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Abstract. With the popularity of RDF as an independent data model came the
need for specifying constraints on RDF graphs, and for mechanisms to detect
violations of such constraints. One of the most promising schema languages for
RDF is SHACL, a recent W3C recommendation. Unfortunately, the specification
of SHACL leaves open the problem of validation against recursive constraints. This
omission is important because SHACL by design favors constraints that reference
other ones, which in practice may easily yield reference cycles.
In this paper, we propose a concise formal semantics for the so-called “core
constraint components” of SHACL. This semantics handles arbitrary recursion,
while being compliant with the current standard. Graph validation is based on
the existence of an assignment of SHACL “shapes” to nodes in the graph under
validation, stating which shapes are verified or violated, while verifying the targets
of the validation process. We show in particular that the design of SHACL forces
us to consider cases in which these assignments are partial, or, in other words,
where the truth value of a constraint at some nodes of a graph may be left unknown.
Dealing with recursion also comes at a price, as validating an RDF graph against
SHACL constraints is NP-hard in the size of the graph, and this lower bound still
holds for constraints with stratified negation. Therefore we also propose a tractable
approximation to the validation problem.

1 Introduction

The success of RDF was largely due the fact that it can be easily published and queried
without bounding to a specific schema [? ]. But RDF over time has turned into more than a
simple data exchange format [? ], and a key challenge for current RDF-based applications
is checking quality (correctness and completeness) of a dataset. Several systems already
provide facilities for RDF validation (see e.g. [? ]), including commercial products.34

This created a need for standardizing a declarative language for RDF constraints, and for
formal mechanisms to detect and describe violations of such constraints.

One of the most promising efforts in this direction is SHACL, or Shapes Constraint
Language,5 which has become a W3C recommendation in 2017. SHACL groups con-
straints in so-called “shapes” to be verified by certain nodes of the graph under validation,
and such that shapes may reference each other.

3 https://www.topquadrant.com/technology/shacl/
4 https://www.stardog.com/docs/
5 https://www.w3.org/TR/shacl/

https://www.topquadrant.com/technology/shacl/
https://www.stardog.com/docs/
https://www.w3.org/TR/shacl/
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:NIAddressShape
a sh:NodeShape ;
sh:property [

sh:path :telephone ;
sh:maxCount 1

] ;
sh:property [

sh:path :locatedIn ;
sh:minCount 1 ;
sh:maxCount 1 ;
sh:value :NorthernItaly

] .

:PolentoneShape
a sh:NodeShape ;
sh:targetClass :Polentone ;
sh:property [

sh:path :address ;
sh:minCount 1 ;
sh:maxCount 1 ;
sh:node :NIAddressShape

] ;
sh:property [

sh:path :knows ;
sh:node :PolentoneShape

] .

Fig. 1. Two SHACL shapes, about Polentoni and addresses in Northern Italy

Figure 1 presents two SHACL shapes. The leftmost, named :NIAddressShape,
is meant to define valid addresses in Northern Italy, whereas the right one, named
:PolentoneShape, defines northern Italians, stereotypically referred to as Polentoni.6

A node v satisfying the first shape must verify two constraints: the first one states that
there can be at most one successor of v via property :telephone. The second one states
that there must be exactly one successor (sh:minCount 1 and sh:maxCount 1) of v via
property :locatedIn, with value :NorthernItaly.

Validating an RDF graph against a set of shapes is based on the notion of “target
nodes”, which mandates for each shape which nodes have to conform to it. For instance,
PolentoneShape contains the triple :PolentoneShape sh:targetClass :Polentone,
stating that its targets are all instances of :Polentone in the graph under validation.
But nodes may also have to conform to additional shapes, due to shape references. For
instance, in Figure 1, the shape to the right contains one (non-recursive) shape reference,
to :NIAddressShape, stating that every node v conforming to :PolentoneShape must
have exactly one :address, which must conform to :NIAddressShape, and one recursive
reference, stating that each successor of v via :knows must conform to :PolentoneShape,

By recursion, we will always refer to such reference cycles, possibly n-ary (where
shape s1 references s2, s2 references s3, .., sn references s1). Unfortunately, the semantics
of graph validation with recursive shapes is left explicitly undefined in the SHACL
specification: “... the validation with recursive shapes is not defined in SHACL and
is left to SHACL processor implementations. For example, SHACL processors may
support recursion scenarios or produce a failure when they detect recursion.” The
specification nonetheless expresses the expectation that validation of recursive shapes end
up being defined in future work. Indeed, shapes references are a core feature of SHACL.
Furthermore, in a Semantic Web context, where shapes are expected to be exchanged or
reused, reference cycles may naturally appear, intentional or not. Finally, recursion may
be viewed as one of the distinctive features of SHACL: without recursion, one ends up
with a constraint language whose expressive power is essentially the same as SPARQL.

6 This example is borrowed from Peter Patel-Schneider: https://research.nuance.com/
wp-content/uploads/2017/03/shacl.pdf

https://research.nuance.com/wp-content/uploads/2017/03/shacl.pdf
https://research.nuance.com/wp-content/uploads/2017/03/shacl.pdf
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Another current limitation of the SHACL specification is the lack of a unified
and concise formal semantics for the so-called “core constraint components” of the
language. Instead, the specification provides a combination of SPARQL queries and
textual definitions to characterize these operators. This may be sufficient for reading
or writing SHACL constraints, but a more abstract underlying formalization is still
missing, in order for instance to devise efficient constraint validation algorithms, identify
computational bottlenecks, or to compare SHACL’s expressivity with other languages.

Contributions. In this article, we propose a formal semantics for the core constraint
components of SHACL, which is robust enough to handle arbitrary recursion, while
being compliant with the current standard in the non-recursive case. It turns out that
defining such a semantics is far from trivial, due essentially to the combination of three
features of the language: recursion, arbitrary negation, and the target-based validation
mechanism introduced above. One of the main difficulties is to define in a satisfactory
way validation of shapes with so-called non-stratified constraints, where negation is used
arbitrarily in reference cycles.

To do this, we base our semantic on the existence of a partial assignment of shapes to
nodes that verifies both constraints and targets, i.e. intuitively a validation of nodes against
shapes which may leave undetermined whether a given node verifies a shape or violates
it. We show that this semantics has desirable formal properties, such as equivalence with
classical validation in the presence of stratified constraints.

Recursion, however, comes at a cost, as we show that the problem of validating
a graph is worst-case intractable in the size of the graph. Perhaps more surprisingly,
we show that this property already holds for stratified constraints, and for a limited
fragment of the language, without counting or path expressions. This observation leads
us to propose a sound approximation, polynomial in the size of the graph, and whose
worst-case execution time can be parameterized.

Organization. Section 2 discusses the problem of recursive SHACL constraints valida-
tion, with concrete examples. Then Section 3 defines a robust semantics for SHACL,
together with a concise abstract syntax, and investigates its formal properties. Section 4
studies computational complexity of the graph validation problem under this semantics,
and Section 5 proposes a sound approximation algorithm, in order to regain tractability
(in the size of the graph under validation). Finally, Section 6 reviews alternative languages
and formal semantics for graph constraints validation, with an emphasis on RDF.

2 Validating a graph against SHACL shapes

This section provides a brief overview of the constraint validation mechanism
described in the SHACL specification, and discusses its extension to the case of recursive
constraints. We focus here on the problem of deciding whether a graph is valid against a
set of shapes. Therefore we purposely ignore the notion of “validation report” defined in
the specification, and encourage the interested reader to consult the specification directly.

Checking whether a graph G is valid against a set of shapes S may be viewed as a
two-step process. The first step consists in iterating over all shapes s ∈ S, and retrieve
their respective target nodes in G. SHACL provides a dedicated language to describe
the intended targets of a shape (e.g. the sh:targetClass property in Figure 1), which is
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:SemiPolentoneShape
a sh:NodeShape ;
sh:targetNode :Enrico ;
sh:property [

sh:path :address ;
sh:maxCount 1 ;
sh:node :NIAddressShape

] ;
sh:not [

sh:path :knows ;
sh:node :PolentoneShape

] .

:Enrico :Davide

:addr1 :addr2

:NorthernItaly

:address

:locatedIn

:knows

:address

:locatedIn

:knows

Fig. 2. A SHACL shapes for semi-Polentone, and a graph G to be validated against this shape,
together with the shapes of Figure 1

orthogonal to the language used to define constraints. Furthermore, this language has a
limited expressivity, allowing all targets of shape s inG to be retrieved inO(|G| · log |G|),
before constraint validation.

The second step consists in iterating over each target node v of each shape s, and
check whether the node v satisfies s. This check can be represented as a call to a recursive
function validates(s,G, v). Some of the constraints for s may be validated by looking
locally at the graph, i.e. at the IRI of v and its outgoing paths. But validates(s,G, v) may
also trigger a recursive call validates(s′, G, v′), where s′ is a shape referenced by s, and
v′ is a successor of v in G. It should be noted that v′ does not need to be a target node of
s′. In turn, validates(s′, G, v′) may trigger another recursive call, etc.

Another important feature of SHACL is the possibility to declare negated constraints.
For instance, shape SemiPolentoneShape in Figure 2 uses sh:not to describe someone
who knows at least one person who is not a Polentone (but still lives in Northern Italy).
In this case, validates(SemiPolentoneShape, G, v) will succeed only if some successor
of v via property :knows violates the constraints for :PolentoneShape.7

2.1 Recursive Constraints with Stratified Negation

Figures 1 and 2, considered together, illustrate a simple case of recursive constraint valida-
tion (i.e. constraints with reference cycles). The RDF triple :SemiPolentoneShape
sh:targetNode :Enrico indicates that :Enrico is the unique target of shape
:SemiPolentoneShape. This is also the only target to be validated in the graph.

To check if :Enrico validates :SemiPolentoneShape, the validation process described
in the specification would call validates(SemiPolentoneShape, G, :Enrico), triggering
an infinite sequence of recursive calls to validates(PolentoneShape, G, :Davide). Intu-
itively, the problems is that validates does not keep track of what has been validated (or
violated) so far.

A classical solution to ground constraint evaluation in such cases is to define it w.r.t.
an assignment of (positive and negated) shape labels to nodes. In this example, Enrico
can be assigned :SemiPolentoneShape, and :Davide can be assigned the negation of

7 Constraints on node sucessors in SHACL are by default universally quantified. This is why
sh:not here requires one successor violating :PolentoneShape to exist.
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:HappyPersonShape
a sh:NodeShape ;
sh:targetNode :Davide ;
sh:or (

[ sh:path :address ;
sh:minCount 1 ]

[ sh:path :knows ;
sh:node :

NaivePolentoneShape ]
) .

:NaivePolentoneShape
a sh:NodeShape ;
sh:not [

sh:path :knows ;
sh:node :

NaivePolentoneShape
] .

Fig. 3. Two SHACL shapes which illustrates the need for partial assignments

:PolentoneShape. This assignment complies with the constraints and the target, allowing
us to validate the graph. Alternatively, it is possible to comply with all constraints by
assigning :PolentoneShape to :Davide, and the negation of :SemiPolentoneShape to
:Enrico. But this latter assignment does not comply with the target, therefore it would
not allow us to validate the graph.

Several formal frameworks dealing with recursion (such as recursive Datalog[? ])
have semantics based on a similar intuition. This notion of assignment is also used in
[? ] for ShEx, a constraint language for RDF very similar to SHACL. However, the
semantics proposed in [? ] would consider the graph of Figure 2 as invalid, taking only
one assignment into consideration, where :Davide is assigned :PolentoneShape, and
therefore :Enrico cannot verify :SemiPolentoneShape. The semantics defined in [? ] is
also restricted to stratified constraints, i.e. constraints such that reference cycles have no
reference in the scope of a negation (see Definition 8 further below).

2.2 Non-stratified Constraints

Extending assignment-based validation to the non-stratified case raises an interest-
ing question, namely whether such an assignment should be total, i.e. assign each
shape or its negation to each node of the graph. We illustrate this with validating
the graph G of Figure 2 against the two shapes of Figure 3. :Davide is the only
target node, for shape :HappyPersonShape. This shape is validated iff :Davide has
an address, or knows a naive polentone. Because :Davide has an address, a sim-
ple call to validates(HappyPersonShape, G, :Davide) would validate the graph. But
a total assignment must also assign either :NaivePolentoneShape or its negation to
:Davide. And this cannot be done in a consistent manner. If :NaivePolentoneShape is
assigned, then :Davide does not verify the corresponding constraint; if the negation
of :NaivePolentoneShape is assigned, then :Davide does not violate the constraint.
Therefore a semantics based on total assignments would consider the graph invalid.

It should be emphasized that this example is not a limit case: the same problem
appears for any (satisfiable) set of shapes containing a reference cycle (of any size),
and such that an odd number of references in this cycle are in the scope of a negation.
Therefore, if one wants to defines a robust semantics based on assignments for recursive
SHACL, it should be based on partial assignments, leaving the possibility to assign
neither a shape nor its negation to some nodes.



Semantics and Validation of Recursive SHACL 9

3 Formal semantics for SHACL

This section provides a formal semantics for recursive SHACL. As explained above,
constraint validation is based on partial assignment. This semantics (i) complies with
the current semantics of SHACL for non-recursive constraints, (ii) supports arbitrary
recursion and negation, and (iii) can handle simultaneous validation of multiple targets.

A set of shapes is validated iff there exists an assignment (called here faithful)
complying with it. This is a key difference from query answering, or cautious reasoning
in Datalog, interested in certain answers, i.e. holding for all valid assignments. For
instance, in Figure 2, some faithful assignments assign :PolentoneShape to :Davide,
and some do not.

3.1 Notation

Like the SHACL specification, we borrow from SPARQL the notion of property path,
which describes regular constraints holding over a path in a graph (for the syntax and
semantics, we defer to the SPARQL standard [? ]). Following [? ], if r is a property path
and G a graph, we denote with r(G) the evaluation of r, which consists of all pairs (v, v′)
of nodes in G such that there is a path from v to v′ satisfying r.

Similarly, if ψ is a SPARQL query, we denote with ψ(G) the evaluation of ψ in G.
Finally, we use |X| to denote the size of structure X .

3.2 Abstract Syntax and Semantics for SHACL constraints

Syntax. As usual, we find more convenient to work with a logical abstraction of the
concrete SHACL language. Our abstraction uses a fragment of first order logic to simulate
node shapes, and then unravels so-called SHACL “property shapes” as modal formulas
over nodes. Like the SHACL specification, we make the unique name assumption, i.e. we
assume that two blak nodes in an RDF graph cannot denote the same individual. We also
abstract away from constraints on IRIs and literals (regular expresion, datatype, value
comparison, etc.), and use a simple constant I instead. Constraints are defined by the
following grammar:

φ ::= > | s | I | φ1 ∧ φ2 | ¬φ | ≥n r.φ | EQ(r1, r2)

where s is a shape name, I is an IRI, r is a property path, and n ∈ N+. As syntactic
sugar, we use ≤n r.φ for ¬(≥n+1 r.φ), and =n r.φ for (≥n r.φ) ∧ (≤n r.φ).

LetL be the language defined by this grammar. A full operator-by-operator translation
from SHACL core constraint components to L and conversely is provided in appendix.
For non-recursive shape constraints, this is a correct translation, in the sense that a set of
constraints in one language and its translation in the other language validate exactly the
same graphs, given the same targets. Unfortunately, in the absence of formal semantics
for SHACL, this claim cannot be formally proven, but is based on our understanding
of the specification. We cannot claim that this also holds for recursive shapes though,
because SHACL validation in this case is not defined.

Example 1. We illustrate the syntax with the example from Figure 1. To express SHACL
cardinality constraints (e.g. sh:maxCount), we use ≤1 r.φ, which means that a node can
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have at most 1 r-successor satisfying φ, or =1 r.φ for exactly one. Then the constraints
for :NIAddressShape (abbreviated here as sniaddr) can be translated as:

(≤1 telephone.>) ∧ (=1 locatedIn.NorthernItaly)

where > is true at every node. In the same way, we can translate the constraints for
:PolentoneShape (abbreviated here as spol). Both sniaddr and spol appear in the
constraint for spol. This mimics the SHACL syntax, where both shapes were mentioned:

(≤0 knows.¬spol) ∧ (=1 address.sniaddr)

Semantics. Because shape names may appear in constraint formulas, we define the
inductive evaluation of a formula in terms of a node, a graph, and an assignment that
mandates which shapes are true or false at each node.

Definition 1 (Assignment). Let N be a set of shape names, and G a graph.
An assignment σ for G and N is a total function mapping nodes in G to subsets of
N ∪ {¬s | s ∈ N}, such that s and ¬s cannot be both in σ(v)

Definition 2 (Total assignment). A assignment σ forG andN is total if either s ∈ σ(v)
or ¬s ∈ σ(v), for each node in G and s ∈ N

The evaluation JφKv,G,σ of formula φ at node v in graph G given σ is defined in
Table 1. In order to evaluate a formula given a partial assignment, we use a 3-valued
logic, which, in addition to the usual 1 and 0 for true and false, uses 0.5 to represent an
unknown truth value. But if assignments are required to be total, then this third value is
not needed:

Observation 1. Let σ be a total assignment for G and N , and φ a constraint formula
using shape names inN . Then for each node v ofG, either JφKv,G,σ = 0 or JφKv,G,σ = 1

The inductive definition of JφKv,G,σ is standard, aside maybe for the operator ≥n r.
Intuitively, ≥n r.φ evaluates to true iff at least n r-successors of v validate φ, whereas
≥n r.φ evaluates to false iff the number of r-successors of v which do or could validate
φ is strictly inferior to n. This allows the semantics to comply with SHACL cardinality
constraints in the non-recursive case.

From SHACL shapes to L constraints. We model a shape as a triple (s, φs, targets),
where s is a shape name, φs is a constraint in L, and targets is a (possibly empty) monadic
query retrieving the target nodes of s. If S is a set of shapes, we assume that for each
(s, φs, targets) ∈ S, if s′ appears in φs, then (s′, φ′s, target′s) ∈ S. An assignement for G
and S is an assignment for G and {s | (s, φs, targets) ∈ S}. Abusing notation, we write
"s ∈ S" instead of "(s, φs, targets) ∈ S".

3.3 Validation

We finally have all components in place to define graph validation. Intuitively, a graph G
is valid against a set of shapes S if one can find an assignment σ for G and S complying
with targets and constraints. We call such an assignment faithful, defined as follows:
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J>Kv,G,σ = 1
J¬φKv,G,σ = 1− JφKv,G,σ

Jφ1 ∧ φ2Kv,G,σ = min{Jφ1Kv,G,σ, Jφ2Kv,G,σ}

J(r1 = r2)Kv,σ,G =

{
1, if {v′ | (v, v′) ∈ r1(G)} = {v′ | (v, v′) ∈ r2(G)}
0 otherwise

JIKv,σ,G =

{
1, if v is the IRI I,
0 otherwise

JsKv,G,σ =


1, if s ∈ σ(v)
0, if ¬s ∈ σ(v)
0.5 otherwise

J≥n r.φKv,σ,G =


1, if |{v′ | (v, v′) ∈ r(G) and JφKv

′G,σ = 1}| ≥ n
0, if |{v′ | (v, v′) ∈ r(G)}|−

|{v′ | (v, v′) ∈ r(G) and JφKv
′G,σ = 0}| < n

0.5 otherwise

Table 1. Inductive evaluation of constraint formula φ at node v in graph G given assignment σ

Definition 3 (Faithful Assignment). A assignment σ forG and S is faithful iff s ∈ σ(v)
for each s ∈ S s.t. v ∈ targets(G), and, for each node v in G:

– if s ∈ σ(v), then JφsKv,G,σ = 1
– if ¬s ∈ σ(v), then JφsKv,G,σ = 0

Definition 4 (Validation). A graph G is valid against a set of shapes S iff there is a
faithful assignment σ for G and S

The appendix provides a full translation from SHACL to sets of shapes and conversely,
which preserves validation, provided the shapes are non-recursive (i.e. contain no
reference cycle). Our notion of validation is more robust though, as it is also well-defined
for recursive shapes. In Section 4, we study the complexity of the validation problem.
But for now, we provide some insight on properties of this semantics.

3.4 Properties of Validation

We introduce some additional notation. First, ΣG,S will designate the set of all assign-
ments for G and S. Then we define the “immediate evaluation” operator TG,S for G and
S (or simply T when obvious from the context). It takes an assignment σ, and returns the
assignment T(σ) obtained by evaluating each φs at each node of G.

Definition 5 (Immediate evaluation operator T).
T : ΣG,S → ΣG,S is the function defined by
s ∈ (T(σ))(v) iff JφsKv,G,σ = 1, and ¬s ∈ (T(σ))(v) iff s ∈ JφsKv,G,σ = 0

Finally, we define the partial order � over ΣG,S by:

Definition 6 (Partial order �).
σ1 � σ2 iff σ1(v) ⊆ σ2(v) for each node v in G
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Validation without target. The SHACL specification states that a graph G is valid
against a set of shapes S in the case where no shape in S has target in G. From
Definitions 3 and 4, this also (trivially) holds in the recursive case for our semantics.
Somehow surprisingly, validation without target may fail for total assignments. For
instance, there is no total faithful assignment for the graph of Figure 2 and the set of
shapes containing only shape :NaivePolentoneShape from Figure 3.

An alternative characterization of faithful assignments. From Definition 3, a faithful
assignment σ is only required to assign s to a node v if φs is verified by v (given σ), and
to assign ¬s to v if φs is violated by v (given σ). So σ may also assign neither s nor ¬s
to v, even though v verifies of violates φs (given σ). This may seem counterintuitive,
which leads to the following notion of faithfulness:

Definition 7 (Strictly-faithful assignment). A assignment σ for G and S is strictly
faithful iff s ∈ σ(v) for each s ∈ S s.t. v ∈ targets(G), and, for each node v in G:

– s ∈ σ(v) iff JφsKv,G,σ = 1
– ¬s ∈ σ(v) iff JφsKv,G,σ = 0

We also say that a graph G is strictly valid against a set of shapes S if there is a strictly
faithful assignment for G and S.

For instance, there is only one strictly faithful assignment for the graph of in Figure 2
and the two shapes of Figure 3. It assigns ¬:HappyPersonShape to :addr1, because
:addr1 violates the constraint for this shape. There are also several (non-strictly) faithful
assignments, some of which assign neither :HappyPersonShape nor its negation to :addr1.
So intuitively, non-strict validation allows some form of “lazy” constraint evaluation.

The operator T provides a more concise definition. Both faithful and strictly faithful
assignments must comply with targets forG andS. But in addition, a faithful assignment σ
must verify σ � T(σ), whereas a strictly faithful assignment σ′ must verify σ′ = T(σ′).

Interestingly, these two notions of validation coincide. To prove this, we first need a
useful property, the monotonicity of T w.r.t �:

Lemma 1 (Monotonicity of T). For any graphG, set of shapes S and σ1, σ2 ∈ ΣG,S:

if σ1 � σ2, then T(σ1) � T(σ2)

We can now state the equivalence:

Proposition 1. For any graph G and set of shapes S:

G is valid against S iff G is strictly valid against S

Proof. The right direction is trivial, because a strictly faithful assignment is faithful.
For the left direction, let σ0 be a faithful assignment for G and S. From Lemma 1, T
is monotone over 〈Σ,�〉. So σo � T(σ0), T(σo) � T(T(σ0)), etc. And since � is a
partial order, it is antisymmetric. So becauseΣ is finite, T can only be applied inductively
to σ0 a finite number of times before a fixed-point σ2 is reached. Then because σ0 � σ2,
σ2 complies with all targets for G and S. So σ2 is strictly faithful for G and S.

All we need is one target. The following explains why the complexity results provided
in Section 4 only consider graph validation with a single target node.
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Proposition 2. Given a graph G, set of shapes S and target nodes in G for each s ∈ S,
one can construct in linear time a graph G′ and set of shapes S′, such that G is valid
against S iff G′ is valid against S′, and S′ has a single target in G′.

Proof (sketch). Let s1, .., sn be the shapes in S, with respective targets v1
1 , .., v

m1
1 , .., v1

n,

.., vmnn . Extend G with a fresh node v0, and an edge (vo, e
j
i , v

j
i ) for each vji , with eji a

fresh edge label. Then delete all target expressions in S, and extend S with a fresh shape
s0, with target node v0, and constraint φs0

.
= (≥1 e

m1
1 .>) ∧ .... ∧ (≥1 e

mn
1 .>).

3.5 Validation and Stratified Negation

Section 2.2 suggested that the need for partial assignments comes from constraints
combining circular references with negation, called non-stratified. We now make this
intuition more precise, showing that we can indeed focus solely on total assignments if
the constraints are stratified.

To formalize this idea, we borrow the notion of stratification from Datalog[? ]
(assuming w.l.o.g that constraints do not contain two consecutive negation symbols).

Definition 8 (stratification). A set of shape S is stratified if there is a total function
str : S → N such that:

– If s1 appears in φs2 , then str(s1) ≤ str(s2)
– If s1 appears in φs2 in the scope of a negation then str(s1) < str(s2).

It must be emphasized that the language L does not include ≤n r or =n r. If
these operators were included, then one would need to redefine the second condition
accordingly, as ≤n r is a form of negation.

The following result confirms that a semantics based on total assignment is sufficient
for stratified sets of shapes.

Proposition 3. For any graph G and stratified set of shapes S, there exists a faithful
assignment for G and S iff there exists a total faithful assignment for G and S.

Proof (sketch). For the right direction, the proof is trivial. For the left direction, to
simplify notation, we represent assignments as sets of positive and negative atoms. Let σ
be a faithful assignment for G and S, and let S1, .., Sn be the strata of S, from lowest to
highest. The proof constructs an extension σ′ of σ, stratum by stratum, initialized with
the empty set. For each stratum Si (starting from S0), σ′ is extended in three steps. First,
σ′ is extended with σ reduced to atoms with shape names in Si. Then T is applied to σ′

recursively, until a fixed-point is reached. Finally, σ′ is extended with each s(v) such
that v is a node in G, s ∈ Si and ¬s(v) 6∈ σ′. It can be shown by induction on i that this
extension of σ′ always exists, and complies with all constraints for shapes in S0, .., Si. So
when i reaches n, the last extension of σ′ is a total faithful assignment for G and S.

This result is important for computational reasons. It also implies that 3-valued
validation is not easier than 2-valued validation, which may come as a surprise.
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4 Complexity
We now study the computational complexity of the validation problem, defined as follows
(full proofs are provided in appendix):

VALIDATION:
Input: Graph G, set of shapes S
Decide: G is valid against S

Based on Proposition 2, we focused on instances with one target node (for one shape
in S). We also assume that this target node is already known. Table 2 summarizes our
results. As is customary, since the size of G is likely to be orders of magnitude larger than
the size of S, we also study the problems VALIDATION(S) and VALIDATION(G), for a
fixed set of shapes S and fixed graph G, called data complexity and constraint complexity
below.

We consider two fragments of the constraint language L: (i) L≥1,¬,∧ is the fragment
defined by the grammar φ ::= > | I | s | φ1 ∧ φ2 | ¬φ | ≥1 p.φ, where p is an IRI,
and (ii) L≥n,∧,∨,r,EQ is the fragment defined with φ ::= > | I | s | φ1 ∧ φ2 | φ1 ∨ φ2 |
≥n r.φ | EQ(r1, r2) , where r, r1, r2 are property paths and φ1 ∨ φ2 is interpreted (as
expected) as ¬(¬φ1 ∧ ¬φ2). We start by showing an NP upper bound for combined

Fragment Data Constraint Combined

L (= SHACL) NP-c NP-c NP-c
stratified L≥1,¬,∧ NP-c NP-c NP-c
L≥n,∧,∨,r,EQ in P in P P-c

Table 2. Computational complexity of VALIDATION. -c stands for complete.

complexity, based on guessing a witnessing faithful assignment. Then we show that this
upper bound is tight, even for a fixed set of shapes (data complexity) using stratified
negation and basic operators (≥1,¬ and ∧). We also show that this bound is tight for a
fixed graph. Lastly, we show that allowing disjunction but disallowing negation otherwise
is sufficient to regain tractability.

Let us start with NP membership. First, all property paths present in S can be
materialized in time polynomial in |G| · |S| before validation. In addition, by introducing
fresh shape names, S can be transformed in polynomial time into an equivalent set of
shapes S′, whose constraints contain at most one operator. Then assuming that we can
guess a faithful assignment σ for G and S′, we only to check σ is indeed faithful. To do
so, it is sufficient to compute the value of JφsKv,G,σ for each node v in G and s ∈ S′,
which is again polynomial in |G| + |S|, even with a binary encoding of cardinality
constraints. Summing up, we have:

Proposition 4 (Combined – Upper Bound). VALIDATION is in NP.

Now for the lower bound, validation is already intractable in data complexity for
stratified L≥1,¬,∧. This may come as a surprise, considering that data complexity of
ground fact entailment in stratified Datalog is in PTIME [? ]. We show NP-hardness by a
reduction from the satisfiability problem of a propositional circuit: there is a fixed set of
shapes S such that every propositional circuit can be transformed (in linear time) into a
graph, and this graph is valid against S iff the circuit is satisfiable.
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Proposition 5 (Data – Lower Bound). There is a stratified fixed set of shapes S in
L≥1,¬,∧ such that VALIDATION(S) is NP-hard.

We also show that the problem is NP-hard in constraint complexity for the same
fragment (with another reduction from circuit satisfiability):

Proposition 6 (Constraint – Lower Bound). There is a fixed graph G such that
VALIDATION(G) is NP-hard, even if S is restricted to stratified sets of shapes in L≥1,¬,∧.

As a more optimistic result, validation is in PTIME if one allows disjunction as a native
operator, but disallows negation otherwise. The proof relies on the (unique) minimal
fixed-point σminFix of T w.r.t. �, which can be computed in time polynomial in |G|+ |S|.
Let v0 be the (unique) target node to validate, against shape s0. If ¬s0 ∈ σminFix(v0),
then G is invalid. Otherwise, it can be shown that there must be an extension of σminFix
(w.r.t. �) which is faithful for G and S.

Proposition 7 (Combined – Upper Bound). VALIDATION is in PTIME for
L≥n,∧,∨,r,EQ.

Finally, we show PTIME hardness for the sub-fragment L≥n,∧,∨ of L≥n,∧,∨,r,EQ
(without property paths and path equality), with a LOGSPACE reduction from the problem
of evaluating a monotone boolean circuit.

Proposition 8 (Combined – Lower Bound). VALIDATION is PTIME-hard for
L≥n,∧,∨.

5 Approximation
The above intractability result for data complexity (Proposition 6), and even for a stratified
set of shapes, is an important limitation. In order to alleviate this problem, we present in
this section an approximation algorithm to decide whether a graph G is valid against a
set of shapes S, with an integer parameter k. If k is bounded, then the algorithm is sound,
and runs in time polynomial in |G|. If k is unbound, then the algorithm is sound and
complete, but may run in time exponential in |G|. The approximation is sound in that the
algorithm returns Valid (resp. Invalid) only if G is valid (resp. not valid) against S.

For readability, from Proposition 2, we focus on validation with a single target node
v0, for shape s0. Algorithm 1 describes the procedure, composed of two steps. The
first step intuitively computes an assignment σminFix matching all constraints enforced
by the graph, regardless of the target. If the validity of G cannot be decided after this
(polynomial) step, then σminFix is extended by assigning s0 to v0, and an attempt is made
to propagate constraints from v0 to its successors, in order for v0 to satisfy φs0 .

Step 1: minimal fixed-point. As a reminder of Section 3.3, we use ΣG,S to denote the
set of all (possibly partial) assignments for G and S. The first step of the algorithm
computes the minimal fixed-point σminFix of the operator T (see Definition 5) w.r.t. �.
Because 〈ΣG,S ,�〉 is a semi-lattice and T is monotone w.r.t. � (Lemma 1), σminFix
must exist and be unique. It can also be computed in time polynomial in |G|, initializing
σminFix with the empty set, and then applying T to σminFix recursively, until a fixed-point
is reached. This is performed by procedure COMPUTEMINFIX. If s0 ∈ σminFix(v0), then
the graph is valid, Line 2. Furthermore, any strictly faithful assignment of for G and S
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must be a fixed-point of T (see Section 3.3), and therefore must extend σminFix. So from
Proposition 1, If ¬s0 ∈ σminFix(v0), then the graph is invalid, Line 3.

Step 2: breadth-first search. The next step consists in searching for a faithful assign-
ment, in a breadth-first fashion, starting from the target node v0. We abuse notation and
use set operators (∪,∈, etc.) to describe the stack. Similarly, for brevity, we represent
assignments interchangeably as functions or as sets of (positive and negative) atoms.

Each element of the stack (i.e. each “branch” of this exploration) is a tuple
〈σ, σP , A, n〉, where:

– σ is the current assignment being constructed, initialized with σminFix ∪ {s0(v0)}
– σP � σ keeps track of shapes freshly assigned to a node during the previous

expansion of σ. For any element of the stack, if σP is empty, then no constraint
needs to be propagated in this branch, i.e. σ is a faithful assignment, and so the graph
is validated, line 7.

– A is a set of atoms of the form s(v), such that s(v) 6∈ σ and ¬s(v) 6∈ σ,
– n is the current depth of the exploration, incremented each time σ is extended. When
n reaches k, the size of the stack cannot be extended anymore, which triggers a call
to REDUCE, line 11, to merge some of the current branches.

Line 8, function EXTEND computes each minimal extensions σ′ of σ such that:
– If s ∈ σP (v), then JφsKv,G,σ

′
= 1,

– If ¬sσP (v), then JφsKv,G,σ
′

= 0, and
– if s(v) ∈ A, then {s,¬s} ∩ σ(v) = ∅

It can be shown that each call to EXTEND can be executed in time O(|G||S|).
Finally, if the depth n of the exploration reaches k, line 11, then procedure REDUCE

prevents the number of elements in the stack to increase. Line 18, function GETCLOSEST-
PAIR retrieves the two closest assignments σ1 and σ2 (in terms of edit distance) in the
Stack. Then function GETCONFLICTS line 20 retrieves the (possibly empty) set of atoms
A that σ1(v) and σ2(v) disagree on, i.e. s(v) ∈ A if both s and ¬s are in σ1(v) ∪ σ2(v),
and the procedure REPLACE sets each σi to σi \ {s(v),¬s(v)}. After this step, either
σ1 � σ2 or σ2 � σ1 must hold, and only the greater of the two (w.r.t �) is retained
(Line 23) and pushed in the stack.

The number of possible assignments is of O(2|G|), but the number of assignments
created by EXTEND is O(|G||S|). So if the parameter k is fixed, the reduced stack makes
sure that the execution time is O(|G||S|.k).

6 Related Work

Several schema languages have been proposed or implemented for RDF before SHACL,
and some of them are closely associated to the design of SHACL. But first, it should be
mentioned that RDF Schema (RDFS), contrary to what its name may suggest, is not a
schema language in the classical sense, but is primarily used to infer implicit facts.

Among the proposals which do not relate (to our knowledge) to the genesis of
SHACL, are proposals for RDF integrity constraints [? ? ]. We have not explored a
formal comparison between these formalisms and SHACL, but conjecture that they are
incomparable with SHACL.
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Algorithm 1 APPROXIMATION

Require: G′, S, s0, v0, k
1: σminFix ← COMPUTEMINFIX(G′, S)
2: if s0 ∈ σminFix(v0) then return Valid
3: if ¬s0 ∈ σminFix(v0) then return Invalid
4: Stack← 〈σminFix ∪ {s0(v0)}, {s0(v0)}, {atoms(G′, S)}, 0〉
5: while NONEMPTY(Stack) do
6: 〈σ, σP , A, n〉 ← POP(Stack)
7: if σP = ∅ then return Valid
8: for all σ′ ∈ EXTEND(σ, σP , A) do
9: PUSH(T , 〈σ′, σ′ \ σ,A, n+ 1〉)

10: end for
11: if n ≥ k then Stack← REDUCE(Stack, |T |)
12: end while
13: return Unknown
14:
15: procedure REDUCE(Stack, m)
16: i = 0
17: while i ≤ m do
18: (〈σ1, σ

P
1 , A1, n1〉, 〈σ2, σ

P
2 , A2, n2〉)← GETCLOSESTPAIR(Stack)

19: Stack← Stack \{〈σ1, σ
P
1 , A1, n1〉, 〈σ2, σ

P
2 , A2, n2〉}

20: A← GETCONFLICTS(σ1, σ2)
21: σ1 ← REPLACE(σ1, A)
22: σ2 ← REPLACE(σ2, A)
23: σ = max{σ1, σ2}
24: PUSH(Stack, 〈σ, σP1 ∪ σP2 , A ∪A1 ∪A2,max{n1, n2}〉)
25: i← i+ 1
26: end while
27: end procedure

SPIN8 allows the user to express constraints as SPARQL queries (natively, or using
templates) and to declare targets for these constraints, similar to SHACL targets. SPIN
became a W3C member submission in 2011, before being explicitly superseded by
SHACL in 2017. Being based on SPARQL, it supports negation, but not full recursion.

ShEx has been actively developed since 2012 [? ], as a dedicated constraint language
for RDF, strongly inspired by XML schema languages. The first version of ShEx did
support recursion, but no negation. A formal semantics was provided in [? ], based
on regular bag expressions. Recently, ShEx 2.09 incorporated negation, and a formal
semantics was provided in [? ], together with a abstract language called Shape Schemas.
As highlighted in [? ], ShEx and SHACL have lot in common, and the semantics provided
in [? ] can be directly adapted to SHACL. This proposal is also similar to the one made in
this article, in that validation is based on a typing verifying target and constraints, similar
to our notion of shape assignment. A difference though is that the semantics proposed
in [? ] is restricted to stratified constraints. Moreover, the (unique) typing used in [? ] to

8 http://spinrdf.org/
9 http://shex.io/shex-semantics/

http://spinrdf.org/
http://shex.io/shex-semantics/
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define validation favors the validation of shapes in the lowest stratum, so that the graph
of Figure 2 for instance would be considered invalid.

Another line of work is inspired by the Web Ontology Language (OWL), which
is based on Description Logics (DLs) [? ]. Like RDFS, OWL was not designed as a
schema language, but adopts isntead the open-world assumption, not well-suited to
express constraints. Still, proposals have been made to reason with DLs understood as
constraints: by introducing auto-epistemic operators [? ], partitioning DL formulas into
regular and constraint axioms [? ? ], or reasoning with closed predicates [? ]. This last
approach was actually proposed as a semantic grounding for SHACL [? ], reducing
constraint validation to first-order satisfiability with closed binary predicates. But as
illustrated with Example 3, this semantics does not behave well in the presence of targets
and non-stratified constraints.

Recursion over negation has been traditionally studied in logical programming (see
e.g. [? ]), and answer-set programming (see [? ] in the context of SPARQL), where
stable model semantics (SMS) is one of the most prominent paradigms [? ]. But SMS is
based on so-called minimal models, whereas shape assignments may not be minimal.
This makes encoding SHACL into logical programming non trivial, as suggested by
complexity results: ground-fact entailment is data-tractable for stratified Datalog, in
contrast to our semantics (see Proposition 5). A possible way to relate the two semantics,
at least for the stratified case, is to reason about shape “complements” under SMS. Still,
our preliminary investigations tend to show that this is not straightforward.

7 Conclusion

The article proposes an abstract syntax and formal semantics for SHACL core constraint
components. This semantics is robust enough to handle constraints with arbitrary recur-
sion, which can be expressed in SHACL, but whose validation is left explicitly open in
the specification. One of our contributions is to highlight semantic issues related to non-
stratified SHACL targets. To address such cases, we adopt a notion of partial assignment
of (positive and negated) shapes to nodes, and define a semantics with desirable properties,
such as monotonicity of forward-chaining, or equivalence with total assignments in
the stratified case. We then show that the validation problem is NP-complete for any
fragment with at least conjunction, negation and existential quantification, in the size of
either graph or constraints, regardless of stratification. Therefore we propose a sound
approximation algorithm, parameterized by an integer k, which guarantees termination in
time polynomial in the size of the graph.

As a continuation, we plan to investigate other problems, such as (finite) satisfiability
of a set of shapes, or SPARQL query containment in the presence of SHACL constraints.
We also expect this formalization to be abstract enough to be extended to other constraint
languages for graphs, such as ShEx, in order to handle arbitrary recursion.

Acknowledgements. This work was supported by the QUEST, ROBAST, OBATS and
ADVANCE4KG projects at the Free University of Bozen-Bolzano, and the Millennium
Institute for Foundational Research on Data (IMFD), Chile.
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A Translation from SHACL core constraint components to L and
conversely

A.1 Scope

Let D be a set of SHACL shape definitions, and let ds ∈ D be the definition of shape
s. W.l.o.g., we assume that D does not contain anonymous shapes, i.e. each (node or
property) shape definition ds ∈ D is a set of RDF triples with subject s, where s is an
IRI.

The SHACL specification allows some RDF triples in ds to be omitted (e.g. triples
with sh:property in certain circumstances), as syntactic sugar. We assume that this is
not the case in ds.

Within ds, we focus on triples expressing constraints, ignoring for instance target
declaration, shape name declaration, severity, validation report, etc. Within these, we
focus on triples expressed with SHACL core constraint components (Section 4 of the
SHACL specification).

In addition, as already explained, the language L abstracts away from constraints
on IRIs (datatype checks, regular expressions, value comparison, etc.), which
can be verified in linear time (this is the reason why L contains only a single
terminal symbol I (for IRI) other than >). Therefore we assume that a shape
definition ds does not contain triples with property: sh:datatype, sh:nodeKind,
sh:minExclusive, sh:minInclusive, sh:maxExclusive, sh:maxInclusive,
sh:minLength, sh:maxLength, sh:pattern, sh:languageln, sh:uniqueLang or
sh:in.

Similarly, because we assume (with a slight abuse only) that ordering two values is
not harder than checking whether they differ, we abstract away from property pair value
comparisons, ignoring sh:lessThan and sh:lessThanOrEquals.

A.2 Translation from SHACL to L

Given a shape definition ds, we denote with cons(ds) the set of all remaining triples,
after discarding the ones just mentioned. We divide our translation t from SHACL to L
into:

– IRI constraints
– boolean combinations of shape definitions
– node shape definitions
– property shape definitions

Abusing notation, if (s, p, o) is an RDF triple, we use t(s, p, o) instead of
t({(s, p, o)}).

A.2.1 IRI constraints
The only remaining constraints on IRI are triples of the form (s, sh:hasValue, I). We
define:

t(s, sh:hasValue, I)
.
= I

A.2.2 Boolean combinations of shape definitions
t is defined as expected for boolean operators (with s, s′, si shapes and l a SHACL list of
shapes).
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– t(s, sh:not, s′) = ¬s′
– t(s, sh:and, l) =

∧
s′∈l s

′

– t(s, sh:or, l) =
∨
s′∈l s

′

– t(s, sh:xone, [s1, .., sn]) =
∨

1≤i≤n(si ∧
∧

1≤j≤n,i 6=j ¬sj)

A.2.3 Node shape definitions
Let ds be a node shape definition. Then cons(ds) can be partitioned into 3 sets of triples
pp(ds), closed(ds) and loc(ds).

A.2.3.1 pp(ds). pp(ds) is composed of all triples with property sh:property.
We translate it as:

t(pp(ds))
.
=

∧
(s,sh:property,s′)∈pp(ds)

t(ds′)

A.2.3.2 closed(ds). closed(ds) containts all triples with property sh:closed or
sh:ignoredProperties

– If closed(ds) contains (s, sh:closed, false), then t(closed(ds)) = >.
– If closed(ds) contains (s, sh:closed, true), then we define ignored(ds) as fol-

lows:
◦ If closed(ds) contains (s, sh:ignoredProperties, l), then

ignored(ds) = {p | p ∈ l}.
◦ otherwise, ignored(ds) = ∅

Now if r is a property path, let signat(r) be all properties appearing in r.
And let R = {r | (s, sh:property, s′) ∈ pp(ds) and (s′, sh:path, r) ∈ ds′}.
We define the regular path expression e(s), which is the complement (!) of the
disjunction (|) of all properties appearing in R or in ignored(ds).
More formally, let Es = (

⋃
r∈R signat(r)) ∪ ignored(ds).

Then es = !(e1|..|en), where Es = {e1, .., en}.

We can now define t(closed(ds))
.
= ≤0 es.>

A.2.3.3 loc(ds). loc(ds) contains all triples with property sh:hasValue,
sh:not, sh:or, sh:and or sh:xone.

If loc(ds) = ∅, then t(loc(ds))
.
= >

Otherwise, t(loc(ds))
.
=
∧
m∈loc(ds)

t(m)

A.2.3.4 Translation of ds. We can now define the translation t(ds) of cons(ds) into L
as:

t(ds)
.
= t(pp(ds)) ∧ t(closed(ds)) ∧ t(loc(ds))

A.2.4 Property shape definition
Let ds be a property shape definition, with rs the value for sh:path in ds.

A.2.4.1 loc(ds). Within cons(ds), we first isolate the set loc(ds) of triples with property
sh:hasValue, sh:not, sh:and, sh:xone or sh:or.

If loc(ds) = ∅, then t(loc(ds))
.
= >

Otherwise, t(loc(ds))
.
=
∧
m∈loc(ds)

t(m)
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A.2.4.2 nsRef(ds). Let nsRef(s) be the set of triples with property sh:node in ds.
Then t(nsRef(ds))

.
=
∧

(s,sh:node,s′)∈nsRef(ds)
s′

A.2.4.3 nsRefQ(ds). Similarly, let nsRefQ(ds) be the set of triples with property
sh:qualifiedValueShape in ds.

Then t(nsRefQ(ds))
.
=
∧

(s,sh:qualifiedValueShape,s′)∈nsRefQ(ds)
s′

A.2.4.4 eq(ds). Let eq(ds) be the set of triples with property path sh:equals in ds
Then t(eq(ds))

.
=
∧

(s,sh:equals,r)∈eq(ds)
rs = r

A.2.4.5 disj(ds). Let disj(ds) be the set of triples with property path sh:disjoint.
Then t(disj(ds))

.
=
∧

(s,sh:disjoint,r)∈disj(ds)
(≤0 rs.¬s1

r) ∧ (≤0 r.¬s2
r), where s1

r

and s2
r are fresh shape names, whose definitions in L are ¬s2

r and ¬s1
r respectively.

A.2.4.6 quant(ds). For quantification, let quant(ds) be the set of triples in ds with
property path sh:minCount or sh:maxCount. For each triple (s, p, n) ∈ quant(ds),
we define:
t(s, p, n)

.
= ≥n rs. if p is sh:minCount, and

t(s, p, n)
.
= ≤n rs. if p is sh:maxCount.

A.2.4.7 quantQ(ds). Similarly, let quantQ(ds) be the set of triples in ds with property
path sh:qualifiedMinCount or sh:qualifiedMaxCount. For each triple (s, p, n) ∈
quantQ(s), we define:
t(s, p, n)

.
= ≥n rs. if p is sh:qualifiedMinCount, and

t(s, p, n)
.
= ≤n rs. if p is sh:qualifiedMaxCount.

A.2.4.8 sib(s). Finally, let sib(s) be the set of sibling shapes of s if ds contains the
triple (s, sh:qualifiedValueShapesDisjoint, true), and sib(s) = ∅ otherwise.

A.2.4.9 Translation of ds. We can now define the translation t(ds) of cons(ds) into L.
For readability, we group the translation of constraints without qualified value, defined as:

nqual(ds)
.
= t(loc(ds)) ∧ t(nsRef(ds))

Then t(ds) is defined as:

t(ds)
.
= t(eq(ds)) ∧ t(disj(ds)) ∧ ≤0 r.¬ nqual(ds) ∧∧

q∈quant(ds)

t(quant(s))(nsRef(ds)) ∧

∧
q∈quantQ(ds)

t(quantQ(ds))(t(nsRefQ(ds)) ∧
∧

s∈sib(ds)

¬s)

A.3 Translation from L to SHACL

Let S = {(s1, φs1 , targets1), .., (sn, φsn , targetsn)} be a stratified set of shapes, where
each φsi is a formula in L.

We provide a translation of S as an equivalent set D of SHACL shape definitions. D
is partitioned into {u(φsi), .., u(φsn)}, where each u(φsi) translates φsi .
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Let subf(φsi) be the set of all subformulas of φsi (including φsi itself). Then u(φsi)
contains one SHACL shape definition h(φ) for each φ ∈ subf(φsi). Furthermore, h(φsi)
has targetsi as target definition, whereas all other h(φ) in u(φsi) have no target definition.

It should be emphasized that this translation is far from optimal, i.e. a more concise
set of SHACL shape definitions for S could be produced in general. But it is conceptually
simple, and sufficient for the purpose of this article, as it produces a set D of SHACL
shape definitions whose size is linear in |S|.

As a reminder, L is defined by the following grammar:

φ ::= > | s | I | φ1 ∧ φ2 | ¬φ | ≥n r.φ | r1 = r2

If d is a SHACL shape definition for node shape s we will use sh(d) to denote s.
We also use [s1, s2] to denote a SHACL list containing 2 SHACL shapes (i.e. IRIs) s1

and s2.
We can now define h(φ), by induction on φ:

– If φ = >, then h(φ) is a shape definition with no constraint, i.e.:
sφ a sh:NodeShape .

– If φ = s, then h(φ) is defined as:
sφ a sh:NodeShape ; sh:and ([s, s]) .
This workaround is due to the fact that the SHACL syntax does not provide an
operator to immediately reference a node shape within a node shape definition.

– If φ = I , then h(φ) is defined as:
sφ a sh:NodeShape ; sh:hasValue I .

– If φ = φ1 ∧ φ2, then h(φ) is defined as:
sφ a sh:NodeShape ; sh:and ([sh(h(φ1)), sh(h(φ2))]).

– If φ = ¬φ′, then h(φ) is defined as:
sφ a sh:NodeShape ; sh:not sh(h(φ1)).

– If φ = ≥n r.φ′, then h(φ) is defined as:
sφ a sh:NodeShape ;

sh:property [
sh:path (r) ;
sh:qualifiedValueShape ;
sh:qualifiedMinCount n ;
sh:node sh(h(φ′))

] .
A qualified value shape is used here to correctly capture quantification, namely the
fact that there may be r-successors not satisfying φ′, as long as the number satisfying
φ′ is at least n. This is why we cannot use sh:minCount only.
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– If φ is r1 = r2, then h(φ) is defined as:
sφ a sh:NodeShape ;

sh:property [
sh:path (r1) ;
sh:equals (r2)

] .

Note that we allow full SPARQL property paths, but the specification only allows a
subset of them, called SHACL paths. For our complexity results this is not an issue,
as all lower bounds are shown without using property paths. Nevertheless, we can use
sh:closed to show that the logic has the same expressive power, albeit with a much
more involved translation.

B Proofs
B.1 Preliminaries
B.1.1 Notation
In order to provide a higher-level introduction, the notation adopted in the article slightly
differs from the one used in the following proofs.

The main differences are the following:
– In what follows, the input of the validation problem is a triple 〈G,S, s0(v0)〉, with
G a graph, S = {s0 7→ φs0 , .., sn 7→ φsn} is a function mapping shape names to
formulas in L, and s0(v0) is the unique target atom, meaning that shape s0 has vertex
v0 as unique “target node”.
As a shortcut, we may refer to S as a “set of shapes”. If there is no ambiguity, we
may also use “(let/there exists/for all) φs ∈ S” as a shortcut for “(let/there exists/for
all) φs such that S(s) = φs for some s ∈ dom(S)”.

– G is represented as a pair 〈VG, EG〉, with VG its vertices, and EG ⊆ VG × P × VG
its edges, where P is a set of edge labels (IRIS).

– Assignments are primarily represented as functions from atoms to truth values
(defined in Section B.1.3 below)

– As syntactic sugar, we use ♦rφ for ≥1 r.φ, and �rφ for ≤0 r.¬φ.

B.1.2 Function, lattice, fixed point
– If f is a function, then dom(f) designates its domain, and range(f) its range.
– If A ⊆ dom(f), then f |A designates f restricted to A.
– If f is a function, and A ⊆ dom(f), then fix(f,A) designates all fixed points of f

over A.
– If P = 〈U,�〉 is a partially ordered set and u ∈ U , then extP (u) designates
{u′ ∈ U | u � u′}.

Definition 9. Let P = 〈U,�〉 be a partially ordered set, and f a function from U to U .
u is the least fixed point of f over P if u ∈ fix(f, U), and u � u′ for all u′ ∈ fix(f, U).

Definition 10. Let P = 〈U,�〉 be a partially ordered set. A function f : U → U is
monotone over P if for all u ∈ U , u � f(u).

We will use a weaker version of the Knaster-Tarski theorem:
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Theorem 2. If P = 〈U,�〉 is a finite meet semi-lattice and f : U → U a monotone
function over P , then f has a (unique) least fixed point over P .

B.1.3 Shape assignments

If G is a graph and S a set of shape constraint definitions, then atoms(G,S) =
{s(v) | φs ∈ S and v ∈ VG}.

Definition 11. Given a graph G and a set S of shape constraint definitions, a (3-valued)
shape assignment σ for G and S is a total function from atoms(G,S) to {0, 0.5, 1}

Definition 12. Given a graph G and a set S of shape constraint definitions, a 2-valued
shape assignment σ for G and S is a total function from atoms(G,S) to {0, 1}

For readability, for shape assignment σ, shape name s and vertex v, we write σs(v)
instead of σ(s(v)).

Alternatively, for the sake of brevity, an assignment σ may be represented as a set
of positive and negative atoms, i.e. s(v) ∈ σ iff σs(v) = 1, and i.e. ¬s(v) ∈ σ iff
σs(v) = 0.

If S is a set of shape constraint definitions, then signat(S) designates all predicates
and constants appearing in some constraint formula of S.

Definition 13 (Target compliant assignment).
σ is a target compliant assignment for 〈G,S, s0(v0)〉 iff:

– σ is an assignment for G and S, and
– σs0(v0) = 1

Definition 14 (Constraint satisfying assignment).
σ is a constraint satisfying assignment for a graph G and set S of shapes iff:

– σ is an assignment for G and S, and
– for each s(v) ∈ atoms(G,S), σs(v) = 0 implies JφsKv,G,σ = 0, and σs(v) = 1

implies JφsKv,G,σ = 1.

Definition 15. [Fixed-point assignment]
σ is a fixed-point assignment for a graph G and set S of shapes iff:

– σ is an assignment for G and S, and
– for each s(v) ∈ atoms(G,S), σs(v) = JφsKv,G,σ

Definition 16 (Faithful assignment).
σ is a faithful assignment for 〈G,S, s0(v0)〉 iff it is both target compliant for 〈G,S,
s0(v0)〉 and constraint satisfying for G and S.

Definition 17 (Strictly faithful assignment).
σ is a strictly faithful assignment for 〈G,S, s0(v0)〉 iff it is both target compliant for
〈G,S, s0(v0)〉 and a fixed-point assignment for G and S.
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B.1.4 Sets of assignments
Given a graph G, set S of shapes and n ∈ {2, 3}:

– Σn
G,S designates all n-valued assignments for G and S

– Σn,tar
G,S,s0(v0) designates all n-valued target compliant assignments forG, S and s0(v0)

– Σn,cst
G,S designates all n-valued constraint satisfying assignments for G and S

– Σn,fix
G,S designates all n-valued fixed-point assignments for G and S

– Σn,fai
G,S,s0(v0) designates all n-valued faithful assignments for G, S and s0(v0)

– Σn,str
G,S,s0(v0) designates all n-valued strictly faithful assignments for G, S and s0(v0)

Similarly, Σn
S designates all n-valued assignments for S and any G.

B.1.5 Assignment ordering
Given a graph G and set S of shapes, � denotes set inclusion between 3-valued assign-
ments viewed as sets of (possibly negated) atoms.

In other words, for σ1, σ2 ∈ Σ3
G,S , σ1 � σ2 iff for any s(v) ∈ atoms(G,S):

– σ1s(v) = 0 implies σ2s(v) = 0, and
– σ1s(v) = 1 implies σ2s(v) = 1.

Note that L = 〈Σ3
G,S ,�〉 is a (meet) semi-lattice over Σ3

G,S : the greatest lower
bound of two elements of Σ3

G,S (viewed as sets) is their intersection, but they may not
have a least upper bound (e.g. for σ1 = {s(v)} and σ2 = {¬s(v)}).

Furthermore, for any σ ∈ Σ3
G,S , 〈extL(σ),�〉 is also a (meet) semi-lattice over

extL(σ).

Definition 18. If σ ∈ Σ3
G,S , then fil(σ) ∈ Σ2

G,S is the assignment defined by
fil(σ)s(v) = 1 if σs(v) = 0.5, and fil(σ)s(v) = σs(v) otherwise.

B.1.6 Stratification
If S is a stratified set of shapes, we assume that all shape constraints are in NNF.
If S is a stratified set of shapes with strata S1, .., Sn (from lowest to highest), we use

S≤j to designate
j⋃
i=1

Si.

B.1.7 Immediate evaluation

Definition 19. Given a graphG and set S of shapes, the function TG,S : Σn
G,S → Σn

G,S

is defined by:
TG,S(σ)s(v) = JφsKv,G,σ

– For readability, we write TG,Sσ instead of TG,S(σ).
– Abusing notation, if Σ′ ⊆ Σn

G,S , we use TG,SΣ′ to designate {TG,Sσ | σ ∈ Σ′}.

B.1.8 Constraint language and fragments

B.1.8.1 L As a reminder, the language L for shape constraints is defined by the
following grammar.

φ ::= > | s | I | φ1 ∧ φ2 | ¬φ | ≥n r.φ | r1 = r2 (1)
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where s is a shape name, I is an IRI, r is a property path, and n ∈ N+.
The following additional operators are used as syntactic sugar:

– φ1 ∨ φ2 for ¬(¬φ1 ∧ ¬φ2)
– ≤n r.φ for ¬(≥n+1 r.φ)
– = n.rφ for ≥n r.φ ∧ ≤n r.φ,
– ♦rφ for ≥1 r.φ
– �rφ for ≤0 r.¬φ
– ⊥ for ¬>

B.1.8.2 L≥1,¬,∧. The constraint language L≥1,¬,∧ is used for NP-hardness. It is the
fragment of L without property path, counting or path equality, i.e. defined with the
grammar:

φ ::= > | s | I | φ1 ∧ φ2 | ¬φ | ≥1 p.φ (2)

where s is a shape name, and I and p are IRIs.

B.1.8.3 L≥n,∧,∨. The constraint language L≥n,∧,∨ is used for P-hardness. It is the
fragment of L without property path, path equality, or negation, but with disjunction as a
primitive operator. i.e. defined with the grammar:

φ ::= > | s | I | φ1 ∧ φ2 | φ1 ∨ φ2 | ≥n p.φ (3)

where s is a shape name, I and p are IRIs, and n ∈ N+.

B.2 Semantic Properties: proofs

B.2.1 Numbering
Because the notation used in the following proofs is slightly different from the one used in
the article, we restate the lemmas and propositions of Section 3 with this new notation. The
following is a mapping from lemmas/propositions of the article to lemmas/propositions
of the appendix:

– Lemma 1 7→ Lemma 3
– Proposition 1 7→ Proposition 9
– Proposition 3 7→ Proposition 10

B.2.2 Proofs

Lemma 2. Let G be a graph, S a set of shape constraint definitions, and let σ1, σ2 ∈
Σ3
G,S , with σ1 � σ2. For any φ over signat(S) and v ∈ VG, if JφKv,G,σ1 6= 0.5, then

JφKv,G,σ1 = JφKv,G,σ2 .

Proof. By induction on φ:

φ = > :
J>Kv,G,σ1 = J>Kv,G,σ2 = 1

φ = I :
If JIKv,G,σ1 = 1, then v = I , therefore JIKv,G,σ2 = 1.
If JIKv,G,σ1 = 0, then v 6= I , therefore JIKv,G,σ2 = 0.
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φ = s :
Let σ1s(v) = 0. Because σ1 � σ2, σ2s(v) = JsKv,G,σ2 = 0.
Similarly for the case σ1s(v) = 1.

φ = φ1 ∧ φ2 :
If JφKv,G,σ1 = 0, then Jφ1Kv,G,σ1 = 0 or Jφ2Kv,G,σ1 = 0.
So by IH, Jφ1Kv,G,σ2 = 0 or Jφ2Kv,G,σ2 = 0.
Therefore JφKv,G,σ2 = 0.
If JφKv,G,σ1 = 1, then Jφ1Kv,G,σ1 = 1 and Jφ1Kv,G,σ2 = 1.
So by IH, Jφ1Kv,G,σ2 = 1 and Jφ2Kv,G,σ2 = 1.
Therefore JφKv,G,σ2 = 1.

φ = ¬φ′ :
If JφKv,G,σ1 = 0, then Jφ′Kv,G,σ1 = 1.
So by IH, Jφ′Kv,G,σ2 = 1.
Therefore JφKv,G,σ2 = 0.
Similarly for the case JφKv,G,σ1 = 1.

φ = (≥n r.φ′) :
If JφKv,G,σ1 = 1, then |{v′ | G |= r(v, v′) and Jφ′Kv

′,G,σ1 = 1}| ≥ n.
By IH, if Jφ′Kv

′,G,σ1 = 1, then Jφ′Kv
′,G,σ2 = 1.

So |{v′ | G |= r(v, v′) and Jφ′Kv
′,G,σ2 = 1}| ≥

|{v′ | G |= r(v, v′) and Jφ′Kv
′,G,σ1 = 1}| ≥ n.

Therefore JφKv,G,σ2 = 1.
If JφKv,G,σ1 = 0, then |{v′ | G |= r(v, v′)}|−
|{v′ | G |= r(v, v′) and Jφ′Kv

′,G,σ1 = 0}| < n.
And by IH, if Jφ′Kv

′,G,σ1 = 0, then Jφ′Kv
′,G,σ2 = 0.

So |{v′ | G |= r(v, v′) and Jφ′Kv
′,G,σ1 = 0}| ≤

|{v′ | G |= r(v, v′) and Jφ′Kv
′,G,σ2 = 0}|.

It follows that |{v′ | G |= r(v, v′)}| − |{v′ | G |= r(v, v′) and Jφ′Kv
′,G,σ2 = 0}| ≤

|{v′ | G |= r(v, v′)}| − |{v′ | G |= r(v, v′) and Jφ′Kv
′,G,σ1 = 0}| < n.

Therefore JφKv,G,σ2 = 0.

Lemma 3. For any graph G and set S of shapes, TG,S is monotone over 〈Σ3
G,S ,�〉.

Proof. For each s ∈ dom(S), φs will designate S(s).
Let σ1, σ2 ∈ Σ3

G,S , with σ1 � σ2.
Take any s(v) ∈ atoms(G,S). From Lemma 2, if JφsKv,G,σ1 = 0, then JφsKv,G,σ2 = 0.
Similarly, if JφsKv,G,σ1 = 1, then JφsKv,G,σ2 = 1.
Then from Definition 19, TG,Sσis(v) = JφsKv,G,σi .
Therefore TG,Sσ1 � TG,Sσ2.

Lemma 4. Let G be a graph, S a set of shapes, and L = 〈Σ3
G,S ,�〉.

For any σ ∈ Σ3
G,S , σ � TG,Sσ iff TG,S extL(σ) � extL(σ).

Proof.
(⇒).
Let σ ∈ Σ3

G,S , and σ � TG,Sσ. We need to show that TG,Sσ′ ∈ extL(σ) for any
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σ′ ∈ extL(σ).
Because σ′ ∈ extL(σ), σ � σ′.
So from Lemma 3, TG,Sσ � TG,Sσ′.
Then as σ � TG,Sσ, from the transitivity of �, σ � TG,Sσ′.
Therefore TG,Sσ′ ∈ extL(σ).
(⇐).
Let TG,S extL(σ) � extL(σ).
Then for each σ′ ∈ extL(σ), TG,Sσ′ ∈ extL(σ).
In particular, because σ ∈ extL(σ), TG,Sσ ∈ extL(σ).
So from the definition of extL(σ), σ � TG,Sσ.

Proposition 9. For any graph G, set S of shapes and s0(v0) ∈ atoms(G,S),
if there is a σ ∈ Σ3,cst

G,S such that σs0(v0) = 1, then there is a σ′ ∈ Σ3,fix
G,S such that

σ′s0(v0) = 1.

Proof. For each s ∈ dom(S), φs will designate S(s).
Let L = 〈Σ3

G,S ,�〉, and let σ ∈ Σ3,cst
G,S , such that σs0(v0) = 1.

Take any s(v) ∈ atoms(G,S).
– If σs(v) = 0, because σ ∈ Σ3,cst

G,S , JφsKv,G,σ = TG,Sσs(v) = 0.
– Similarly, if σs(v) = 1, then JφsKv,G,σ = TG,Sσs(v) = 1.

Therefore σ � TG,Sσ.
So from Lemma 4, TG,S extL(σ) ⊆ extL(σ), i.e. TG,S |extL(σ) is a function from
extL(σ) to extL(σ).
In addition, because extL(σ) ⊆ Σ3

G,S , from Lemma 3, TG,S is monotone over 〈extL(σ),
�〉.
Therefore from Theorem 2, TG,S has a minimal fixed-point σ′ over 〈extL(σ),�〉.
So σ′ ∈ Σ3,fix

G,S . And because σ′ ∈ extL(σ), σ′s0(v0) = 1.

Lemma 5. Let S be a stratified set of shapes, with strata S1, .., Sn (from lowest to
highest), and let S0 = ∅.

For 1 ≤ i ≤ n, if σ ∈ Σ3,fix
G,S≤i

and σ|S≤i−1
∈ Σ2,fix

G,S≤i−1
, then fil(σ)|S≤i ∈ Σ

2,fix
G,S≤i

.

Proof. For each s ∈ dom(S), φs will designate S(s).
Let σ ∈ Σ3,fix

G,S≤i
with σ|S≤i−1

∈ Σ2,fix
G,S≤i−1

, let σ′ = fil(σ)|S≤i , and let s(v) ∈ S≤i.
We need to show that σ′s(v) = JφsKv,G,σ

′
. We first consider the case σs(v) 6= 0.5, and

then σs(v) = 0.5.

σs(v) 6= 0.5 :
Because σ ∈ Σ3,fix

G,S≤i
, σs(v) = JφsKv,G,σ .

Then because σ � σ′ and σs(v) 6= 0.5, from Lemma 2, JφsKv,G,σ = JφsKv,G,σ
′
.

Finally, since σ � σ′ and σs(v) 6= 0.5, σ′s(v) = σs(v).
This yields σ′s(v) = σs(v) = JφsKv,G,σ = JφsKv,G,σ

′
.

σs(v) = 0.5 :
Because σ′ = fil(σ|S≤i), σ′s(v) = 1. So we need to show that JφsKv,G,σ

′
= 1.

First, because σs(v) = 0.5 and σ ∈ Σ3,fix
G,S≤i

, JφsKv,G,σ = 0.5 must hold.
Then we show below that for any w ∈ VG and subformula φ of φs, if JφKw,G,σ = 0,
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then JφKw,G,σ
′

= 0, and JφKw,G,σ
′

= 1 otherwise.
In particular, because JφsKv,G,σ 6= 0, this implies JφsKv,G,σ

′
= 1.

By induction on φ:

φ = > :
J>Kw,G,σ = J>Kw,G,σ

′
= 1

φ = I :
If w = I , then JIKw,G,σ = JIKw,G,σ

′
= 1.

If w 6= I , then JIKw,G,σ = JIKw,G,σ
′

= 0.
φ = s :

If JsKw,G,σ = 0, then σs(w) = 0, and because σ � σ′, JsKw,G,σ
′

= σ′s(w) =
0.
Similarly, if JsKw,G,σ = 1, then JsKw,G,σ

′
= σ′s(w) = 1.

If JsKw,G,σ = 0.5, then σs(w) = 0.5, and because σ′ = fil(σ|S≤i), σ′s(w) = 1.
Therefore JsKw,G,σ

′
= 1.

φ = φ1 ∧ φ2 :
If JφKw,G,σ = 0, then JφjKw,G,σ = 0 must hold for some j ∈ {1, 2}.
So by IH, JφjKw,G,σ

′
= 0.

Therefore JφKw,G,σ
′

= 0.
If JφKw,G,σ ≥ 0.5, then JφjKw,G,σ ≥ 0.5 must hold for all j ∈ {1, 2}.
So by IH, JφjKw,G,σ

′
= 1.

Therefore JφKw,G,σ
′

= 1.
φ = ¬φ′ :

Because S is stratified and φ′ is a subformula of φs, for any shape name s′

appearing in φ′, s′ must be defined in S≤i−1.
Then because σ|S≤i−1

∈ Σ2,fix
G,S≤i−1

, for any v ∈ VG, σs′(v) 6= 0.5. So by
induction on the structure of φ′, Jφ′Kw,G,σ 6= 0.5, which implies JφKw,G,σ 6= 0.5.
Therefore the only two possible cases are JφKw,G,σ = 0 and JφKw,G,σ = 1.
If JφKw,G,σ = 0, then Jφ′Kw,G,σ = 1 must hold.
So by IH, Jφ′Kw,G,σ

′
= 1.

Therefore Jφ′Kw,G,σ
′

= 0.
If JφKw,G,σ = 1, then Jφ′Kw,G,σ = 0 must hold.
So by IH, Jφ′Kw,G,σ

′
= 0.

Therefore Jφ′Kw,G,σ
′

= 1.
φ =≥n r.φ′ :

Let Y = {y | G |= r(w, y)}, Y 0
σ = {y ∈ Y | Jφ′Ky,G,σ = 0}, Y 0.5

σ = {y ∈
Y | Jφ′Ky,G,σ = 0.5}, and Y 1

σ = {y ∈ Y | Jφ′Ky,G,σ = 1}.
Similarly, define Y 0

σ′ , Y
0.5
σ′ and Y 1

σ′ .
If JφKw,G,σ = 0, then |Y | − |Y 0

σ | < n.
By IH, for each y ∈ |Y 0|, Jφ′Ky,G,σ

′
= 0.

So |Y | − |Y 0
σ′ | < n.

Therefore JφKw,G,σ
′

= 0.
If JφKw,G,σ ≥ 0.5, then |Y | − (|Y 0.5

σ |+ |Y 1
σ |) ≥ n.

By IH, for each y ∈ Y 0.5
σ ∪ Y 1

σ , Jφ′Ky,G,σ
′

= 1.
So |Y 0.5

σ |+ |Y 1
σ | = |Y 1

σ′ |.
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This yields |Y | − |Y 1
σ′ | ≥ n.

Therefore JφKw,G,σ
′

= 1.

Proposition 10. For any graph G, stratified set S of shapes and s0(v0) ∈ atoms(G,S),
if there is a σ ∈ Σ3,fix

G,S such that σs0(v0) = 1, then there is a σ′ ∈ Σ2,fix
G,S such that

σ′s0(v0) = 1.

Proof. Let S be a stratified set of shapes, with strata S1, .., Sn, let G be a graph,
let L = 〈Σ3

G,S ,�〉, let s0(v0) ∈ atoms(G,S), and let σ ∈ Σ3,fix
G,S such that σs0(v0) = 1.

For each s ∈ dom(S), φs will designate S(s).

σ′|S≤i is defined by induction on 1 ≤ i ≤ n, as follows:
– σ′|S≤1

= fil(σ|S1
).

– Let τi = σ′|Si−1
∪ σ|Si , and let θi be the minimal fixed-point of TG,S≤i over

〈extL(τi),�〉 (we show below that θi must exist). Then σ′|S≤i = fil(θi).
We now show that σ′|S≤i ∈ Σ

2,fix
G,S≤i

for 1 ≤ i ≤ n. It follows that σ′ = σ′|S≤n ∈ Σ
2,fix
G,S .

First, observe that for any 1 ≤ i ≤ n, because θi is a fixed-point of TG,S≤i over
〈extL(θi),�〉, and because extL(θi) ⊆ Σ3

G,S , θi is also a fixed-point of TG,S≤i over
〈Σ3

G,S ,�〉, i.e. θi ∈ Σ3,fix
G,S≤i

.
So for the base case i = 1, because σ′|S≤i = fil(θi), from Lemma 5, σ′|S≤i ∈

Σ2,fix
G,S≤i

must hold.

For the inductive case, by IH, σ′|S≤i−1
∈ Σ2,fix

G,S≤i−1
. In addition,

τi|S≤i−1
= σ′|S≤i−1

. Finally, because θi ∈ extL(τi), τi � θi must hold. There-
fore θi|S≤i−1

= τi|S≤i−1
= σ′|S≤i−1

∈ Σ2,fix
G,S≤i−1

. So from Lemma 5, σ′|S≤i ∈ Σ
2,fix
G,S≤i

.

To complete the proof, we show that θi must exists (in the inductive case i > 1), i.e.
that TG,S≤i must admit a fixed-point over 〈extL(τi),�〉.
From Lemma 4, it is sufficient to show that τi � TG,S≤iτi, i.e. that for any s(v) ∈
atoms(G,S≤i), if τis(v) 6= 0.5, then τis(v) = JφsKv,G,τi .
We will first consider the case where s is defined in S≤i−1, and then the case where s is
defined in Si.

s is defined in S≤i−1

From the definition of τi, τi|S≤i−1
= σ′|S≤i−1

.

So τis(v) = σ′|S≤i−1
s(v), and JφsK

v,G,τi|S≤i−1 = JφsK
v,G,σ′|S≤i−1 .

Then because S is stratified, JφsKv,G,τi = JφsK
v,G,τi|S≤i−1 .

Finally, because σ′|S≤i−1
∈ Σ2,fix

G,S≤i
, σ′|S≤i−1

s(v) = JφsK
v,G,σ′|S≤i−1 .

This yields τis(v) = JφsKv,G,τi .
s is defined in Si

From the definition of σ′, σ|S≤i−1
� σ′|S≤i−1

.
And from the definition of τi, σ′|S≤i−1

= τi|S≤i−1
.
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Therefore σ|S≤i−1
� τi|S≤i−1

.
In addition, from the definition of τi still, σ|Si = τi|Si .
This yields σ|S≤i � τi.
Then because σ ∈ Σ3,fix

G,S and S is stratified, σ|S≤i ∈ Σ
3,fix
G,S≤i

.

So σ|S≤is(v) = JφsK
v,G,σ|S≤i .

Now let τis(v) 6= 0.5.
Because σ|Si = τi|Si , σ|Sis(v) 6= 0.5.
And because σ|S≤is(v) = JφsK

v,G,σ|S≤i , JφsK
v,G,σ|S≤i 6= 0.5.

Then as σ|S≤i � τi, from Lemma 2, JφsK
v,G,σ|S≤i = JφsKv,G,τi .

This yields τis(v) = JφsKv,G,τi .

Proposition 11. Let G be a graph, and S a set of shape constraint definitions. Then
TG,S admits a unique minimal fixed-point σminFix over 〈Σ3

G,S ,�〉, and σminFix is a
constraint-compliant assignment for G and S.

Proof. Because 〈Σ3
G,S ,�〉 is a meet semi-lattice and dom(TG,S) = Σ3

G,S and
range(TG,S) ⊆ Σ3

G,S , from Lemma 3 and Theorem 2, TG,S admits a unique min-
imal fixed-point over 〈Σ3

G,S ,�〉.
Then from Definitions 14 and 15, a fixed-point assignment for G ands S is also a
constraint compliant assignment for G and S.

B.3 Complexity Proofs

Proposition 5 (Data – Lower Bound). There is a stratified fixed set of shapes S in
L≥1,¬,∧ such that VALIDATION(S) is NP-hard.

Proof. Reduction from CIRCUIT-SAT. Let ψ be a boolean formula with variables {x1, ..,
xn}. We assume wl.o.g. that ψ contains only AND and NOT as boolean operators. We
build an instance 〈Gψ, S, s0(v0)〉 of VALIDATION such that ψ is satisfiable iff 〈Gψ, S,
s0(v0)〉 is valid. The graph Gψ is similar to the propositional DAG for ψ, whereas S is
independent from ψ.

Let Ψ be the set of all subformulas of ψ. Each ψ′ ∈ Ψ is injectively mapped to
a vertex vψ′ . Then Gψ is the graph defined by VGψ = {v0} ∪ {vψ′ | ψ′ ∈ Ψ} and
EGψ = {(v0, eval, vψ)} ∪Hψ , where Hψ is defined by induction on ψ, as follows:

– if ψ = xi, then Hψ = {(vψ, self, vψ)}
– if ψ = NOT ψ′, then Hψ = Hψ′ ∪ {(v0, u, vψ), (vψ, self, vψ), (vψ, not, vψ′)}
– if ψ = ψ1 AND ψ2, then Hψ = Hψ1 ∪Hψ2∪
{(v0, u, vψ), (vψ, self, vψ), (vψ, and, vψ1), (vψ, and, vψ2)}

S = {s0 7→ φs0 , sTV 7→ φsTV , s> 7→ φs>}, with the following definitions:
– φs> = ♦selfs>
– φsTV = (♦selfs>∧ �ands>∧ �not¬s>)∨(♦self¬s>∧(♦and¬s>∨ ♦nots>∨(�not⊥∧

�and⊥)))
– φs0 = ♦evals> ∧ �usTV

S is stratified, as shown by the function {s> 7→ 1, sTV 7→ 2, s0 7→ 3}.
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We show that ψ is satisfiable iff there is a σ ∈ Σ2,fix
Gψ,S

with σs0(v0) = 1. Then

because S is stratified, from Proposition 10, it follows that there must be a σ′ ∈ Σ3,fix
G,S

such that σs0(v0) = 1, i.e. σ′ is a (strictly) faithful assignment for 〈G,S, s0(v0)〉.
If M is a graph and v ∈ VM sucMe (v) will designate the e-successors of v in M , i.e.

{v′ ∈ VM | (v, e, v′) ∈M}.
Consider the subset S′ = {φsTV , φs>} of S, and the subgraph GRψ of Gψ , defined by

VGRψ = VGψ \ {v0}, and EGRψ is the set of triples in EGψ with edge label in {self, and,
not}. Note that VGRψ = {vψ′ | ψ′ ∈ Ψ}.

Let Xψ be the set of boolean variables appearing in ψ, and let B(Xψ) be the set of
boolean valuations over Xψ , i.e. all (total) functions from Xψ to {0, 1}. If β ∈ B(Xψ),
the evaluation of formula ψ′ given β will be denoted with Jψ′Kβ .

Now let t be the function from B(Xψ) to Σ2
GRψ ,S

′ defined by t(β)s>(vψ′) = Jψ′Kβ ,

and t(β)sTV(vψ′) = 1. And let t(B(Xψ)) = {t(β) | β ∈ B(Xψ)}. Finally, let ΣTV =

{σ ∈ Σ2,fix

GRψ ,S
′ | σsTV(vψ) = 1}. We will show below that t(B(Xψ)) = ΣTV.

For now, assuming that this claim holds, we show that ψ is satisfiable iff there is a
σ ∈ Σ2,fix

Gψ,S
such σs0(v0) = 1.

– (⇒).
Let ψ be satisfiable.
Then there is a β ∈ B(Xψ) such that JψKβ = 1.
Define σ = t(β) ∪ {¬s0(v) | v ∈ GRψ} ∪ {s0(v0),¬sTV(s0),¬s>(s0)}.
Then σs>(vψ) = 1.
Therefore because suc

Gψ
eval(v0) = {vψ}, J♦eval>Kv0,Gψ,σ = 1.

Similarly, for all vψ′ ∈ VGRψ , σsTV(vψ′) = 1, and suc
Gψ
eval(v0) = {VGRψ }, therefore

J�TV>Kv0,Gψ,σ = 1.
So from the definition of φs0 , Jφs0Kv0,Gψ,σ = σs0(v0) = 1.
In addition, because suc

Gψ
self (v0) = ∅, from the definition of φsself ,

JφsTVKv0,Gψ,σ = σsTV(v0) = 0.

Now take any v ∈ VGRψ .
Because t(β) � σ, σs>(v) = t(β)s>(v).
Then because β ∈ B(Xψ) and t(B(Xψ)) = ΣTV, t(β) ∈ Σ2,fix

GRψ ,S
′ .

Therefore t(β)s>(v) = Jφs>Kv,G
R
ψ ,t(β).

Then from the definition of GRψ , suc
Gψ
self (v) = suc

GRψ
self (v).

Therefore, from the definition of φ>,
Jφs>Kv,G

R
ψ ,t(β) = Jφs>Kv,G

R
ψ ,σ = Jφs>Kv,Gψ,σ must hold.

This yields σs>(v) = t(β)s>(v) = Jφs>Kv,G
R
ψ ,t(β) = Jφs>Kv,Gψ,σ ,

therefore σs>(v) = Jφs>Kv,Gψ,σ .
A similar argument can be used to show σsTV(v) = JφsTVKv,Gψ,σ .
Finally, because suc

Gψ
eval(v) = ∅, from the definition of φs0 ,

Jφs0Kv,Gψ,σ = σs0(v0) = 0.
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So for any v′ ∈ {v0} ∪ VGRψ = VGψ , and for any s ∈ S,

JφsKv
′,Gψ,σ = σs(v′) holds.

Therefore σ ∈ Σ2,fix
Gψ,S

.
– (⇐).

Let σ ∈ Σ2,fix
Gψ,S

such that σs0(v0) = 1.

Take any v ∈ VGRψ .

Because s> ∈ S′, s>(v) ∈ atoms(GRψ , S
′).

And because EGRψ ⊆ EGψ and S′ ⊆ S, atoms(GRψ , S
′) ⊆ atoms(Gψ, S).

Thefore σ|atoms(GRψ ,S
′)s>(v) = σs>(v).

Then because σ ∈ Σ2,fix
Gψ,S

, σs>(v) = Jφs>Kv,Gψ,σ .

Finally, because suc
Gψ
self (v) = suc

GRψ
self (v), from the definitions of φs> ,

Jφs>Kv,Gψ,σ = Jφs>K
v,GRψ ,σ|atoms(GR

ψ
,S′) .

This yields σ|atoms(GRψ ,S
′)s>(v) = σs>(v) = Jφs>Kv,G

R
ψ ,σ =

Jφs>K
v,GRψ ,σ|atoms(GR

ψ
,S′) , therefore σ|atoms(GRψ ,S

′)s>(v) =

Jφs>K
v,GRψ ,σ|atoms(GR

ψ
,S′) .

A similar argument can be used to show σ|atoms(GRψ ,S
′)sTV(v) =

JφstvK
v,GRψ ,σ|atoms(GR

ψ
,S′) .

So as S′ = {s>, sTV}, σ|atoms(GRψ ,S
′) ∈ Σ

2,fix
GRψ ,S

′ holds.

Now because σs0(v0) = 1 and suc
Gψ
u = {VGR}, from the definition of φs0 ,

σ|atoms(GRψ ,S
′)sTV(v) = 1 must hold for each v ∈ VGR .

Therefore σ|atoms(GRψ ,S
′) ∈ ΣTV.

Finally, because σs0(v0) = 1 and suc
Gψ
eval = {vψ}, from the definition of φs0 ,

σs>(vψ) = σ|atoms(GRψ ,S
′)s>(vψ) = 1 must hold.

Then as σ|atoms(GRψ ,S
′) ∈ ΣTV, because t(B(Xψ)) = ΣTV, from the definition of t,

there must be a β ∈ B(Xψ) such that JψKβ = 1.
Therefore ψ is satisfiable.

To complete the proof, we need to show that t(B(Xψ)) = ΣTV:

– (⇒).
Let σ ∈ t(B(Xψ)).
Fom the definition of f , for all v ∈ VGR , σsTV(v) = 1 holds.
So from the definition of ΣTV, we only need to show that σ ∈ Σ2,fix

GRψ ,S
′

for S′ = {s>, sTV}, i.e. that σs(v) = JφsKv,G
R
ψ ,σ for each s(v) ∈ atoms(GRψ , S

′).

If σs>(v) = 0, then because suc
GRψ
self (v) = {v}, J♦selfKv,G

R
ψ ,σ = 0.

So from the definition of φs> , σs>(v) = Jφs>Kv,G
R
ψ ,σ = 0.

Similarly, if σs>(v) = 1, then Jφs>Kv,G
R
ψ ,σ = 1.
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So we only need to show that σsTV(v) = JφsTVKv,G
R
ψ ,σ .

And because σ ∈ t(B(Xψ)), from the definition of t, σsTV(v) = 1.
Therefore it is sufficient to show that JφsTVKv,G

R
ψ′ ,σ = 1.

By induction on ψ:
◦ ψ = x

Then GRψ = {vψ, self, vψ}, with VGRψ = {vψ}.

Let σs>(vψ) = 0.
And let φ1 be the right disjunct of φsTV ,
i.e. φ1 = ♦self ¬s> ∧ (♦and¬s> ∨ ♦not s> ∨ (�not⊥ ∧�and⊥)).
Because σs>(vψ) = 0, J♦self¬s>Kvψ,G

R
ψ ,σ = 1.

In addition, because suc
GRψ
and = suc

GRψ
not = ∅,

J�not⊥ ∧�and⊥Kvψ,G
R
ψ ,σ = 1.

So Jφ1Kvψ,G
R
ψ ,σ = 1.

Therefore JφTVKvψ,G
R
ψ ,σ = 1.

Now let Let σs>(vψ) = 0.
And let φ2 be the left disjunct of φsTV ,
i.e. φ2 = ♦selfs> ∧ �ands> ∧ �not¬s>.
Because σs>(vψ) = 1, J♦selfs>Kvψ,G

R
ψ ,σ = 1.

In addition, because suc
GRψ
and = suc

GRψ
not = ∅,

J�ands> ∧ �not¬s>Kvψ,G
R
ψ ,σ = 1.

So Jφ2Kvψ,G
R
ψ ,σ = 1.

Therefore JφTVKvψ,G
R
ψ ,σ = 1.

◦ ψ = NOT ψ′

Let σs>(vψ) = 0.
Because σ ∈ t(B(Xψ)), σ = t(β) for some β ∈ B(Xψ).
And because σs>(vψ) = 0, from the definition of t, JψKβ = 0.
Then as ψ = NOT ψ′, Jψ′Kβ = 1 must hold,
and from the definition of t, σs>(vψ′) = 1.

Finally, because suc
GRψ
and (vψ) = ∅ and suc

GRψ
not (vψ) = {v′ψ}, from the definition

of φTV, JφsTVKvψ,G
R
ψ′ ,σ = 1.

A similar argument can be used for the case σs>(vψ) = 1.

◦ ψ = ψ1AND ψ2

Let σs>(vψ) = 0.
Because σ ∈ t(B(Xψ)), σ = t(β) for some β ∈ B(Xψ).
And because σs>(vψ) = 0, from the definition of t, JψKβ = 0.
Then as ψ = ψ1 AND ψ2, either Jψ1Kβ = 0 or Jψ2Kβ = 0 must hold,
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and from the definition of t, if JψiKβ = 0, then σs>(vψi) = 0.

Finally, because suc
GRψ
and (vψ) = {vψ1

, vψ2
}, from the definition of φTV,

JφsTVKvψ,G
R
ψ′ ,σ = 1.

Now let σs>(vψ) = 1.
Because σ ∈ t(B(Xψ)), σ = t(β) for some β ∈ B(Xψ).
And because σs>(vψ) = 1, from the definition of t, JψKβ = 1.
Then as ψ = ψ1AND ψ2, both Jψ1Kβ = 1 and Jψ2Kβ = 1 must hold,
and from the definition of t, σs>(vψi) = 1.

Finally, because suc
GRψ
and (vψ) = {vψ1 , vψ2}, from the definition of φTV,

JφsTVKvψ,G
R
ψ′ ,σ = 1.

– (⇐).
Let σ ∈ ΣTV.
We need show that there is a β ∈ B(Xψ) such that σ = t(β).
From the definition of ΣTV, we already know that sTV(vψ′) = 1 for all vψ′ ∈ VGR .
So from the definition of t, it is sufficient to show that there is a β ∈ B(Xψ) such
that σs>(vψ′) = Jψ′Kβ for each vψ′ ∈ VGR .
By induction on ψ:
◦ ψ = x

If σs>(vx) = 0, set β = {x 7→ 0}.
If σs>(vx) = 1, set β = {x 7→ 1}.

◦ ψ = NOT ψ′

Let σ′ = σ|atoms(GR
ψ′ ,S

′).

From the definition of GRψ , for any v ∈ VGR
ψ′

and e ∈ EGR
ψ′

,

suc
GRψ
e (v) = suc

GR
ψ′

e (v).
So for any φ and v ∈ GRψ′ , JφKv,G

R
ψ ,σ = JφKv,G

R
ψ′ ,σ

′
.

In addition, σ′ � σ, and because σ ∈ ΣTV, σ ∈ Σ2,fix

GRψ ,S
′ .

Therefore σ′ ∈ Σ2,fix

GR
ψ′ ,S

′ .

So by IH, σ′ = t(β) for some β ∈ B(Xψ′).
Therefore for each vψm ∈ GRψ′ , σ′s>(vψm) = JψmKβ .
So as σ′ � σ, for each vψm ∈ GRψ′ , σs>(vψm) = JψmKβ holds.
Therefore as VGRψ \ VGRψ′ = {vψ}, we only need to show that σs>(vψ) = JψKβ .

If JψKβ = 0, then Jψ′Kβ = 1.
So as σ′ � σ and σ′ = t(β), σs>(vψ′) = 1 must hold.
So from the definition of GRψ , J�not¬s>Kvψ,G

R,σ = 0,

and J♦nots>Kvψ,G
R,σ = 1.

In addition, because σ ∈ ΣTV, JφTVKvψ,G
R,σ = 1.

So from the definition of φTV, J♦self¬s>Kvψ,G
R,σ = 1 must hold.
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And because sucG
R

self (vψ) = {vψ}, Js>Kvψ,G
R,σ = 0 must hold.

Finally, because σ ∈ ΣTV, Js>Kvψ,G
R,σ = σs>(vψ).

Thefore σs>(vψ) = 0.
A similar argument can be used for the case JψKβ = 1.

◦ ψ = ψ1AND ψ2

Let σ1 = σ|atoms(GRψ1
,S′), and σ2 = σ|atoms(GRψ2

,S′).

From the definition of GRψ , for i ∈ {1, 2} and for any v ∈ VGRψi and e ∈ EGRψi ,

suc
GRψ
e (v) = suc

GRψi
e (v).

So for any φ and v ∈ GRψi , JφKv,G
R
ψ ,σ = JφKv,G

R
ψi
,σi .

In addition, σi � σ, and because σ ∈ ΣTV, σ ∈ Σ2,fix

GRψ ,S
′ .

Therefore σi ∈ Σ2,fix

GRψi
,S′

.

So by IH, σ1 = t(β1) for some β1 ∈ B(Xψ1
), and σ2 = t(β2) for some

β2 ∈ B(Xψ2).
And from the definition of t, for all vx ∈ VGRψi with x a propositional variable,
σis>(vx) = βi(x).
In addition, because σ1 ∪ σ2 � σ, if vx ∈ VGRψ1

∩ VGRψ2

, then
σ1s>(vx) = σ2s>(vx) = σs>(vx).
Therefore if x ∈ dom(β1) ∩ dom(β2), then β1(x) = β2(x), i.e. β1(x) and
β2(x) are compatible.

Now define β = β1 ∪ β2.
Because σi = t(βi) for i ∈ {1, 2}, for each vψ′ ∈ GRψi ,
σis>(vψ′) = Jψ′Kβi = Jψ′Kβ .
So as σ1 ∪ σ2 � σ, for each vψ′ ∈ GRψ1

∪GRψ2
, σs>(vψ′) = Jψ′Kβ holds.

Therefore as VGRφ \ VGRψ1
∪GRψ2

= {vψ}, we only need to show that

σs>(vψ) = JψKβ .

If JψKβ = 0, then JψiKβ = 0 for some i ∈ {1, 2}.
So as σi � σ and σi = t(βi) for some βi ∈ B(Xψi), σs>(vψi) = 0 must hold.
So from the definition of GRψ , J�ands>Kvψ,G

R,σ = 0,

and J♦and¬s>Kvψ,G
R,σ = 1.

In addition, because σ ∈ ΣTV, JφTVKvψ,G
R,σ = 1.

So from the definition of φTV, J♦self¬s>Kvψ,G
R,σ = 1 must hold.

And because sucG
R

self (vψ) = {vψ}, Js>Kvψ,G
R,σ = 0 must hold.

Finally, because σ ∈ ΣTV, Js>Kvψ,G
R,σ = σs>(vψ).

Thefore σs>(vψ) = 0.
A similar argument can be used for the case JψKβ = 1.
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Proposition 6 (Constraint – Lower Bound). There is a fixed graph G such that
VALIDATION(G) is NP-hard, even if S is restricted to stratified sets of shapes in L≥1,¬,∧.

Proof. Reduction from CIRCUIT-SAT (with OR, AND and NOT).
Let ψ be a boolean formula with variables {x1, .., xn}. We build an instance 〈G,S,

s0(v0)〉 of VALIDATION as follows.
The input graph G is defined by VG = {v0, v1} and EG = {(v0, p, v1), (v1, p, v1)}.
For each xi, we use two shapes s+

i and s−i , defined by φs+i = ♦p¬s−i , and φs−i =

♦ps
−
i .
Then we use an additional shape s0, with unique target v0, and defined by φs0 =

♦r tr(NNF(ψ)), where NNF(ψ) is ψ in negation normal form, and tr(NNF(ψ)) is the
straightforward boolean encoding of NNF(ψ), i.e. tr(ψ) is defined inductively over
NNF(ψ) as follows:

– if xi is a non-negated variable, then tr(xi) = s+
i

– if xi is a negated variable, then tr(xi) = s−i
– tr(ψ1 AND ψ2) = tr(ψ1) ∧ tr(ψ2)
– tr(ψ1 OR ψ2) = ¬(¬ tr(ψ1) ∧ ¬ tr(ψ2))

Now let S = {s0 7→ φs0} ∪
⋃

1≤i≤j{s
+
i 7→ φs+i

, s−i 7→ φs−i
}. Then by induction

on NNF(ψ), it can be easily checked that NNF(ψ) is satisfiable iff there is a σ ∈ Σ2,fix
G,S

such that σs0(v0) = 1.
And because S is stratified, from Proposition 10, there must be a σ′ ∈ Σ3,fix

G,S such
that σs0(v0) = 1, i.e. σ′ is a (strictly) faithful assignment for 〈G,S, s0(v0)〉.

Theorem 3 (Kostylev et al., 2015, [? ]).
Let r a SPARQL property path expression, G a graph, and v1, v2 two nodes in G. Then
it can be decided in time polynomial in |G| whether there is a path from v1 to v2 in G
matching r.

Lemma 6. Let 〈G,S, s0(v0)〉 be an instance of VALIDATION. Then it can be trans-
formed in polynomial time into an instance 〈G′, S′, s0(v0)〉 such that 〈G,S, s0(v0)〉 is
valid iff 〈G′, S′, s0(v0)〉 is valid, and S′ contains no property path expression.

Proof. If r is a property path expression and G a graph, let JrKG ⊆ (VG)2 designate all
pairs (v1, v2) of nodes in G such that there is a path in G from v1 to v2 matching r.
Then from Theorem 3, for a given pair (v1, v2) ∈ (VG)2, it can be decided in time
polynomial in |G| whether (v1, v2) ∈ JrKG (see [? ]).

Let 〈G,S, s0(v0)〉 be an instance of VALIDATION, let R be the set of property path
expressions appearing in S, and for each r ∈ R, let pr be a fresh edge label.

G′ is defined as VG′ = VG, andEG′ = EG∪{(v1, pr, v2) | r ∈ R and (v1, v2) ∈ JrKG}.
So G′ can be computed by deciding for each r ∈ R and (v1, v2) ∈ (VG)2 whether
(v1, v2) ∈ JrKG.
From the above observation, each decision is polynomial in |G|.
And because |VG|2 = O(|G|2) and |R| = O(|S|), the number of such decisions is
quadratic in |G|+ |S|.
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Now let fR be the function which takes an L formula φ, and returns φ where each
occurence of r is replace by pr, for each r ∈ R.
And let S′ be the function defined by dom(S′) = dom(S), and for each s ∈ dom(S),
S′(s) = fR(S(s)).
Then for each (v1, v2) ∈ (VG)2 = (VG′)

2, JrKG = JprKG
′
.

It follows that for any v ∈ VG = VG′ , and for constraint formula φ, immediately by
induction on φ, Jφ(v)KG,S = Jφ(v)KG

′,S′ .
In particular, for any shape s defined in S (and therefore also in S′), Jφs(v)KG,S =

Jφs(v)KG
′,S′ .

Therefore 〈G,S, s0(v0)〉 is valid iff 〈G′, S′, s0(v0)〉.

Lemma 7. Let 〈G,S, s0(v0)〉 be an instance of VALIDATION, such that no constraints
in range(S) contains a property path expression.
Then there is a function Sn such that 〈G,S, s0(v0)〉 is valid iff 〈G,Sn, s0(v0)〉 is valid,
each constraint in range(Sn) contains at most one operator and no property path
expression, and Sn can be computed in time polynomial in |S|.

Proof. Intuitively, S can be transformed into Sn by introducing a fresh shape name for
each subformula of each constraint in range(S).

More formally, if φ ∈ L, let opN(φ) be the number of operators (either ¬, ∧ or≥q r)
present in φ.
We define the function norm(), which takes a function S = {s0 7→ φSs0 , .., sm 7→ φSsm}
from shape names to formulas in L, and returns another:

– If opN(φ) ≤ 1 for each φ ∈ range(S), then norm(S) = S.
– Otherwise, let si be some si ∈ dom(S) such that opN(φSsi) > 1. And let NS be a

set of shape names disjoint from dom(S).
Then norm(S) is defined as norm(S) = S|dom(S)\{si} ∪ fold(si, φ

S
si , NS), where

fold(si, φ
S
si , NS) is defined as follows:

◦ if φSsi = φ1 ∧φ2, then fold(si, φ
S
si , NS) = {si 7→ s′1 ∧ s′2, s′1 7→ φ1, s

′
2 7→ φ2},

with s′1, s
′
2 ∈ NS

◦ if φSsi = ¬φ, then fold(si, φ
S
si , NS) = {si 7→ ¬s′, s′ 7→ φ} with s′ ∈ NS

◦ if φSsi =≥n rφ, then fold(si, φ
S
si , NS) = {si 7→≥n r s′, s′ 7→ φ}, with s′ ∈

NS
For any s ∈ dom(S), let φnorm(S)

s designate (norm(S))(s).
Then immediately from the definition of J K, for any graph G and v ∈ VG,
JφSs (v)KG,S = Jφnorm(S)

s (v)KG,norm(S).
In addition, if no constraint in range(S) contains a property path expression, then no
constraint in range(norm(S)) contains a property path expression.
Now let S = S0, S1, .. be the sequence defined by S0 = S, and Sk+1 = norm(Sk).
And let sk ∈ dom(Sk) be the shape name selected when computing norm(Sk), i.e. such
that Sk+1 = Sk|dom(Sk)\{sk} ∪ fold(sk, φ

Sk
sk
, NSk).

From the above definition, opN(φ
Sk+1
sk ) = 1, and for each fresh s′ ∈

dom(Sk+1) \ dom(Sk), opN(φ
Sk+1

s′ ) = opN(φSksk )− 1.
It follows that S must reach a fixed point Sn of norm(), with opN(Sn(s)) ≤ 1 for each
s ∈ dom(Sn).
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Each application of norm() can introduce at most 2 fresh shape names (s′1 and s′2),
therefore n is bounded by 2×

∑
si∈dom(S)

opN(S(si)) = O(|S|).

It follows also that the size |Sn| of Sn is bounded by |S|+ 2×
∑

si∈dom(S)

opN(S(si)) =

O(|S|).
And for 0 ≤ k ≤ n, because |Sk| ≤ |Sk+1|, |Sk| ≤ |Sn| = O(|S|) must hold.
Finally, for each 0 ≤ k < n, from the definition of norm(), norm(Sk+1) can be
computed in time linear in |Sk| = O(|S|).
Therefore Sn can be computed in O(|S|)×O(|S|) = O(|S|2).

Now let 〈G,S, s0(v0)〉 be an instance of VALIDATION, such that no constraints in
range(S) contains a property path expression.
From the above observations, Sn can be computed in time polynomial in |S|, and each
constraint in range(Sn) has at most one operator.
By induction on n, no constraint in range(Sn) contains a property path expression.
In addition, for any v ∈ VG and s ∈ dom(S), by induction on n still,
JφSs (v)KG,S = JφSns (v)KG,Sn .
In particular JφSs0(v)KG,S = JφSns0 (v)KG,Sn .
It follows that 〈G,S, s0(v0)〉 is valid iff 〈G,Sn, s0(v0)〉 is valid.

Lemma 8. Let 〈G,S, s0(v0)〉 be a valid instance of VALIDATION such that each con-
straint in S contains at most one operator and no property path expression, and let
σ ∈ Σ3,str

G,S,s0(v0). Then it can be verified in time polynomial in |σ| + |G| + |S| that

σ ∈ Σ3,str
G,S,s0(v0), even with a binary encoding of cardinality constraints.

Proof. Let 〈G,S, s0(v0)〉 be a valid instance of VALIDATION such that each con-
straint in S contains at most one operator and no property path expression. And let
σ ∈ Σ3,str

G,S,s0(v0).
For each s ∈ dom(S), φs will designate S(s).

In order to verify that σ ∈ Σ3,str
G,S,s0(v0), it is sufficient to verify that σs(v) =

Jφs(v)KG,S for each s(v) ∈ atoms(G,S).
We show below that σs(v) = Jφs(v)KG,S can be verified in time polynomial in

|σ| + |G| + |φs|. Because | atoms(G,S)| = |G| × |S| and |φs| < |S|, it follows that
σ ∈ Σ3,str

G,S,s0(v0) can be verified in time in time polynomial in |σ|+ |G|+ |S|.
The procedure to verify σs(v) = Jφs(v)KG,S is the following:

– If φs
.
= >, then verify whether σs(v) = 1, in O(|φs|+ |σ|)

– If φs
.
= ¬>, then verify whether σs(v) = 0, in O(|φs|+ |σ|)

– If φs
.
= s′, then verify whether σs(v) = σs′(v), in O(|φs|+ |σ|)

– If φs
.
= ¬s′, then verify whether σs(v) = σs′(v), in O(|φs|+ |σ|)

– If φs
.
= s1∧s2, then verify whether σs(v) = min{σs1(v), σs2(v)}, inO(|φs|+|σ|)

– If φs
.
= (p1 = p2), then check whether there is a v2 ∈ VG such that either (v, p1,

v2) ∈ EG and (v, p2, v2) 6∈ EG, or (v, p2, v2) ∈ EG and (v, p1, v2) 6∈ EG. If this is
the case, then verify whether σs(v) = 0, otherwise verify whether σs(v) = 1. The
whole procedure is in O(|φs|+ |G|2 + |σ|).
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– If φs
.
= ≥n p.s , then let V ′ = {v′ ∈ VG |∈ (v, p, v′) ∈ EG}. V ′ can be computed

in O(|G|).
Then decide if |V ′| < n, in O(|G|+ |φs|).
If this is the case, verify whether σs(v) = 0, in O(|φs|+ |σ|).
Otherwise, count the number q of v′ ∈ X such that σs(v′) = 1, in O(|G| × |σ|).
If q ≥ n, then verify whether σs(v) = 1, in O(|φs|+ |σ|).
Otherwise, verify whether σs(v) = 0, in O(|φs|+ |σ|).

– If φs
.
=≥n p.>, the procedure is identical to the previous one, but without the need

to check σs(v′) = 1.

Proposition 4 (Combined – Upper Bound). VALIDATION is in NP.

Proof. Let 〈G0, S0, s0(v0)〉 be an instance of VALIDATION.
From Lemma B.3, it can be transformed in polynomial time into an instance 〈G1, S1,

s0(v0)〉 such that 〈G0, S0, s0(v0)〉 is valid iff 〈G1, S1, s0(v0)〉 is valid, and constraints
in S1 contain no property path expression.

Then from Lemma 7, 〈G1, S1, s0(v0)〉 can be transformed in polynomial time into
an instance 〈G,S, s0(v0)〉 such that 〈G1, S1, s0(v0)〉 is valid iff 〈G,S, s0(v0)〉 is valid,
and each constraint in S contains at most one operator and no property path expression.

In order to verify that 〈G0, S0, s0(v0)〉 is valid, it is sufficient to verify that 〈G,S, s0(v0)〉
is valid.
Let us assume that 〈G,S, s0(v0)〉 is valid.
Then Σ3,str

G,S,s0(v0) 6= ∅.
Let σ ∈ Σ3,str

G,S,s0(v0).
Then σ is a function from atoms(G,S) to {0, 0.5, 1}.
And because | atoms(G,S)| = |VG| × |S| ≤ |G| × |S|, σ can be encoded as a string
whose size is polynomial in the encoding of 〈G,S, s0(v0)〉.

Now let us assume an oracle which, given a valid instance 〈G,S, s0(v0)〉 of VALIDATION,
returns some σ ∈ Σ3,str

G,S,s0(v0).
From Lemma 8, it can be verified in time polynomial in |σ| + |G| + |S| that σ ∈
Σ3,str
G,S,s0(v0), even with a binary encoding of cardinality constraints.

It follows that VALIDATION is in NP.

Proposition 8 (Combined – Lower Bound). VALIDATION is PTIME-hard for L≥n,∧,∨.

Proof. Reduction from the problem of evaluating a monotone boolean circuit. The input
for this problem is a set C = {C1, . . . , Cn} of gates, partitioned as input gates, AND
gates, OR gates, and where Cn is denoted the output gate. The problem is to decide
whether the circuit evaluates to 1, or in other words, whether the values of the input gates
can be propagated in a valid way so that Cn is assigned value 1.

Let I1, . . . , In, Itrue be a set of different URIs. We construct a graphG in the following
way. First, for each gate Ci, we create a triple (Ci, name, Ii). Then for each AND gate
Ci, let B1, . . . , B` be the inputs of Ci. We create a triple (Ci, and, Bj) for 1 ≤ j ≤ `.
Similarly, for each OR gate Ci, if B1, . . . , B` are the inputs of Ci, we create a triple
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(Ci, or, Bj) for 1 ≤ j ≤ `. Finally, for each input gate Ci whose value is 1, we create a
triple (Ci, value, Itrue).

Our reduction uses one shape si for each gate Ci, whose intention is to verify, if Ci
is assigned the value 1, that this value is a valid propagation of its inputs.

Shape si is defined depending on the gate Ci:
– If Ci is an AND gate with k inputs, then φsi =

(
≥k and.(s1 ∨ · · · ∨ sn)

)
∧

≥1 name.Ii
– If Ci is an OR gate, then φsi =

(
≥1 or.(s1 ∨ · · · ∨ sn

)
) ∧ ≥1 name.Ii

– If Ci is an input gate, then φsi = (≥1 name.Ii)∧ ≥1 value.Ione
Let S = {s1 7→ φs1 , .., sn 7→ φsn}. Then it is straightforward to check that the circuit
evaluates to 1 iff there is a faithful assignment for 〈G,S, sn(Cn)〉. And clearly, this
reduction can be constructed in LOGSPACE, assuming any reasonable encoding of the
monotone circuit value problem.

Lemma 9. LetG be a graph, and S a set of shape constraint definitions without property
path. Then the (unique) minimal fixed-point of TG,S over 〈Σ3

G,S ,�〉 can be computed in
time polynomial in |G|+ |S|.

Proof. In what follows, TG,S will be abbreviated as T.
From Lemma 11, the mininal fixed-point σminFix of TG,S over 〈Σ3

G,S ,�〉 must exists
and be unique.

We show that it can be computed in polynomial time, as follows:
– Start with the “empty” assignment σ0, defined by σ0s(v) = 0.5 for each s(v) ∈

atoms(G,S).
– Apply T to σ0 recursively, until a fixed point is reached.

Let σi+1 = T(σi) for 0 ≤ i.
Because 〈Σ3

G,S ,�〉 is a semi-lattice, � admits no cycle over Σ3
G,S .

From Lemma 3, and together with the fact that Σ3
G,S is finite, this guarantees termination,

i.e. that the procedure reaches a fixed-point σn of T.

We now show that the procedure is polynomial in |G|+ |S|.
Because T is monotone over 〈Σ3

G,S ,�〉 (from Lemma 3), for 0 ≤ i < n, σi ≺ σi+1.
Now each σi ca be viewed as a set a(σi) of positive and negative atoms, defined by
s(v) ∈ a(σi) iff σis(v) = 1, and ¬s(v) ∈ a(σi) iff σis(v) = 0.
So for any σ, σ′ ∈ Σ3

G,S , σ ≺ σ′ iff a(σ) ⊂ a(σ′).
In particular, for 0 ≤ i < n, a(σi) ⊂ a(σi+1) must hold.
Now for any σ ∈ Σ3

G,S , a(σi) ⊆ atoms(G,S) ∪ {¬s(v)|s(v) ∈ atoms(G,S)}.
So as a(σi) ⊂ a(σi+1), the procedure must terminate after less than 2 · | atoms(G,S)| =
O(|G| × |S|) applications of T, i.e. n = O(|G| × |S|).

Finally, we show correctness, i.e. σn = σminFix.
Because σn is a fixed-point of T, and because σminFix is the unique minimal fixed-point
of T over 〈Σ3

G,S ,�〉, σminFix � σn must hold.
The other direction holds by induction on n:
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– base case n = 0.
σ0 � σ holds for any σ ∈ Σ3

G,S .
In particular, σ0 = σn � σminFix.

– inductive case n = i+ 1.
By IH, σi � σminFix.
So from Lemma 3, T(σi) � T(σminFix), i.e. σn � σminFix.

Proposition 7 (Combined – Upper Bound). VALIDATION is in PTIME for
L≥n,∧,∨,r,EQ.

Proof. Let 〈G′, S′, s0(v0)〉 be an instance of VALIDATION. From Lemma B.3, it can be
transformed in polynomial time into an instance 〈G,S, s0(v0)〉 such that 〈G′, S′, s0(v0)〉
is valid iff 〈G,S, s0(v0)〉 is valid, and S contains no property path expression. In addition,
from the construction of S in the proof of Lemma B.3, if each definition in S′ is in
Ln,∧,∨,r,EQ, then each definition in S is in Ln,∧,∨,EQ. Therefore it is sufficient to show
that VALIDATION is in PTIME for Ln,∧,∨,EQ.

Now let 〈G,S, s0(v0)〉 be an instance of VALIDATION such that each definition in S
is in Ln,∧,∨,EQ.

From Lemma 11, the minimal fixed-point σminFix of TG,S is unique, and σminFix ∈
Σ3,cst
G,S .

In addition, from Lemma 9, σminFix can be computed in time polynomial in |G|+ |S|.
Now we have 3 cases to consider:

– σminFixs0(v0) = 1.
Because σminFix ∈ Σ3,cst

G,S , 〈G,S, s0(v0)〉 is valid.
– σminFixs0(v0) = 0.
σminFix is a minimal fixed-point of TG,S , i.e. σminFix ∈ Σ3,fix

G,S , and for each σ ∈ Σ3,fix
G,S ,

σminFix � σ.
So for each σ ∈ Σ3,fix

G,S , σs0(v0) = 0.
Now from Proposition 9, 〈G,S, s0(v0)〉 is valid iff there is a σ ∈ Σ3,fix

G,S such that
σs0(v0) = 1.
It follows that 〈G,S, s0(v0)〉 is invalid.

– σminFixs0(v0) = 0.5.
Consider the assignment σ ∈ Σ2

G,S defined by σs(v) = 1 if σminFixs(v) = 0.5, and
σs(v) = σminFixs(v) otherwise.
Because σ ∈ Σ2

G,S , from the definition of JKv,G,σ, for any s(v) ∈ atoms(G,S),
JφsKv,G,σ 6= 0.5.
In addition, from the construction of σ, for any s(v) ∈ atoms(G,S), σs(v) = 0 iff
σminFixs(v) = 0.
We show below that JφsKv,G,σ = 0 iff JφsKv,G,σminFix = 0.
It follows that σs(v) = 1 iff JφsKv,G,σ = 1, so σ ∈ Σ2,fix

G,S .
Then as σs0(v0) = 1, σ ∈ Σ2,str

G,S .
Therefore 〈G,S, s0(v0)〉 is valid.

So we only need to show that for any s(v) ∈ atoms(G,S), JφsKv,G,σ = 0 iff
JφsKv,G,σminFix = 0.
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The left direction is straightforward from the observation that σminFix � σ (from the
construction of σ).
For the right direction, we show that a stronger property holds: for any s(v) ∈
atoms(G,S), and for any φ ∈ Ln,∧,∨,EQ, if JφKv,G,σ = 0, then JφKv,G,σminFix = 0.
By induction on φ:
◦ φ .

= >.
Then JφKv,G,σ 6= 0.
◦ φ = v′.

If JφKv,G,σ = 0, then v 6= v′, therefore JφKv,G,σminFix = 0.
◦ φ .

= EQ(p1, p2).
If JφKv,G,σ = 0, then there is a v′ ∈ VG s.t. (v, p1, v

′) ∈ EG and (v, p2,
v′) 6∈ EG, or s.t. (v, p2, v

′) ∈ EG and (v, p1, v
′) 6∈ EG.

In both cases, JφKv,G,σminFix = 0.
◦ φ .

= φ1 ∧ φ2.
If JφKv,G,σ = 0, then Jφ1Kv,G,σ = 0 or Jφ2Kv,G,σ = 0.
So by IH, Jφ1Kv,G,σminFix = 0 or Jφ2Kv,G,σminFix = 0.
Therefore JφKv,G,σminFix = 0.
◦ φ .

= φ1 ∨ φ2.
If JφKv,G,σ = 0, then Jφ1Kv,G,σ = 0 and Jφ2Kv,G,σ = 0.
So by IH, Jφ1Kv,G,σminFix = 0 and Jφ2Kv,G,σminFix = 0.
Therefore JφKv,G,σminFix = 0.
◦ φ .

= ≥n p.φ′.
Let succ(v) = {v′|(v, p, v′) ∈ EG}.
If JφKv,G,σ = 0, then | succ(v)| − |{v′ ∈ succ(v)|Jφ′Kv′,G,σ = 0}| < n.
And by IH, for each v′ ∈ succ(v), if Jφ′Kv

′,G,σ = 0, then Jφ′Kv
′,G,σminFix = 0.

So | succ(v)| − |{v′ ∈ succ(v)|Jφ′Kv′,G,σminFix = 0}| < n.
Therefore JφKv,G,σminFix = 0.
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