
KRDB RESEARCH CENTRE

KNOWLEDGE REPRESENTATION
MEETS DATABASES

Faculty of Computer Science, Free University of Bozen-Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy
Tel: +39 04710 16000, fax: +39 04710 16009, http://www.inf.unibz.it/krdb/

KRDB Research Centre Technical Report:

Query Completeness
A Logic Programming Approach

Sergey Paramonov

Affiliation EMCL
Email sergey.paramonov@phystech.edu
Keywords Data Quality, Database Theory
Number KRDB2013-3
Date 10-04-13
URL http://www.inf.unibz.it/krdb/

Abstract

How to manage incomplete information has been studied in database research almost from the
beginning. The focus was on how to represent incomplete information and how to compute
certain answers. Less attention has been given to describing which parts of a database are com-
plete and how to find out whether a query returns complete answers over a partially complete
database.

To address these questions, we build on previous work by Motro (1989) and Levy (1995)
who formalized when a query is complete over a partially complete database and what it means
that parts of the tables are complete. Recently, Razniewski and Nutt (2011) characterized the
complexity of various reasoning tasks in this setting. It was open, however, how to implement
completeness reasoners in practice.

In this work, we introduce the problem of query completeness reasoning and show that it
can be mapped elegantly to answer set programming (ASP) over datalog with negation. Then
we consider extensions of the original problem that take into account foreign key constraints and
finite domain constraints. To encode the extensions, we make use of Skolem functions and of
datalog rules with disjunctions in the head. We show the correctness and completeness of the
encodings by several characterization theorems. We also discuss a possible approach that takes
into account comparisons and show how it can solve this problem if comparisons satisfy some
syntactical restrictions.

With our encodings we can solve completeness reasoning tasks using the DLV system, which
implements answer set programming for disjunctive logic programs. DLV is being developed at
TU Vienna and at the University of Calabria.

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Related Work . 2
1.3 Contribution . 4
1.4 Thesis Structure . 4

2 Preliminaries 7
2.1 Database Theory . 7
2.2 Completeness Theory . 9
2.3 Answer Set Programming . 12
2.4 Integrity Constraints . 14

3 Completeness Reasoning 19
3.1 Example . 19
3.2 Characterization . 22
3.3 Encoding . 25
3.4 Bag Semantics . 29

4 Reasoning with Finite Domain Constraints 35
4.1 Example . 35
4.2 Properties . 37
4.3 Formalization . 40
4.4 Characterization . 44
4.5 Encoding . 45

5 Reasoning with Foreign Key Constraints 53
5.1 Example . 53
5.2 Formalization . 55
5.3 Characterization . 57
5.4 Encoding . 61
5.5 Both Types of Constraints . 67

6 Reasoning with Built-in Predicates 77
6.1 Example . 77

6.2 Formalization . 78
6.3 Reasoning Proposal . 80

7 Implementation 81
7.1 Description . 81
7.2 Completeness Reasoning . 82
7.3 General Implementation Issues . 83
7.4 Practical Application . 85

8 Conclusions 87
8.1 Results . 87
8.2 Limitations . 88
8.3 Future Research . 89

Bibliography 91

CHAPTER 1
Introduction

Dealing with databases, it is quite common to assume that everything outside of the relation
tables is false. In other words, if a fact is not known, then it is false. In practical scenarios, this
assumption leads to inconsistency in case of distributed information.

It becomes obvious that this assumption does not hold, in case of physically and logically
distributed information sources. By definition, every information source stores only a part of the
database. Every source contains only partial information. In particular, in the fields like data
exchange and data integration this problem becomes more pressing. In this case, aggregation
of information like statistical reports [17], web-aggregators and wrapped-bases systems [16]
cannot be considered reliable without completeness analysis.

Furthermore, there are plenty of natural and common reasons for data to be incomplete:
ignorance about parts of the domain, maintenance problems, inconsistent updates, accidental
deletions of data, corruption of parts of the database [20].

For some time in database theory the closed world assumption (when the whole database is
complete; everything outside of it is false) had been considered as an essential assumption [13];
however, it has become obvious that it is not always the case. In real-life, it is more realistic only
for a part of the database to be complete [19], [9] (that is referred as Extended Closed World
Assumption). In this context there are well-known and investigated problems like computing of
certain and possible answers.

On the contrary, a situation when only some parts of the database are complete had not been
investigated in detail until a very recent time [17], [4], [20], especially from an algorithmic and
complexity point of view. We are addressing the following problem: how to design an efficient
completeness reasoner in practice.

We consider query completeness theory presented by Nutt and Razniewski [17] as a strong
theoretical foundation, nevertheless, real algorithms implementing the current theory of query
completeness are missing. In this work, we concentrate on offering practical implementations
of the theory.

The problem, when the closed world assumption holds only locally, can naturally occur
in the field of data quality. In general, in this field questions about properties of data such as

1

accuracy, completeness and consistency are under investigation. Our problem can be viewed as
a problem in this field. We describe completeness analytically, precisely and not by means of an
approximation or statistics.

The problem of query completeness can also arise in the field of information integration.
In this setting, every data source has only local information. This leads to a notion of locality
and local completeness of the sources. It brings up the question when a query can be answered
completely if only some parts of the sources are known to be complete.

1.1 Motivation

High quality data is critical to success in the information age. The Data Warehousing Institute
estimates that data quality problems cost U.S. businesses more than 600 billion dollars a year [6].
From a data quality point of view it gives us a direction to investigate. It also indicates what kind
of features must be essentially reflected in the work to be applicable in practise.

Data quality degenerates over time. Experts say, two percents of records in a customer file
become obsolete in one month because customers die, divorce, marry, and move [6]. This ex-
plains possible reasons for data to be inadequate. It is an important question to analyze possible
sources of data incompleteness. It is essential to provide a description of data with respect to the
interesting properties that are relevant for the industry.

It is important to reason about quality of data to provide a decision support. It is uncommon
for existing systems to analyze data completeness in the databases. However, it is an essential
property for making a decision based on a set of data, especially, to reflect how complete the
data is.

A lack of practical algorithms that reason about completeness quality of the data is the main
motivation for this work.

1.2 Related Work

In this section, we discuss different works in the area of query completeness. We also provide an
overview of the most notable works that influenced this thesis. Even though all the works listed
below are prominent, only few of them are really relevant for the problems we focus on in this
work.

We divide them into two groups, the first of which consists of the works discussing the
problem from the same perspective. They make a significant contribution to this thesis. We de-
note them as “Closely related work”. The second group consists of the works with significantly
different assumptions. They go into a different direction and investigate the problem from a dif-
ferent point of view. Their results are not applicable in our setting, we denote them as “Remotely
related work”.

In our setting, we investigate the problem when completeness of parts of a database entails
completeness of a query. We do not consider a query to be fixed but we restrict the class of
queries.

2

Closely related work

Theoretical foundations of the query completeness problem were investigated by Levy [12] and
Motro [14]. In their works they provided only initial and basic definitions and introduced the
problems without any decision procedure or any criteria how to establish query completeness
except of trivial cases. Alon Levy in his work showed that the query completeness problem can
be in general reduced to the query independence from updates. It is an undecidable problem.
He was also the first to point out that in some cases query completeness follows if we take
into account a database instance in reasoning. However, reasoning with a database instance lies
beyond of the scope of this work.

Recently, Nutt and Razniewski have established complexity results for different classes of
query languages and theoretical foundations that can be used as criteria for a decision procedure
[17]. However, no practical algorithm was provided. Even though query completeness has a
very strong theoretical background, it lacks implementations of systems and tractable decision
procedures for this kind of problems.

Remotely related work

There are several works that provide a decision procedure for related problems or for the similar
problem but with different assumptions. Demolombe provided a general calculus based on the
Motro’s work that can decide whether a complete query entails completeness of another query
[3]. However, complexity and even termination of such algorithms were not investigated. It is
worth mentioning that Motro and Demolombe as well presented rewriting procedures deciding
query completeness, however, these procedures were definitely not complete. The main reason
is that the considered class of queries is not a rewriting complete language [15]. It means a query
might be complete, even though the rewriting algorithm described in [3] cannot establish this
fact.

Assuming the domain to be finite, Denecker et al. used an approximation algorithm taking
additionally into account a database instance [4]. They showed that under the finite domain
assumption the query completeness problem with a fixed query and a database instance belongs
to the CoNP complexity class. They also provided some conditions under which their reasoning
becomes precise. This work differs from the present thesis in the following: we do not make a
finite domain assumption, we define completeness differently, we do not work with an instance,
we do not assume the query to be fixed.

Fan et al. investigated the problem of query completeness in [8]. However, this work heavily
relies on a notion of master data. It represents an upper-bound of the given data. This strong
assumption makes this work incomparable. Definitions of their work depend on this notion.
Their decision procedure cannot be used or adapted in this work.

This related work shows that different problems (approximation reasoning, reasoning with
an instance, reasoning with master data) can be described and analyzed under the title of “Query
Completeness”, however, all of which are orthogonal to the problems described in this thesis.

3

1.3 Contribution

Aims

There are several aims of this work.

• To develop a sound and complete algorithm that reduces the problem:

When does completeness of parts of the database entail completeness of the query?

into the evaluation of an answer set program.

• To automate the decision procedure for query completeness with respect to a query and a
set of table completeness statements.

• To develop a system working on top of existing database systems and reasoning about
completeness of the data.

Obtained results

There are several points in which this work makes a contribution.

• It provides a well-defined decision procedure for completeness reasoning with respect to
the different languages and constraints.

• It provides an encoding of the query completeness problem into the evaluation of an an-
swer set program. The reduced problem is always as hard as the initial problem. Simply
speaking, it requires exactly the computational power as required to solve the problem.
Strictly speaking, the given problems are in the same complexity class as the problems we
reduce them into.

• It provides an implementation of the reasoning system as a web application.

1.4 Thesis Structure

The thesis has the following structure:

• Chapter 3 introduces the problem of completeness reasoning from a formal perspective. It
starts with an example. Then, it introduces a decision procedure of the problem under set
and bag semantics without any schema constraints. It presents an encoding for both types
of semantics.

• Chapter 4 introduces the problem in the presence of finite domain constraints. It starts
with an example. It introduces a decision procedure and an encoding theorem for the
reasoning problem in the presence of additional constraints.

• Chapter 5 introduces foreign key constraints. It provides a decision procedure and an
encoding theorem for completeness reasoning in the presence of foreign key constraints.

4

• Chapter 6 indicates an approach to reasoning with built-in predicates. It proposes a possi-
ble way to reduce this problem to the completeness reasoning problem with finite domain
constraints.

• Chapter 7 describes the implementation of the reasoning system that has been developed
based on the algorithms and the decision procedures and theorems presented in the work.

• Chapter 8 discusses conclusions, limits of the approach and possible future work.

5

CHAPTER 2
Preliminaries

2.1 Database Theory

Databases and queries

We start with a definition of a relation schema which is a relation name and an ordered list of
attributes.

We say that a signature Σ is a set of relation schemas R1/n1, . . . , Rk/nk where n1, n2, . . .
are arities of relations, normally, we refer to the relation schema by its name e.g. R5.

We assume it is known what it means for an interpretation I and an assignment α to satisfy
a formula φ

I, α |= φ. (2.1)

A term is a constant or a variable. A tuple is a finite vector of terms which can be empty, this
tuple has a special name and the notation (), it is called the empty tuple.

An atom is an expression of the form R(t̄) where R belongs to the set of relations and t̄ is a
tuple. We say that R(t̄) is a ground atom or a fact if t̄ does not contain a variable.

We define a database D as a finite set of ground atoms. For a relation R and database D, we
denote as R(D) the set of all tuples in the R-atoms in D.

We define a condition G as a conjunction of atoms.
A conjunctive query (CQ) is an expression of the form

Q(X̄)← A1(X̄1), . . . , Am(X̄m). (2.2)

whereA1(X̄1), . . . , Am(X̄m) are atoms, X̄ is a vector of variables, the variables in X̄ are called
the distinguished variables of Q. If X̄ is empty, then the query is a boolean query.

Definition 2.1.1 (Answer Tuple) Let Q(X̄) ← B be a query, D be a database, then c̄ is an
answer tuple iff there is a mapping α s.t.

• c̄ = αX̄;

7

• D,α |= B.

where all operators like |= are defined classically as in the first order logic. In case of a boolean
query, the vector of distinguished variables is empty, and we say that the empty tuple () belongs
to the answer iff there is an α that satisfies the second condition above, otherwise the answer is
the empty set ∅.

An answer to a conjunctive query Q(X̄) with a finite vector of distinguished variables X
over a database D is the set of all answer tuples which is denoted as Q(D).

We define a prototypical database DQ for a query Q(X̄) ← A1(t̄1), . . . , An(t̄n) as a set of
ground facts

{A1(θt̄1), . . . An(θt̄n)}. (2.3)

where θ is an assignment such that for every variable X that occurs in Q it holds

θX = cX . (2.4)

where cX is a fresh constant that does not occur anywhere else.

Example 2.1.1 Assume Q is a query

Q(X)← A(X), B(X,Y). (2.5)

then, the prototypical database DQ is

{A(cX), B(cX , cY)}. (2.6)

where cX , cY are constants that do not occur anywhere else.

An intuition behind θ is the following: θ is a mapping that freezes variables. For every variable
X , it introduces a fresh constant cX and θ|x̄ denotes a mapping that freezes only head variables
X̄ . It is applied only to variables from the vector X̄ .

Database running example

In this subsection, we present a schema that we use for examples and illustrations.
The schema Σ has two relations

Employee(Name,DeptName,Birthday). (2.7)

Department(DeptName,Location). (2.8)

In both relations the first column is a primary key, which is indicated by underscoring.
The central topic of this work is completeness reasoning. Simply speaking, we would like to

answer the question if completeness of parts of a database entails completeness of a given query.
The completeness reasoning problem consists of

• input: parts of a database that are complete;

• input: constraints on a schema;

8

• question: is a given query complete?

If the set of constraints is empty, we call it a relational case. In database theory queries can be
evaluated under set and bag semantics, but the databases are still sets of facts. We consider two
types of schema constraints: foreign keys and finite domain constraints.

In this work we consider the following reasoning cases:

• completeness reasoning under set semantics;

• completeness reasoning under bag semantics;

• completeness reasoning with foreign key constraints;

• completeness reasoning with finite domain constraints;

• completeness reasoning with foreign key and finite domain constraints.

Normally, SQL queries are evaluated under bag semantics since it is costly to remove dupli-
cates. In SQL, set semantics is activated by the keyword DISTINCT. In this work, we always
make a clear distinction which semantics is used.

To reflect FK (foreign keys) and FDC (finite domain constraints), we will change our schema
by imposing additional constraints.

2.2 Completeness Theory

A real life example where query completeness can be applied has arisen from a story of a school
information system (SIS) in the province of Bolzano. The current SIS is maintained in a dis-
tributed fashion and that this gives rise to incompleteness. The provincial administration asks
for annual statistical reports to ensure completeness of information aggregation of students and
schools. For yearly school statistics, however, completeness of those parts of the database that
are relevant for the statistics is necessary.

Query completeness

To start discussion about query completeness, we introduce a definition of a partial database.
When talking about the completeness of a database, there is an implicit reference to another
database that is complete. Namely, there are two databases: the ideal database Di that reflects
the real world, what is really true, and the available database Da that reflects the data we
physically store. This idea is captured by the definition of Motro.

Definition 2.2.1 (Motro 1989 [14]) A partial database D is a pair of databases (Di, Da) such
that Da ⊆ Di.

Note 2.2.1 We work under the assumption that the available database is sound.

9

To illustrate this definition, we construct a partial database, according to the schema from
the previous section. As explained before, it is quite common for real databases to lose some
data.

Example 2.2.1 An example of the ideal database Di

Name DeptName Birthday
Gil Sales 10/10/87

Sergey IT 25/10/88
Peter IT 21/04/86

DeptName Location
Sales Trieste

IT Vienna

The available database Da might miss some facts. E.g., we miss the record with Gil in the
Employee table.

Name DeptName Birthday
Sergey IT 25/10/88
Peter IT 21/04/86

DeptName Location
Sales Trieste

IT Vienna

It can be written using as a set equation:

Da = Di\{Employee(Gil, Sales, 10/10/87)}.

We would like to illustrate what it means for a query to be complete. In this example, we
can use the commonsensical meaning of completeness. If we want to query only the relation
Department, then the answer is complete. Intuitively, if an answer of the query must contain the
tuple (Gil,Sales), then the answer is not complete.

• ”SELECT DeptName FROM Department” is complete;

• ”SELECT Name FROM Employee ” is not complete.

Now we formally state this intuitive description of query completeness.

Definition 2.2.2 (Motro 1989 [14]) Let Q be a query andD = (Di, Da) be a partial database.
Then, Q is complete wrt D, written (Di, Da) |= Compl(Q), iff

Q(Di) = Q(Da). (2.9)

Several questions follow this definition. How can we in general state whether a database or a
part of a database is complete? How can we obtain completeness statements (concerning the
database) in general? In our setting, it is natural to assume that some people are sources of
information: heads of the departments in the company, the head of the company itself, the HR
department. In general, there is a variety of sources of completeness information. We illustrate
this statement with an example.

“Head of a department says: all employees of the sales department are in the database.”

Levy introduced formal statements, which he called local completeness statements, to de-
scribe which parts of a database are complete [12].

10

Definition 2.2.3 (Table Completeness Statement) Let R be a relation and G be a condition.
We say that Compl(R(s̄);G) is a table completeness statement. It has an associated query
QR(s̄),G(s̄)← R(s̄), G. The statement is satisfied byD = (Di, Da), writtenD |= Compl(R(s̄);G),
iff

QR(s̄),G(Di) ⊆ R(Da). (2.10)

The conditionG in 2.2.3 can be> (standing for “true”, the trivial condition), written Compl(R(s̄);>).
It means the condition is trivially satisfied. In this case, in the definition 2.2.3 the associated
query is QR(s̄)(s̄)← R(s̄) and the rest of the definition stays the same.

Let us consider an example of a table completeness statement. In natural language, it can be
formulated as:

“All employees who work in some department located in Vienna are in the database.”

We can formulate this natural language statement as a table completeness statement over the
signature Σ from the previous section:

Compl(Employee(Name,DeptName,Birthday); Department(DeptName, “Vienna”)). (2.11)

The associated query is

QEmployee(Name,D,B),Department(D,“Vienna”)(Name)← Employee(Name, D,B),

Department(D, “Vienna”).

Table and Query Completeness

In this section, we are going to discuss the main question of the work.
Informally speaking, we describe it as

“When does completeness of parts of the database entail completeness of the query“.

Formally speaking, we describe it as Table Completeness Query Completeness (TC-QC) entail-
ment, i.e. when a set of table completeness statements (TC) entails completeness of a query
(QC).

Definition 2.2.4 (TC-QC Entailment under Set Semantics) Let Q be a query, C be a set of
TC statements, then C entails completeness of Q under set semantics written C |= Compls(Q)
iff for any partial database D = (Di, Da) it holds that

D |= C =⇒ Q(Di) = Q(Da).

Simply speaking, the query returns the same answer for both Di and Da for any partial database
(Di, Da) satisfying the set of constraints C.

The setting of the school problem corresponds precisely to the informal description of TC-
QC entailment. We formulate this completeness problem as described in the definition 2.2.4,
that is why we consider TC-QC entailment in this work.

Local school records are represented as parts of the global database schema of the regional
administration. We have completeness information only about these local records. The admin-
istration queries the database. They would like to ensure the answer to be complete.

11

2.3 Answer Set Programming

Answer set programming

In this section, we introduce the main definitions of answer set programming. We use them to
define answer set programs later.

Definition 2.3.1 (Disjunctive Datalog Program) A disjunctive datalog program is a finite set
of rules:

a1 ∨ a2 ∨ · · · ∨ an ← b1, . . . , bk, not c1, . . . , not ch.

Where a1, . . . , an, b1, . . . , bk, c1, . . . ch are atoms of a function-free first order language L. The
list a1, . . . , an is the disjunctive head of the rule, the b-s are the positive part of the body and the
c-s are the negative part of the body.

We refer to the head of the rule r as H(r) = {a1, . . . , an} and the body as B(r) = B+(r)∪
B−(r) where B+(r) = {b1, . . . , bk} is the positive part of the body and B−(r) = {c1, . . . , ch}
is the negative part of the body.

Example 2.3.1 (A Disjunctive Datalog Program) Let us illustrate this definition with an ex-
ample.

a ∨ c ← b.

b ← a, not c.

a ← a, not c.

⊥ ← not a.

a.

If a disjunctive datalog program P has variables, then its semantics is considered to be the same
as the one of its grounded version of it (all variables are substituted with constants from the
Herbrand Universe HP). Semantics of a program with variables is defined by semantics of the
corresponding grounded version.

Note 2.3.1 (Safety Condition) All non-ground rules are considered to be safe i.e. every vari-
able in the head or in a negative atom must occur in some positive atom in the body.

Let us consider the program P

A(a). A(b).

B(X) ← A(X).

Then, the grounded version of it is ground(P)

A(a). A(b).

B(a) ← A(a).

B(b) ← A(b).

12

It is called grounded because all variables are substituted with constants. This process of substi-
tuting variables is called grounding i.e. it makes all atoms ground.

An interpretation I w.r.t. to a programP is a set of ground atoms ofP , e.g. I = {A(a), B(b)}.
Let P be a positive disjunctive datalog program (i.e. without negation), then an interpretation
I is called closed under P , if for every r ∈ ground(P) it holds that H(r) ∩ I 6= ∅ whenever
B(r) ⊆ I .

Definition 2.3.2 (Answer Set of a Positive Program) An answer set of a positive program P
is a minimal (under set inclusion) interpretation among all interpretations that are closed under
P .

Example 2.3.2 An answer set of both program above is

{A(a), A(b), B(a), B(b)} (2.12)

Definition 2.3.3 (Gelfond-Lifschitz Reduct) A reduct of a ground program P wrt an interpre-
tation I , written P I , is a positive ground program P I obtained by:

• removing all rules r ∈ P for which B−(r) ∩ I 6= ∅;

• removing literals not a from all remaining rules.

Intuitively, the reduct of a program is a program where all rules with bodies contradicting I are
removed and in all non-contradicting all negative ones are ignored. The interpretation I is a
guess as to what is true and what is false.

Example 2.3.3 (Reduct of Example 2.3.1) Assume, we have guessed the interpretation I =
{a, b} then reduct of P wrt to I is P I =

a ∨ c ← b.

b ← a.

a ← a.

a.

An answer set of a disjunctive program P is an interpretation I such that I is an answer set
of ground(P)I .

Example 2.3.4 (Answer Set of 2.3.1) Let us take an interpretation I = {a, b} of P be a candi-
date for an answer set. Then, we compute the reduct P I which is presented above. A minimal
interpretation closed under P I is I = {a, b}, therefore I is an answer set of P I , that is why I is
an answer set of P .

For details on answer set programming we refer to [7], [11].

13

2.4 Integrity Constraints

Finite domain constraints

In this section, we briefly introduce finite domain constraints as they are described in the liter-
ature; we summarize this description in the context of completeness reasoning. We start with a
definition and complexity results presented by Simon Razniewski, Werner Nutt in [18].

For practical reasons, we simplify the definition of a finite domain constraint. A finite do-
main constraint is a triple F = Dom(R, i,M), where R is a relation, i is a positive integer and
M is a finite set of constants. A database instance D satisfies a finite domain constraint F , if the
projection on the position i of the extension of R is contained in M , that is, for every atom R(t)
in D, it holds that πi(R(t)) ∈ M . We say a database D satisfies a set of FDC constraints F , it
it satisfies each of them, written as

D |= F . (2.13)

We say that a partial database D = (Di, Da) satisfies a set of FDC F , written as D |= F iff

Di |= F and Da |= F . (2.14)

Deciding TC-QC entailment is ΠP
2 -complete [18].

Primary keys

In this section, we discuss primary key constraints. They are widely discussed in the literature;
here we recall definitions and properties.

The following definition of satisfaction is due to Abiteboul et al. [1]: a database instance M
satisfies a functional dependency R : X → Y if for each pair s, t of tuples such that atoms R(t)
and R(s) are in M it holds that

πX(R(s)) = πX(R(t)) =⇒ πY (R(s)) = πY (R(t)). (2.15)

where X and Y are lists of indices and πX(R(s)) is a projection on the arguments s of R with
the indices X . If R is clear from the context, we write the functional dependency without R,
namely X → Y .

Definition 2.4.1 A key dependency is a functional dependency (FD) X → U , where U is the
full set of arguments of the atom. [1]

In general, we assume that any given query complies with primary keys.
Assume, Q does not comply with primary keys. For example, Q can be

Q(Name)← Department(Name, “Bolzano”),Department(Name, “Vienna”). (2.16)

It needs to be reformulated to comply with the primary key. If Q is not unifiable according to
primary keys, then the query is unsatisfiable and completeness is entailed trivially.

In this work, we assume that any given query is processed by the primary key compliance
algorithm from Abiteboul et al. [1]. Without any loss of generality, we assume that all queries
comply with primary keys.

14

Foreign keys

In this section, we are going to recall and discuss foreign keys (FK). Foreign keys are a combi-
nation of two types of constraints:

1. inclusion constraints (IND, inclusion dependency [1], [2], [10]);

2. primary key constraints (FD, functional dependency [1], [2], [10]).

We have already discussed primary key constraints; now we are going to discuss inclusion con-
straints.

According to Abiteboul et al. [1] an inclusion constraint is defined as follows:

Definition 2.4.2 An inclusion dependency (R,S,A,B) (IND) is an expression σ where

• R,S are (possibly the same) relations;

• A = A1, . . . , Am is a sequence of indices;

• B = B1, . . . , Bm is a sequence of indices.

A database instance M is said to satisfy σ written as M |= σ iff for every atom R(t) and
S(s) in M it holds that

πA(R(t)) ⊆ πB(S(s)). (2.17)

Then we say that F = (R,S,A,B) written asR[A] ⊆ S[B] is a foreign key, if the following
conditions are met:

1. (R,S,A,B) is an inclusion dependency;

2. B is a key dependency in S.

We are going to introduce the definition of the foreign key satisfaction. A database instance
M satisfies a foreign key iff both of these dependencies are satisfied.

Definition 2.4.3 Let K a set of FK, M be a database instance, then M satisfies foreign key
constraints K written as M |= K, if for all k in K, M satisfies k.

To make examples easy to read we introduce the following piece of syntax.

Definition 2.4.4 Let R and S be two relations. Let X̄ and Ȳ be vectors of variables. Let A and
B be indices of the variables X̄ and Ȳ . Then, we denote the foreign key f = R[A] ⊆ R[B] by
the following statement

R(_, X̄, _) references S(_, Ȳ , _). (2.18)

In this statement, we explicitly mention the variables that are used in the foreign keys. By the
sign “_”, we denote the variables that are not used in the foreign key. This syntax allows us to
impose foreign key constraints by referring to variables’ names instead of indices.

15

Assumptions and Complexity

We are going to talk about the acyclicity assumption and complexity of completeness reasoning
with foreign keys. We mainly refer to the foundational work of Johnson, Klug [10] on the
complexity of query containment; we also refer to the complexity correspondence between TC-
QC reasoning and query containment in Razniewski, Nutt [17].

The technique we use to reason with foreign keys is the chase procedure [5]. The chase
procedure adds necessary facts to the model to satisfy constraints. Once it reaches a fix point
when it cannot add any new fact, it stops.

We are going to justify our acyclicity assumption. The chase procedure in the presence of
cycles makes reasoning unpractical since it may introduce infinite models; we also show why
the chase procedure under the acyclicity assumption does not introduce infinite models.

Why cyclicity introduces infinite models We illustrate it by means of an example. Assume,
we have a schema

A(X,Y).

B(Y ,X).

Suppose, there are two foreign key constraints

A(_, Y) references B(Y, _). (2.19)

B(_, X) references A(X, _). (2.20)

Assume, Q is a query
Q(X)← A(X,Y). (2.21)

Assume, x is in the answer to Q, then for some constant y there must be an atom

A(x, y) ∈ Di. (2.22)

Due to the first foreign key 2.19, there also must be

B(y, fB(y)) ∈ Di. (2.23)

where fB(y) is a Skolem term that depends only on the constant y. Due to the foreign key 2.20,
there is also

A(fB(y), fA(fB(y))) ∈ Di. (2.24)

Then, application of both 2.19 and 2.20 would introduce an infinite amount of atoms in Di that
are needed to construct a model that satisfies these constraints.

Why acyclicity does not introduce infinite models In this paragraph, we explain why the
chase procedure does not introduce infinite models, if the foreign keys are acyclic. Observe, if
all FK are acyclic, then there is a set of FK not referenced by any other FK. Let us denote this
set as F0.

16

To construct a model for the query, we need to satisfy F0. We introduce new facts in the
model. Having done so, all constraints in F0 are satisfied. They can be ignored in the further
reasoning. We drop F0 from our set of FK constraints. We obtain a new set F1 of FK, none of
which is referred by any other FK. We repeat our procedure: introduce new facts, drop F1. We
know that the set K is finite and every step removes at least one constraint. After a finite number
of step, we satisfy all FK and introduce only finite amount of facts in the database.

Summing up, we have constructed a finite model satisfying all FK.

17

CHAPTER 3
Completeness Reasoning

Overview

In this chapter, we are going to discuss completeness reasoning in the relational case. We as-
sume, there are no constraints in the schema, and no built-in predicates in the query and table
completeness statements.

First of all, we show how the reasoning procedure works in a typical case. We do it by means
of an example. It works differently under set and bag semantics. The example is shown under
set semantics.

Then, we introduce a characterization of TC-QC entailment under set semantics. It is a
purely declarative method to check whether a query is complete with respect to a set of table
completeness statements. The method constructs a special prototypical database and a boolean
test query out of a query and a set of TC statements. If the boolean test query evaluates to true
over the prototypical database, then TC-QC entailment holds.

In the encoding section, to make the characterization under set semantics feasible, we present
a way to encode the evaluation a test query over a prototypical database into the problem of
existence of an answer set of a datalog program.

In the same spirit, we introduce a characterization and an encoding under bag semantics. We
start the section with an example showing the difference in reasoning between two semantics
and justifying introduction of new concepts.

3.1 Example

Let us start with an example that shows how completeness reasoning works. The schema is the
same as before:

Employee(Name,DeptName,Birthday). (3.1)

Department(DeptName,Location). (3.2)

19

Let Q be a conjunctive query

Q(Name) ← Employee(Name,DeptName,Birthday),

Department(DeptName,Location).

The query Q asks for all names of employees working in some department.
Assume, we have two completeness statements, the first of which is:

“All departments are in the database”.

In terms of the ideal and available databases, we can reformulated this:

“If there is a department in the ideal database, then it must be in the available database”.

We formulate this as a table completeness statement

Compl(Department(Name,Location);>). (3.3)

This completeness statement can be mimicked by a formal datalog rule. It connects a part of the
ideal database with a part of the available database. Namely, it forces some tuples in the ideal
database to be in the available database as well.

We generally refer to relations in the ideal database by using the upper index •i and to
relations in the available database by the upper index •a. We formulate this TC statement as a
datalog rule

Departmenta(Name,Location)← Departmenti(Name,Location).

The second statement says:

“Every employee in a department is in the database”.

We formalize it as a datalog rule:

Employeea(Name, D,B)← Employeei(Name, D,B),Departmenti(D,L).

We have a conjunctive query Q and two table completeness statements, which we have
expressed as constraints over an arbitrary partial database. These constraints enforce some tuples
from Di to be in Da. We illustrate this by a completeness reasoning example.

By means of this example, we indicate the most important steps of the reasoning procedure.
They also illustrate the general ideas behind the method.

According to the definition 2.2.2, a query is complete if the answers to the query over the
ideal and the available databases are the same. That is why we start looking at the tuples that
must be in the Di to answer the query Q.

20

1. Determine what tuples have to be in Di

Assume, there is a tuple name in the answer

name ∈ Q(Di). (3.4)

The queryQ is a conjunctive: if there is a tuple in the answer, then there is a corresponding atom
in the database

Employee(name, deptName, bday) ∈ Di. (3.5)

For the same reason, there must be a fact

Department(deptName, location) ∈ Di. (3.6)

According to the definition 3.4 both of the atoms must be in Di

Employee(name, deptName, bday) ∈ Di, (3.7)

Department(deptName, location) ∈ Di. (3.8)

Note 3.1.1 All arguments (name, bday etc.) are arbitrary but fixed.

2. Determine what tuples have to be in Da

We apply our table completeness rules (in datalog syntax) to the tuples in Di. The meaning of
TC statements is transferring tuples from Di to Da. Once we have established what tuples must
be in Di, we check which of them can pass to Da through TC statements (they play the role of
copying rules).

From previous calculations, we have a ground fact

Department(deptName, location) ∈ Di. (3.9)

We apply our TC rule to it

Departmenta(Name,Location)← Departmenti(Name,Location). (3.10)

As a result, we have the following atom

Department(deptName, location) ∈ Da. (3.11)

In the same way we conclude

Employee(name, deptName, bday) ∈ Da. (3.12)

Therefore both atoms are in Da.

21

3. Verify completeness

According to the definition 2.2.2, a query Q is complete with respect to a partial database
(Di, Da) iff

Q(Di) = Q(Da). (3.13)

In our case, Q returns name as an answer tuple over Da because both instantiated body atoms
Employee(name, deptName, bday) and Department(deptName, location) are in Da.

Since the constants are chosen arbitrarily, for any tuple t̄ it holds that if t̄ in the answer over
the Di, then it is in the answer over Da. As a result, the query is complete.

3.2 Characterization

In this section, we characterize TC-QC entailment under set semantics. It allows us to check
whether TC-QC entailment holds.

To design a decision procedure we use the same ideas as in the example from the previous
section. We generalize the example to a characterization. That is the reason why we repeat many
steps from the previous section:

1. We construct the most general answer to the query over the ideal database – the prototyp-
ical database.

2. We infer what tuples must be in the available database to satisfy TC statements.

3. We evaluate a special test query over the tuples ensured to be in the available database.

This procedure is inspired by the idea of the universal model. It has a property: if something
holds in this model, it holds in any other model. As in the example, even though on every step
we operate with fixed values, we can infer completeness in general.

Step 1: prototypical database

We start with an introduction of the prototypical database. It is the ideal database corresponding
to a given conjunctive query.

Assume, Q is a conjunctive query:

Q(X1, . . . , Xn) = R1(T 1
1 , . . . , T

1
m), . . . , Rn(Tn1 , . . . , T

n
k). (3.14)

whereRi is a relation and T ji is a term for every i, j. The prototypical databaseDi
Q for the query

Q is
Di
Q = {R1(t11, . . . , t

1
k), . . . , Rn(tn1 , . . . , t

n
k)}. (3.15)

where every tij is obtained from T ij by the “freezing” rule:

• if T ij is a constant, then tij = T ij ;

• if T ij is a variable, then tij = cT i
j

such that constant cT i
j

does not occur anywhere else. We
call them “fresh”, because they have not been introduced anywhere else.

22

Note 3.2.1 (Intuition for the notation for a prototypical database) We denote the prototypi-
cal database as Di

Q because it is a Database that is needed to obtain an answer for the query Q
over some hypothetical Ideal database.

We illustrate it with an example. Assume, we are given a conjunctive query:

Q(Name) ← Employee(Name,DeptName,Birthday),

Department(DeptName,Location).

We need to construct the most general answer. We “freeze” all variables and treat them as “fresh”
constants. Having applied “freezing” to Q, we obtain a set of ground atoms

{Employee(name, deptName, bday),

Department(deptName, location)}.

Given this database, we obtain the constant name as an answer tuple to Q. The constant name
has an arbitrary but fixed value. That is why we refer to it as the most general answer. If we
substitute name by “John Smith” everywhere inDi

Q, we obtain “John Smith” as an answer tuple.

Step 2: complete parts of the database

A tuple must be in every available database only if it is forced by a table completeness statement.
We introduce a function selecting all tuples that must be in every available database satisfying
TC-statements.

Definition 3.2.1 (The Function fC) Assume C = Compl(R(s̄);G) is a table completeness
statement, then function fC(D) maps database instances to R-facts

fC(D) = {R(t̄) | t̄ ∈ QR(s̄),G(D)}.

We have defined the function fC with respect to one table completeness statement. However,
we need a function for a set of table completeness statements. We introduce a new function fC

fC(D) =
⋃
C∈C

fC(D). (3.16)

If Di is an ideal database, then fC(Di) is the set of R-facts that must be in Da, if (Di, Da) is to
satisfy C.

We continue our analogy with the previous example: if Di
Q is the most general answer to

Q representing an ideal database, then fC(Di
Q) is a part of the available database ensured to be

complete.
We also need some properties of fC(Di

Q) for the proofs. We present Lemma 7 from the
paper [17] with relevant properties of fC(Di

Q).

Lemma 3.2.2 (Lemma 7) Let C be a set of TC statements. Then,

• fC(D) ⊆ D for all database instances D;

• (Di, Da) |= C iff fC(Di) ⊆ Da for all Da ⊆ Di.

23

Step 3: boolean test query

In the example from the previous section, we did not introduce any boolean test queries. How-
ever, we did check that name had been returned as an answer tuple over both Di and Da. It is
a binary question. We generalize it to the question: is the most general answer tuple t̄ over Di

also an answer tuple over Da?
Simply speaking, we encode this check into the test query. It is the reason why the test query

is boolean.
As an example, the test query for the previous example is

Qs() ← Employee(name,DeptName,Birthday),

Department(DeptName,Location).

The distinguished variable Name is mapped to the constant name. The empty tuple belongs to
the answer iff the body is evaluated to true over the complete parts of the available database and
the distinguished variables are matched to the general answer tuple over the ideal database.

In general, assume we are given a conjunctive query

Q(X1, . . . , Xn)← R1(T 1
1 , . . . , T

1
k), . . . , Rh(T h1 , . . . , T

h
m). (3.17)

Then, the boolean test query (the subscript s indicates set-semantics) is defined as

Qs()← R1(θT 1
1 , . . . , θT

1
k), . . . , Rh(θT h1 , . . . , θT

h
m). (3.18)

where θ is a mapping that enforces the distinguished variables to map to the corresponding
values in the general answer to the query – Di

Q. It substitutes by the rule:

• if T ij 6∈ {X1, . . . , Xn}, then θ :: T ij 7→ T ij ;

• if T ij ∈ {X1, . . . , Xn}, then θ :: T ij 7→ cT i
j
, where cT i

j
is the corresponding frozen constant

from Di
Q.

Characterization

The TC-QC characterization under set semantics shows how to check TC-QC entailment. It
is meant to give an idea on how to design an encoding. We regard the characterization as a
specification of the problem. If the specification works in one way, then a program must work
in this way.

A characterization allows us to design a program that checks TC-QC entailment. We make
an argument that the program we create has the same semantics as the characterization we have
presented. That is why it is important to introduce a characterization as a specification that
regulates how different parts must interact and how reasoning should work.

Having defined all necessary concepts, we present the characterization theorem. It is a com-
putationally efficient way to check TC-QC entailment. The prototypical database Di

Q is com-
puted in linear time in the size of Q by applying the freezing substitution. Computation of
fC(D

i
Q) can be done by an application of TC rules. An evaluation of the test query Qs() is an

evaluation of a conjunctive query. That is why, it is reasonable to work with characterizations
instead of definitions directly.

24

Theorem 3.2.3 (Characterization under Set Semantics) Let Q be a query, C be a set of TC
statements, then

C |= Compls(Q) ⇐⇒ Qs(fC(D
i
Q)) 6= ∅. (3.19)

Proof In the following θ will denote a freezing assignment of the variables in Q.
(⇒) Let us assume C |= Compls(Q). We want to show that Qs(fC(Di

Q)) returns an empty
tuple as an answer. To do so we construct a partial database D := (Di

Q, fC(D
i
Q)). According to

Lemma 3.2.2, for a partial database D = (Di, Da) it holds that D |= C iff fC(Di) ⊆ Da. It fol-
lows that Q(Di

Q) = Q(fC(D
i
Q)). On the other hand, Di

Q is a frozen version of Q where output
variables X̄ are bound to θX̄ . Then, the tuple θX̄ is in Q(Di

Q) and the θX̄ is in Q(fC(D
i
Q)).

Finally, we conclude Qs(fC(Di
Q)) 6= ∅

(⇐) Now we assume that Qs(fC(Di
Q))) 6= ∅ and we want to show that C |= Compls(Q).

In order to do so we assume that D = (Di, Da) is a partial database such that D |= C where c̄ is
an arbitrary tuple in Q(Di). We have to show that c̄ is in Q(Da) as well.

Let α be an assignment from Q into Di that maps X̄ to c̄. Then, αB ⊆ Di where B is
the body of Q. Due to Lemma 3.2.2, fC is a monotone function over the database instances it
follows that fC(αB) ⊆ fC(D

i). Again from Lemma 3.2.2 we have that fC(Di) ⊆ Da when
(Di, Da) |= C. We conclude that fC(αB) ⊆ Da.

Now let β be an assignments for which Qs(fC(Di
Q)) returns an empty tuple. Then, a com-

position αθ−1β is a proper assignment over the variables from Q into the database instance
αθ−1fC(θB) for which Q returns an empty tuple as well. On the other hand, it is not hard to
check that αθ−1fC(θB) ⊆ fC(αB). Consequently, it holds that Qs(fC(αB)) 6= ∅.

Now αθ−1β maps X̄ to c̄. Then, evaluating Q(X) against fC(αB) we obtain c̄. Finally,
considering that fC(αB) ⊆ Da we conclude that c̄ ∈ Q(Da).

We have introduced an effective check of TC-QC entailment. It explicitly demonstrates
interaction between different parts of the problem and it can be effectively computed. It is
an important step towards development of a decision procedure that can reason about query
completeness. In this case, it can only perform reasoning without constraints in the schema.
The above theorem will guide us in constructing an answer set program that encodes TC-QC
entailment.

3.3 Encoding

To establish TC-QC entailment, we reduce the problem of TC-QC entailment into the problem
of existence of an answer set (AS) of a datalog program. We construct a corresponding answer
set program. It has an answer set if and only if entailment holds.

We define this program as several independent modules. The constructed program is going
to mimic all the steps described in the characterization section:

1. Construct a prototypical database Di
Q– a representation of the minimal information in a

database needed to return an answer to Q.

2. Establish what facts must be in every available database satisfying TC-statements.

25

3. Evaluate a boolean test queryQs() over the parts ensured to be in every available database.

4. Check whether the boolean test query returns a non-empty answer, otherwise, reject the
answer set.

Step 1: prototypical database in ASP

In answer set programming, there is a concept called EDB (extensional database) which is a set
of ground atoms (facts) used to infer other facts. The IDB (intensional database) is the set of
inferred facts.

Given a conjunctive query Q over the signature Σi (the same query and the same signature
as in the characterization), we define the EDB of the corresponding answer set program to be
syntactically equal to the prototypical database Di

Q from 3.15.

Step 2: two signatures and fC(Di
Q)

It is important to emphasize, there are two different signatures in the answer set programming
encoding while there is only one in the characterization.

It has been introduced due to technical reasons mainly. However, it is very important to keep
it in mind. When we talk about fC , we have a mathematical function. It takes as an argument a
set of facts over the Σi signature and returns a subset of the same signature.

It is significantly different in the case of answer set programming. We cannot refer to the
result of the fC function in answer set programming without a syntactic distinction between
inferred and given facts.

In the encoding, we refer to two signatures Σi and Σa (in the characterization we refer only
to the signature Σ). At the beginning, we start with a prototypical database Di

Q. It contains a set
of facts over only Σi and an empty set over the Σa signature.

This distinction allows us to talk about an isomorphism between the facts over the Σa sig-
nature in the answer set and fC(Di

Q). Even though the image of fC is a set of fact over the Σi,

signature, we can always match facts over Σa in the answer set with the facts in fC(Di
Q). To

match them, we will ignore the •a index in comparison.
Let us fix the notation. Let ra(t1, . . . , tn) be a fact, then we refer

• to r as its head;

• to •a as its (upper) index;

• to (t1, . . . , tn) as its body.

We say two facts are the same except of the (upper) index, if they have the same heads and the
same bodies.

Taking into account the existence of two signatures, for every table completeness statement
C = Compl(R(s̄);G), we introduce a datalog rule rC :

Ra(s̄)← R(s̄), G. (3.20)

26

Definition 3.3.1 (Encoding of TC statements) Let C be a set of TC statements. Then, we define
the program PC as

PC = {rC | C ∈ C}. (3.21)

Lemma 3.3.1 Let Di
Q be the prototypical database. Then, for any fact R(t̄) it holds that R(t̄)

is in fC(Di
Q) iff Ra(t̄) is in the answer set of PC ∪Di

Q, where both facts are the same except of
the index.

Proof The proof appeals to the semantic of PC and fC(Di
Q). By construction, PC is a positive

datalog program. It always has a unique answer set. Shortly, we denote this answer set of
PC ∪Di

Q as A.
Assume, there is a fact Ra(t̄) in A, we will show that there is a fact R(t̄) in fC(Di

Q).
There is no fact with the Σa signature in the EDB, therefore, according to answer set seman-

tics, there must be an instantiated ground rule rC supporting this fact:

Ra(t̄)← R(t̄), G. (3.22)

Consequently, there must be R(t̄) and G in Di
Q. We know that fC(Di

Q) is the smallest database
D such that (Di

Q, D) satisfies C. Then, the fact R(t̄) must be in fC(Di
Q). It is so, since the rule

rC forces it to be there due to the fact that atoms R(t̄) and G are in Di
Q. It must be there to

satisfy completeness statement that correspond to the rule rC .
Assume, there is a fact R(t̄) in fC(Di

Q), we will show that there is a corresponding fact
Ra(t̄) in A.

If a fact is in fC(Di
Q), then there must be a completeness statement C = Compl(R(s̄);G)

such that s̄ is unified with t̄ of R(t̄) ∈ fC(Di
Q) by α. Then, R(t̄) and αG are in Di

Q.
We apply α to the corresponding datalog rule rC of the completeness statementC and obtain

the rule αrC
Ra(t̄)← R(t̄), αG. (3.23)

The body is satisfied due to condition above. This rule forces the fact Ra(t̄) to be in A.

As an abuse of notation we use the phrase “PC computes the function fC”. In a sense PC
forces an isomorphic set of facts over the Σa signature to be present in the answer set. Even
though PC does not compute anything and it is not a function, we use it to indicate that cor-
responding facts must be in the database to satisfy TC-statements in C. In case of answer set
programming, the only way to do it is to use a syntactic distinction between the domain (the
EDB and Di

Q) and the image (Σa and fC(Di
Q)) that we have done by using the upper index •a.

Step 3: boolean test query

The boolean test query Qs() is defined using freezing of the distinguished variables. They are
substituted by corresponding constants from Di

Q. The query is evaluate over fC(Di
Q). However,

in the answer set encoding we introduced the second signature Σa and we cannot directly eval-
uate the test query over fC(Di

Q). We make a syntactic change in the body of Qs() from the
characterization chapter.

27

Assume, we are given a test query Qs() from Definition 3.18:

Qs()← R1(θT 1
1 , . . . , θT

1
k), . . . , Rh(θT h1 , . . . , θT

h
m). (3.24)

We define a boolean test query in the encoding by introducing the upper index •a to every atom
in the body of Qs():

Definition 3.3.2 (Encoding of the boolean test query)

Qs ← Ra1(θT 1
1 , . . . , θT

1
k), . . . , Rah(θT h1 , . . . , θT

h
m). (3.25)

It allows us to evaluate the test query only over facts with Σa signature corresponding to fC(Di
Q).

Note 3.3.2 (The difference between Qs() and Qs) We refer to the boolean test query in the
characterization as Qs() and to the corresponding test rule in the encoding as Qs.

Step 4: check result of the test query

We would like to make a statement: TC-QC entailment holds iff a program P has an answer set.
The entailment holds if the test query returns the empty tuple as an answer. In case of answer
set programming, we derive the fact Qs instead of the empty tuple. That is why we would like
to reject an answer set if it does not contain Qs.

We introduce a filtering rule that rejects an answer set if it does not contain Qs:

⊥ ← not Qs. (3.26)

We have introduced two types of rules in the encoding, the ones that depend on Q and the
ones that depend on the set of table completeness statements C.

We denote the first group as P sQ: Di
Q,Qs and the “filtering” rule (the upper index •s indicates

set semantics). The second was already defined as PC .
Let us motivate the encoding theorem in general. The encoding theorem is meant to be a

translation from one formalism to another. It uses as a specification the characterization theorem
and it connects this specification with a program. It shows how we can restate the problem in
some other formalism that has a support of reasoning engines. Instead of developing a reasoning
engine for query completeness, we reduce the initial problem into a problem for which there
are effective reasoners. Then, our argument about soundness, completeness and effectiveness
appeals to the characterization instead of definitions directly.

Theorem 3.3.3 (Encoding under Set Semantics) Let Q be a query, C be a set of TC state-
ments, then

C |= Compls(Q) ⇐⇒ P sQ ∪ PC has an answer set. (3.27)

Proof Instead of showing the definition directly, we show the correspondence between the char-
acterization theorem and our encoding into answer set programming. The theorem above follows
from it.

28

Correspondence between test query and the ASP encoding

P = P sQ ∪ PC has an answer set iff Qs(fC(Di
Q)) 6= ∅. (3.28)

The proof is technical, that is why we briefly explain the main points of the proof. It has three
logical levels. Firstly, we establish a correspondence between ground facts in the encoding and
the prototypical database in the characterization. Then, we show a correspondence between the
sets we derive from the prototypical database and ground facts, namely between the set of facts
over the Σa signature and fC(Di

Q), by means of Lemma 3.3.1. Finally, by means of Lemma 3.25,
we show that both queries evaluate to true . The proof follows these steps in both directions.

(⇒) Assume, P has an answer set A. Then, it has the fact Qs in A due to the filtering
rule. Consequently, there is a mapping β such that it maps the body Ba of Qs to the facts in the
answer set A over Σa signature.

The body B of the test query Qs() is the same set of atoms as the body Ba of the encoding
test test Qs except of the upper index •a, see Definition 3.25. For every atom Ra(t̄) in the body
Ba, there is an atom R(t̄) in the body B such that they are the same except of the index. We
know from the previous paragraph that βRa(t̄) is in A, consequently βR(t̄) is in fC(Di

Q). Due
to Lemma 3.3.1, for every fact the over Σa signature, there is a corresponding fact in fC(Di

Q)

the over Σi signature. By definition of the test query, Qs() is a boolean conjunctive query and
every atom of the body B is mapped to fC(Di

Q) by β. Thus, the boolean test query returns the
empty tuple.

(⇐) Assume, Qs(fC(Di
Q)) 6= ∅. There is a mapping β that maps every atom R(t̄) in the

body of Qs() to fC(Di
Q). Due to Definition 3.25 of the test query, for every atom R(t̄) in the

body of test queryQs(), there is a corresponding atomRa(t̄) in the body of the test ruleQs. Due
to Lemma 3.3.1, for every atom R(t̄) in fC(Di

Q), there is an atom Ra(t̄) in A. Consequently,
for every atom Ra(t̄) in the body of the test rule, it follows that βRa(t̄) in A. Then, Qs in A
because every atom of its body mapped by β to facts over the Σa signature in A.

Having introduced the Encoding Theorem, we can design an effective (from a complexity
point of view) reasoner for the plain TC-QC completeness problem. By design, this procedure
follows the characterization that exactly captures the query completeness reasoning.

3.4 Bag Semantics

Characterization

In this section, we discuss how completeness reasoning changes, if we evaluate queries under
bag semantics (i.e. if we take into account tuples together with their cardinalities).

Let us illustrate this idea by an example. Assume, we are given a relational schema with a
relation R/2, a database D = {R(a, b), R(a, c)} and a query Q(X)← R(X,Y).

If we evaluate this query under set semantics, the answer is Q(D) = {a}. Under bag
semantics the answer is Qb(D) = {{a, a}} (we denote query evaluation under bag semantics
by the upper index •b; double curly brackets indicate bag semantics). Answer tuple a appears
twice. We keep tuples together with their cardinality.

29

We will revise our definition of an answer tuple in order to capture cardinalities.

Definition 3.4.1 (Answer Tuple under Bag Semantics) Let Q(X̄) ← B be a query, D be a
database. Then, c̄ is an answer tuple with cardinality n iff there exists a set A of n different
assignments s.t. for every α in A it holds that

• c̄ = αX̄;

• D,α |= B.

In the example the answer tuple a has cardinality two, because there are two mappings (α1 =
{X 7→ a, Y 7→ b}, α2 = {X 7→ a, Y 7→ c}) satisfying the conditions in Definition 3.4.1.
We also need to revise our definition of TC-QC entailment to capture evaluation under bag
semantics. We propose a formal definition of TC-QC entailment under bag semantics and we
also introduce a piece of syntax denoting it.

Definition 3.4.2 (TC-QC entailment under Bag Semantics) Let Q be a query and C be a set
of TC statements. Then, C entails completeness ofQ under bag semantics, written C |= Complb(Q),
iff for any partial database D = (Di, Da) it holds that

D |= C =⇒ Qb(Di) = Qb(Da).

Note, that we explicitly mention bag semantics by the upper index •b in the word Compl.

Enforcing bag semantics by freezing

It turns out that we need to make only one change in the characterization to capture evaluation
under bag semantics. We need to introduce a new bag test query.
Assume, we are given a conjunctive query

Q(X1, . . . , Xn)← R1(T 1
1 , . . . , T

1
k), . . . , Rh(T h1 , . . . , T

h
m). (3.29)

The bag test query is defined as

Qb()← R1(θT 1
1 , . . . , θT

1
k), . . . , Rh(θT h1 , . . . , θT

h
m). (3.30)

where θ performs substitution by the rule:

• if T ij is a constant, then θ :: T ij 7→ T ij ;

• if T ij is a variable, then θ :: T ij 7→ cT i
j
, where cT i

j
is the corresponding frozen constant

from Di
Q.

If we freeze all variables, we require exactly the same set of variables as inDi
Q to be derived,

then all tuples will be different, due to the fact that databases are sets. As a result, we have the
tuples with their cardinalities.

It forces every instantiation of the variables to be different even though there might be a
projection in the query. It is exactly the definition of evaluation of the query under bag semantics.

30

Simply speaking, if we the body of bag test query matches to all variables in the prototypical
database, we force not only answer tuples to match but also assignments to match.

In general, the difference between reasoning strategies is as follows:

• for set semantics, we show that every answer tuple thatQ retrieves overDi is also retrieved
over Da;

• for bag semantics, we show that every satisfying assignment for Q over Di, is also a
satisfying assignment for Q over Da.

Example of freezing to enforce bag-semantics

Assume, we have a query asking for the graph pattern:

Q(X)← R(X,Y), R(X,X). (3.31)

whereX is a distinguished variable (output variable) and Y is an existential variable. This query
can be formulated as

“All the nodes X such that there is an edge from X and X has a self-loop.“

x yR

R

Assume, we have a TC statement:

Ra(X,X)← R(X,X). (3.32)

It can be interpreted as:

“If there is a node X with a self-loop in the ideal database, then X is also in the available
database.”

Under set semantics Y can be easily mapped to X , because every node with a self-loop has an
outgoing edge. The query is complete under set semantics. However, the situation is different
under bag semantics. Consider a database:

x

y

z

R

R

R

31

According to the query evaluation under bag semantics, the answer tuple x has cardinality 3.
Under set semantics it appears only once. The query under bag semantics is not complete with
respect to the statement 3.32.

We need a TC statement to enforce counting every possible tuple satisfying the pattern dif-
ferently. In this case, it can be done by introducing a statement

Ra(X,Y)← R(X,X), R(X,Y). (3.33)

It transfers necessary edges and nodes to Da to count right cardinality by counting every tuple
differently.

Characterization under bag semantics

In this section, we revise the characterization to work with bag semantics. The theorem below
shows that all we need to do, is to replace the test query Qs in Theorem 3.2.3 by the test query
Qb.

Theorem 3.4.1 (Characterization under Bag Semantics) Let Q be a query, C be a set of TC
statements, then

C |= Complb(Q) ⇐⇒ Qb(fC(D
i
Q)) 6= ∅. (3.34)

Proof (⇒) From query completeness, it follows that Q has the same number of satisfying as-
signments over Di

Q and fC(Di
Q). Since fC(Di

Q) is a subset of Di
Q, there cannot be more satisfy-

ing assignments forQ over fC(Di
Q) than there are overDi

Q. There can only be the same number
of satisfying assignments, if every satisfying assignment over Di

Q is also one over fC(Di
Q). Let

Ȳ be the tuple of all variables of Q. Then, α that maps Ȳ to θȲ is a satisfying assignment for Q
over Di

Q. Then, it is also a satisfying assignment over fC(Di
Q).

(⇐) Assume, there are k different assignments αi. Each assignment αi maps the body B
of Q to Di and distinguished variables X̄ to c (αi is a general satisfying assignment, which has
the property to map the distinguished variables to c̄). Then αiB ⊆ Di where B is the body
of Q. Considering that fC is a monotone function over the database instances, it follows that
fC(αiB) ⊆ fC(Di). Again from Lemma 3.2.2, we have that fC(Di) ⊆ Da when (Di, Da) |= C,
then, we conclude that fC(αiB) ⊆ Da.

Then the composition αiθ−1 is a proper assignment over the variables from Q to database
instance αiθ−1fC(θB) for which Q returns an empty tuple as well. On the other hand, it is not
hard to check that αiθ−1fC(θB) ⊆ fC(αiB). Consequently, we deduce that Qs(fC(αiB)) 6= ∅.

Now αiθ
−1 maps X̄ to c̄. Then evaluating Q(X̄) against fC(αiB) we obtain c̄. Finally,

considering that fC(αiB) ⊆ Da we conclude that c̄ ∈ Q(Da). Now we show that for any
indices i, j it holds that

αi 6= αj =⇒ αiθ
−1 6= αjθ

−1 (3.35)

Since θ is a bijective function, its inverse function is a bijective function as well. Composi-
tion with a bijective function preserves distinctiveness of mappings. Thus, we have k different
mappings αiθ−1 for the tuple c̄. .

32

Encoding under bag semantics

To capture characterization under bag semantics, we have changed the test query. For the same
reason, we need to change the test query in the encoding.

Qb()← R1(θT 1
1 , . . . , θT

1
k), . . . , Rh(θT h1 , . . . , θT

h
m). (3.36)

We define the encoding of the boolean bag test query Qb() by introducing the upper index •a to
every atom in the body:

Definition 3.4.3 (Encoding of the bag test query) Let Qb() the bag test query from Definition
3.30, then the bag test rule is

Qb ← Ra1(θT 1
1 , . . . , θT

1
k), . . . , Rah(θT h1 , . . . , θT

h
m) (3.37)

where θ is the freezing assignment from Definition 3.15.

Accordingly, we change the bag filtering rule

⊥ ← not Qb. (3.38)

As P bQ we denote Di
Q, Qb and the bag filtering rule.

Let us motivate the encoding theorem in general. The encoding theorem is meant to be a
translation from one formalism to another. It uses as a specification the characterization theorem
and it connects this specification with a program. It shows how we can restate the problem in
some other formalism that has a support of reasoning engines. Instead of developing a reasoning
engine for query completeness from scratch, we reduce the initial problem into a problem that
has efficient reasoners. Then, our argument about soundness, completeness and effectiveness
appeals to the characterization instead of definitions directly. It is also important to mention that
regular SQL queries are evaluated under bag semantics, that is why this theorem is important
from a practical point of view.

Theorem 3.4.2 (TC-QC Encoding under Bag Semantics) Let Q be a query and C be a set of
TC statements. Then,

C |= Complb(Q) ⇐⇒ P bQ ∪ PC has an answer set. (3.39)

Proof Instead of showing the definition directly, we prove a correspondence between the char-
acterization theorem and our encoding into answer set programming. The theorem above follows
from it.

Encoding and Test Query Correspondence

P = P bQ ∪ PC has an answer set iff Qb(fC(Di
Q)) 6= ∅. (3.40)

(⇒) Assume, P has an answer set A. Due to Filtering Rule 3.38, the atom Qb is in A. All
atoms of the body Ba of the test-rule Qb must be in A because it is the only rule to support the
atom Qb. All atoms in Ba are over the Σa signature. Due to Lemma 3.3.1, for every atom Ra(t̄)

33

in Ba, a corresponding atom R(t̄) is in fC(Di
Q). As a result, the body of the test query Qb() is

satisfied and it holds that Qb(fC(Di
Q)) 6= ∅.

(⇐) Assume, Qb(fC(Di
Q)) 6= ∅. The body B of the test query Qb() is satisfied and it holds

that B ⊆ fC(D
i
Q). Due to Lemma 3.3.1, for every fact R(t̄) in fC(Di

Q), a corresponding fact
Ra(t̄) is in the answer set A. Consequently, for every fact R(t̄) in the body B, a corresponding
fact Ra(t̄) is in the answer set A. Then, the body of the test-rule Qb is satisfied. Finally, Qb is
in A.

Having introduced the encoding theorem, we can design an efficient (from a complexity
point of view) reasoner for the plain TC-QC completeness problem under bag semantics. By
design, this procedure follows the characterization that exactly captures query completeness
reasoning. It is an important theorem in the development of a practical completeness reasoner,
since, regular SQL queries are evaluated under bag semantics.

34

CHAPTER 4
Reasoning with Finite Domain

Constraints

Overview

In this chapter, we are going to discuss TC-QC reasoning in the presence of finite domain con-
strains. We start with an example showing how the reasoning procedure works with additional
constraints in the schema. We generalize this example, deduce the main properties and discuss
a formalization.

When we introduce the semantics of finite domain constraints in the context of completeness
reasoning, we propose a characterization of TC-QC entailment in the presence of finite domain
constraints. It takes into account additional possibilities to infer query completeness.

We also extend the encoding to reflect these additional inference possibilities.

4.1 Example

Let us start with an example. The schema is the same as before.

Employee(Name,DeptName,Birthday). (4.1)

Department(DeptName,Location). (4.2)

In addition, we impose a constraint on the Location column of the relation Department: it can be
either “Bolzano” or “Vienna”. Let us give an intuition about it, if for any tuple (name, location),
the atom Department(name, location) is in the database, then location must be either “Bolzano”
or “Vienna”.

We extend our definition of a schema by adding a set of constraints to it. In this chapter,
we consider a special type of constraints called finite domain constraints (FDC). Informally
speaking, we say that a finite domain constraint consists of three components: an index i, a
relation R and a finite set of constants M . This type of constraints has the name “finite domain

35

constraint” because it restricts the values that the i-th argument of R can take. Namely, the i-th
argument of R can take only values from the set of constants M .

As in the previous chapter, we show how the reasoning procedure works in a typical case by
means of an informal example.

Assume, we have a query Q

Q(Name)← Department(Name,Location).

We also have a constraint:

“Departments located in Bolzano and in Vienna are in the database.”

In this statement “Bolzano” and “Vienna” are constants. We formalize this statement as two
datalog rules:

Departmenta(Name, “Bolzano”) ← Departmenti(Name, “Bolzano”). (4.3)

Departmenta(Name, “Vienna”) ← Departmenti(Name, “Vienna”). (4.4)

If we just repeat all steps from the relational procedure, we cannot establish completeness. That
is why we make use of the additional constraint.

Assume, there is a constant name in the answer to Q. The query is conjunctive and there
must be a corresponding body atom

Department(name, location) ∈ Di. (4.5)

If we do not have an additional constraint, then none of the rules can be applied. Then, we
cannot establish completeness. In this example, we also have to take into account the constraint
on the Location in reasoning. We know location can be either “Bolzano” or “Vienna”. Assume,
it is “Bolzano”. Then, we have

Department(name, “Bolzano”) ∈ Di. (4.6)

We apply the rule 4.3 to it and obtain the atom

Department(name, “Bolzano”) ∈ Da. (4.7)

The query Q returns name as the answer over both databases Di and Da. According to the
definition 2.2.2, we infer completeness in this case.

If we assume, location to be “Vienna”, we obtain the same results (due to the symmetry of
the rules). For both values we can deduce completeness. We also have the constraint saying
“Vienna” and “Bolzano” are the only values it can take. We can deduce completeness in general,
since for any possible value of location we can prove completeness.

In this example, we have performed a case analysis. As we see later, this is going to be our
main technique to reason with finite domain constraints.

36

TC-QC in the presence of finite domain constraints

Constraints on the database filter models. For example, TC statements reduce the number of
models we consider. It seems natural to impose finite domain constraints as constraints on the
database in the same manner as TC statements1

Definition 4.1.1 (TC-QC Entailment with FDCs) LetQ be a query, C be a set of TC-statements,
F be a set of FDC. Then, C and F entail completeness of Q written C,F |= Compl(Q) iff for
any partial database D = (Di, Da) it holds that

D |= C and D |= F =⇒ Q(Di) = Q(Da). (4.8)

It can be read as for every partial database satisfying TC statements and finite domain con-
straints the query is complete.

Note, the definition does not show interaction between the query and finite domain con-
straints explicitly. In extreme cases, we can even decide query completeness based only on the
query and the set of FDC statements. It happens because now the query might get unsatisfiable
with respect to the set of FDC. We are going to see an example later.

4.2 Properties

In this section, we are going to investigate properties of finite domain constraints. We exploit
them to design a decision procedure working with finite domain constraints in the schema.

We start with an example indicating what features need to be reflected in the formalization.
By means of examples, we show important properties of finite domain constraints in the context
of completeness reasoning. We also argue that the formalization must reflect these properties
and make use of them.

Interaction between query and FDC

Let us discuss general issues of completeness reasoning with additional constraints. We are
going to point out how they affect reasoning and what are the consequences of imposing them.

To illustrate this idea, we use an example. Consider a query

Q()← A(X), B(X), C(Y). (4.9)

Assume, there is no TC statement but there are two FDC constraints2

F1 = Dom(A, 1, {a}). (4.10)

F2 = Dom(B, 1, {b}). (4.11)

There are infinitely many databases satisfying these constraints; however, the query is unsatisfi-
able with respect to the constraints. As a result, we can immediately conclude its completeness.
If we do not take into account the query, we cannot infer completeness.

1for FDC satisfaction, see 2.14.
2for semantics and syntax of FDC, see Section 2.4.

37

Let us have a closer look at these finite domain constraints and the query. There are two
constraints saying that the argument of the relation A can be only a and of the relation B only
b. Informally speaking, we see that the variable X in the query is bound by F1 because it
constrains the same position of A where X occurs. For the same reason, F2 constrains X . On
the one hand, X can take only the value a; on the other hand, it can take only the value b. There
is no assignment to the variables in the query that can possible satisfy these constraints.

The definition does not indicate explicitly interaction between the query and FDC. That is
why we are going to design an effective check – a characterization that takes into account this
interaction and exploit properties of the query and constraints.

Independence of bound variables

In this subsection, we investigate one of the most important properties of FDC – independence
of bound variables. Informally speaking, values of a bound variable do not depend on the values
of other variables.

Assume, the query is the same

Q()← A(X), B(X), C(Y). (4.12)

There is a finite domain constraint

FC = Dom(C, 1, {c1, c2}). (4.13)

It allows us to rewrite the query to

Q()← A(X), B(X), (C(c1) ∨ C(c2)). (4.14)

This is syntactic sugar for the union of two queries

Q() ← A(X), B(X), C(c1). (4.15)

Q() ← A(X), B(X), C(c2). (4.16)

In this case, we are interested in two concrete queries instead of one general.
Assume, there is also a finite domain constraint

FA = Dom(A, 1, {a1, a2}). (4.17)

We rewrite the query again

Q() ← A(a1), B(a1), C(c1). (4.18)

Q() ← A(a1), B(a1), C(c2). (4.19)

Q() ← A(a2), B(a2), C(c1). (4.20)

Q() ← A(a2), B(a2), C(c2). (4.21)

There are four cases – ways to map bound variables. In general, we say that a case is a mapping
of bound variables in the query to a set of constants. In this particular example, the cases are

38

1. X 7→ a1; Y 7→ c1;

2. X 7→ a1; Y 7→ c2;

3. X 7→ a2; Y 7→ c1;

4. X 7→ a2; Y 7→ c2.

If we recall our definition of a finite domain constraint, we see that every assignment of a variable
is independent from the other variables. If a variable is bound by a finite domain constraint, then
its value does not depend on the other variables in the query. There are two cases for X: a1 and
a2; there are two cases for Y : c1 and c2. We have to take into account all possible combinations
of cases.

It gives us an intuition about case analysis. If values of bound variables are independent,
then we can order variables and values. It allows us to make a stepwise case analysis. We can
iterate over all assignments to investigate each case separately.

Interaction of finite domain constraints

From the previous section, we know that bound variables are independent. But the very first
example shows that finite domain constraints can interact over a bound variable even if they are
imposed over different relations.

Assume, the query is the same

Q()← A(X), B(X), C(Y). (4.22)

Suppose, there are two FDC

FA = Dom(A, 1, {a, b, c}). (4.23)

FB = Dom(B, 1, {b, c, d}). (4.24)

They both bind the same variable X in the query, even though they are declared over different
relations.

What values can X take? Assume, the value of the variable X is x. Then, x must satisfy
both FA and FB

x ∈ {a, b, c} and x ∈ {b, c, d}. (4.25)

We simplify it to
x ∈ {a, b, c} ∩ {b, c, d}. (4.26)

This example can be generalized to an arbitrary number of finite domain constraints.
We have obtained a set of possible values of the variable X . For a variable X , we call the

set of possible values MX . If there is a bound variable X and a set of FDC FX constraining it,
the set of possible values MX is intersection of all domains of FX .

39

Overall number of cases

The set of possible values of a variable X1 do not depend on the values of X2. Assume, MX1

is the set of possible values of X1 and MX2 is the set of possible values of X2. If we pick any
value x1 fromMX1 forX1, then we still can pick any value fromMX2 . There are |MX1 | options
to pick a value for X1, for each of which there are MX2 options. Then, the total number is

|MX1 | ∗ |MX2 |. (4.27)

By induction, this approach can be generalized to any number of bound variables. However,
what is missing in this reasoning is a way to compute MX1 . To compute MX1 , we use our
second statement about interaction of finite domain constraints.

We define a set of possible values as a domain intersection of finite domain constraints
constraining it. Assume, finite domain constraints f1 and f2 constrain X1; f2 and f3 constrain
X2, then the total number of cases is

|Mf1 ∩Mf2 | ∗ |Mf2 ∩Mf3 |. (4.28)

Where Mfi is the set of constants of finite domain constraints fi.

Summary

In this section, by means of examples, we have indicated three main properties of finite domain
constraints:

1. Independence of bound variables.

2. Interaction of finite domain constraints.

3. The overall number of cases.

The first statement shows how to reduce the case analysis over the whole query to the case
analysis over one bound variable. The second statement shows how to use a set of finite domain
constraints to perform a cases analysis over one bound variable. The third statement shows how
the combination of the query and the set of finite domain constraints affects the number of cases
we have to consider.

4.3 Formalization

To formalize the completeness reasoning problem in the presence of finite domain constraints,
we generalize the examples from the previous section. Having established the main properties
of finite domain constraints, we make use of them by introducing a characterization working
with finite domain constraints in the schema. We have already indicated the main ideas and
properties, now we are going to formalize them rigorously.

We are going to revise the examples step by step and generalize them.

40

Independence of bound variables

So far we have just introduced an informal definition of a bound variable. In this subsection, we
fix the notation of it.

Definition 4.3.1 (Bound Variable) In a query Q, a variable v is a bound by a finite domain
constraint Dom(R, i,M), if v occurs in the i-th position of a body atom with the relation R in
Q.

In the example 4.9, the variable X is bound by both FDC statements 4.10, 4.11 and Y is not
bound by any FDC.

Note 4.3.1 Throughout the section, we assume the query to be the same for all definitions. We
refer to assignments and bound variables defined with respect to a query. We assume, the query
is the same for all of them.

Assume, there is an assignment α consistent with the set of FDC F . Assume, there are at least
two variables X and Y bound by some finite domain constraint and they can take at least two
values {a, b}.

Assume, α maps X to a and Y to b. Now we define an assignment β as α[X 7→ b]. That is,
the assignment β coincides with α everywhere but on X and it is consistent with finite domain
constraints; furthermore, we can define β′ consistent with α and change Y to a. Consequently,
for any assignment we can independently switch the value of a bound variable and obtain an
assignment consistent with FDC.

Finally, we conclude an independence statement about finite domain constraints.

Proposition 4.3.2 (Independence of finite domain contraints) Let F be a set of finite domain
constraints, B be a condition, and α be an assignment for the variables in B. If α is consistent
with F , then also α[X/c] is consistent with F for any c ∈MX .

Interaction of finite domain constraints

In this subsection, we generalize the corresponding examples from the previous chapter. Let FX
be the set of FDC constraining a variable X . Assume, the variable X has a value x consistent
with the set FX . Then for any Dom(R, i,M) ∈ FX it holds that

x ∈M. (4.29)

In other words, x must be in every domain of FX . By a contrapositive argument, it must take
values only from the intersection of all domains in FX .

Definition 4.3.2 (Set of Possible Values) LetX be a variable,FX be a set of FDC constraining
X , then we define a set of possible values written MX as

MX =
⋂

Dom(R,i,M)∈FX

M. (4.30)

41

Case analysis

In this subsection, we are going to formalize the definition of a case. Let Q be a query, F be a
set of finite domain constraints, then a case is a mapping γ such that

• if a variable X is bound, then it γ maps X to a value in MX ;

• otherwise, γ maps X to itself.

As we have seen in the previous chapter, there is an exact number of cases. We denote the set of
all cases as ΓF ,Q.

Correspondence between assignments and cases

In this subsection, we are going to investigate properties of cases with respect to general assign-
ments. We also exploit these properties to establish correspondence between general assign-
ments and cases. A case maps only bound variables. The sets of bound and non-bound variables
are trivially disjoint. Then, any assignment α can be represented as

α = βγ. (4.31)

Where γ maps only bound variables and β maps only non-bound variables. Note, that in this
case α and β are commutative.

We propose a stronger statement showing how assignments and cases are related.

Lemma 4.3.3 (Representation Lemma) Let α be an assignment consistent with F , then α can
be represented as

α = α′γ. (4.32)

where α′ is an assignment (might be general) and γ ∈ ΓF ,Q.

Proof We have to prove two properties that α can be represented by two assignments α′ and γ
and that γ is in ΓF ,Q.

First statement trivially follows from the argument above (in case if α′ is a general mapping,
α′ and γ are not commutative).

Second statement follows from a contrapositive argument. Assume, γ 6∈ ΓF ,Q. Then,
γ 6= γi, for all γi ∈ ΓF ,Q. Then, for any γi ∈ ΓF ,Q, γ must disagree with γi at least on
one bound variable. Assume, it is X . Then, γ maps it to a constant x such that x 6∈ MX .
Consequently, γ violates F . Contradiction.

Interaction between the query and cases

Assume, a query Q with distinguished variables X̄ returned t̄ as an answer over Di. We know
that ΓF ,Q contains all consistent with F mappings of bound variables. Then, due to the repre-
sentation lemma t̄ must be of the form

t̄ = θγX̄, (4.33)

42

where θ is the freezing assignment from 3.18. Instead of a general tuple with frozen constants,
we have a general tuple where all bound variables are mapped by γ. The general tuple t̄ has this
form since it must be consistent with finite domain constraints and all the other variable must
be frozen. It is always safe to map bound variables and then to apply freezing since all bound
variables have already turned into constants and they are not affected by θ. Then, for a case γ
the general answer to a query Q is θγX̄ . Variables that are bound and distinguished must be
mapped by the case γ. This connection between the current case and distinguished variables
must be reflected in the formalization.

In the definition of a test query 3.18 we mapped all distinguished variables of the test query
to the corresponding frozen constants by means of θ. We have to change this mapping to capture
the new general answer tuple.

Definition 4.3.3 (Test Query Qγs ()) Let Q be a query from the definition 3.18, γ be a case in
ΓF ,Q, then the gamma test query Qγs () is

Qγs ()← R1(θ′T 1, . . . , θ′T 1
k), . . . , Rh(θ′T h1 , . . . , θ

′T hm). (4.34)

where θ′ performs substitution by the rule:

• if T ij ∈ X̄ and T ij is a bound variable, then θ′T ij 7→ γT ij ;

• else if T ij ∈ X̄ , then θ′T ij 7→ cT i
j
, where cT i

j
is the corresponding frozen constant from

Di
Q;

• otherwise, θ′T ij 7→ T ij .

Intuition behind it is that the query evaluates to true, if distinguished bound variables can be
mapped to the corresponding constants in the case.

Interaction between the prototypical database and cases

Cases force bound variables to take particular values from domains of finite domain constraints
instead of taking arbitrary values. As in the example from the previous section, the prototypical
database changes because of the general answer to the query changes. This interaction between
cases and the prototypical database must be taken into account in the formalization. We need to
substitute general frozen values with particular constants from the considered case.

Let us give an intuition about this. We substitute the bound variables in the prototypical
database by applying the corresponding γ. Then, we define the prototypical database with re-
spect to a particular case as follows.

Definition 4.3.4 (Prototypical Database γDi
Q) Let Q be a query with a body B and γ be a

mapping of bound variables. Then, the prototypical database γDi
Q is

γDi
Q = θγB. (4.35)

where θ is freezing assignment from 3.15.

43

4.4 Characterization

In this section, we present an efficient check of TC-QC entailment. It explicitly shows and uses
the interaction between all parts of the problem. It also indicates how the original problem is
affected by the introduction of finite domain constraints. Simply speaking, it takes into account
how many cases it needs to consider and how a particular case changes the reasoning problem.

It is also an important step in the development of a practical decision procedure that can
be programmed and used as a way to automatically check whether TC-QC entailment holds.
Formally, we present it in the following theorem.

Theorem 4.4.1 (TC-QC Characterization with FDCs) Let Q be a query, C be a set of TC
statements, F be a set of FDC. Then,

C,F |= Compls(Q) ⇐⇒ Qγs (fC(γD
i
Q)) 6= ∅ for every γ in ΓF ,Q. (4.36)

Proof In the following θ will denote a freezing assignment of the variables in Q.
(⇒) Let’s assume C,F |= Compls(Q). We want to show that Qγs (fC(γD

i
Q)) evaluates to

true (it returns the empty tuple). To do so we construct a partial databaseD := (γDi
Q, fC(γD

i
Q)),

for an arbitrary but fixed γ in ΓF ,Q. According to Lemma 3.2.2, for a partial database D =
(Di, Da) it holds that D |= C iff fC(Di) ⊆ Da. Thus, by construction the partial database
D satisfies C. It follows that Q(γDi

Q) = Q(fC(γD
i
Q)). On the other hand, γDi

Q is a frozen
version of Q where output variables X̄ are bound to θγX̄ . Then θγX̄ ∈ Q(γDi

Q) and so
θγX̄ ∈ Q(fC(γD

i
Q)). Finally we conclude Qγs (fC(γD

i
Q)) 6= ∅.

(⇐) Now we assume thatQγs (fC(γD
i
Q))) 6= ∅ and we want to show that C,F |= Compls(Q).

In order to do so we assume that D = (Di, Da) is a partial database such that D |= C where c̄ is
an arbitrary tuple in Q(Di). We have to show that c̄ is in Q(Da) as well.

Let α be an assignment from Q into Di that maps X̄ to c̄. Due the assumption D |= F , we
apply Representation Lemma 4.3.3 to α. Then, α = α′γ for some γ in ΓF ,Q. Then α′γB ⊆ Di

where B is the body of Q. Considering that fC is a monotone function (due to Lemma 3.2.2)
over database instances it follows that fC(α′γB) ⊆ fC(D

i). Again from Lemma 3.2.2 we have
that fC(Di) ⊆ Da when (Di, Da) |= C, then we conclude fC(α′γB) ⊆ Da.

Now let β be an assignment such that Qγs (fC(γD
i
Q)) evaluates to true for every γ in ΓF ,Q.

Then the composition α′γθ−1β is a proper assignment over the variables from Q to the database
instance α′γθ−1fC(γD

i
Q) for which Q evaluates to true as well. On the other hand, it is not hard

to check that α′γθ−1βfC(γD
i
Q) ⊆ fC(α′γB). Consequently Qγs (fC(γD

i
Q)) 6= ∅.

Now α′γθ−1β maps X̄ to c̄. Then evaluating Q(X) against fC(α′γB) we obtain c̄. Finally,
considering that fC(α′γB) ⊆ Da we conclude that c̄ ∈ Q(Da).

We have presented the characterization theorem that we are going to use as a mathematical
formulation of what should be done by a program. It is essentially a specification of the problem.
Later, we are going to develop a procedure that will follow this specification. As a result, we
will obtain a decision procedure. We appeal to the characterization to show soundness and
completeness of the decision procedure.

44

4.5 Encoding

In this section, we are going to discuss how the encoding changes in the presence of finite domain
constraints. In the preceding chapter, we showed the correspondence between the relational
characterization and the encoding. In this section, we are going to follow the same idea. We
have already seen how the characterization changes. It indicates how to start modifications of
the encoding.

In the TC-QC characterization with finite domain constraints, we changed the prototypical
database and the test query by applying an assignment to them. In general, the encoding stepwise
mirrors reasoning in the characterization. That is why we start looking at these two parts and
modify them accordingly.

The section has the following structure:

• we show how to encode the cases γ in ΓF ,Q;

• we revise Qs, Di
Q in PQ;

• we analyze how PC changes in the presence of new rules.

Encoding of cases

We defined a case γ as an assignment of bound variables. An assignment is a set of pairs. It is
reasonable to encode a set of pairs as a binary predicate. We call it val, which stands for value.
The set of val-atoms in the answer set corresponds to γ. A fact val(x, a) is in the answer set iff
γ maps the variable X to the constant a. We formalize this property later as a lemma.

First of all, we have to impose on val a functionality constraint. Any assignment must satisfy
the functionality constraint. Then, the assignment γ must satisfy the functionality constraint.
The predicate val represents γ and must satisfy the functionality constraint as well. As a first
attempt, we try to define the functionality constraint as

⊥ ← val(X,Y), val(X,Z), Y 6= Z. (4.37)

However, we do not know in advance what variables are going to be bound in the query and
we would like to make the generation of γ independent from the other parts of the program.
Therefore, for every frozen variable x in the query Q, we introduce a default value val(x, x). It
immediately violates Functionality Constraint 4.37.

Instead of Functionality Constraint 4.37, we define a weak functionality constraint rfun as

⊥ ← val(X,Y), val(X,Z), X 6= Y, X 6= Z, Y 6= Z. (4.38)

That allows to have default values of the frozen variables and the values from γ.
To introduce ΓF ,Q in the encoding, we mimic the steps we took in the analysis of finite

domain constraints. Let f = Dom(R, i,M) be a finite domain constraint, then we define the
rule rf as

val(Xi, a1) ∨ · · · ∨ val(Xi, an)← R(X1, . . . , Xi, . . . , Xn). (4.39)

where each ai is in M .

45

We define a program PF as

PF = {rf | f ∈ F} ∪ {rfun}. (4.40)

Encoding of the prototypical database γDi
Q

In the encoding of γDi
Q, we assume that a case γ is given as a set of val-facts. Assigning values

to bound variables in γDi
Q is done implicitly by presence of γ in the answer set as val-facts.

That is why we only add to Di
Q a set of default values.

Let V be a set of all variables in Q and Di
Q be a prototypical database. Then, Du

Q is defined
as

Du
Q = Di

Q ∪ {val(θv, θv) | v ∈ V }. (4.41)

Encoding of variable unfolding

In the encoding of Qγs , we need to take into account two facts

1. values of the distinguished variables must be mapped to values of the corresponding
“frozen” constants in γDi

Q;

2. values of the other variables must be mapped to some values.

The first statement follows from 4.33, we know that all bound variables must be mapped accord-
ing to γ. Then, if a distinguished variable is not bound by a finite domain constraint, then its
value is the same as its name. If it is bound, then it must be mapped to the value in γ. Observe
that for a predicate A, a variable X and a constant c, it holds that

A(c) ⇐⇒ A(X) ∧X = c. (4.42)

In our encoding, the role of “=” is played by the val-predicate. The first argument of val is a
variable and the second is its value. Then in our context, we encode this statement as a formula.

A(c) ⇐⇒ A(X), val(X, c). (4.43)

If we assign a value to a variable X , in a predicate A(X), we introduce a “fresh” variable VX
instead of the constant c

A(X) ⇐⇒ A(VX), val(VX , X). (4.44)

An atom A(X) holds if there is an atom A(VX) in Du
Q and VX has the value of X . In case, if X

is not a bound variable, then it has the default value of itself. Then, A(X) holds iff A(X) ∈ Du
Q

(val(X,X) holds always due to 4.41).
Rule 4.44 suffices for non-distinguished variables. For distinguished variables we have to

extend it. Assume, we have an atom A(x), where x is a “frozen” variable. The atom A(x) with
a value v of x holds if the atom A(v) holds. Applying Rule 4.42, we obtain A(v) holds iff there
is an atom A(y) and val(y, v).

46

Summing up, we say an atom A(x) with x = v holds iff there exists a constant y such that
the atom A(y) in Du

Q and y = v. We encode this statement as

A(x) ⇐⇒ A(Y), val(x, V), val(Y, V). (4.45)

where variables Y and V are fresh. The right hand side of 4.45 is satisfied if Y is bound to an
argument of A, such that the value of this argument is the same as the value of x.

Encoding of the test query Qγ
s

In this subsection, we are going to apply the unfolding rules to the test query. As a result, we
obtain the unfolded test rule that takes into account values of frozen variables. In the previous
chapter, the test rule has the form of Q(X̄) ← B, where B is a conjunction of atoms. Now we
have to into account values of variables. We do it by means of unfolding of variables. Then, the
unfolded test rule has the form of Q(X̄)← B,UQ where UQ is a conjunction of val-atoms.

Here is the algorithm that unfolds the test rule. Assume, the val-set UQ is empty. Let Qs be
a test rule with body B, γ be a set of val-atoms. Then, we unfold the body of the test rule, by
the following rule: for every term Ti in every atom R(T1, . . . , Tn) ∈ B

• if Ti is a distinguished frozen variable, replace Ti with Y ; add val(Y, V), val(Ti, V) to the
val-set UQ, according to 4.45.

• otherwise, replace Ti with V ; add val(V, Ti) to the val-set UQ, according to 4.44.

where V and Y are fresh variables. We denote the unfolded version of B as Bu. Note, for
different occurrences of Ti, we introduce different variables V .

Definition 4.5.1 Let Qs be a test rule, γ be a set of val-atoms. Then, we define Qu is

Qu ← Bu, UQ. (4.46)

where Bu is the unfolded body of Qs and UQ is the val-set from the unfolding algorithm.

Let us illustrate this definition with an example. Assume, a query Q is

Q(Name)← Department(Name,Location). (4.47)

Then, Qu is

Qu ← Departmenta(V, VLocation), val(V, VName), val(name, VName), val(VLocation,Location).

This rule fires over a Department-atom in the available database such that its first argument has
the same value with a frozen variable name and its second argument can take any value.

We define the program P uQ.
P uQ = {Qu} ∪Du

Q. (4.48)

where we identify Qu with the test rule defining Qu.

47

Revision of the PC encoding

We encode γ as a set val-atom, that is why we need to unfold variables in the encoding of TC
statements to take into account their values of the frozen variables. We have already seen a way
to do it 4.44. We need to let the variables pass through TC statements judging by their values.

Assume, we have a rule rC that encodes a TC statement C

Ra(t̄)← R(t̄), G. (4.49)

For every atom A(T1, . . . , Tn) in the body of rC , we apply Rule 4.44. As a result, we obtain an
unfolded body of the rule rC : Ru(t̄′), Gu, UC . We define the unfolded rule ruC as

Ra(t̄′)← Ru(t̄′), Gu, UC . (4.50)

We define the encoding of the TC rules P uC as

P uC = {ruC | C ∈ C}. (4.51)

Let us illustrate this definition with an example. Assume we have a TC statement rC

Departmenta(Name,Location)← Departmenti(Name,Location). (4.52)

Then, the unfolded rule ruC is

Departmenta(VName, VLocation)← Departmenti(VName, VLocation),

val(VName,Name), val(VLocation,Location).

Unfolding a query makes more sense, if we have a join variable; however, it tends to be hard to
read. It illustrates that the most important feature of unfolding is that we judge every variable
by its value stored in the val-predicate. We delegate the assignment of variables to the external
predicate val in an answer set. We let the names of the variables go through TC statements since
we store all the values separately.

Properties of the encoding

We have established how the introduction of finite domain constraints has changed the defi-
nitions. Here we are going to investigate properties of parts of the encoding formally. This
subsection has the following structure:

1. correspondence between a case γ in ΓF ,Q and the val-set in the encoding;

2. correspondence between atoms in the characterization and atoms in the encoding;

3. correspondence between the test query and the test rule.

We start the discussion with a correspondence between γ and the val-set. They both represent
a case – an assignment of bound variables consistent with finite domain constraints. We would
like to make a connection between the atoms in the val-set of the answer set and γ from ΓF ,Q.
We introduce a piece of syntax to make the statement more readable. Given a case γ, we denote
the encoding of γ as a val-set as val(γ). To formally introduce it we present a lemma.

48

Lemma 4.5.1 Let Q be a query and γ be a case in ΓF ,Q. Let P be the program PF ∪P uC ∪P uQ.
Then,

• for every γ, there is exactly one answer set A of P such that val(γ) ⊂ A;

• for every answer set A of P , there is exactly one γ such that val(γ) ⊂ A.

Proof We prove both of the statements by contrapositive argument.
Assume, for some γ there are two answer sets A1 and A2. The only disjunctive rules are in

PF . Then, A1 and A2 differ only in val-atoms. Due to minimality there are only val-atoms for
bound variables. Then, for some bound variable x, there must be two atoms val(x, a) ∈ A1 and
val(x, b) ∈ A2. Due to the functionality constraint, x has the only one value in an answer set.
Then, we obtain contradiction since to satisfy both inclusions γ must violate the functionality
constraint. Contradiction.

Assume, for some answer set A there are two gammas γ1 and γ2. They differ at least
in one variable; assume it is X . Assume, γ1 maps it to a and γ2 maps it to b. By initial
assumption, val(γ1) ⊂ A and val(γ2) ⊂ A. Then,A contains val(x, a) and val(x, b). It violates
the functionality constraint. Contradiction.

Let us illustrate this lemma by an example. Assume, there is a query Q

Q(Name)← Department(Name,Location). (4.53)

Assume, there is a finite domain constraint

val(Name, “Bolzano”) ∨ val(Name, “Vienna”)← Department(Name,Location). (4.54)

There are two cases. When a case γ1 maps Name to “Bolzano” and when a case γ2 maps Name
to “Vienna”. Due to Finite Domain Constraint 4.54, there are two answer sets: an answer set
A1 that contains the atom val(Name, “Bolzano”) and an answer set A2 that contains the atom
val(Name, “Vienna”). Then, A1 corresponds to γ1 and A2 corresponds to γ2.

Secondly, we are going to make a formal connection between the modified test query Qγs
and the test rule in the encoding Qu. Let D be a database over the Σi signature, then we denote
the same set of facts as in D but with the upper index •a as (D)a.

Lemma 4.5.2 Let Qγs () be the test query, γDi
Q be the prototypical database and Qu be the test

rule corresponding to the test query. Then, the following are equivalent

• Qγs (γDi
Q) 6= ∅;

• the rule Qu is activated over the set of facts (Du
Q)a ∪ val(γ).

Proof The test query holds iff the body is satisfied. The rule is activated iff the body is satisfied.
Then, we need to show that both bodies are satisfied over the corresponding sets.

Assume, the test query Qγs () is satisfied. Then, there is a mapping α that maps B to D
such that distinguished variables are mapped by γ. Due to Lemma 4.5.1, γ is encoded in the
val-set. For any distinguished variable in a body atom Ra(t̄) in Qu, we apply Rule 4.45. A

49

non-distinguished variable X α maps to a constant c. Assume an atom A(c) holds, then atom
A(x) is in γDi

Q and due to Lemma 4.5.1, it holds that val(x, c) ∈ val(γ). Then, body of the rule
Qu is satisfied.

Assume, the rule Qu is activated. Then, due to Lemma 4.5.1, val(γ) encodes γ. Due to Rule
4.45, all distinguished variables have values assigned by γ. Due to Rule 4.44, all other variables
have some values, they are assigned by some α. Then, we construct the assignment αγ such
that, it satisfies body of the test query Qγs ().

Note 4.5.3 Lemma 4.5.2 shows, that it is possible to separate the binding information from the
core representation of the rules and the query.

Finite domain characterization and encoding correspondence

To automate the work of the decision procedure, we reduce the characterization to evaluation of
an answer set program. It allows us to check TC-QC entailment by using existing ASP reasoning
engines. Note, this solution is optimal from a complexity point of view. The complexity of the
reduced problem is the same as the complexity of the problem we reduce into.

We would like to formally establish a correspondence between the characterization we have
presented in this chapter and answer set programming.

Theorem 4.5.4 (Encoding with FDCs) Let Q be a query, C be a set of TC statements, F be a
set of FDC. Then,

C,F |= Compl(Q) ⇐⇒ Q is in every answer set of P uQ ∪ P uC ∪ PF . (4.55)

Proof The proof is technical, that is why we briefly explain the main points of the proof. The
proof appeals to the characterization presented before. It has four logical levels. Firstly, we
establish a correspondence between ground facts in the encoding and the prototypical database
in the characterization. Secondly, by means of Lemma 4.5.1, we show a correspondence between
a considered case γ and the val-set in the encoding. Then, we show a correspondence between
the sets we derive from the prototypical database and ground facts, namely between the set
of facts over the Σa signature and fC(Di

Q), by means of Lemma 3.3.1. Finally, by means of
Lemma 4.5.2, we show that both queries evaluate to true . The proof follows these steps in both
directions.

Let A be an answer set of the program.
Assume, Qγs (fC(γD

i
Q)) 6= ∅ for an arbitrary but fixed γ. Then, due to Lemma 4.5.1, val(γ)

must be in A. We know that Du
Q must be in EDB as a set of ground facts. Due to Lemma 3.3.1,

for every fact R(t̄) in fC(γDi
Q), there is a fact Ra(t̄) in A. Taking them both into account, we

apply Lemma 4.5.2 to the test-rule Qu. We took γ to be arbitrary but fixed; then, the proof holds
for any γ in ΓF ,Q.

Assume, Q holds in every answer set of the program. We take an arbitrary but fixed answer
set A. Due to Lemma 4.5.1, there must be a corresponding γ in ΓF ,Q. Then, the prototypical
database is γDi

Q. According to Lemma 3.3.1, we establish correspondence between the facts
over the Σa signature and the facts in fC(γDi

Q). As a result, we deduce that for every fact Ra(t̄)

50

in A, there is a fact R(t̄) in fC(γDi
Q). Due to Lemma 4.5.2, we conclude that test query Qγs

evaluates to true.

Having introduced the encoding theorem, we can design an effective (from a complexity
point of view) reasoner for the TC-QC completeness problem in the presence of finite domain
constraints. By design, this procedure follows the characterization that exactly captures query
completeness reasoning. It is an important theorem in development of a practical completeness
reasoner.

Having connected two formalisms, we have made a feasible decision procedure for TC-QC
reasoning. It can be used in practice provided there is an efficient ASP reasoner available.

51

CHAPTER 5
Reasoning with Foreign Key

Constraints

Overview

In this chapter, we discuss completeness reasoning in the presence of foreign keys. We start
with an example illustrating how completeness reasoning works in a typical case. We show how
foreign keys affect TC-QC reasoning in general.

We discuss two semantics and formalizations of foreign keys in the context of completeness
reasoning. Assuming acyclicity of foreign keys, we characterize query completeness in the
presence of foreign keys. We also show how to modify the encoding to reflect the changes in the
characterization.

At the end, we combine finite domain and foreign key constraints. We show how they
interact with each other. Finally, we introduce the characterization and the encoding working
with the both types of constraints.

5.1 Example

In this section, by means of an informal example, we show how the reasoning procedure works
in a typical case. We revise the example from the third chapter and incorporate foreign keys1

into the reasoning procedure.
There are two ways how to interpret foreign keys in the context of completeness reasoning:

to impose them on the ideal database only, or to impose them on both databases. The example
shows the first approach. Let us give an intuition about these two approaches. Foreign keys over
the ideal database represent knowledge about the domain i.e., the real world. Foreign keys over
both represent knowledge about the real state of the available database. The main difference in
the inference techniques is explained later.

1For basic definitions, syntax and semantics of foreign key constraints, The section 2.4.

53

Assume, the schema Σ is the same as before

Employee(Name,DeptName,Birthday). (5.1)

Department(DeptName,Location). (5.2)

In addition, there is a foreign key constraint in Σ. Assume, the foreign key is2

Employee(_,DeptName, _) references Department(DeptName, _). (5.3)

Simply speaking, this constraint says

“Every department name in the Employee relation must be in the Department relation.”

Suppose, the query is

Q(Name)← Employee(Name,DeptName,Birthday). (5.4)

We also have the TC statement

Employeea(Name,DeptName,Bday)← Employeei(Name,DeptName,Bday), (5.5)

Departmenti(DeptName,Location).

Below, we are going to revise the reasoning procedure we presented in the example in the third
chapter. We explain it step by step showing interaction between the original procedure and new
constraints.

Let us note that if we just repeat all steps from the relational procedure, then our procedure
will not return a positive answer. In fact, the query is complete (since completeness is logically
entailed by the TC statements), but the procedure is unable to find this out. The TC rule needs an
Employee-atom and a Department-atom to fire, however, the prototypical database contains only
one atom. Intuitively, the foreign key constraint forces the second atom to be in the prototypical
database. We have to modify the procedure to reflect the new constraints in the schema. In
general, foreign keys give us additional possibilities to establish completeness. Even if the query
is not ensured to be complete by the relational procedure, it might be complete provided there
are foreign keys in the schema. See next paragraph for technical details on it.

1. Determine what tuples have to be in Di

Assume, name is in the answer to Q over Di, that is,

name ∈ Q(Di). (5.6)

Since Q is a conjunctive query, there must be a corresponding body atom in Di

Employee(name, deptName, bday) ∈ Di. (5.7)

2For the foreign key syntax, see Definition 2.4.4

54

If we proceed according to the relational procedure, then the TC statement does not apply and
we cannot establish query completeness.

Due to the FK constraint, for every department name in the Employee relation there must
be a corresponding tuple in the Department relation. Assume, deptName is the value of the
DeptName column in the Employee relation; for some value location there must be a tuple
(deptName, location) in the Department relation

Department(deptName, location) ∈ Di. (5.8)

We have established that the following facts must be in Di

Employee(name, deptName, bday) ∈ Di,

Department(deptName, location) ∈ Di. (5.9)

2. Determine what tuples have to be in Da

In this example, we have only one TC statement 5.5 that we can apply to Di. As a result, we
obtain an atom

Employee(name, deptName, bday) ∈ Da. (5.10)

This is the only fact established to be in Da.

3. Verify completeness

We assumed name to be in the answer to Q over Di. Now we evaluate Q over Da and obtain
name as an answer tuple. According to Definition 2.2.2, we found out that Q is complete.

Visualization of reasoning procedure

As before, we used the query to establish what atoms must be present in Di
Q to produce the

query answer. However, in our example these atoms are not sufficient to apply the TC rule. Still,
we can establish more atoms by applying the FK statements, and the TC rule may fire over the
extended ideal database.

This idea can be nicely depicted, see Figure 5.1. Normally, atoms go from Di to Da by
means of TC statements. Having established facts in Di, foreign keys give us an additional way
to infer facts. As we can see later, if we impose foreign keys on Da as well, we can use the same
idea to infer even more facts by using foreign keys.

5.2 Formalization

In this section, we are going to discuss semantics of foreign keys. To formalize reasoning with
foreign keys, we investigate their properties and features in the context of query completeness.

Inclusion dependencies filter models. They specify what tuple must present in the database
to satisfy constraints. In this sense, they are very close to the TC statements; a TC statement

55

Figure 5.1: Visualization of reasoning example with FK

Employeei(N,D,B)

Employeea(N,D,B)

Departmenti(D,L)

Departmenta(D,L)

FK on Di

TC

FK on Da

rejects a model, if a certain fact in the ideal database and it is not in the available database. A
foreign key rejects a model, if a certain fact in the database and the fact that it references is not.

Foreign keys as well as TC statements determine a lower bound on the facts in a partial
database. They enforce some tuples to be present under certain conditions. For comparison,
finite domain constraints determine an upper bound on the facts in a partial database. They
enforce only certain facts to be present in the database and prohibit the others.

We say that TC-QC entailment in the presence of foreign keys holds, if for any partial
database satisfying the TC statements and the foreign key constraints, the query is complete.
To define it formally – it is an important question to answer: which database the ideal or both
must satisfy foreign keys? In this section, we start with foreign key constraints imposed on the
ideal database. We call it TC-QC entailment under ideal semantics. We define it formally as

Definition 5.2.1 (TC-QC Entailment under Ideal Semanticss) LetQ be a query, C be a set of
TC-statements, K be a set of FK. Then, C and K entail completeness of Q under ideal semantics
written C,K |=i Compl(Q) iff for any partial database D = (Di, Da) it holds that

D |= C and Di |= K =⇒ Q(Di) = Q(Da). (5.11)

There is also an option to impose foreign keys on both databases. In this case, we have different
semantics for TC-QC entailment that we call enforced semantics. It does not make sense to
impose FK on only the available database since it is always a subset of the ideal database.

To fix the notation, we say that a partial database D = (Di, Da) satisfies a set of FK K,
written as D |= K iff

Di |= K and Da |= K. (5.12)

Now we define formally TC-QC entailment with foreign keys under enforced semantics.

Definition 5.2.2 (TC-QC Entailment under Enforced Semantics) Let Q be a query, C be a
set of TC-statements, K be a set of FK. Then, C and K entail completeness of Q under enforced

56

semantics written C,K |= Compl(Q) iff for any partial database D = (Di, Da) it holds that

D |= C and D |= K =⇒ Q(Di) = Q(Da). (5.13)

5.3 Characterization

Characterization under ideal semantics

In this section, we are going to discuss TC-QC reasoning with foreign keys. Under the assump-
tion that foreign keys are acyclic3, we present a TC-QC characterization that captures reasoning
with foreign keys. We assume foreign key constraints to be acyclic throughout the whole work.

We need to revise the relational procedure to capture additional constraints in the schema.
In this section, we consider only foreign keys imposed only on the ideal database, that is why
we call it ideal semantics.

We are going to generalize the example from the first section. There we applied foreign keys
as rules to enforce some tuples to be present in the database. We have already seen this idea
when we talked about the function fC . It maps facts from Di to facts in Da. In our case, our
new procedure will introduce some new facts in Di based on the other facts in Di.

It give us an idea how to apply this function in the characterization – it should apply to Di

before fC to allow it to infer more facts. Following the ideas from Cali et al. [2], we define this
function by means of a chase procedure4. We denote it as Ki, see Algorithm 5.1.

Require: a database D
Require: a set of foreign keys K
Ensure: the database D satisfying K

{The expression of the form R[X] is a syntactic sugar for πX(R)}
1: repeat
2: D′ := D
3: if there is a fact R(t) in D and an FK R[X] ⊆ S[Y] in K s.t.

there exists no fact S(t′) in D where t′[Y] = t[X] then
4: create a fact S(t′′) such that t′′[Y] = t[X] and

create fresh values in t′′ on the remaining positions
5: D ← D ∪ {S(t′′)}
6: end if
7: until D′ = D
8:

9: return D
Algorithm 5.1: Co-chase procedure: Ki.

Lemma 5.3.1 Let K be a set of FK. Then, Ki(D) is a minimal extension of D (under set inclu-
sion) satisfying K.

3For details about the acyclicity assumption, see Section 2.4
4To be precise, it is a co-chase procedure, according to the classification of Alin Deutsch [5]

57

Proof Let us prove both properties of Ki(D) – satisfaction and minimality.
Assume, Ki(D) does not satisfy K. Then, there is a tuple t in R(D), an FK R[X] ⊆

S[Y] and there is no t′ ∈ S(D) such that t′[Y] = t[X]. Due to the acyclicity assumption, Ki
terminates, then the rule in Algorithm 5.1 in Line 4 is not applicable. Consequently, for the tuple
t, the rule creates a tuple t′′ such that t′′[Y] = t[X] and S(t′′) ∈ D. On the one hand, there is no
tuple t′ ∈ S(D) s.t. t′[Y] = t[X]; on the other hand, there is t′′ ∈ S(D) such that t′′[Y] = t[X].
We derived contradiction and by contraposition, Ki(D) satisfies K.

Assume, Ki(D) is not a minimal extension of D. Then there is a smaller extension D′ of D
satisfying K. There is at least one tuple t in the difference Ki(D)\D′. The tuple t as well as all
tuples in Ki(D)\D are added by the rule the line 4 of Chase Procedure 5.1. Then, Ki(D)\{t}
does not satisfy K, because there is an FK R[X] ⊆ S[Y] in K and there is no tuple t′ ∈ S(D)
s.t. t′[Y] = t[X]. Contradiction.

The new TC-QC characterization with foreign keys under ideal semantics illustrates and shows
how completeness reasoning changes due to introduction of constraints in the schema. It is
meant to show and give an idea how to change the encoding. We regard the characterization as
a specification of the problem. If we change the specification, it means we have to reflect these
changes in the program as well.

Theorem 5.3.2 (Characterization with FK under Ideal Semantics) Let Q be a query, C be a
set of TC-statements and K be a set of FK. Then,

C,K |=i Compl(Q) ⇐⇒ Qs(fC(Ki(Di
Q))) 6= ∅. (5.14)

Proof (⇒) Assume, C,K |=i Compl(Q). Consequently, we consider only Di that satisfies
K. Then, Ki(Di) = Di. Due to completeness of Q, it holds that Q(Di) = Q(Da). Due
to Lemma 3.2.2, it holds that Q(Da) = Q(fC(D

i)). By substitution of equals, we obtain
Q(Da) = Q(fC(Ki(Di))) .

Assume, a tuple c̄ = αX̄ is in the answer to Q over Di. Taking into account that Di
Q is

the frozen by θ version of the body B of the query Q with distinguished variables X̄ . Then,
αB ⊆ Di and αθ−1 maps Di

Q to Di. Due to Lemma 5.3.1, Ki is monotone function, then the
assignment αθ−1 maps Ki(Di

Q) to Di. Consequently, Qs(fC(Ki(Di
Q))) 6= ∅.

(⇐) Assume, Qs(fC(Ki(Di
Q))) 6= ∅. We want to show that C,K |=i Compls(Q). In order

to do so we assume thatD = (Di, Da) is a partial database such thatD |= C andDi |= K where
c̄ is an arbitrary tuple in Q(Di). We have to show that c̄ is in Q(Da) as well.

Let α be an assignment from Q into Di that maps X̄ to c̄. Then αB ⊆ Di where B is the
body of Q. Considering that fC is a monotone function (due to Lemma 3.2.2) over database
instances it follows that fC(αB) ⊆ fC(Di). By assumption it holds that Di |= K and Ki(Di) =
Di. By definition, Ki is a monotone function, consequently fC(Ki(αB)) ⊆ fC(Ki(Di)). Again
from Lemma 3.2.2 we have that fC(Di) ⊆ Da when (Di, Da) |= C. Then, fC(Ki(αB)) ⊆ Da.

Now let β be an assignments for which Qs(fC(Ki(Di
Q))) returns an empty tuple. Then a

composition αθ−1β is a proper assignment over the variables from Q into the database instance
αθ−1fC(Ki((θB))) for which Q returns an empty tuple as well. On the other hand, it is not hard
to check that αθ−1fC(Ki(θB)) ⊆ fC(Ki(αB)). Consequently Qs(fC(Ki(αB))) 6= ∅.

58

Now αθ−1β maps X̄ to c̄. Then evaluating Q(X) against fC(Ki(αB)) we obtain c̄. Finally,
considering that fC(Ki(αB)) ⊆ Da we conclude that c̄ ∈ Q(Da).

The characterization allows us to design a program that checks TC-QC entailment. We make
an argument that the program we create has the same semantics as the characterization we have
presented. That is why it is important to introduce a characterization as a specification that
regulates how different parts must interact and how reasoning should work.

Characterization under enforced semantics

In this section, we discuss enforced semantics for TC-QC reasoning. Simply speaking, this
semantics imposes foreign keys on the available database as well as on the ideal database.

We define a new function working with the available database. For a given ideal database
satisfying foreign keys it extends the available database to satisfy foreign keys as well. We
denote this function as Ka. We define it by means of a chase procedure, see the algorithm 5.2.

Require: a partial database D = (Di, Da), where Di satisfies foreign keys
Require: a set of foreign keys K
Ensure: the available database Da) satisfying foreign keys

1: repeat
2: D′ := Da

3: if there is a fact R(t) in Da and an FK f = R[X] ⊆ S[Y] in K s.t.
there is no fact S(t′) in Da s.t. t′[Y] = t[X] then

4: find the fact R(t) in Di and the fact S(t′′) in Di corresponding by f
5: Da ← Da ∪ {S(t′′) }
6: end if
7: until D′ = Da

8:

9: return D′

Algorithm 5.2: Co-chase procedure: Ka.

Lemma 5.3.3 LetK be a set of FK. LetD = (Di, Da) be a partial database, where Di satisfies
K. Then, Ka(D) is the minimal extension of Da (under set inclusion) satisfying K.

Proof Let us prove both properties: satisfaction and minimality.
Assume, Ka(D) does not satisfy K. Then, there is a tuple t ∈ R(Da), an FK f = R[X] ⊆

S[Y] ∈ K and there is no t′ ∈ S(Da) s.t. t′[Y] = t[X]. By the initial assumption, Di satisfies
K– there is t′ ∈ S(Di) s.t. t′[Y] = t[X]. In Algorithm 5.2, the condition in Line 3 is satisfied
by t and the rule in Line 3 finds t′ in Di. On the one hand, we assumed there is no t′ s.t.
t′[Y] = t[X]; on the other hand, the rule in Line 5 has to add it to the database. Contradiction.

Assume, Ka(D) is not a minimal extension. Then, there is an extension D′ of Da satisfying
K s.t. D′ ⊂ Ka(D). There is at least one tuple t in the difference Ka(D)\D′. This tuple as
well as all tuples added in Procedure 5.2 due to the condition in Line 5. Then, Ka(D)\{t} does

59

not satisfy K. Thus, t must be referenced by some FK f = R[X] ⊆ S[Y], then there is a tuple
t′ ∈ R(Da) such that there is no t ∈ S(Da) and t[Y] = t[X]. Contradiction.

Having defined the function Ka, we revise the TC-QC characterization to capture the new
semantics. The new TC-QC characterization with foreign keys under enforced semantics illus-
trates and shows how completeness reasoning changes due to the introduction of constraints in
the schema. We regard the characterization as a specification of the problem. If we change the
specification, it means we have to reflect these changes in the encoding as well.

The operator KC The operator Ka is defined over partial databases. In the characterization in
the previous chapter, we have seen that the ideal database and the available databases are strongly
related. It would be redundant to write twice similar constructions. That is why we introduce
the new operator KC . It takes as an argument a database instance and it is parameterized by the
set of foreign keys K and by the set of TC statements C. The operator KC is defined by the
following equation

KC(D) = Ka(Ki(D), fC(Ki(D))). (5.15)

It passes to the operator Ka two arguments: the ideal database Ki(D) that satisfies the set of
foreign keys K, and the available database fC(Ki(D)).

Now we can introduce the characterization in a readable way.

Theorem 5.3.4 (Characterization with FK under Enforced Semantics) Let Q be a query, C
be a set of TC-statements, K be a set of FK, then

C,K |= Compl(Q) ⇐⇒ Qs(KC(Di
Q)) 6= ∅. (5.16)

Proof (⇒) Assume that C,K |= Compl(Q). Then, we consider only Di and Da that satisfy
foreign keys: Di |= K and Da |= K. Then, Ki(Di) = Di and Ka(D) = Da. Equality holds
Q(Di) = Q(Da), due to the fact that D |= C. From Lemma 3.2.2 it follows that Q(Da) =
Q(fC(D

i)). By substitution of equals, we obtain Q(Da) = Q(KC(Di)).
By definition, Di

Q is the frozen by θ version of query Q with the body B and distinguished
variables X̄ . Assume, a tuple c̄ = αX̄ is in the answer to Q over Di. Then, αB ⊆ Di and
αθ−1 maps Di

Q to Di. Due to Lemma 5.3.1, Ki is monotone function, then αθ−1Ki(Di
Q) ⊆

Di. Due to Lemma 5.3.3, Ka is a monotone function, then KC(Di) ⊆ Da. Consequently,
Qs(KC(Di

Q)) 6= ∅.
(⇐) Assume, Qs(KC(Di

Q)) 6= ∅. We want to show that C,K |= Compls(Q). In order to do
so we assume that D = (Di, Da) is a partial database such that D |= C where c̄ is an arbitrary
tuple in Q(Di). We have to show that c̄ is in Q(Da) as well.

Let α be an assignment from Q into Di that maps X̄ to c̄. Then αB ⊆ Di where B is the
body of Q. Considering that fC is a monotone function (due to Lemma 3.2.2) over database
instances it follows that fC(αB) ⊆ fC(D

i). By assumption Di |= K, then due to Lemma
5.3.1 Ki is a monotone function and Ki(Di) = Di, it follows that fC(Ki(αB)) ⊆ fC(Ki(Di)).
Again from Lemma 3.2.2 we have that fC(Di) ⊆ Da when (Di, Da) |= C, so we conclude that
fC(αB) ⊆ Da. Then, it holds that fC(Ki(αB)) ⊆ Da. Due to the initial assumption, Da |= K,

60

so it holds thatKa(D) = Da. Due to Lemma 5.3.3, Ka is a monotone function and we conclude
that KC(αB) ⊆ Da.

Now let β be an assignments for which Qs(KC(Di
Q)) returns an empty tuple. Then a

composition αθ−1β is a proper assignment over the variables from Q into database instance
αθ−1KC(θB) for which Q returns an empty tuple as well. On the other hand, it is not hard to
check that αθ−1KC(θB)) ⊆ KC(αB). Consequently Qs(KC(αB)) 6= ∅.

Now αθ−1β maps X̄ to c̄. Then evaluating Q(X) against KC(αB) we obtain c̄. Finally,
considering that KC(αB) ⊆ Da we conclude that c̄ ∈ Q(Da).

Introduction of the characterization allows us to design a program that checks TC-QC en-
tailment. We make an argument that the program we create has the same semantics as the
characterization we have presented. That is why it is important to introduce a characterization
as a specification how different parts must interact and how reasoning should work.

A note on complexity In this paragraph, we refer to the Klug’s work (IND – Inclusion Depen-
dencies) [10]:

“The containment problem for conjunctive queries remains in NP for any fixed bound on the
maximum width of an IND (the width of an IND is the number of attributes occurring on either
of its sides).”

At the beginning of the section, we defined a foreign key as a combination of an inclusion
dependency and a functional dependency. We have our schema fixed and all FK are fixed.
The list of attributes of every FK is fixed on both sides. Consequently, the problem of TC-QC
reasoning with FK is in NP.

5.4 Encoding

Foreig keys encoding under ideal semantics

In this section, we are going to present an encoding of the TC-QC entailment with foreign keys
under ideal semantics. It is an extension of the relation encoding with an additional module P iK.
It captures additional constraints imposed over the ideal database.

In the characterization we have seen the only thing that changes is the prototypical database.
That is why we only need to encode the application of Ki to the prototypical database Di

Q. In
the encoding, we have two signatures Σi and Σa. We have to apply the new constraints to Σi,
since they correspond to Di

Q.
Wlog we assume that all primary key columns are at the beginning of the relations and all

referencing columns of all foreign keys are at the end. For every foreign key f = R[A] ⊆ S[B],
we define two rules r1

f and r2
f . In these rules, B̄ is a tuple of distinct variables in the position of

the referencing attributes of R and C̄ is a tuple of distinct variables in the remaining positions of
R. In S, B̄ occurs in the positions of the key attributes. The tuple Ā does not explicitly occur in
the rules because we join the primary key arguments of S with the referencing arguments of R

61

and denote them using only one vector of variables B̄.

S(B̄, fS(B̄)) ← R(C̄, B̄), not auxS(B̄). (5.17)

auxS(B̄) ← S(B̄, D̄), original(D̄).

If we look at the semantics of these rules, we can see why they encode the co-chase procedure
Ki. Observe that the second rule projects the arguments of S on the positions in B̄, it corresponds
to the “such that” part in the condition of Algorithm 5.1 in Line 4. Then, for every R-atom the
first rule checks, if there is a corresponding S-atom. We can see that if there is no corresponding
S-atom, then the rule creates it and adds to the answer set.

We make use of Skolem functions to guarantee uniqueness of the fresh constants that we
introduce. By means of the predicate original we make sure that added facts do not violate the
rule r1

f . If we omit this atom in the aux-predicates, then any added fact would be violate r1
f (see

the example below for clarifications).
For the sake of readability and compactness, we have written original(D̄). Strictly speaking,

the predicate original is unary. This construction original(D̄) should be read as a conjunction
of original-atoms for every variable d in D̄. It is an abbreviation for the following statement

original(D̄) ⇐⇒ original(d1), . . . , original(dn). (5.18)

where each di is in D̄.
We generalize these rules by considering Ā, B̄ as lists of indices. Then, we join variables

according to the foreign keys. Let us illustrate this by an example. Assume, there is a foreign
key5

Employee(_,DeptName, _) references Department(DeptName, _).

Then, the rules are

Department(D, fD(D))← Employee(N,D,B), not auxDepartment(D).

auxDepartment(D)← Department(D,L), original(L).

Let us show, what happens if we omit the predicate original. Assume, there is an atom in the
ideal database

Employee(name, deptName, bday) ∈ Di.

and there is no corresponding Department-atom in Di. Then, the rule r1
f fires and adds the atom

to Di

Department(deptName, fDepartment(deptName)) ∈ Di.

It triggers the second rule r2
f and it adds the fact to Di.

auxDepartment(deptName) ∈ Di.

On the one hand, the atom Department(deptName, fDepartment(deptName)) must be added to the
answer set due to the rule r1

f ; on the other hand, the rule r1
f must be removed since its body

5For the foreign key syntax, see Definition 2.4.4

62

contradicts to the answer set. In answer set programming this kind of rules is called “killer”
rules. In this example, there is no answer set that contains an Employee-atom, because it would
be rejected by the “killer” rules r1

f and r2
f .

To avoid this effect, we have introduced the predicate original. If we add it to the bodies of
the “aux”-rules, then newly added facts do not trigger r2

f and there is no “killer” rule.
We denote the pair r1

f and r2
f as rf

rf = {r1
f , r

2
f}.

We also need to introduce all original constants and frozen variables into the encoding. Let us
denote the set of all terms that occur in a query Q as terms(Q). Then, we define the program P iK
as

P iK =
⋃
f∈K

rf ∪ {original(t) | t ∈ terms(Q)}.

We state a lemma to make a connection between these constraints and the Ki operator that we
have introduced in the characterization section.

Lemma 5.4.1 (Correspondence: Ki and P iK) Let D be a database. Then, a fact S(t̄) is in
Ki(D) iff S(t̄) is in the answer set of P iK ∪D.

Proof Note that under the acyclicity assumption, P iK has a unique answer set (each pair of rules
is consistent due to the conjunction of original-atoms). We denote the answer set of P iK ∪D as
A.

(⇒) Assume, there is a fact S(t̄) in Ki(D). If it is in D, then it is trivially in A. If it is
not, then it was added by the rule of Algorithm 5.1 in Line 4. Assume, S(t̄) is not in A. If it
was added by the rule in the chase procedure, then there is f = R[A] ⊆ S[B] ∈ K such that
R[A] ⊆ S[B]. Consequently, there is a fact R(Ā, C̄) ∈ D. Then the rule r1

K must fire: “not
auxS(B̄)” is satisfied because we assumed that S(t̄) is not inA, and the conjunction of original-
atoms is not satisfied since the fact S(t̄) is not in D. The R(Ā, C̄) is in D by assumption. We
obtain contradiction; on the one hand, there must be S(t̄) due to the rule r1

K; on the other hand,
we assumed it is not in A.

(⇐) Assume, there is a fact S(t̄) in A. If it is in D, then it is trivially in Ki(D). If it is
not, then it was added by r1

f where f = R[A] ⊆ S[B] is an FK in K. Then there is a fact
R(Ā, C̄) ∈ D, and there is no S(B̄, D̄) ∈ D. Assume, there is no S(B̄, D̄) ∈ Ki(D). There
is a contradiction between the rule of Algorithm 5.1 in Line 4 and this assumption. On the one
hand, the fact must be added to Ki(D); on the other hand, we assumed it is not in Ki(D).

Theorem 5.4.2 (Encoding with FK under Ideal Semantics) Let Q be a query, C be a set of
TC-statements and K be a set of FK. Then,

C,K |=i Compl(Q) ⇐⇒ PQ ∪ PC ∪ P iK has an answer set.

Proof Instead of showing the correspondence between the encoding and the definition of query
completeness, we show the correspondence between the encoding and the characterization.

Qs(fC(Ki(Di
Q))) 6= ∅ ⇐⇒ PQ ∪ PC ∪ P iK has an answer set.

63

The proof is technical, that is why we briefly explain the main points of the proof. The proof
appeals to the characterization presented before. It has four logical levels. Firstly, we establish
a correspondence between ground facts in the encoding and the prototypical database in the
characterization. Secondly, by means of Lemma 5.4.1, we show a correspondence between the
prototypical database extended by Ki and the set of facts over the Σi signature extended by P iK.
Then, we show a correspondence between the sets we derive from the prototypical database
extended by Ki and facts over the Σi signature, namely between the set of facts over the Σa

signature and fC(Di
Q), by means of Lemma 3.3.1. Finally, by means of Lemma 4.5.2, we show

that both queries evaluate to true. The proof follows these steps in both directions.
The difference between the proof in the relational case and this proof is in application of

Ki in the characterization and P iK in the encoding. The procedure Ki only affects Di
Q and P iK

only affects EDB – the set of facts over the Σi signature. Then, we need to show correspondence
between the set of facts in the answer setA over Σi signature andKi(Di

Q). LetDi
Q be a database

instance over Σi signature, then Ki(Di
Q) and the set of facts over Σi signature in the answer set

are equal, due to Lemma 5.4.1.
Then, the proof is the same as the proof of Theorem 3.3.3, since both of the inclusion argu-

ments refer to Di
Q and EDB, which in our case are proven to be equal – as well as they are in

Theorem 3.3.3. Let us to denote the program PQ ∪ PC ∪ P iK as P .
(⇒) Assume, P has an answer set A. Then it has Qs in A due to the filtering rule. Conse-

quently, there is a mapping β such that it maps the body Ba of Qs to the facts in A over the Σa

signature.
The bodyB of the test queryQs() is the same set of atoms as the bodyBa of the test-ruleQs

except of the upper index •a 3.25. For every atom Ra(t̄) ∈ Ba, there is an atom R(t̄) ∈ B such
that they are the same except of the index. We know from previous paragraph that βRa(t̄) ∈ A,
consequently βR(t̄) ∈ fC(Di

Q). Due to Lemma 3.3.1 for every fact over Σa signature, there is
corresponding fact in fC(Di

Q) over Σi signature. Qs() is a boolean conjunctive query and every
atom of the body(B) is mapped to fC(Di

Q) by β. Ergo, it returns the empty tuple.
(⇐) Assume, Qs(fC(Ki(Di

Q))) 6= ∅. There is a mapping β that maps every atom R(t̄) in
the body of Qs() to fC(Di

Q). Due to 3.25 for every atom R(t̄) in the body of test query Qs(),
there is corresponding atom Ra(t̄) in the body of encoding of the test-query Qs. Due to Lemma
3.3.1 for every atomR(t̄) ∈ fC(Di

Q), there is an atomRa(t̄) ∈ A. Consequently, for every atom
Ra(t̄) in the body of encoding of the test query, it follows that βRa(t̄) ∈ A. Then, Qs ∈ A
because every atom of its body mapped by β to fact over Σa signature in A.

Foreign keys encoding under enforced semantics

In this section, we are going to present an encoding of TC-QC entailment with FK under en-
forced semantics. It is an extension of the encoding under ideal semantics. It captures additional
constraints imposed over the ideal and available databases.

In the characterization we have seen the only two applications ofKi andKa. That is why we
only need to encode the application of Ki to the prototypical database Di

Q and the application
of Ka to fC(Di

Q). In the encoding, we have two signatures Σi and Σa. We have to apply new
constraints to Σa, since they correspond to fC(Di

Q).

64

Assume, primary key constraints are always at the beginning of relations and referencing
columns are always at the end. Then, for a foreign key f = R[A] ⊆ S[B] we define a rule raf .
In the rule, B̄ is a tuple of distinct variables in the position of the referencing attributes of R, C̄
is a tuple of distinct variables in the remaining positions of R, D̄ is a tuple of distinct variables
in the remaining positions of S. In S, B̄ occurs in the positions of the key attributes. Note, Ā
does not explicitly occur in the rules because we join the primary key arguments of S with the
referencing arguments of R and denote them using only one vector of variables B̄.

Sa(B̄, D̄)← S(B̄, D̄), Ra(C̄, B̄). (5.19)

If we look at the semantics of the rule, we see why it encodes the co-chase procedureKa. It adds
a fact only if the corresponding R-fact is already in the available database and a corresponding
S-atom is only in the ideal database. It corresponds to the rule 3 in the procedure 5.2.

We generalize this rule accordingly to the previous rule rf . We define the program PK as

PK = P iK ∪ {raf | f ∈ K}. (5.20)

We define a lemma to make a connection between these constraints and the Ka operator.

Lemma 5.4.3 (Correspondence: Ka and PK) Let D = (Di, Da) be a partial database where
Di satisfies K. Then, a fact S(t̄) is in Ka(D) iff Sa(t̄) is in the answer set of PK ∪Di ∪Da. In
this union, we assume Da to be the set of facts over the Σa signature.

Proof Note that under the acyclicity assumption, PK is a stratified program with a unique an-
swer set. We denote it as A.

Assume, a fact S(t̄) is in Ka(D) but it is not in A. If the fact is in Da, then we trivially
obtain contradiction. Assume, it is not. Then, S(t̄) was added by the rule in Line 3 of Algorithm
5.2. Then, there must be a corresponding by some FK f fact R(s̄) in Da. We know that Di

satisfies FK, then both facts are in Di as well. Consequently, we obtain contradiction between
facts Ra(t̄) in Da, S(s̄) in Di and the rule raf that forces Sa(s̄) to present in A.

Assume, a fact Sa(t̄) is in A but S(t̄) is not in Ka(D). If the fact is in Da, then we trivially
obtain contradiction. Assume, it is not. Then, it was added by some rule raf . Then, there is a
corresponding atom R(s̄) in Da. Since Di satisfies K, both R(s̄) and S(t̄) are in Di. Then, we
obtain contradiction between the rule in Line 3 of Algorithm 5.2 and the fact that S(t̄) is not in
Ka(D).

Theorem 5.4.4 (Encoding with FK under Enforced Semantics) Let Q be a query, C be a set
of TC statements and K be a set of FK. Then,

C,K |= Compl(Q) ⇐⇒ PQ ∪ PC ∪ PK has an answer set. (5.21)

Proof Instead of showing the correspondence between the encoding and the definition of query
completeness, we show the correspondence between the encoding and the characterization.

Qs(KC(Di
Q)) 6= ∅ ⇐⇒ PQ ∪ PC ∪ PK has an answer set. (5.22)

65

The proof is technical, that is why we briefly explain the main points of the proof. The proof
appeals to the characterization presented before. It has five logical levels. Firstly, we estab-
lish correspondence between ground facts in the encoding and the prototypical database in the
characterization. Secondly, by means of Lemma 5.4.1, we show correspondence between the
prototypical database extended by Ki and the set of facts over the Σi signature extended by P iK
(which is a part of PK, see Definition 5.20). Then, by means of Lemma 3.3.1, we show corre-
spondence between the sets we derive from them, namely between the set of facts over the Σa

signature and the set fC(Di
Q). According to Lemma 5.4.3, we show correspondence between

the set of fact over Σa signature extended by PK and the fC(Di
Q) set extended by Ka. Finally,

by means of Lemma 4.5.2, we show that both queries evaluate to true. The proof follows these
steps in both directions.

The procedure Ki only affects Di
Q; the P iK part of PK only affects EDB – the set of facts

over Σi signature. Then, we need to show correspondence between the set of facts in the answer
set over the Σi signature and the set Ki(Di

Q). Let Di
Q be a database instance over the Σi

signature, thenKi(Di
Q) and the set of facts over the Σi signature in the answer set are equal, due

to Lemma 5.4.1. It means Lemma 3.3.1 holds for Ki(Di
Q) and the set of facts over Σi signature

in the answer set.
(⇒) Assume, P has an answer setA. Then it hasQs inA due to filtering rule. Consequently,

there is a mapping β such that it maps body (Ba) of Qs to the facts in A over Σa signature.
The bodyB of the test queryQs() is the same set of atoms as the bodyBa of the test-ruleQs

except of the upper index •a, according to Definition 3.25. For every atom Ra(t̄) ∈ Ba, there
is an atom R(t̄) ∈ B such that they are the same except of the index. We know from previous
paragraph that βRa(t̄) ∈ A, consequently we obtain that βR(t̄) ∈ fC(Di

Q). Due to Lemmata
3.3.1 and 5.4.3, for every fact over the Σa signature, there is a corresponding fact in fC(Di

Q) over
the Σi signature. Due to the definition of the test query, Qs() is a boolean conjunctive query and
every atom of the body B is mapped to fC(Di

Q) by β. Ergo, it returns the empty tuple.
(⇐) Assume, Qs(fC(Ki(Di

Q))) 6= ∅. There is a mapping β that maps every atom R(t̄) in
the body of Qs() to fC(Di

Q). Due to Definition 3.25, for every atom R(t̄) in the body of the test
query Qs(), there is a corresponding atom Ra(t̄) in the body of encoding of the test-rule Qs.
Due to Lemmata 3.3.1 and 5.4.3, for every atom R(t̄) ∈ fC(Di

Q), there is an atom Ra(t̄) ∈ A.
Consequently, for every atomRa(t̄) in the body of the test-rule, it holds that βRa(t̄) ∈ A. Then,
Qs ∈ A because every atom of its body mapped by β to fact over the Σa signature in A.

Encoding theorems with foreign keys Having introduced a reduction of the query complete-
ness problem into a problem of an evaluation of an answer set program, we have made a feasible
decision procedure for TC-QC reasoning. It can be used in practice provided there is an efficient
ASP reasoner available.

It also allows to reason with foreign keys in two modes: under ideals semantics, and under
available semantics. If we have only knowledge about the domain, we use the reasoning proce-
dure under ideal semantics. If we know that foreign keys hold on the database as well, we use
the reasoning procedure under enforced semantics.

66

5.5 Both Types of Constraints

Additional constraints on the schema and the database allow for more conclusions. If we impose
foreign keys, we can discover new inference possibilities. As well, if we impose finite domain
constraints, we can obtain more complentess results. If we combine both types of constraints,
we obtain even more new inference possibilities.

We investigate how to combine both approaches we have seen so far. We start with an
example indicating how constraints interact with each other. Then, we generalize this example
and introduce a characterization with foreign keys and finite domain constraints. At the end, we
change the encoding to take into account both types of constraints.

FK and FDC: example under ideal semantics

In this section, we want to develop a procedure that captures reasoning with both types of con-
straints – finite domain constraints and foreign keys. Let us start with an example illustrating
what inferences are possible.

Assume, we work under ideal semantics in this example. We would like to demonstrate
an interaction between different types of constraints. To do so, we take an appropriate schema
where such an inference can naturally occur. Assume, the schema is

pupil(Name,Level,Code).

class(Level,Code,Branch).

Assume, there are two constraints on it. There is a finite domain constraint

Dom(class, 2, {a, b}).

There is a foreign key constraint6 that holds over Di

pupil(_,Level,Code) references class(Level,Code, _).

There are two TC statements

Compl(pupil(N, 1, a);>).

Compl(pupil(N, 1, b);>).

There is a query Q

Q(N)← pupil(N, 1, C).

In this example, we are going to follow the same pattern as in the 3rd chapter. We also show
interaction between different constraints and parts of the reasoning procedure.

6For the foreign key syntax, see Definition 2.4.4

67

1. Determine what tuples have to be in Di Assume, Q returns a constant name as an answer
tuple. Then, there must be a corresponding body atom in Di because Q is a conjunctive query

pupil(name, 1, code) ∈ Di. (5.23)

Due to the foreign key constraint, for every pupil-atom, there must be a corresponding class-
atom. For the atom pupil(name, level, code), there must be an atom class(level, code, branch).
Then, we conclude that

class(1, code, branch) ∈ Di. (5.24)

2. Determine what tuples have to be in Da Due to the finite domain constraint, code in the
atom class(1, code, branch) can be only a or b. Assume, it is a. Then, we apply the TC statement
Compl(pupil(N, 1, a);>) to the atom pupil(name, 1, a). As a result, we establish this atom to
be in the available database

pupil(name, 1, a) ∈ Da. (5.25)

3. Verify completeness Assuming code to be a, the query Q returns the constant name over
both databases Di and Da. In this case, the query is complete.

If we assume code to be b, then the result stays the same due to the symmetry of the rules.

FK and FDC: example under enforced semantics

There are two possible semantics for foreign keys in the context of completeness reasoning.
We have already shown an example with finite domain and foreign key constraints under ideal
semantics. In this subsection, we present an example of reasoning with finite domains and
foreign keys under enforced semantics. We would like to demonstrate additional possibilities
to due establish completeness due to interaction between these two types of constraints in the
reasoning procedure.

Assume, the schema, the TC statements, the finite domain constraint and the foreign key
constraint are the same as in the previous example. The query Q is

Q(N)← pupil(N, 1, C), class(1, C,B).

The difference with the previous example is also in semantics of foreign keys. In this example,
we assume enforced semantics which allows to reason over the available database by means of
foreign keys. It gives additional possibilities to establish query completeness.

1. Determine what tuples have to be in Di Assume, Q returns a constant name as an answer
tuple. Then, there must be corresponding body atoms in Di because Q is a conjunctive query

pupil(name, 1, code) ∈ Di.

class(1, code, branch) ∈ Di.

For every pupil-atom, there is a corresponding class-atom. For the atom pupil(name, 1, code),
there is the atom class(1, code, branch). Then, the foreign key constraint overDi is satisfied and
we cannot infer any new facts in Di.

68

2. Determine what tuples have to be in Da Due to the finite domain constraint, the constant
code in the atom class(1, code, branch) can be only a or b. Assume, it is a. Then, we apply the
TC statement Compl(pupil(N, 1, a);>) to the atom pupil(name, 1, a). As a result, we establish
that this atom is in the available database

pupil(name, 1, a) ∈ Da.

Due to the foreign key constraint over Da, for every pupil-atom in the available database, there
is a corresponding class-atom in the available database. For the atom pupil(name, 1, code), there
must be the corresponding atom class(1, code, branch). As a result, we establish that this atom
is in the available database.

class(1, code, branch) ∈ Da.

3. Verify completeness Assuming code to be a, the query Q returns the constant name over
both databases Di and Da. In this case, the query is complete.

If we assume code to be b, then the result stays the same due to the symmetry of the rules.

FK and FDC: semantics

Query completeness with foreign keys restricts models to satisfying foreign keys. Query com-
pleteness with finite domain constraints restricts models to satisfying finite domain constraints.
Defining query completeness with both types of constraints, it is natural to restrict model to
satisfying both of them.

We have introduced two semantics for foreign keys in the context of completeness reasoning.
That is why we have two possible semantics for reasoning with both types of constraints. When
we talk about foreign keys imposed only over the ideal database we explicitly mention ideal
semantics in the titles. When we talk about foreign keys imposed over both databases, we
normally do not mention semantics in the titles.

Let us formally introduce TC-QC entailment in the presence of both types of constraints.
We start with foreign keys under ideal semantics.

Definition 5.5.1 (TC-QC Entailment with FK and FDC under Ideal Semantics) Let Q be a
query, C be a set of TC-statements, F be a set of FDC and K be a set of FK. Then, C, F and K
entail completeness ofQ under ideal semantics written C,F ,K |=i Compl(Q) iff for any partial
database D = (Di, Da) it holds that

D |= C and D |= F and Di |= K =⇒ Q(Di) = Q(Da).

In the similar way we introduce TC-QC entailment with FK and FDC under enforced semantics.

Definition 5.5.2 (TC-QC Entailment with FK and FDC) Let Q be a query, C be a set of TC-
statements, F be a set of FDC and K be a set of FK. Then, C, F and K entail completeness of
Q written C,F ,K |= Compl(Q) iff for any partial database D = (Di, Da) it holds that

D |= C and D |= F and D |= K =⇒ Q(Di) = Q(Da).

69

Characterization of FK and FDC

We have described reasoning with finite domain constraints separately from reasoning with for-
eign key constraints. In this section, we combine both types of constraints into the one charac-
terization.

The difference between relational reasoning and reasoning with foreign keys is in application
of the Ki and Ka operators. The difference between relational reasoning and reasoning with
finite domain constraints is in application of cases (mappings of bound variables) to the query
and the prototypical database. Finite domain and foreign key constraints apply to the different
parts of the reasoning problem independently. However, as we have seen in the examples they do
interact with each other. Namely, new facts added by the chase procedure Ki can trigger some
finite domain constraints. That is why we have to extend the definition of a bound variable.
Also, we have seen in the examples with fresh constants that these constants can trigger finite
domain constraints, therefore, now we have to consider bound terms.

Definition 5.5.3 (Bound Term) A term t is bound by a finite domain constraint f = Dom(R, i,M)
iff t occurs in the i-th position of an atom with relation R in Ki(Di

Q).

It implies that the atoms added because of foreign keys in the schema, can trigger finite domain
constraints.

It also implies that the set of cases ΓF ,Q depends on the set of foreign keys K. Let us denote
this dependence of the set of cases as ΓF ,K,Q. Each γ in ΓF ,K,Q is a mapping of bound terms
to a set of constant such that γ is consistent with the set of finite domain constants F . Let us
formally introduce ΓF ,K,Q.

Definition 5.5.4 Let Q be a query, K be a set of foreign keys, F be a set of finite domain
constraints. Then, ΓF ,K,Q is the set of all mappings from the set of bound terms in Q to a set of
constants such that each mapping is consistent with F .

However, what we need to change is application of γ to the set Ki(Di
Q) instead of Di

Q. We
need to move γ out of the γDi

Q. We have seen in the example the order of operator applications
in the reasoning. Firstly, we compute Ki(Di

Q), then we apply γ to it. Afterwards, we apply the
function fC to the set γKi(Di

Q) and evaluate the test query over the result of fC application.
We can see all these steps clearly in the example in the previous chapter. At the beginning,

we computed Di
Q in 5.23. Then, we applied the foreign key constraint to it 5.24. Afterwards, at

the beginning of the second paragraph of Section 5.5 we applied the finite domain constraint to
Ki(Di

Q). Finally, in 5.25, we applied the TC statement to γKi(Di
Q) and verified completeness

in the third paragraph of Section 5.5.
Let us motivate the characterization with both types of constraints. As in the previous chap-

ters, we introduce an effective check of TC-QC entailment. It explicitly shows interaction be-
tween different parts of the problem and it can be effectively computed. It is an important step
towards development of an algorithm or a decision procedure that can reason with different types
of constraints. In this case, the types are finite domain and foreign key constraints.

70

Theorem 5.5.1 (TC-QC Characterization with FDC and FK under Ideal Semantics) LetQ
be a query, C be a set of TC statements, F be a set of FDC, K be a set of FK. Then,

C,F ,K |=i Compl(Q) ⇐⇒ Qγs (fC(γKi(Di
Q))) for every γ in ΓF ,K,Q.

Proof In the following, let θ be the freezing assignment of the variables in Q, B be the body of
Q, X̄ be the vector of distinguished variables of Q.

(⇒) Assume that C,F ,K |=i Compl(Q). Consider a partial database D = (Di, Da) that
satisfies C,F and Di |= K. Since Q is complete, for any tuple c̄ it holds that if c̄ is in the answer
to Q(Di), then it is in the answer to c̄ in Q(Da). Let us take tuple t̄ = γθX̄ . There must be a
corresponding to t̄ assignment α such that αB ⊆ Di. By assumption D |= F , Representation
Lemma 4.3.3 applies to γ. Since t̄ is the frozen tuple, α must be of the form α′γθ, for some
fixed γ in ΓF ,K,Q. Then, it holds that α′γθ maps B to Di. By definition, Di

Q is frozen by θ
version of B. We conclude that α′γ maps Di

Q to Di. By definition Ki is a monotone operator,
then α′γ maps Ki(Di

Q) to Ki(Di). Since Di |= K, we conclude that the assignment α′γ maps
Ki(Di

Q) to Di. Since D |= C, it holds that fC(Di) ⊆ Da. Finally, we conclude that α′ maps
fC(γKi(Di

Q)) to Da. For the fixed assignment γ, it holds that Qγs (fC(γKi(Di
Q))) 6= ∅

(⇐) Now we assume that Qγs (fC(γKi(Di
Q))) 6= ∅ for all γ in ΓF ,K,Q and we want to show

that C,F ,K |=i Compls(Q). In order to do so we assume that D = (Di, Da) is a partial
database that satisfies C,F and Di |= K. We assume that c̄ is an arbitrary tuple in Q(Di). We
have to show that c̄ is in Q(Da) as well.

Assume there is α that maps Q to Di such that c̄ = αX̄ . Due to Representation Lemma
4.3.3, α must be of the form α′γ. Then, it holds that α′γB ⊆ Di. Since Di |= K we conclude
that Ki(α′γB) ⊆ Di. Since D |= C, we conclude that fC(Ki(α′γB)) ⊆ Da.

Let β be an assignments such that Qγs (fC(γKi(Di
Q)))) evaluates to true for every γ in

ΓF ,K,Q. Due to Representation Lemma 4.3.3 and the fact that distinguished variables of Qγs
are frozen by θ, β must be of the form θγβ′, where β′ maps only non-distinguished variables.
Consequently, the tuple t̄ = θγX̄ must be in the answer to Q over fC(γKi(Di

Q)). Let us apply
α′θ−1 to t̄. As result we obtain, t̄ = α′γX̄ , i.e. we obtain c. Then, c is an answer tuple to Q
over α′θ−1fC(γKi(θB)).

Then, the composition α′θ−1 maps fC(γKi(θB)) to fC(Ki(α′γB)), since Qsγ evaluated to
true for any γ in ΓF ,K,Q and both θ and θ−1 preserve distinguishness of variables. Due to the
fact that fC(Ki(α′γB)) ⊆ Da, we conclude that c is in Q(Da).

It seems like the finite domain constraints are applied first in this definition. However, due to
Definition 5.5.3, it is not the case. Let us illustrate it with an example.

Assume, the schema is the same as in Example 5.5. The query Q is

Q(N)← pupil(N,L,C).

There is a foreign key constraint7

pupil(_, L, C) references class(L,C, _). (5.26)
7For the foreign key syntax, see Definition 2.4.4

71

There is a finite domain constraint8

Dom(class, 3, {a, b}) (5.27)

There are two TC statements

Compl(pupil(N,L,C); class(L,C, a)). (5.28)

Compl(pupil(N,L,C); class(L,C, b)). (5.29)

Let us present calculations and an application of Theorem 5.5.1.
At the beginning we compute ΓF ,K,Q. We start with Definition 5.5.3 that shows how to

compute bound terms. According to Definition 5.5.3, we need to compute Ki(Di
Q) to es-

tablish bound terms. In our case Di
Q is {pupil(n, l, c)}. Then, due to FK 5.26, Ki(Di

Q) is
{pupil(n, l, c), class(l, c, fclass(l, c))}. Let us refer to the Skolem term fclass(l, c) as f . Then, f
is the only bound term. Due to FDC 5.27, f can be either a or b. Finally, there are two mappings
in ΓF ,K,Q: γ1 = {f 7→ a} and γ2 = {f 7→ b}.

Let us show all consequent computations for γ1 (they are symmetric for γ2). To com-
pute γDi

Q, we apply γ1 to Di
Q, as a result we obtain γDi

Q = {pupil(n, l, c), class(l, c, a)}.
Then, we compute fC(γDi

Q), by applying TC Statements 5.28, as a result, fC(γDi
Q) is equal to

{pupil(n, c, l)}. Finally, there is a mapping α = {N 7→ n,L 7→ k,C 7→ c} such that the body
pupil(N,L,C) of the test query is satisfied by α over the part of the available database fC(γDi

Q).
According to Theorem 5.5.1, the query is complete (due to the symmetry of TC statements the
calculations are the same for γ2).

In the same manner we introduce a characterization under enforced semantics. It captures
reasoning with both types of constraints when foreign keys are also imposed over the available
database.

However, we have to make a change in our definition of KC operator. We need to introduce
γ into it. Let us introduce a new version of this operator formally.

Definition 5.5.5 (The operator KγC) Let K be a set of foreign keys, C be a set of TC statements,
γ be a case in ΓF ,K,Q. Then, we define the operator KγC over a database instance D by the
following equation:

KγC(D) = Ka(γKi(D), fC(γKi(D))). (5.30)

Theorem 5.5.2 (TC-QC Characterization with FDC and FK) Let Q be a query, C be a set of
TC statements, F be a set of FDC, K be a set of FK. Then,

C,F ,K |= Compl(Q) ⇐⇒ Qγs (KγC(D
i
Q)) for every γ in ΓF ,K,Q.

Proof In the following, let θ be the freezing assignment of the variables in Q, B be the body of
Q, X̄ be the vector of distinguished variables of Q.

8For the finite domain constraint syntax, see Section 2.4

72

(⇒) Assume that C,F ,K |= Compl(Q). Consider a partial database D = (Di, Da) that
satisfies C,F ,K. Since D |= C, for any tuple c̄ it holds that if c̄ is in the answer to Q(Di), then
it is in the answer to Q(Da). Let us take the tuple t̄ = γθX̄ . There must be a corresponding
to t̄ assignment α such that αB ⊆ Di. By assumption D |= F , Representation Lemma 4.3.3
applies to γ. Since t is the frozen tuple, α must be of the form α′γθ, for some fixed γ in ΓF ,K,Q.
Then, it holds that α′γθ maps B to Di. By definition, Di

Q is frozen by θ version of B. We
conclude that α′γ maps Di

Q to Di. By definition Ki is a monotone operator, then α′γ maps
Ki(Di

Q) to Ki(Di). Since Di |= K, we conclude that the assignment α′γ maps Ki(Di
Q) to Di.

Since D |= C, it holds that fC(Di) ⊆ Da. Then, we conclude that α′ maps fC(γKi(Di
Q)) to

Da. Finally, since Da |= K, α′ maps KγC(Di
Q) to Da. For the fixed assignment γ, it holds that

Qγs (KγC(Di
Q)) 6= ∅

(⇐) Now we assume that Qγs (KγC(Di
Q))) 6= ∅ for all γ in ΓF ,K,Q and we want to show that

C,F ,K |= Compls(Q). In order to do so we assume that D = (Di, Da) is a partial database
that satisfies C,F ,K. We assume that c̄ is an arbitrary tuple in Q(Di). We have to show that c̄
is in Q(Da) as well.

Assume there is α that maps Q to Di such that c̄ = αX̄ . Due to Representation Lemma
4.3.3, α must be of the form α′γ. Then, it holds that α′γB ⊆ Di. Since Di |= K we conclude
that Ki(α′γB) ⊆ Di. Since D |= C, we conclude that fC(Ki(α′γB)) ⊆ Da. Since, Da |= K,
KγC(Di

Q) ⊆ Da

Let β be an assignments such thatQγs (KγC(Di
Q)) evaluates to true for every γ in ΓF ,K,Q. Due

to Representation Lemma 4.3.3 and the fact that distinguished variables of Qγs are frozen by θ,
β must be of the form θγβ′, where β′ maps only non-distinguished variables. Consequently, the
tuple t̄ = θγX must be in the answer toQ over fC(γKi(Di

Q)). Let us apply α′θ−1 to t̄. As result
we obtain, t̄ = α′γX̄ , i.e. we obtain c. Then, c is an answer tuple to Q over α′θ−1KγC(θB).

Then, the composition α′θ−1 maps KγC(θB) to KγC(α′γB), since Qsγ evaluated to true for
any γ in ΓF ,K,Q and both θ and θ−1 preserve distinguishness of variables. Due to the fact that
KγC(α′γB) ⊆ Da, we conclude that c is in Q(Da).

Introduction of the characterization with finite domains and foreign keys allows us to design
a program that checks TC-QC entailment in the presence of both types of constraints. We make
an argument that the program we create has the same semantics as the characterization we have
presented. That is why it is important to introduce the characterization as a specification that
regulates how different parts must interact and how the reasoning procedure should work.

Encoding of FK and FDC

In this section, we introduce an encoding of the completeness reasoning problem in the presence
of foreign keys and finite domain contains. We are going to follow the same strategy as before.
We analyze the changes in the characterization. We modify the encoding accordingly.

Changes in the rules We start with the encoding under ideal semantics of foreign keys. In
the example, we have seen that a finite domain constraint can be triggered by a fresh constant
introduced by a foreign key constraint. It naturally follows that now all terms in Ki(Di

Q) must

73

have values. By default, every frozen variable has a value that is equal to itself. Then, we add a
rule for every foreign key that generates a default value for every added atom. Let r be a pair of
rules associated with a foreign key f = R[A] ⊆ S[B] in K, then two rules in r are the following
9

S(B̄, fS(B̄)) ← R(C̄, B̄), not auxS(B̄). (5.31)

auxS(B̄) ← S(B̄, D̄), original(D̄). (5.32)

We have also observed that PC has changed by means of unfolding of the variables and the con-
stants in the rules. The rules in PK are similar to the rules in PC . Then, we modify the program
PK by unfolding the rules as we have done in Section 4.5. We modify the rules, according to
Unfolding 4.50, by application of Rule 4.44 to every atom in the body of the rules.

Let us note here that the aux-predicate is meant to verify that the fact is already in the
database. Then, it means we have to pass to the aux-predicate values of the variables instead
of names of the variables. Let ru1 and ru2 be the unfolded version of a pair of rules r1 and r2.
Having unfolded the rules, we change the head of the aux-rule and obtain.

S(B̄, fS(V̄B)) ← R(C̄, B̄), not auxS(V̄B), val(B̄, V̄B). (5.33)

auxS(V̄B) ← S(B̄, D̄), original(D̄), val(B̄, V̄B). (5.34)

Let us denote as rval a rule corresponding to r that generates values for fresh constants

val(fS(V̄B), fS(V̄B))← R(C̄, B̄), not auxS(V̄B), val(B̄, V̄B). (5.35)

The rule generates values for fresh constants correctly for the following reasons, if the body of
Rule 5.31 is satisfied, then the head is added to the answer set. It means under the same condition
we must associate a value with it. Then, the body of Value Generation Rule 5.35 must be exactly
the same as the body of Rule 5.31 that adds atoms. Let us observe that we use values of variables
in the Skolem terms instead of names.

Let rval be the val-generation rule for r, then we define the unfolded program P uKi as

P uKi =
⋃
r∈P i

K

{ru1 , ru2 , rval}.

In the encoding enforced semantics, we need to set up values in the same way. We also need
to unfold the rules, but in this case we need to unfold three rules associated with a foreign key
constraint.

Let ru1 , r
u
2 , r

u
a be the unfolded version of the triple of rules r. Let rval be the val-generation

rule for r. Then, we define the unfolded program P uK under enforced semantics as

P uK =
⋃
r∈PK

{ru1 , ru2 , rua , rval}.

9 for details about the rules’ definition, see 5.17

74

Encoding Theorem

To automate the work of the decision procedure, we reduce the characterization to an evaluation
of an answer set program. It allows us to check TC-QC entailment by using existing ASP rea-
soning engines. Note, this solutions is optimal from a complexity point of view. The complexity
of the reduced problem is the same as the complexity of the problem we reduce into.

Let us introduce an encoding theorem that works with both types of constraints under ideal
semantics.

Theorem 5.5.3 Let Q be a query, C be a set of TC statements, K be a set of FK, F be a set of
FDC, then

C,F ,K |=i Compl(Q) ⇐⇒ P uQ ∪ P uC ∪ P uKi ∪ PF has Q in every answer set.

Proof The proof is technical, that is why we briefly explain the main points of the proof. The
proof appeals to the characterization presented before. It has five logical levels. Firstly, we
establish correspondence between ground facts in the encoding and the prototypical database in
the characterization. Secondly, by means of Lemma 4.5.1, we show correspondence between a
considered case γ and the val-set in the encoding. Thirdly, by means of Lemma 5.4.1, we show
correspondence between the prototypical database extended by Ki and the set of facts over the
Σi signature extended by P iK. Then, we show correspondence between the sets we derive from
the prototypical database extended by Ki and facts over the Σi signature, namely between the
set of facts over the Σa signature and fC(Di

Q), by means of Lemma 3.3.1. Finally, by means of
Lemma 4.5.2, we show that both queries evaluate to true. The proof follows these steps in both
directions.

Let A be an answer set of the program.
Assume, Qγs (fC(Ki(γDi

Q))) 6= ∅ for an arbitrary but fixed γ. Then, due to Lemma 4.5.1,
the set val(γ) must be in A. We know that Du

Q must be in EDB as a set of ground facts over Σi

signature. Since Lemma 5.4.1 applies, the set of facts over Σi signature is equal to Ki(γDi
Q).

Due to Lemma 3.3.1, for every factR(t̄) in fC(γDi
Q), there is a factRa(t̄) inA. Then, we apply

Lemma 4.5.2 to the test-rule Qu. We took γ to be arbitrary but fixed; then, the proof holds for
any γ in ΓF ,Q.

Assume, Q holds in every answer set of the program. We take an arbitrary but fixed answer
set A. Due to Lemma 4.5.1, there must be a corresponding γ in ΓF ,Q. Then, the set of facts
in EDB is Ki(γDi

Q) because of Lemma 5.4.1. According to Lemma 3.3.1, the correspondence
holds between the facts over Σa signature and the facts in fC(Ki(γDi

Q)), we deduce that for
every fact Ra(t̄) in A, there is a fact R(t̄) in fC(Ki(γDi

Q)). Due to Lemma 4.5.2, we conclude
that the test query Qγs evaluates to true.

Having modified the foreign key encoding part under enforced part, we introduce an encod-
ing theorem that captures reasoning with both types of constraints.

75

Theorem 5.5.4 Let Q be a query, C be a set of TC statements, K be a set of FK, F be a set of
FDC, then

C,F ,K |= Compl(Q) ⇐⇒ P uQ ∪ P uC ∪ P uK ∪ PF has Q in every answer set.

Proof The proof is technical, that is why we briefly explain the main points of the proof. The
proof appeals to the characterization presented before. It has six logical levels. Firstly, we
establish correspondence between ground facts in the encoding and the prototypical database in
the characterization. Secondly, by means of Lemma 4.5.1, we show correspondence between a
considered case γ and the val-set in the encoding. Thirdly, by means of Lemma 5.4.1, we show
correspondence between the prototypical database extended by Ki and the set of facts over the
Σi signature extended by P iK (which is a part of PK, see Definition 5.20). Then, by means of
Lemma 3.3.1, we show correspondence between the sets we derive from them, namely between
the set of facts over the Σa signature and the set fC(Di

Q). According to the lemma 5.4.3, we
show correspondence between the set of fact over Σa signature extended by PK and the fC(Di

Q)
set extended by Ka. Finally, by means of the lemma 4.5.2, we show that both queries evaluate
to true. The proof follows these steps in both directions.

Let A be an answer set of the program.
Assume, Qγs (Ka(fC(Ki(γDi

Q)))) 6= ∅ for an arbitrary but fixed γ. Then, due to Lemma
4.5.1, the set val(γ) must be in A. We know that Du

Q must be in EDB as a set of ground facts
over Σi signature. Since Lemma 5.4.1 applies, the set of facts over Σi signature is equal to
Ki(γDi

Q). Due to Lemmata 3.3.1 and 5.4.3, for every fact R(t̄) in fC(γDi
Q), there is a fact

Ra(t̄) in A. Then, we apply Lemma 4.5.2 to the test-rule Qu. We took γ to be arbitrary but
fixed; then, the proof holds for any γ in ΓF ,Q.

Assume, Q holds in every answer set of the program. We take an arbitrary but fixed answer
set A. Due to Lemma 4.5.1, there must be a corresponding γ in ΓF ,Q. Then, the set of facts
in EDB is Ki(γDi

Q) because of Lemma 5.4.1. According to Lemmata 3.3.1 and 5.4.3 the cor-
respondence holds between the facts over Σa signature and the facts in Ka(fC(Ki(γDi

Q))), we
deduce that for every fact Ra(t̄) inA, there is a fact R(t̄) in Ka(fC(Ki(γDi

Q))). Due to Lemma
4.5.2, we conclude that the test query Qγs evaluates to true.

Having introduced the encoding theorem, we can design an effective (from a complexity
point of view) reasoner for the TC-QC completeness problem in the presence of finite domain
and foreign key constraints. By design, this procedure follows the characterization that exactly
captures query completeness reasoning. It is an important theorem in development of a practical
completeness reasoner.

Having connected two formalisms, we have made a feasible decision procedure for TC-QC
reasoning. It can be used in practice provided there is an efficient ASP reasoner available.

76

CHAPTER 6
Reasoning with Built-in Predicates

Overview

In this chapter, we propose an approach to completeness reasoning with built-in predicates. We
start with examples showing how the reasoning procedure is affected by the presence of built-in
predicates. We discuss a way to connect reasoning in the presence of built-in predicates with
reasoning in the presence of finite domain predicates.

6.1 Example

Let us start with an example illustrating how the reasoning procedure works.
Assume, we have a query Q asking for all employee born after the year 1975

Q(Name)← Employee(Name,DeptName,Birthday), year(Birthday) > 1975.

where the predicate > has the standard semantics. Assume, we have a TC statement

Compl(Employee(Name,DeptName,Birthday); year(Birthday) > 1972). (6.1)

Clearly, the query is complete. How would we reason in this particular case?
Assume there name is in the answer to Q. Then, there is a corresponding body atom

Employee(name, deptName, bday) ∈ Di.

such that year(bday) is greater than 1975. Applying TC Statement 6.1, we obtain the atom

Employee(name, deptName, bday) ∈ Da.

Consequently, we deduce that the query is complete. Here, we virtually stored the value of bday
and evaluated the built-in predicate taking into account the value of bday in the application of
the TC statement.

77

Let us illustrate another possibility to ensure completeness in the presence of the built-in
predicates. Assume, we have a query Q1

Q1(Name)← Employee(Name,DeptName,Birthday).

Assume, there are two TC statements

Compl(Employee(Name,DeptName,Birthday); year(Birthday) ≤ 1974).

Compl(Employee(Name,DeptName,Birthday); year(Birthday) > 1974).

If we assume that there is a constant name in the answer to Q1. Then, there must be a corre-
sponding body atom in Di

Employee(name, deptName, bday) ∈ Di.

The value of bday is unrestricted in this case. If we apply the TC statements syntactically, then
none of them apply and we cannot ensure completeness. However, we know that the year value
of bday is either less than, equal to or greater than 1974. Assume, it is less than 1974. The first
rules applies and completeness is ensured. In the same way, we establish completeness in the
two other cases. As a result, we deduce completeness in general.

We have already seen this reasoning technique – case analysis. As we see later, we are going
to propose it as the main technique to reason in the presence of built-in predicates.

6.2 Formalization

Queries with comparisons

In this section, we give a formalization of the entailment under comparisons.
First of all, we start with syntax and semantics of comparison atoms. Every comparison

atom has the form
X ◦ a,

where X is a variable, a is a positive integer, and ◦ ∈ {<,≤, >,≥}. The semantics of ◦ is
defined as classical comparison semantics over integers. We have made a restriction on the
comparisons by restraining the form of the atoms.

Let B be a set of relational atoms, M be a set of built-in atoms, X̄ be a list of variables, then
we say that a query with comparisons Q is an expression of the form

Q(X̄)← B,M. (6.2)

Accordingly, we change the definition of an answer tuple

Definition 6.2.1 (Answer Tuple) A tuple c̄ is an answer tuple to a query Q(X̄) = B,M over a
database D iff there is a mapping α s.t.

• c̄ = αX̄;

78

• D,α |= B;

• D,α |= M .

We defined TC statements by means of an associated query. Having defined queries with com-
parisons, we introduce TC statements with comparisons. Let R(s̄) be a relational atom, G be a
set of relational atoms, M be a set of comparisons such that the query Q(s̄) ← R(s̄), G,M is
safe.

Definition 6.2.2 (TC Statement with Comparisons) A TC statement C with comparisons is
an expression of the form Compl(R(s̄);G,M). It has the associated queryQC(s̄)← R(s̄), G,M .
The statement is satisfied by D = (Di, Da), written D |= Compl(R(s̄);G,M), iff

QC(Di) ⊆ R(Da). (6.3)

We reformulate TC-QC entailment to take into account comparisons.

Definition 6.2.3 (TC-QC with Comparisons) Let Q be a query with comparisons under set
semantics and C be a set of TC-statements with comparisons. Then, C entails completeness of
Q, written C |= Compl(Q), iff for any partial database D = (Di, Da) holds

D |= C =⇒ Q(Di) = Q(Da).

Properties

In this subsection, we are going to investigate properties of the queries and TC statements rele-
vant for completeness reasoning with comparisons. We have already seen in the examples that
comparisons can distinguish only certain classes of models. Let ◦ be any comparison predicate,
then the formula

X ◦ a,

can distinguish at most three classes of models:

1. X ∈ (a,∞);

2. X ∈ (−∞, a);

3. X = a.

It cannot distinguish if X = a + 1 or X = a + 2. Therefore, instead of considering the whole
range of values (−∞,+∞), we can select representatives from classes of models.

This is an important property because in the reasoning procedure we operate with the most
general answer. If a query returns the most general answer over the ideal database and the
available database, then the query is complete with respect to any partial database. In case of
built-in predicates, TC statements can distinguish only finitely many general answers, namely
every comparison can distinguish at most three classes. Then, it is reasonable to consider general
answers that belong to every distinguishable class to establish completeness.

79

6.3 Reasoning Proposal

We have seen that comparisons can distinguish only several classes of models. The reasoning
procedure checks completeness by means of the most general answer. In other words instead of
checking every model, it checks the representative from the whole class of considered models.
This gives us an idea how to reason with built-in predicates in general.

The standard interpretation for TC statements is the one as transfer rules of atoms from the
ideal database to the available database. In the TC-QC problem we check whether enough atoms
have been copied from the ideal database to the available to return the most general tuple. We
know that comparisons in TC statements can distinguish only several classes of models. Then,
we can consider a representative from each class of models. If we take the most general answer
as a representative from each class of models, then we can establish completeness in general.

80

CHAPTER 7
Implementation

In this chapter, we discuss practical aspects of completeness reasoning and implemenation issues
of the completeness reasoner. We explain the structure of the reasoner. We show how to use the
reasoner to test examples from the work. We provide links and general information about the
the reasoner.

7.1 Description

In this section we are going to talk about an implementation of the completeness reasoning
system, called MAGIK. It is a web application. It implements all the algorithms described in the
previous chapters. It can work with foreign key and finite domains constraints under set and bag
semantics. It is fully available at

http://magik-demo.inf.unibz.it.

As an illustration and short description of MAGIK see Figure 7.1.
The project has a wiki page that describes different available features of the reasoning engine

and the structure of the system as well as possible use-cases, see Figure 7.2 .
In general, this implementation is meant to be a proof of concept. It demonstrates the feasi-

bility of the approach. It allows us to show in an interactive way practical aspects of the work.
The system can be used as a prototype for data analysis. The functionality of the system goes
beyond what has been described in the thesis. The system makes suggestions on TC statements
that are needed for the query to be complete. In case of relational queries and in the presence of
finite domain constraints, the suggestions are minimal. However, how to make minimal sugges-
tions in the presence of foreign keys is still an open problem. We are not going into detail about
suggestions, since this lies beyond the scope of this work.

81

http://magik-demo.inf.unibz.it

Figure 7.1: MAGIK Welcome Page

7.2 Completeness Reasoning

Let us illustrate how the system works by an example. We make use of the example from the
section 5.5. It shows the interaction between finite domain and foreign key constraints. Let us
proceed to the reasoning page 7.3.

Let us to reconstruct the example’s setting from the section 5.5. In the tab “Foreign Keys”,
we introduce the constraint pupil[level, code] → class[level, code]. In the tab “Finite Domain
Constraints”, we introduce the constraint class[code] ∈ {a, b}. In the tab “Table Completeness
Statements” we introduce two constraints:

Compl(pupil(Name, 1, b);>); (7.1)

Compl(pupil(Name, 1, a);>). (7.2)

In the tab “Queries”, we introduce a query Q

SELECT p.Name
FROM pupil as p
WHERE p.Level = ’1’

Then, we obtain the result:

Query is complete.

82

Figure 7.2: MAGIK Wiki Page

There is also the possibility to look at the generated ASP program by clicking right below the
result title.

If we give up any of the constraints, we obtain a different result:

Query is not complete.

Note, the system suggests a minimal set of TC statements to ensure completeness.

7.3 General Implementation Issues

In this section we are going to discuss several issues with the current implementation of the
completeness reasoner. Namely, we are going to talk about interface design, boolean reasoning,
mixed notation in the system and reasoning with a database instance. Let us start with interface
design.

Interface design It is important to develop a system that allows to state completeness and to
reason about query completeness. However, it is not clear how to develop an intuitive interface
for stating completeness information. The intended usage of the system was to allow people
working with local information to state completeness in an intuitive way. The most straight-
forward way to implement the form for stating completeness knowledge is based on the logic
programming notation or relational algebra. Let us show it with an example. Assume we need to
state that every department where some employee work is present in the database. We formulate

83

Figure 7.3: MAGIK Reasoning Page

this expression as a TC statement.

Compl(Department(DeptName,Location); Employee(Name,DeptName,Birthday)). (7.3)

To state this formally in the system a user needs at least basis knowledge of logic programming,
e.g. a user needs to know that upper case letters stand for variables and letters with the same
name are joined. It does not seem to be common knowledge among school teacher, managers
and even database administrators. Therefore, it is important to design an interface that can be
easily used by a wide class of users and does not require a lot of training.

Boolean reasoning Throughout the work, we have been talking only about boolean reasoning
i.e. when the query is either complete or not. However, it does not fully reflect common sense.
As we mentioned before, experts say that two percents of records in a customer file become
obsolete in one month because customers die, divorce, marry, and move [6]. It means we have to
take into account fuzziness to reflect common sense and more even more important to introduce
a notation of time into the theory and into the reasoner to make it practical.

Mixture of notations As it is implemented now, when we introduce a TC statement like 7.3,
we use logic programming notation. When we introduce a query into the system, we use SQL as

84

a query language. It might be quite confusing because a user must have at least basic understand-
ing of both notations. Besides, a user needs to have some knowledge or the relational model to
work fully with the reasoner. The variety of different notations might cause some confusion.

Reasoning with a database instance It is important to capture different aspects that contribute
to the completeness decision procedure. Reasoning with a database can significantly contribute
to the reasoning procedure and it is also an important psychological aspect to give a feasible
argument about completeness based on the real data. There has been a lot of different studies
where completeness with respect to a given instance was analyzed [4], [20], [16], [8], however,
how to adopt and implement it in our environment is an open issue.

7.4 Practical Application

Even though the application is meant to be a proof of concept, it is not hard to see how it
can applied in practice. Web base access allows local administrators to introduce completeness
statements into the system without any special software. It also allows a database administrator
to use the same application to investigate completeness properties.

The web based approach and only few forms required to operate the system make integration
possible even in a big company. The system is scalable with respect the number of users, since
every statement can be added by a local administrator independently via any browser.

It is worth mentioning that the current version of the system does not take into account
data degradation over time. This should be taken care of by a database administrator. It seams
reasonable to apply the system to ensure completeness of queries in a short time frame after the
completeness statements have been added.

A way to apply different reasoning features is presented in Section 7.2. To apply the sys-
tem in a greater scale, we have to extend the corresponding forms with new information like
the schema, the set of constraints and change the query accordingly. This can be done induc-
tively, adding relations and constraints one by one in the corresponding tabs of the forms in the
Reasoning Page 7.3.

The first version of the system was demonstrated at CIKM 2012:

http://www.cikm2012.org/

85

http://www.cikm2012.org/

CHAPTER 8
Conclusions

In this chapter, we sum up results from the previous chapters. We demonstrate limitations of the
theory of query completeness. We also make suggestions for future work.

8.1 Results

We have analyzed the query completeness problem from the logic programming perspective.
We have formalized completeness reasoning under set and bag semantics; we have explained
how to make an effective check of TC-QC entailment. We have also provided an algorithm that
reduces the TC-QC problem to the problem of evaluating of an answer set program. The reduced
problem belongs to the same complexity class as the original problem.

We have introduced the completeness reasoning procedure in the presence of finite domain
constraints in the schema. We have extended the characterization to capture completeness rea-
soning in the presence of constraints. In the case of finite domain constraints, the complexity
of the problem is higher than in the relational case. This problem with finite domain constraints
is ΠP

2 -hard. That is the reason why we have introduced disjunction into the encoding. As be-
fore, the complexity of reduced problem is the same as the complexity of the original problem.
Namely, the original TC-QC problem in the presence of finite domain constraints belongs to ΠP

2

and reasoning over disjunctive answer set programs belongs to ΠP
2 .

In the same spirit, we have extended the reasoning procedure with foreign key constraints.
We have explained two possible semantics of foreign keys in the context of completeness reason-
ing. Assuming acyclicity of foreign keys, we have provided a characterization and a correspond-
ing reduction for both types of semantics. We showed that under the acyclicity assumption, the
complexity stays the same as in the relational case. We have also introduced a reasoning proce-
dure and an encoding to handle both types of constraints in the combination.

We have presented an implementation of a completeness reasoning system. It is able to deal
with completeness reasoning problems in the presence of foreign keys and finite domain con-
strains under set and bag semantics. We have provided an explanation how to test the examples

87

from the work in the system. We also presented a short description and links to the detailed
resources about the project.

Summing up, we conclude that a step towards the development of a query completeness
reasoning system has been made. The encoding covers a wide class of commonly used queries.
All proposed algorithms have the same complexity as the original problems, therefore they are
arguably efficient. Finally, we provided a demonstrator of the system that shows feasibility of
the approach.

8.2 Limitations

It is an important question to answer what class of queries and constraints the approach can
handle in principle.

Let us start with the soundness assumption. It says there is no wrong data in the avail-
able database. Under this assumption, the interpretation of the table completeness statements is
transferring of atoms from the ideal database to the available database.

Let us illustrate this with an example. Assume, there is a schema

student(Name,Major).

study(Name,Language).

Assume, there is a query

What are the names of all students who study Latin?

We formulate it as a datalog rule

Q(Name)← student(Name,Major), study(Name, “Latin”).

The minimal set of TC statements to ensure completeness is

Compl(student(Name,Major); study(Name, “Latin”)).

Compl(study(Name, “Latin”); student(Name,Major)).

Under the soundness assumption, they transfer atoms from Di to Da.
The situation changes dramatically, if we introduce negation into the query

What are the names of all students who do not study Latin?

Then, we lose our classical interpretation of the TC statements as transferring rules. Now TC
statements also can ensure the fact that we have all students in the database who study Latin.
It is no longer only a statement about completeness but it is also a statement about correctness.
By adding more facts to the available database we can make previous results incorrect due non-
monotonicity of the query.

Therefore, as it is described in Denecker et al. [4], negation introduces a duality of cor-
rectness and completeness. To extend the theory with negation we must revise the standard
interpretation of TC statements. Furthermore, under the current assumption of soundness and
the classic interpretation of TC statements, we cannot reason about queries with negation.

88

8.3 Future Research

Taking into account results and limitations of the theory of query completeness, we propose
two main directions of the future research. Firstly, we can investigate other possible database
constraints that may affect completeness reasoning e.g. general inclusion constraints or type
restrictions. Also, we can extend the developed algorithms to work in more general settings.
Secondly, we can enrich the model with fuzzy inferences, e.g., the rules and tables can hold only
partially.

Both extensions go into orthogonal directions. The first direction assumes precise reasoning
that extracts additional completeness information from the constraints. The second direction
changes the setting. It allows to ensure completeness up to a certain level of confidence.

Technically, there are many constraints that one can take into account. Triggers are defi-
nitely an interesting kind of integrity constraints that allows us to make additional completeness
inferences. We can take into account restrictions on the data types – it is possible to extract
finite domain constraints directly from the enumeration types in the database schema. It is also
interesting to extend the completeness reasoning procedure with additional information about a
database instance.

The other direction is to add fuzziness into the reasoning procedure. For example, we can
add a certainty level to the knowledge about completeness of the database. Alternatively, we
can interpret finite domain constraints as a measure of completeness, e.g. if we establish com-
pleteness for five out of seven cases, then we are five out of seven complete. Additionally, if we
take into account instance of the database, we can estimate the size of uncertain data to ensure a
confidence level of the data completeness.

89

Bibliography

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases: The Logical
Level. Addison Wesley, 1994.

[2] Andrea Calì, Domenico Lembo, and Riccardo Rosati. On the decidability and complexity
of query answering over inconsistent and incomplete databases. In In Proc. of PODS 2003,
pages 260–271, 2003.

[3] Robert Demolombe. Validity queries and completeness queries. In Zbigniew W. Ras
and Maciej Michalewicz, editors, Foundations of Intelligent Systems, 9th International
Symposium, ISMIS 96, Zakopane, Poland, June 9-13, 1996, Proceedings, volume 1079 of
Lecture Notes in Computer Science, pages 253–263. Springer, 1996.

[4] Marc Denecker, Álvaro Cortés-Calabuig, Maurice Bruynooghes, and Ofer Arieli. Towards
a logical reconstruction of a theory for locally closed databases. ACM Trans. Database
Syst., 35\(3\):22:1–22:60, July 2008.

[5] Alin Deutsch, Alan Nash, and Jeffrey B. Remmel. The chase revisited. In PODS, pages
149–158, 2008.

[6] Wayne W. Eckerson. Data Quality and the Bottom Line. TDWI, 2002.

[7] Thomas Eiter, Giovambattista Ianni, and Thomas Krennwallner. Answer Set Program-
ming: A Primer. In Sergio Tessaris, Enrico Franconi, Thomas Eiter, Claudio Gutierrez,
Siegfried Handschuh, Marie-Christine Rousset, and Renate A. Schmidt, editors, 5th In-
ternational Reasoning Web Summer School (RW 2009), Brixen/Bressanone, Italy, August
30–September 4, 2009, volume 5689 of LNCS, pages 40–110. Springer, September 2009.

[8] Wenfei Fan and Floris Geerts. Relative information completeness. ACM Trans. Database
Syst., 35:27:1–27:44, 2010.

[9] Michael R. Genesereth and Nils J. Nilsson. Logical foundations of artificial intelligence.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1987.

[10] D. S. Johnson and A. Klug. Testing containment of conjunctive queries under functional
and inclusion dependencies. In Proceedings of the 1st ACM SIGACT-SIGMOD symposium
on Principles of database systems, PODS ’82, pages 164–169, New York, NY, USA, 1982.
ACM.

91

[11] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona Perri,
and Francesco Scarcello. The dlv system for knowledge representation and reasoning.
ACM Transactions on Computational Logic, 7:499–562, 2002.

[12] Alon Y. Levy. Obtaining complete answers from incomplete databases. In In Proc. of the
22nd Int. Conf. on Very Large Data Bases (VLDB’96), pages 402–412, 1996.

[13] Jack Minker and Donald Perlis. Computing protected circumscription. J. Log. Program.,
2\(4\):235–249, 1985.

[14] Amihai Motro. Integrity = validity + completeness. ACM Trans. Database Syst.,
14\(4\):480–502, December 1989.

[15] Alan Nash, Luc Segoufin, and Victor Vianu. Views and queries: Determinacy and rewrit-
ing. ACM Trans. Database Syst., 35(3), 2010.

[16] Felix Naumann, Johann-Christoph Freytag, and Ulf Leser. Completeness of integrated
information sources. Inf. Syst., 29\(7\):583–615, September 2004.

[17] Simon Razniewski and Werner Nutt. Completeness of queries over incomplete databases.
PVLDB, 4\(11\):749–760, 2011.

[18] Werner Nutt Simon Razniewski. Checking query completeness over incomplete data.
Technical report, KRDB Research Centre, Free University of Bozen-Bolzano, Bolzano,
Italy, March 2011.

[19] Adnan H. Yahya and Lawrence J. Henschen. Deduction in non-horn databases. J. Autom.
Reasoning, 1\(2\):141–160, 1985.

[20] Álvaro Cortés-calabuig, Marc Denecker, Ofer Arieli, and Maurice Bruynooghe. Represen-
tation of partial knowledge and query answering in locally complete databases. In In Proc.
13th LPAR, LNCS 4246, pages 407–421. Springer, 2006.

92

	Introduction
	Motivation
	Related Work
	Contribution
	Thesis Structure
	Preliminaries
	Database Theory
	Completeness Theory
	Answer Set Programming
	Integrity Constraints

	Completeness Reasoning
	Example
	Characterization
	Encoding
	Bag Semantics

	Reasoning with Finite Domain Constraints
	Example
	Properties
	Formalization
	Characterization
	Encoding

	Reasoning with Foreign Key Constraints
	Example
	Formalization
	Characterization
	Encoding
	Both Types of Constraints

	Reasoning with Built-in Predicates
	Example
	Formalization
	Reasoning Proposal
	Implementation
	Description
	Completeness Reasoning
	General Implementation Issues
	Practical Application
	Conclusions
	Results
	Limitations
	Future Research

	Bibliography

