:
here we do not need to use IO? from Definition 6 because I
is a model of gr(O)?. Thus, by Lemma 4, I |= gr(q). Since
I was an arbitrary interpretation satisfying gr(O)?, we have
that gr(O)? |= gr(q).

Now, assume gr(O)? |= gr(q). By Claim 1 of Theorem 2,
O is satisfiable iff gr(O) is satisfiable and our extension
gr(O)? clearly does not change this relation. So if gr(O)?
is unsatisfiable O trivially entails q. Then, assume gr(O)? is
satisfiable. By construction,Mgr(O)?

? is a model of gr(O)?.
Then,Mgr(O)?

? |= gr(q). By definition of gr(O)?, we have
that MO? = Mgr(O)?

? . This means that MO? |= gr(q). By
Points 1 and 2 of Theorem 10, O |= q.

We are now ready to show Theorem 3. The proof of The-
orem 3 is based on grounding and translation to DL-LiteR.
However, we cannot simply ground both the ontology and
the query since the exponential expansion would give us
an NEXPTIME upper bound in the combined complexity,
whereas here we show a PSPACE upper bound.

Theorem 3. In DL-LiteR@ , BCQ@ entailment is in PSPACE.

Proof. Let O be DL-LiteR@ ontology and let q be a BCQ@.
We first check in PSPACE whether O is satisfiable (Theo-
rem 2). If O is unsatisfiable, O trivially entails q. Otherwise,
by Lemma 5, O |= q iff gr(O)? |= gr(q). We show that
gr(O)? |= gr(q) can be checked in polynomial space w.r.t.
|O| and |q|.

Let A = {ES(a) | E(a)@S ∈ O} be the set of DL-
LiteR assertions in dl(gr(O)?). To decide in PSPACE whether
gr(O)? |= gr(q), we guess the DL-LiteR version dl(qZ) of
a grounded version qZ ∈ gr(q) of q and a rewriting q′ of
dl(qZ) w.r.t. T , where T is the set of positive concept or role
inclusions in dl(gr(O)?), such that A |= q′. Recall that we
assumed in Section “Notation in the Appendix” that gr(O)
(and therefore gr(O)?) contains the annotated concept/role
names that occur in qZ .

Checking that dl(qZ) is the DL-LiteR translation of a
grounded version of q can be done in PTIME, and check-
ing that A |= q′ can be done in NP. The number of rewriting
steps from dl(qZ) to q′ is polynomial in the size of T (Cal-
vanese et al. 2007), so potentially exponential in the size ofO.
This gives an NEXPTIME upper bound for checking whether
q′ is a rewriting of dl(qZ). We improve this upper bound by
showing that it is possible to verify that q′ is a rewriting of
dl(qZ) in PSPACE.

We consider a non-deterministic adaptation of the algo-
rithm PerfectRef by Calvanese et al. (2007) that takes as
an input dl(qZ), q′ and O. We adopt similar definitions
and terminology as in (Calvanese et al. 2007), Section 5.1.,
which we briefly recall here. The symbol “−” represents non-
distinguished non-shared variables. A positive inclusion I
is applicable to an atom A(x) if I has A in its right-hand
side. A positive inclusion I is applicable to an atom R(x, y)
if (i) x =− and the right-hand side of I is ∃R, or (ii) I is a
role inclusion and its right-hand side is either R or R−. For
each role name occurring in O we add to O an equivalence
R− ≡ R (that is, R− v R and R v R−), where R is a fresh
role name. We can then assume w.l.o.g. that inverse roles
only occur in such equivalences by replacing R− in other
places by R. Let g be an atom and I be a positive inclusion
that is applicable to g. The atom obtained from g by applying
I , denoted by gr(g, I), is defined as follows:



• if g = A(x) and I = A1 v A, then gr(g, I) = A1(x);
• if g = A(x) and I = ∃R v A, then gr(g, I) = R(x,− );
• if g = R(x,− ) and I = A v ∃R, then gr(g, I) = A(x);
• if g = R(x,− ) and I = ∃R1 v ∃R, then gr(g, I) =
R1(x,− );

• if g = R(x, y) and I = R1 v R or I = R−1 v R−, then
gr(g, I) = R1(x, y);

• if g = R(x, y) and I = R1 v R− or I = R−1 v R, then
gr(g, I) = R1(y, x).

Let q[g/g′] denote the conjunctive query obtained from
q by replacing the atom g with a new atom g′. Let τ be a
function that takes as input a conjunctive query q and returns a
new conjunctive query obtained by replacing each occurrence
of an unbound variable in q with the symbol ‘−’; and let
reduce be a function that takes as input a conjunctive query q
and two atoms g1, g2 and returns a conjunctive query obtained
by applying to q the most general unifier between g1 and g2.
We are now ready to present our adaptation of the algorithm:

1. q′′ ← dl(qZ)

2. Γ← 0

3. while Γ ≤ MaxStep

• guess
– either an atom g of q′′ and a positive inclusion Ig ∈ T ,

i.e.,
∗ either Ig is the DL-LiteR translation of a grounded

version of a positive inclusion I in O
∗ or Ig = ES v ES? with E@S occurring in a

grounded version of a positive inclusion I in O and
S? is the closed specifier with attribute-value pairs
occurring in S plus ?: ?.

∗ or Ig = ES v ET where T is an open specifier and
the set of attribute-value pairs in S is a superset of
the set of attribute-value pairs in T

– or “unify” together with two atoms g1, g2 of q′′

• if a positive inclusion Ig applicable to g has been
guessed, let q′′ ← q′′[g/gr(g, Ig)]

• if “unify” has been guessed with two atoms g1, g2 of
q′′ that unify, let q′′ ← τ(reduce(q′′, g1, g2))

• if q′′ ≡ q′ return true

• Γ← Γ + 1

4. return false

where MaxStep = |q| · (Ngr? + N2
gr?) + |q| with Ngr? =

3 · |O| · 2|NO
I |2 + |q|.

We can encode Γ in binary in polynomial space and the size
of q′′ is always at most |dl(qZ)| so the algorithm uses only
polynomial space. Moreover, q′ is in PerfectRef(dl(qZ), T )
iff there exists a sequence of rewriting steps from dl(qZ) to
q′ such that each step consists either in applying a positive
inclusion Ig ∈ T to an atom g of the query or in unifying
two atoms with τ ◦ reduce.

The number of rewriting steps is at most |q| · |T | + |q|.
Indeed, each step either applies a positive inclusion of T
to an atom of the current rewriting, whose size is bounded
by |q| (and a positive inclusion is not applied several times

to the same atom), or unifies two atoms (and the number
of unification steps is bounded by the number of atoms in
the initial query). Moreover, there are at most N = 2|N

O
I |2

possible grounded versions for each positive inclusion in O,
so dl(gr(O)?) contains at most Ngr? = 3 · |O| · N + |q|
inclusions translated from gr(O)?. That is, at most |O| ·N
inclusions from gr(O), at most 2 · |O| ·N inclusions of the
form E@S v E@S?, and at most |q| inclusions to add the
annotated concept/role names that occur in qZ in gr(O)?.
To model the behavior of the open specifiers occurring in
gr(O)? we add further N2

gr? inclusions. It follows that the
size of T is bounded by Ngr? +N2

gr?.

Theorem 4. For ground DL-LiteR@ ontologies, satisfiability
is in PTIME and BCQ@ entailment is NP-complete.

Proof. The satisfiability upper bound comes from Claim 2
in the proof of Theorem 2, since the translation of a ground
ontology into an equisatisfiable DL-LiteR ontology is in
PTIME, as well as the satisfiability problem in DL-LiteR.

Let O be a DL-LiteR@ ground ontology, and let q be a
BCQ@. By Lemma 5, O |= q iff gr(O)? |= gr(q), i.e., iff
O? |= gr(q) since gr(O) = O. It follows that O |= q iff
there exists qZ ∈ gr(q) such thatO? |= qZ . Since qZ has the
same size as the original query q, we can add the annotated
concept or role names that occur in qZ to O? as explained
in Section “Notation in the Appendix” while keeping O? of
polynomial size w.r.t. O and q. Thus by Lemma 2, we have
that O |= q iff dl(O?) |= dl(qZ) and dl(O?) is polynomial
in the size of O and q. It is then possible to decide whether
O |= q by guessing the DL-LiteR translation dl(qZ) of a
grounded version qZ of q together with a certificate that
dl(O?) |= dl(qZ).

Checking that dl(qZ) is indeed a DL-LiteR translation of
a grounded version of q and certifying that dl(O?) |= dl(qZ)
can be done in polynomial time since BCQ entailment in
DL-LiteR is in NP. The NP lower bound comes from BCQ
entailment for DL-LiteR ontologies.

Proof of Theorem 8
This section presents an alternative proof for Theorem 8 that
extends the results by Botoeva, Artale, and Calvanese (2010)
for DL-LiteRHorn (the extension of DL-LiteR with conjunc-
tions of concepts on the left of inclusions) with role conjunc-
tions in role inclusions. We use this result to show another
result in the Section ‘Reasoning in DL-LiteR@,K’.

Recall that DL-LiteR,uHorn is a DL which extends DL-LiteR
with conjunctions on the left side of concept and role inclu-
sions. That is, expressions of the form:

I = K1 u · · · uKn v L,
with I a concept or a role inclusion. We start by defining
the canonical model of a DL-LiteR,uHorn ontology. As we did
before, for each role name occurring in O we add to O an
equivalence R− ≡ R, where R is a fresh role name. We can
then assume w.l.o.g. that inverse roles only occur in such
equivalences by replacing R− in other places by R.



Definition 8 (Canonical Model of a DL-LiteR,uHorn ontology).
The canonical model IO of a DL-LiteR,uHorn ontology O is the
union of interpretations I0, I1, . . ., with I0 defined as:

∆I0 := NI, a
I0 = a for every a ∈ NI

and EI0 := {aI0 | E(a) ∈ O}
for all E ∈ NC ∪ NR. For the inductive definition of the
sequence assume In is defined. Then obtain In+1 by applying
the one of the following rules:
• if I = A1 u · · · uAk v A is a positive concept inclusion

in O, and a ∈ AIn1 , . . . , a ∈ AInk but a 6∈ AIn then add a
to AIn ,

• if I = R1 u · · · uRk v R is a positive role inclusion inO,
and (a, b) ∈ RIn1 , . . . (a, b) ∈ RInk but (a, b) 6∈ RIn then
add (a, b) to RIn ,

• I = R1 v R− or I = R−1 v R is a positive role inclusion
in O, and (a, b) ∈ RIn1 but (b, a) 6∈ RIn then add (b, a)
to RIn ,

• if I = ∃R v A is a positive concept inclusion in O, and
there exists b such that (a, b) ∈ RIn but a 6∈ AIn then add
a to AIn ,

• if I = A v ∃R is a positive concept inclusion in O, and
a ∈ AIn but there is no b such that (a, b) ∈ RIn then add
a fresh element b to ∆In and add (a, b) to RIn ,

• if I = ∃R1 v ∃R is a positive concept inclusion inO, and
there exists b such that (a, b) ∈ RIn1 but there is no c such
that (a, c) ∈ RIn then add a fresh element c to ∆In and
add (a, c) to RIn .

We assume that rule application is fair, that is, if a rule is
applicable in a certain place, then it will indeed eventually be
applied there. We obtain IO by setting for all E ∈ NC ∪ NR:

∆IO :=
⋃

n≥0

∆In and EIO :=
⋃

n≥0

EIn .

Theorem 11. Let IO be the canonical model of a satisfiable
DL-LiteR,uHorn ontology O. For any BCQ q, IO |= q iff O |= q.

Importantly, if b ∈ ∆IO \ NI then, by construction of
the canonical model, b has been introduced when applying
a concept inclusion whose right side is of the form ∃R.
Thus, it can only be in the extension of concepts or roles
derived from R or ∃R− w.r.t. the set of positive inclusions
of O. In particular, if (a, b) ∈ RIO1 and (a, b) ∈ RIO2 , there
must be some S such that (a, b) ∈ SIO and T |= S v R1,
T |= S v R2.

We show Theorem 8 by reduction to the problem of BCQ
entailment from DL-LiteRHorn ontologies, where conjunctions
are allowed only in concept inclusions and for which BCQ
entailment is NP-complete (Botoeva, Artale, and Calvanese
2010).

Given a DL-LiteR,uHorn ontology O, we denote by T the set
of concept and role inclusions in O (TBox), and by A the set
of assertions in O (ABox).

Let As be the ABox obtained by saturating A w.r.t. role
inclusions as follows. We start with As = A and repeat

the following process until we reach a fix point: for ev-
ery role inclusion R1 u · · · u Rn v R (resp. R1 v R−),
we check for every pair of individuals (a, b) of A whether
R1(a, b), . . . , Rn(a, b) ∈ As (resp. R1(a, b) ∈ As) and
R(a, b) /∈ As (resp. R(b, a) /∈ As ) and add R(a, b) (resp.
R(b, a)) to As if it is the case. This process terminates in
polynomial time and the size of As is polynomial w.r.t. T
and A.

Let Ts be the TBox obtained by adding to T all inclusions
of the form R v R′ such that T |= R v R′, then removing
all role inclusions R1 u · · · u Rn v R such that n > 1.
The construction of Ts can also be done in polynomial time
because there are a polynomial number of inclusions of the
form R v R′ such that R,R′ occur in T , and the check that
T |= R v R′ is in polynomial time (Artale et al. 2009).

Lemma 6. The DL-LiteR,uHorn ontology 〈T ,A〉 and the DL-
LiteRHorn ontology 〈Ts,As〉 entail the same conjunctive
queries.

Proof. Let q be a conjunctive query. Since T |= Ts and
〈T ,A〉 |= As, clearly, the models of 〈T ,A〉 are also models
of 〈Ts,As〉. It follows that if 〈Ts,As〉 |= q then 〈T ,A〉 |= q.

In the other direction, assume that 〈T ,A〉 |= q and let I be
the canonical model of 〈Ts,As〉. Assume for a contradiction
that I 6|= q. It follows that I is not a model of 〈T ,A〉. Since
A ⊆ As, I is a model of A, so I is not a model of T . Since
the only inclusions of T that are not in Ts are of the form
R1 u · · · uRn v R with n > 1, all violations of T by I are
of the following form: there exists such an inclusion and two
elements a, b ∈ ∆I such that (a, b) ∈ RI1 , . . . , (a, b) ∈ RIn
and (a, b) /∈ RI . We show that this is impossible distinguish-
ing between the cases where a, b are images of individual
names or not (recall that if a ∈ NI, aI = a):

• If a, b ∈ NI, since I is the canonical model of 〈Ts,As〉,
〈Ts,As〉 |= Ri(a, b) for 1 ≤ i ≤ n. Since As is saturated
w.r.t. the role inclusions in T (and thus in Ts), it follows
that R1(a, b), . . . , Rn(a, b) ∈ As and R(a, b) ∈ As. Thus
(a, b) ∈ RI .

• If a /∈ NI or b /∈ NI, by construction of the canonical model
I of 〈Ts,As〉, there is some role R′ such that (a, b) ∈ R′I
and Ts |= R′ v R1, . . . , Ts |= R′ v Rn. Thus T |= R′ v
R1, . . . , T |= R′ v Rn and since T |= R1u· · ·uRn v R,
then T |= R′ v R, so by construction of Ts, R′ v R ∈ Ts.
Since I is a model of Ts, it follows that (a, b) ∈ RI .

It follows that I is a model of 〈T ,A〉, so I |= q, i.e.,
〈Ts,As〉 |= q.

Theorem 8. In DL-LiteR,uHorn, BCQ entailment is in NP.

Proof. It follows from Lemma 6 that BCQ entailment from
DL-LiteR,uHorn can be reduced polynomially to BCQ entailment
in DL-LiteRHorn which is NP-complete (Botoeva, Artale, and
Calvanese 2010).



Proofs for Section
‘Reasoning in DL-LiteR@,K’

In this section, we sometimes write + or
∑

instead of +p

or
∑p when p is clear from the context (when summing

annotations sets differentiated by p in some F ∈ ΦI).
Theorem 5. In DL-LiteR@,K, satisfiability is EXPTIME-hard.

Proof. We reduce from the word problem for a polynomially
space bounded alternating Turing Machine (ATM), which is
EXPTIME-hard (Chandra, Kozen, and Stockmeyer 1981). An
ATM is a tupleM = (Q,Σ,Θ, q0), where Q = Q∃ ] Q∀
is a finite set of states, partitioned into existential states Q∃
and universal states Q∀, Σ is a finite alphabet containing
the blank symbol , q0 ∈ Q is the initial state, and Θ ⊆
(Q× Σ)× (Q× Σ)× {l, r} is the transition relation.

We assume that M is polynomially space bounded on
inputs w0 = σ0 . . . σn−1 of length n. We use the same notion
of configuration, computation and initial configuration given
in the proof of Theorem 1 and also make the assumption that
M does not attempt to move to the left (right) when it is
on its left-most (right-most) tape position. We now recall
here the acceptance condition of an ATM, following the
terminology provided in (Krötzsch, Rudolph, and Hitzler
2013). A configuration α = wqw′ is accepting iff:

• α is a universal configuration and all its successor configu-
rations are accepting, or

• α is an existential configuration and at least one of its
successor configurations is accepting.

By the definition above, universal configurations without any
successors are accepting. We consider w.l.o.g. ATMs with
only finite computations on any input (Chandra, Kozen, and
Stockmeyer 1981). M accepts a word in Σ∗ (using space
polynomial in the size of the input) iff the initial configuration
is accepting.

We construct a DL-LiteR@,K ontology OM,w0
that is satis-

fiable iffM accepts w0. We use the following symbols in
addition to those introduced in the proof of Theorem 1:

• attribute values θ ∈ Θ to represent the transitions;
• an attribute accΘ with values which are either elements of

Θ or a sum of elements of Θ;
• finally, an attribute acc with value 1 to mark accepting

configurations.

We encode the initial configuration and transitions θ =
(q, σ, q′, τ,D) ∈ Θ as in the proof of Theorem 1. To encode
the acceptance condition, we compute the set of accepting
configurations backwards. First, we ensure that if a configu-
ration is accepting then the predecessor configuration w.r.t. to
a transition θ ∈ Θ will have this information. To encode this,
we add to OM,w0 concept inclusions of the form (we show
the case where D = r, the case with D = l is analogous),
for θ = (q, σ, q′, τ,D) ∈ Θ and 1 ≤ k + 1 ≤ m:

Ω (A@X v A@[accΘ : θ, s: q, h: k, pk :σ, PX\k])
where Ω is a shorthand for:

X : bacc: 1, s: q′, h: k + 1, pk : τc

and PX\k is the abbreviation used in the proof of Theorem 1.
We now mark accepting configurations with the attribute-

value pair acc: 1. For universal configurations, we have, for
each q ∈ Q∀ and 0 ≤ k ≤ m, a concept inclusion:

Ω (A@X v A@[acc: 1, s: q, h: k, pk :σ, PX\k])
where Ω is a shorthand for:

X : baccΘ :
∑

θ∈Θ,
θ=(q,σ,q′,τ,D)

θ, s: q, h: k, pk :σc

and we omit the attribute accΘ and its value above if there is
no suitable transition. For existential configurations, we have,
for each q ∈ Q∃, θ = (q, σ, q′, τ,D) ∈ Θ and 0 ≤ k ≤ m, a
concept inclusion:

Ω (A@X v A@[acc: 1, s: q, h: k, pk :σ, PX\k])
where Ω is a shorthand for:

X : baccΘ : θ, s: q, h: k, pk :σc.
Claim. OM,w0

|= A(a)@S iffM accepts w0, where S is

[acc: 1, s: q0, h: 0, p0 :σ0, . . ., pn−1 :σn−1, pn : , . . ., pm : ].
One can reduce Boolean atomic query entailment to

(un)satisfiability, so the claim implies this theorem.

To prove Theorem 7, we first devise a grounding strategy
for DL-LiteR@,K and then translate it into DL-LiteR,uHorn. We
denote by NOS the subset of NS with elements occurring in O.
Importantly, we assume throughout this section that NOS does
not contain multiple provenance sums which are mathemati-
cally equal. This is w.l.o.g. since if a+ b and b+a both occur
in O then one can always replace the latter by the former (or
vice-versa). Let NPmin be a fixed but arbitrary minimal subset
of NP such that for each a ∈ NP, NPmin contains an element
b such that a is mathematically equal to b. Define NOS

+ by:

NOS ∪ {
∑
b∈σ b | σ ⊆ NOS }

Assume w.l.o.g. that elements of NO+
S are among elements of

NPmin. Also, assume w.l.o.g. that we respect the multiplicity
of elements in O and include their sum in NOS

+. This can be
done by first replacing each element of NS occurring in O
with an alias, so that they are unique and then replacing the
alias by the original element of NS. We may write K ≡ L as
a bidirectional v as usual; and K v L u L′ as a shorthand
for K v L and K v L′. To show our upper bound we first
identify some model theoretical properties of DL-LiteR@,K.

Definition 9 (Interpretation of a DL-LiteR@,K concept/role).
We define the interpretation of a concept or a role expression
L in an inclusion I w.r.t. a variable assignment Z in the
same way as in Definition 4, except that we use (?Mn

S , ?Mn

S )

instead of (?Mn , ?Mn) in LI
Z,Mn
L,I where S = {a: b |

(aMn , bMn) ∈ H, {a, b} ⊆ NO+
S }.

The canonical modelMO? of a DL-LiteR@,K ontology O is
constructed similarly. However we need to ensure thatMO?
is a well-founded provenance interpretation.



Definition 10 (Canonical Model of a DL-LiteR@,K ontology).
The canonical modelMO? of a DL-LiteR@,K ontology O is the
union of provenance-interpretationsM0,M1, . . ., defined
as in Definition 5, except that ∆M0 := NPmin, and for all a ∈
NP, aM0 = b with a mathematically equal to b. Assuming
Mn is defined (using Definition 9 for EI

Z,Mn
K,I ) we extend

Mn+1 with the following step:

• add to EMn+1 all tuples in

{(a,∑G∈σ G) | σ ⊆ EpMn,a,F
6= ∅},

for all p ∈ ∆Mn and all F ∈ ΦMn .

It follows from our construction that the number of possi-
ble annotation sets inMO? is finite, therefore it also satisfies
the support condition for all E ∈ NC ∪ NR and tuples with
elements in ∆M

O
? .

We now define the grounding of a DL-LiteR@,K ontology.
Let O be a DL-LiteR@,K ontology. Let I be an interpretation
over the domain ∆I = NO+

S ∪ {?} and such that aI = a

for every a ∈ NO+
S ∪ {?} (such an interpretation exists since

NO+
S contains at most one representative of equal provenance

sums). This interpretation is not a provenance-interpretation
because we restrict the domain but is going to be used to
define the grounding of O. Let Z be a variable assignment
mapping object variables x ∈ NV to elements Z(x) ∈ ∆I \
{?I} and set variables X ∈ NU to binary relations Z(X) ∈
ΦI such that (a, b) ∈ Z(X) implies that a 6∈ I(NS \NI). Let
O′ be the ground ontology with all Z-instances IZ for all
concept or role inclusions I in O and all compatible variable
assignmentsZ , where theZ-instance IZ of I is as defined for
DL-LiteR@ ontologies. Let gr+(O) be the result of replacing
in O′ each occurrence of ? in a specifier S by ?S , where S
is the set of attribute-value pairs (without ?) occurring in S.
Since here we use NO+

S to construct gr+(O), the grounding
is double exponential in the size of O.

Lemma 7. O is satisfiable iff gr+(O) is satisfiable.

Proof. By definition of gr+(O), it is straightforward to show
that O |= gr+(O). We show the converse direction. Let
I = (∆I , ·I) be a model of gr+(O). To show this lemma we
use the following claim.
Claim 1. If O has a model then O has a modelM such that,
for all {G,H} ⊆ ΦM that occur in the interpretation of some
concept or role by ·M:

1. if G,H are differentiated by some p ∈ ∆M (in F ∈ ΦM)
then all elements in tuples in G,H are inM(NO+

S );

2. for all (a, b) ∈ H , either {a, b} ⊆ M(NO+
S ) or {a, b} ∩

M(NO+
S ) = ∅.

Proof of Claim 1. If O is satisfiable then the canonical model
MO? for O is a model of O. One can show by induction that
MO? satisfies the properties of this claim.

By Claim 1, we can assume that I satisfies the conditions
in Points 1 and 2. W.l.o.g., assume that for each new symbol
?S in gr+(O), there is ?IS ∈ ∆I such that ?IS 6= aI for

all a ∈ NO+
S . Given an annotation set F ∈ ΦI , we denote

by SF the maximal set of attribute-values pairs a : b such
that {a, b} ⊆ NO+

S and (aI , bI) ∈ F . We define F? as
the annotation set obtained from F by replacing all aI 6∈
I(NOS

+
) in F by ?ISF . Let J be the interpretation over the

domain ∆J := ∆I such that EJ := {(a, H?) | (a, H) ∈
EI} for all E ∈ NC ∪ NR, and aJ := aI for all a ∈ NS.

Claim 2. J is a well-founded provenance-interpretation.
Proof of Claim 2. We want to satisfy the condition of Defini-
tion 2. Since I satisfies the conditions of Claim 1, J is such
that, for all {G,H} ⊆ ΦJ that occur in the interpretation of
some concept or role by ·J :

1. if G,H are differentiated by p in some F ∈ ΦJ then all
elements in tuples in G,H are in J (NO+

S );

2. for all (a, b) ∈ H , either {a, b} ⊆ J (NO+
S ) or {a, b} ∩

J (NO+
S ) = ∅.

On one hand we know that annotations sets with only ele-
ments in NO+

S are not changed in J . On the other hand, if
they are changed then they are not differenciated by p any-
more. It follows that for all E ∈ NC ∪ NR, if EI is closed
under sum then EJ is closed under sum. This finishes the
proof of Claim 2.

It remains to show that J is indeed a model ofO. Suppose
for a contradiction that there is a concept inclusion I in O
that is not satisfied by J (the case for role inclusions is
analogous). Then we have a compatible variable assignment
Z that leaves I unsatisfied. Let Z ′ be the variable assignment
X 7→ Z(X)? for all X ∈ NU. Clearly, Z ′ is also compatible
with I . But now we have CJ ,Z = CI,Z

′
for all DL-LiteR@,K

concepts C, yielding the contradiction I 6|= IZ′ , with IZ′ in
gr+(O). Thus, O is satisfiable iff gr+(O) is satisfiable.

The ground ontologyOg := gr+(O) is now translated into
a DL-LiteR,uHorn ontology dl+(Og) as follows. First, replace
every annotated concept/role name E@S (or inverse role
R−@S) with a fresh concept/role name ES (or inverse role
R−S ) in all the assertions and concept or role inclusions of
Og. We now would like to capture the semantics of +. Let
I be the interpretation with ∆I = NO+

S ∪ {�} where � is
some fresh individual name. Again this interpretation is not
a provenance-interpretation because we restrict the domain
but is going to be used to define the DL translation. Assume
bI = b for all b ∈ NO+

S and assume there is a concept
name A containing {(�, F ) | F has tuples in (NOS )2} in its
extension plus all annotation sets so that AI is closed under
sum, as in Definition 2 (this is possible by construction of
NO+

S ). Let [S] be the set of closed specifiers SF such that for
(�, F ) ∈ AI we have that a: b occurs in SF iff (a, b) ∈ F .
In the following, we conversely denote by FS the annotation
set such that (a, b) ∈ FS iff a: b occurs in S. Recall from
Section “Querying using Provenance Semirings” that we
denote by ApI,�,F the set of annotation sets G differentiated
by p in F ∈ ΦI such that (�, G) ∈ AI with G primitive for
� and AI . Note that the size of ApI,�,F is exponential w.r.t.



the size of O, since the primitive annotation sets are built
from elements of NOS . For each E ∈ NC ∪ NR occurring in
O and each σ ⊆ ApI,�,F , where p ∈ NOS and F with tuples
in (NO+

S )2, we add:
l

FU∈σ
EU v

l

FV ∈τ(σ)

EV ; (2)

where τ(σ) = {∑p
G∈υ G | υ ⊆ σ}. Finally, extend the

obtained DL-LiteR,uHorn ontology dl+(Og) by all axioms:
1. ES v ET where ES and ET occur in translated axioms

of dl+(Og) and S ⇒ T ;
which again introduces at most double-exponentially many
concept/role inclusions in the size of O (for each E occur-
ing in O we introduce at most double-exponentially many
inclusions of the form of Equation 2).

We denote by ΓO,? the set of individual names of the
form ?S where S is a set of attribute-value pairs built from
elements of NO+

S .
For a ground specifier S, we define FK

S as the annotation
set in the singleton set SI if S is a closed specifier, and FK

S =
{(aI , bI) | a: b occurs in S}∪{(?IS , ?IS)}where S = {a: b |
a: b occurs in S, {a, b} ⊆ NO+

S } if S is an open specifier.

Lemma 8. Let O be a ground DL-LiteR@,K ontology. Then,
O is satisfiable iff dl+(O) is satisfiable.

Proof. Given a DL-LiteR@,K model of O, we obtain a DL-
LiteR,uHorn interpretation J over ∆I by setting EJS as E@SI

for all ES that occur in dl+(O) and aJ to aI , for all a ∈ NI

(here we use only individual names in NI since the semantics
of individual names in NS is captured by the conjunctions).
By the semantics of DL-LiteR@,K and definition of dl+(O),
clearly J |= dl+(O). Conversely, let J be a DL-LiteR,uHorn
model of dl+(O). We assume w.l.o.g. that J maps distinct
individuals names to distinct domain elements (unique name
assumption). Indeed, it follows from the syntax and semantics
of DL-LiteR,uHorn that if a DL-LiteR,uHorn ontology has a model,
then it has a model which respects the unique name assump-
tion. We construct a DL-LiteR@,K interpretation I over ∆I :=

∆J ∪ NPmin, with ∆J ∩ NPmin = ∅ and define aI := aJ ,
for all a ∈ NI \ ΓO,?, and aI := b such that a and b ∈ NPmin

are mathematically equal, for all a ∈ (NP \NI)∪ΓO,?. Now,
let EI := {(a, FK

S ) | a ∈ EJS for some specifier S} if E
occurs in O and EI = ∅, otherwise.
Claim I is a well-founded provenance-interpretation.
Proof of the Claim. It follows from the definition of dl+(O)
that the condition of Definition 2 is satisfied by Equation 2.
Thus, for all E ∈ NC ∪ NR we have that EI is closed under
sum. The support condition is also satisfied since only finitely
many annotation sets occur in I. Point 1 of the translation is
also necessary because of the semantics of specifiers. This
finishes the proof of the Claim.

By definition of I , in particular of FK
S , for all concept/role

name E and all S ∈ SS, E@SI = EJS . Thus, with an
inductive argument one can show that I is a model ofO.

Lemmas 7 and 8 together show the correctness of our
reduction. Since the translation is double exponential we
obtain our upper bound in Theorem 7. We now want to show
the correctness of the reduction for the query entailment
problem (Theorem 9).

We first establish in Lemma 9 that ground and plain
BCQ@,Ks can be translated into BCQs. Recall that when-
ever we speak about a ground and plain query q and a ground
ontology O, we assume w.l.o.g. that if an annotated concept
or role name occurs in q then it also occurs inO. Note that in
the case of DL-LiteR@,K, we may need to replace equal prove-
nance sums that occur in the query by the representative of
these sums that occurs in the ontology (e.g., if a+b and b+a
both occur in q and a+ b occurs in O, we replace b+ a with
a+ b in the query).

Given a ground and plain BCQ@,K q, we define dl+(q) as
dl(q′), where q′ is the result of removing the outer specifier
of q (which is of the form b c) and the translation dl(·) is as
defined for ground BCQ@s. Recall that we denote by ΓO,?
the set of individual names of the form ?S where S is a set
of attribute-value pairs built from elements of NO+

S .

Lemma 9. LetO be a ground DL-LiteR@,K ontology and let q
be a ground and plain BCQ@,K.O |= q iff dl+(O) |= dl+(q).

Proof. Assume dl+(O) |= dl+(q). If an interpretation I
models O then we obtain a model of dl+(O) by setting EJS
as E@SI for all ES that occur in dl+(O) and aJ to aI , for
all a ∈ NI (as in Lemma 8, we use only individual names in
NI since the semantics of individual names in NS is captured
by the conjunctions). By the semantics of DL-LiteR@,K and
by definition of dl+(O), we have that J |= dl+(O). Then,
by assumption, J |= dl+(q). Recall that every interpretation
of DL-LiteR@,K is also an interpretation of DL-LiteR@ (but not
the converse). By Definition 3, if a DL-LiteR@,K interpretation
satisfies a BCQ@ q then it satisfies the query q′ that is the
result of removing the outer specifier of q. If q is a plain
BCQ@,K then, clearly, if a DL-LiteR@,K interpretation satisfies
q′ then it satisfies q. Thus, by following the same lines of the
proof of Lemma 2, we have that I |= q, and so O |= q.

Conversely, assume O |= q. LetM be a model of dl+(O).
There exists a model J of dl+(O) which respects the unique
name assumption and such that J →M. We obtain a model
I of O over ∆I := ∆J ∪ NPmin, with ∆J ∩ NPmin = ∅,
and define aI := aJ , for all a ∈ NI \ ΓO,?, and aI := b
such that a and b ∈ NPmin are mathematically equal, for
all a ∈ (NP \ NI) ∪ ΓO,?. Now let EI = {(a, FK

S ) | a ∈
EJS for some specifier S} if E occurs inO and EI = ∅, oth-
erwise. As in Lemma 8 one can show that I is a well-founded
provenance-interpretation. By assumption, I |= q. As we ar-
gued above we can see I and q as a DL-LiteR@ interpretation
and a BCQ@ (by removing the outer specifier b c). Thus,
by following the same lines of the proof of Lemma 2, we
have that J |= dl+(q). It follows thatM |= dl+(q), and so
dl+(O) |= dl+(q).

We define the grounding gr+(q) of a plain BCQ@,K q in
the same way as for BCQ@s. The main difference is that here



we consider ∆I = NPmin and impose the condition that Z-
instances are defined in terms of variable assignments Z over
I with image in NOS

+ ∪ {?} and such that (a, b) ∈ Z(X)
implies that a 6∈ I(NS \ NI). Recall that we assume that the
elements from NS that occur in q also occur in O. As we did
for DL-LiteR@,K ontologies, we replace each occurrence of ?
in a specifier S by ?S ∈ ΓO,?. We thus have that gr+(q) is a
set of ground and plain BCQ@,Ks.

For a ground specifier S, recall that we denote by S the set
of attribute-value pairs (without ?) occurring in it. We define
OΓ? as the union of O and:

1. all concept/role inclusions E@S v E@T such that E
occurs in O, S is a ground (open/closed) specifier whose
attribute-value pairs are either S or S ∪ {?S : ?S}, and
S ⇒ T ;

2. all concept/role inclusions of the form E@S v E@S?S
whereE@S occurs inO or inOΓ?

in Point 1, S is a ground
(open/closed) specifier, and S?S is the closed specifier with
all attribute-value pairs in S plus ?S : ?S .

Point 1 introduces double exponentially many inclusions
w.r.t. the number of attributes and values occurring in O.
Thus, even if we consider O′ = gr+(O) we still have that
O′Γ?

is double exponential in the size of O.
We now adapt Definition 6 to use it together with our

groundings in this section.

Definition 11. Let I = (∆I , ·I) be an interpretation and let
O be a DL-LiteR@,K ontology. Assume w.l.o.g. that for each
?S ∈ ΓO,? there is ?IS ∈ ∆I such that ?IS 6= aI for all
a ∈ NO+

S . For an annotation set F ∈ ΦI , we define F?S
to be the annotation set obtained from F by replacing all
aI 6∈ I(NO+

S ) in F by ?IS , where S is the set of of attribute-
value pairs a : b such that {a, b} ⊆ NO+

S and (aI , bI) ∈ F .
Let IOΓ?

= (∆I
O
Γ? , ·IOΓ? ) be as follows:

• ∆I
O
Γ? := ∆I; aI

O
Γ? := aI for all a ∈ NS; and

• EIOΓ? := {(a, F?S ), (a, F?S ∪ {(?S , ?S)}) | (a, F ) ∈
EI} for all E ∈ NC ∪ NR.

The most important observation regarding Definition 11 is
that if I is a DL-LiteR@,K interpretation then IOΓ?

is also a DL-
LiteR@,K interpretation (i.e., it is a well-founded provenance-
interpretation). We now state Lemma 10 which can be proved
with an argument similar to the one in Lemma 3.

Lemma 10. Let I be an interpretation such that elements of
I(ΓO,?) can only occur in annotations sets, and, for all anno-
tation sets F in I and all (a, b) ∈ F , either {a, b} ⊆ I(NO+

S )

or {a, b}∩I(NO+
S ) = ∅. Then, for every plain BCQ@ q with-

out any ?S ∈ ΓO,? and with concept/role/individual names
occurring in O: I |= q iff IOΓ?

|= q.

Theorem 12. Let O be a DL-LiteR@,K ontology and let q be
a plain BCQ@,K. Assume O is satisfiable and the provenance
sums that occur in q occur in O. Then, the following holds:

1. O |= q iffMO? |= q;
2. MO? |= q iffMO? |= gr+(q).

Proof. We adapt our proof of Theorem 10 to our notion
of canonical model given in Definition 10. Recall that no
?S ∈ ΓO,? occurs in O or in q, since we assume that all
provenance sums that occur in q also occur in O. For Point 1,
if O is satisfiable then, by construction,MO? is a model of
O. Thus, O |= q implies MO? |= q. Conversely, assume
MO? |= q. By construction, if an interpretation I models O
thenMO? → IOΓ?. Then, by Lemma 4, IOΓ? |= q. Moreover, as
MO? only has annotation sets H such that for all (a, b) ∈ H
either (a, b) = (?

MO
?

S , ?
MO

?

S ) or {a, b} ⊆ MO? (NO+
S ) for

some S defined as a set of attribute-value pairs formed with
elements from NO+

S , we can assume that the image J of the
homomorphism from q to IOΓ? only contains annotation sets
of this form.

Consider the interpretation K that is the result of removing
from I all annotations sets H such that there is (a, b) ∈
H with a = ?IS or b = ?IS but (a, b) 6= (?IS , ?

I
S), where

?S ∈ ΓO,?. We have that J → KOΓ?

Γ? (Definitions 7 and 11)
and, by construction, KOΓ?

Γ? is a well-founded provenance-
interpretation. As J |= q, by Lemma 10 and since q is plain,
K |= q. By definition, K → I , and thus by Lemma 4, I |= q.

Finally, for Point 2, assume MO? |= q. Then there is a
non-empty set of variable assignments Z as in Definition 3.
Since all annotation sets ofMO? contain only elements in
MO? (NO+

S ), each Z-instance qZ of q is in gr+(q). Thus,
MO? |= gr+(q). Conversely, by definition of gr+(q), if there
is some qZ ∈ gr+(q) such thatMO? |= qZ then the variable
assignment Z satisfies the conditions of Definition 3 for the
query q. SoMO? |= q.

Lemma 11. Let O be a DL-LiteR@,K ontology and q a plain
BCQ@,K. We have that O |= q iff gr+(O)Γ?

|= gr+(q).

Proof. The argument here is similar to our proof of Lemma 5.
Assume O |= q. Note that elements of ΓO,? may occur in
some queries in gr+(q), so that Point 1 of Theorem 12 does
not hold for queries in gr+(q). So, in the following, we use
O′ = gr+(O)Γ? instead of gr+(O). By definition of O′ and
construction ofMO? , we have thatMO? →MO

′
? . Suppose

an interpretation I models O′. By Point 1 of Theorem 12,
MO? |= q and by Point 2, MO? |= gr+(q). Moreover, by
our construction,MO? →MO

′
? → I: here we do not need

to use IOΓ?
from Definition 11 because I is a model of O′.

Thus, by Lemma 4, I |= gr+(q). Since I was an arbitrary
interpretation satisfying O′, we have that O′ |= gr+(q).

Now, assume O′ |= gr+(q). By Lemma 8, O is satisfi-
able iff gr+(O) is satisfiable and our extension O′ does not
change this relation. So if O′ is unsatisfiable O trivially en-
tails q. Then, assume O′ is satisfiable. Since O′ |= gr+(q),
by definition of gr+(q), thenO′ |= q. Since individual names
of the form ?S do not occur in q, in fact gr+(O) |= q. By
construction of gr+(O), O |= gr+(O). Thus, O |= q.

Lemmas 9 and 11 together show the correctness of our
reduction for the query entailment problem. We use these
results in Theorem 9. The rest of this appendix is devoted to
show Lemma 1 and Theorem 6.



In the Section ‘Reasoning in DL-LiteR@,K’ we provided a
transformation of a BCQ@,K q into a set gr plain(O, q) of
ground and plain queries such that a DL-LiteR@,K ontology O
without expressions of the form ∃P on the right side entails
q iff one of the queries of this set is entailed. For convenience
of the reader, we recall this construction and provide more
details.

Let I be a DL-LiteR@,K interpretation with domain ∆I =

NPmin and such that aI = a for every a ∈ NPmin. Let
FS := {(aI , bI) | a : b occurs in S} ∈ ΦI . We say that
a set {S1, . . . , Sn} of ground closed specifiers from SP is a
decomposition of S into n if there exists some p such that
the FSi are differentiated by p in some annotation set, each
FSi contains some attribute-value pair of the form (p, a)
with a ∈ NP, and

∑p
1≤i≤n FSi ∈ SI . We say that a set

{Si1, . . . , Sim} of ground closed specifiers from SS partitions
a ground closed specifier Si if

∏
1≤j≤m FSi

j
= FSi .

Example 12. It follows from our definitions that the set of
ground closed specifiers {[src: s1 × s3], [src : s2 × s3]} is a
decomposition of [src : (s1 × s3) + (s2 × s3)].

Also, {[src: s1], [src : s3]} partitions [src: s1 × s3] and
{[src: s2], [src : s3]} partitions [src: s2 × s3].

Given a BCQ@,K q of the form

∃x. X1 : S1, . . . , Xm : Sm (
∧

1≤j≤m
Ej(tj)@Xj)@S (3)

let q′ be the result of removing the outer specifier from q.
Let I be a DL-LiteR@,K interpretation with domain ∆I =

NPmin and such that aI = a for every a ∈ NPmin. Given
a compatible Z , a Z-image

∧
1≤j≤mEj(tj)@Tj of q′ is

obtained by:
• replacing each Xj with Tj = [a: b | (a, b) ∈ Z(Xj)];
• replacing each object variable x by Z(x);
• if ? occurs in some Tj , replacing ? by ?Tj where Tj is the

set of attribute-value pairs in Tj that do not contain ?.
We define gr plain(O, q) as the set of ground plain

BCQ@,Ks:

qgp = (
∧

1≤i≤n
(

∧

1≤j≤m
Ej(t

i
j)@Sij ))@b c (4)

where {S1, . . . , Sn} is a decomposition of S; for every 1 ≤
i ≤ n, {Si1, . . . , Sim} partitions Si and:

∧

1≤j≤m
Ej(t

i
j)@Sij

is a Z-image of q′ such that all attribute-value pairs are built
with elements from NS.

We start with the following lemma, on the complexity of
recognizing that a query belongs to gr plain(O, q).
Lemma 12. Given an ontology O, a BCQ@,K q as in Equa-
tion 3 and a plain and ground BCQ@,K qgp of the form of
the query in Equation 4 without variables and where the
Sij are ground closed specifiers, we can decide whether
qgp ∈ gr plain(O, q) in polynomial time in |q| and |qgp|.

Proof. We argue that one can check in polynomial time (in
|q| and |qgp|) whether, for every 1 ≤ i ≤ n, {Si1, . . . , Sim}
partitions some Si such that {S1, . . . , Sn} form a decompo-
sition of S, where Sij are ground closed specifiers of qgp. Let
I be a DL-LiteR@,K interpretation with domain ∆I = NPmin

and such that aI = a for every a ∈ NPmin. Assumme w.l.o.g.
that polynomials occurring in qgp and q are among those in
NPmin. For every 1 ≤ i ≤ n, we define FSi as

∏
1≤j≤m FSi

j

and (∗) if FSi are differentiated by p in some annotation set,
we define F pqgp as

∑p
1≤i≤n FSi . If (∗) is not satisfied then we

are done, qgp 6∈ gr plain(O, q). Clearly (∗) can be checked in
polynomial time. Otherwise we iterate over all such p satisfy-
ing (∗), there are only polynomially many of them. It remains
to check whether F pqgp ∈ SI .

The important point here is checking equality between the
polynomials in F pqgp and S. Recall that we assume that all
polynomials occurring in a specifier in SP are expanded, i.e.,
they are of the form Σ1≤i≤n1

Π1≤j≤n2
ai,j , where all ai,j ∈

NI. So all polynomials in S are expanded but, by construction
of F pqgp , it may be the case that some polynomials in F pqgp
are not expanded (they are of the form Σ1≤i≤nΠ1≤j≤msi,j ,
where all si,j ∈ NS). Given one expanded polynomial p1

from S and another polynomial p2 from F pqgp , we can check
equality of p1 and p2 in polynomial time in |p1| and |p2| by
iteratively expanding p2 and checking whether there is a 1
to 1 correspondence giving equality between the expanded
terms (equality between expanded terms amounts to check
occurrences of individual names in the terms). We bound the
number of times we expand p2 by the number of terms in p1

(if p2 has more terms than p1 it cannot be equal). Thus, this
procedure can be performed in polynomial time as well.

Finally, it is easy to see that checking that each∧
1≤j≤mEj(t

i
j)@Sij is a Z-image of q′ for some compat-

ible Z can be done in polynomial time by considering Z
such that Z(Xj) = FSi

j
and checking whether FSi

j
∈ SI,Zj

for each j. Indeed, if it is not the case, there is no compatible
Z such that

∧
1≤j≤mEj(t

i
j)@Sij is a Z-image of q′.

We now show Lemma 1. To simplify the notation, we used
Ogr in the main text, which here is defined as gr+(O)Γ?

. Also,
to avoid the definition of NO+

S and ΓO,?, we used NS to de-
fine gr plain(O, q), which then was infinite. However, we can
restrict gr plain(O, q) to queries containing only attribute-
value pairs are built with elements from NO+

S ∪ ΓO,?, since
queries containing elements from NS \ (NO+

S ∪ ΓO,?) can-
not be entailed by gr+(O)Γ?

. From now on we consider that
gr plain(O, q) is restricted to such queries which can be en-
tailed by gr+(O)Γ?

. We show in Lemma 1 that the size of
such queries is polynomial in |q| and |O| if O is ground.

Lemma 1 Let q be a BCQ@,K and let O be a DL-LiteR@,K
ontology without expressions of the form ∃P on the right side
of inclusions. O |= q iff there is qgp ∈ gr plain(O, q) such
that gr+(O)Γ? |= qgp. The size of such qgp is polynomial
in |q| and |O|, if O is ground. Moreover, deciding whether
qgp ∈ gr plain(O, q) is in PTIME if O is ground.



Proof. Assume O |= q and letM =MO? be the canonical
model ofO (Definition 10). By construction ofM, and since
O does not contain any inclusion with an expression of the
form ∃P on the right side, ∆M = NPmin. Moreover, for
every a ∈ NP, aM = b with a equal to some b, by definition
ofM. Assume O is satisfiable (otherwise O |= qgp trivially).
Then,M |= O and, since O |= q,M |= q. So there is a non-
empty χ ⊆ νM(q′) satisfying Conditions 1-3 of Definition 3,
where q′ is the result of removing the outer specifier from
q and νM(q′) is the set of all variable assignments Z as in
Definition 1. Assume that χ is such a set minimal w.r.t. set
inclusion. We show that there is a correspondence between χ
and some qgp ∈ gr plain(O, q) entailed by O.

Assume q is of the form of the query in Equation 3. By
definition of χ (Condition 2): for all 1 ≤ j ≤ m, there is
(Z(tj), FZj ) ∈ EM,Z

j for some FZj ∈ XM,Z
j . Then, for all

Z ∈ χ,M satisfies the Z-images

qZ =
∧

1≤j≤m
Ej(Z(tj))@SFZ

j

of q′ where SFZ
j

= [a: b | (a, b) ∈ FZj ]. By construction of
M and the definition of qZ , all attribute-value pairs occurring
in qZ are built from elements of NO+

S ∪ ΓO,?.
Since χ satisfies Condition 3, there is p ∈ ∆M and

G ∈ ΦM such that all HZ =
∏

1≤j≤m F
Z
j with Z ∈ χ

are differentiated by p in G, and
∑p
Z∈χH

Z ∈ SM. More-
over, |χ| is bounded by the maximum number of terms in a
sum occurring in S. To see this, assume χ is not singleton,
otherwise we are done. Now note that: for every Z ∈ χ, HZ
contains some (p, aM) with a ∈ NP: if there is some Z0 ∈ χ
such that HZ0 does not contain any (p, aM) with a ∈ NP,
then

∑p
Z∈χH

Z = HZ0 , so {Z0} ⊂ χ would fulfill Con-
ditions 1-3, contradicting minimality of χ. All tuples of the
form (p, aM) ∈∑p

Z∈χH
Z are such that a is a polynomial

equal to a sum of |χ| elements from NP. So if S contains
p: a (recall that, by definition ofM, pM = p for all p ∈ NI)
we are done, and, if S is closed this must be the case, since∑p
Z∈χH

Z ∈ SM. Otherwise, if S is open and does not con-
tain p: a then

∑p
Z∈χH

Z \ {(p, aM) | a ∈ NP} = G is also
in SM, as well as all supersets ofG. In particular,HZ ∈ SM
for every Z ∈ χ. By assumption χ is not singleton. Since any
{Z} ⊆ χ fulfills Conditions 1-3, this contradicts minimality
of χ. So S contains some polynomial a equal to the sum of
|χ| elements from NP. Thus, |χ| is polynomial in |S| and:

• the specifiers SHZ = [p: a | (p, aM) ∈ HZ] form a
decomposition of S into |χ| and

• the specifiers SFZ
j

= [p: a | (p, aM) ∈ FZj ] partition
SHZ .

This means that qχ = (
∧
Z∈χ qZ)@b c ∈ gr plain(O, q) and

is such that M |= qχ. Let qχo be the query obtained from
qχ by replacing each specifier SFZ

j
which contains ?S

FZ
j

by the open specifier that contains the attribute-value pairs
without ?S

FZ
j

in SFZ
j

. By Point 1 of Theorem 12, O |= qχo

and, by Lemma 11, gr+(O)Γ?
|= gr+(qχo ). By definition of

qχo , for all q ∈ gr+(qχo ) and all interpretations I, if I |= q
then I |= qχo , which means that gr+(O)Γ? |= qχo . The fact
that gr+(O)Γ?

|= qχ follows from the facts that: specifiers
SFZ

j
in qχ correspond to annotation sets FZj in the canon-

ical model M; and, annotation sets FZj in M are used to
construct specifiers SFZ

j
occurring in gr+(O)Γ?

, in particu-
lar, Points 1 and 2 of the extension ·Γ? ensure that, for all
interpretations I satisfying gr+(O)Γ? , if I satisfies qχo then
it satisfies qχ.

For the other direction, we show the following claim.
Claim 1. For all DL-LiteR@,K interpretations I and all qgp ∈
gr plain(O, q), if I |= qgp then I |= q.
Proof of Claim 1. Assume qgp is of the form:

(
∧

1≤i≤n
(

∧

1≤j≤m
Ej(t

i
j)@Sij ))@b c

and I |= qgp. Assume w.l.o.g. that there are no two identical∧
1≤j≤mEj(t

i
j)@Sij in qgp. Let J be the result of simulta-

neously replacing each aI with a ∈ NP by b ∈ NPmin such
that b is equal to a. There is an isomorphism between I and
J so J |= qgp. We first show that J |= q.

By construction of qgp, there is a set χ of variable assign-
ments Z compatible with q′ corresponding to the Z-images

∧

1≤j≤m
Ej(t

i
j)@Sij

used to build qgp. Moreover, for every 1 ≤ i ≤ n,
{Si1, . . . , Sim} partitions Si; and {S1, . . . , Sn} is a decom-
position of S. Since J |= qgp and qgp is built from Z-images
of q′, we have that χ ⊆ νJ (q′). We show that χ fulfills Con-
ditions (1) to (3) of Definition 3 for J |= q. By definition
of χ, since we assume that all Z-images in qgq are different,
any two Z , Z ′ in χ are distinct in at least one object or set
variable in q′, so χ satisfies Condition (1) of Definition 3. The
other 2 conditions follow from the facts that J |= qgp, qgp is
built fromZ-images of q′, {Si1, . . . , Sim} are closed specifers
and partitions Si, and {S1, . . . , Sn} is a decomposition of S.
Since χ satisfies Conditions (1) to (3) of Definition 3, J |= q.
Now since I is isomorphic to J , I |= q.

Assume gr+(O)Γ?
|= qgp. By Claim 1, gr+(O)Γ?

|= q.
Since individual names of the form ?S do not occur in q, in
fact gr+(O) |= q. By construction of gr+(O), O |= gr+(O).
Thus, O |= q.

It remains to show that if O is ground the size of each
specifier is polynomial in |NOS |. We show that the size of an
annotation set in the canonical model of a ground ontology
O is polynomial in O. Therefore we only need to consider
specifiers with attribute-value pairs which can be interpreted
as such annotations. We consider the canonical modelM of
O. Since O is ground the annotations sets inM can only be:

1. FK
S if S is a ground specifier in O;

2. a sum of primitive annotation sets inM.

The sizes of the annotation sets in Point 1 are clearly bounded
by the size of a specifier in O, which is in turn bounded by



2 · |NOS |. The size of a sum of primitive annotation sets is
bounded by the number of primitive annotation sets and their
size. The number of primitive annotation sets is bounded by
the number of specifiers inO. Since the size of each primitive
annotation set is polynomial in |NOS |, the size of a sum of
primitive annotation sets is also polynomial in |NOS |.

The last part of this lemma follows from Lemma 12: if O
is ground then we can decide whether qgp ∈ gr plain(O, q)
in PTIME.


