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Abstract

The setting of this work is the attempt of building a bridge between an
intelligent query interface we developed and state-of-the-art natural lan-
guage generation (NLG) technologies. We built a query interface that allows
the user to formulate a query over a knowledge base (KB) represented by
a logic-based domain ontology. This report tackles each one of the main
tasks in natural language generation (NLG), namely text planning (con-
tent determination, discourse planning), sentence planning (lexicalization,
sentence aggregation, referring expression generation), and linguistic real-
ization (syntactic and morphological realization, orthographic realization),
presenting a pipeline of steps which build up our own NLG architecture,
able to map a conjunctive query (over a given domain ontology) into its
corresponding textual form.
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1 Introduction

Communication by means of natural language involves two fundamental skills:
Producing text and understanding it. These tasks are the subject of study of two
big areas of research in computational linguistics, which are natural language
generation and natural language understanding respectively; the former will be
dealt with hereinafter.

Natural language generation (NLG) is seen in general as the sequence of
operations needed to map information from some non-linguistic (e.g. raw data)
into linguistic form (either oral or written). These operations are not at all
straightforward, because the task of bridging the gap between non-linguistic
and linguistic representations requires several non-trivial decisions or choices
which include content determination, choice of rhetorical structures at various
levels (text, paragraph, sentence), choice of words and syntactic structures, and
finally the determination of the text layout (or acoustic patterns if we intend to
generate spoken text). One of the main challenges of NLG is devising modular
architectures able to make the previous choices coexist. At least three kinds
of expertise are needed: application domain knowledge, knowledge of the language
(grammar, lexicon, and semantics), and strategic rhetorical knowledge (i.e. how
to achieve communicative goals, text types, style).

NLG system architectures need to include various levels of planning and
merging of information in a way that generated text looks natural and not
repetitive. Typical tasks we find are [Reiter and Dale, 2000]:

• Text planning

– Content determination: Determination of the salient features that
are worth being said.

– Discourse planning: Overall organization of the information to con-
vey.

• Sentence planning

– Lexicalization: Putting words to the concepts.

– Sentence aggregation: Merging of similar sentences to improve
readability and naturalness. For example, the sentences “The car
is equipped with a diesel engine” and “The engine’s power is 140
HP” can be aggregated to form “The car is equipped with a diesel
engine whose power is 140 HP”.

– Referring expression generation: Linking words in the sentences
by introducing pronouns and other types of means of reference.

• Linguistic realization

– Syntactic and morphological realization: This stage is the inverse
of parsing: given all the information collected above, syntactic and
morphological rules are applied to produce the surface string.

– Orthographic realization: Matters like casing, punctuation, and
formatting are resolved
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In the coming sections we will tackle each one of the mentioned tasks, describing
a pipeline of steps which will build up our own generation architecture, able to
map a conjunctive query (over a given domain ontology) into its corresponding
textual form. We first start by defining what our input is, i.e. a conjunctive query
over a knowledge base (KB).

2 Conjunctive Queries over a Knowledge Base

The type of queries we present in this section are conjunctive queries (CQs) over a
given Description Logics [Baader et al., 2007] knowledge base. Their definition
will be given along with the definitions of query answering and query graphs.

Definition 1 (Querying a KB). Querying a (Description Logics) KB means
verifying whether a given statement q (the query) is a logical consequence of
the knowledge base (i.e. K |= q).

Given a KB K, it is possible to query it using conjunctive queries which are
defined as follows:

Definition 2 (Conjunctive Queries). A conjunctive query can be represented as
q(~x) ← conj(~x, ~y), where ~x is the vector of so called distinguished variables that
will be bound to individuals (single objects) of the knowledge base used to
answer the query; ~y is the vector of non-distinguished variables (existentially
quantified variables). conj(~x, ~y) is a conjunction of terms of the form v1 : C,
〈v2, v3〉 : R, or v4 : P where C is a concept name, R is a role name (abstract role or
relation if v3 refers to an abstract concept, concrete role or attribute if v3 refers to
a concrete domain), P is a simple or complex predicate over a given concrete
domainD and v1, v2, v3, v4 are variables from ~x or ~y.

Example 1. A query example taken from the automotive domain could be the following:

q(x1, x6, x7, x8)← x1:Car u 〈x1, x2〉 :equippedWith u

x2 :Engine u 〈x2, x3〉 : runningOn u x3 :Diesel u

〈x1, x4〉 :madeBy u x4 :LandRover u 〈x1, x5〉 :soldBy u

x5 :CarDealer u 〈x2, x6〉 :displSizeCC u x6 : integer u

〈x5, x7〉 : locInCity u x7 :City u 〈x5, x8〉 :name u

x8 :string u 〈x7, x9〉 : locInCountry u x9 : Italy u

〈x7, x10〉 : locInProvince u x10 :Trento

Underlined variables represent distinguished variables. Uppercase names are ab-
stract concepts, and lowercase names are relation names; string and integer represent
instead two concrete domains.

The query above is for “a car equipped with an engine running on Diesel. The
car is a Land Rover and it is sold by a car dealer located in Italy in the province
of Trento. The user wants to know the cars available, the engine displacement
size, the car dealer’s name, and the city.”

We explain now what it means answering a conjunctive query followed by
the definition of query graph.

7



Definition 3 (Conjunctive Query Answering). Given a query q(~x) where ~x are
distinguished variables, and a KB K, answering q(~x) means returning all tuples
~t that substituted to ~x are such that K |= q(~t).

Definition 4 (Query Graphs). A conjunctive query q can be represented by
means of a directed labelled graph G(q) := 〈V,E〉 where V represents a set of
vertices and E a set of edges. V is the union of the elements in ~x, and ~y; E is
made up of all pairs 〈v1, v2〉where v1, v2 ∈ V and 〈v1, v2〉 :R is a term in q. A node
v ∈ V is labelled with a concept C1u· · ·uCn such that for every Ci, v :Ci is a term
of q. Optionally if node v is labelled with a concrete domain, it can also have an
additional label containing the name of a (simple or complex) predicate. Every
edge e ∈ E is labelled with a set of role names {R | 〈v1, v2〉 :R is a term in q}. q is
an acyclic conjunctive query if G(q) is not cyclic.

For a better graph readability, a node v is represented with a rectangle when
it refers to an abstract concept, and with an oval when it refers to a concrete
domain.

x1:Car

x2:Engine

x3:Diesel

runningOn

x6:integer

displSizeCC

equippedWith

x4:LandRover

madeBy

x5:CarDealer

x7:City

x9:Italy

locInCountry

x10:Trento

locInProvince

locInCity

x8:string

name

soldBy

Figure 1: Example of query graph.

Hereinafter we will use the terms query or conjunctive query interchangeably
referring to acyclic conjunctive queries, and the corresponding query graph
will be called query tree. Figure 1 shows the query tree corresponding to the
query in Example 1.

It is possible to describe our query from the point of view of a single variable
(the focus). This new query is called focused query; it is equal to the original one,
with the exception that the only distinguished variable of the focused query is
the variable representing the focus.

In the example above we could have a query qx1 focused on x1 (a Car),
or a query qx5 focused on x5 (CarDealer). This transformation turns out to
be very useful, because given the restriction to tree-shaped conjunctive query
expressions, together with the availability of inverse roles, a focused query
corresponds to a concept expression [Horrocks and Tessaris, 2002], on which
we can perform operations by means of standard DL reasoning services (mainly
satisfiability checking and classification), and through these we can drive the
query interfaces we implemented (see [Dongilli et al., 2004; Zorzi et al., 2007]).

With these premises, we describe now our approach for the generation of
a suitable text plan from a given query which represents our input. This will
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be followed by the description of the sentence planning phase and finally the
linguistic realization phase.

3 Text Planning

Thinking what to write or say, and organizing the constituents of our idea in
one of the possible manners that once verbalized will best convey our thought
is what we could define as the text planning capability of a human being. We
want to mimic this human behavior with the first module of our generation
system, where the content (a query), determined by the user by means of an
intelligent query composition interface, is internally reorganized in order to
obtain the possibly most coherent sequence of its constituents. Since the query
is isomorphic to a tree, the job of the discourse planner is to find the best
topological sorting according to some objective function. In Section 3.2 we
present and compare six discourse planning strategies indicating one of them
as the best suited for this task. These results were also published in [Dongilli,
2007a] and [Dongilli, 2007b].

3.1 Content determination

In our specific context, the content is represented by the query formulated by
the user. Given the specific domain of interest chosen (read ontology), the query
built using the ontology’s (unary and binary) predicates corresponds to a simple
or complex concept (namely a conjunction of predicates) whose constituents
need to be organized and explained in a coherent discourse using one or more
natural language sentences.

3.2 Discourse planning

Planning a discourse means in general finding the best way of representing an
idea in an organized, specific, and coherent manner. In our case the idea is a
query, a complex concept that the user is thinking and building. We start by
defining the main components of a discourse that are called discourse units.

Definition 5 (Discourse unit). A discourse unit ui(c j, ck) is the atomic component
of a discourse. In our setting a discourse unit is represented by a role rl between
two entities c j and ck (using the terminology introduced by def. 2, rl can be either
a relation or an attribute having c j and ck as domain and range respectively; c j
is always a concept, and ck is a concept if rl is a relation, or a predicate over a
concrete domain if rl is an attribute).

A discourse unit, once verbalized, can be seen as a stand-alone sentence, or
as a clause in a longer sentence.

We start with a query tree and we map it into another tree we call discourse
tree, created by collapsing a role between two concepts into a single node.

Definition 6 (Discourse tree). A discourse tree is a directed tree whose nodes
are discourse units. The nodes are tagged with the domain and range entities of
the corresponding role. The edges connect two nodes where the second entity
of the start node and the first entity of the end node are the same. The root node
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of the discourse tree is an additional node which introduces the main concept
(c1) the user is looking for, i.e. the root concept of the query tree. The first entity
(c0) of this node is a new entity that will be verbalized as the subject of this first
discourse unit.

Figures 2 and 3 show a starting query tree and the derived discourse tree.
The sequence order of indexes assigned to concepts and relations in the query
tree, and as consequence the indexes assigned to discourse units, respects the
order of insertion followed by the user while creating the query.

c1

c2

c3

r2

c6

r5

r1

c4

r3

c5

c7

c9

r8

c10

r9

r6

c8

r7

r4

Figure 2: A query tree

u1(c0, c1)

u2(c1, c2)

u3(c2, c3) u6(c2, c6)

u4(c1, c4) u5(c1, c5)

u7(c5, c7)

u9(c7, c9) u10(c7, c10)

u8(c5, c8)

Figure 3: A discourse tree

Our starting point for discourse planning is the generated discourse tree
which is a directed tree as mentioned in def. 6. The problem of finding a linear
sequence of the discourse units in a discourse tree can be translated into a
problem which in graph theory is called topological sorting.

Definition 7 (Topological sort). A topological sort of a directed acyclic graph
(DAG) G(V,E) is a linear ordering of its nodes V which is compatible with the
partial order R induced on the nodes by the set of directed edges E, where x
comes before y (xRy) if there’s a directed path from x to y in the DAG (where
x, y ∈ V).

In other terms, topological sorting is a way to extend a partial order relation
into a total order. We can state that every DAG has at least one topological sort,
because of the following

10



Theorem 1. Every partial order can be extended to a total order. That is: Suppose→
is a partial order on a set X. Then there exists a total order⇒ on X that extends→ as
a relation: If x, y ∈ X and x→ y, then x⇒ y.

Typical algorithms for topological sorting have running time linear in the
number of nodes plus the number of edges (Θ(|V| + |E|)). Since in our setting
we are working with a DAG where |E| = |V| − 1, the complexity is Θ(|V|). A
possible algorithm is the following:

Algorithm 1 Generation of a topological sort
Q← Set of all nodes with no incoming edges
while Q is not empty do

remove a node n from Q
output n
for all nodes m with an edge e from n to m do

remove edge e from the graph
if m has no other incoming edges then

insert m into Q
end if

end for
end while
if graph has edges then

output error (the graph has a cycle)
end if

If we want to find all possible topological sorts, algorithm 1 needs the
following modifications that lead to Algorithm 2:

• the while loop must be implemented by a recursive function;

• set Q has to be global to the recursive function;

• an array must be defined to hold the current ranking and that must be
output when Q is found to be empty;

• the currently removed item is to be kept locally;

• when returning from the recursive call, the current item has to be put
back into Q and another node must be picked from Q.

We implemented this algorithm (see Algorithm 2) whose running time de-
pends on the topology of the tree. It is easy to see that the number of topological
sorts varies from 1 to |E|!; these two extreme cases are shown in Figure 4. The
former tree already represents a linear order, while the latter has n − 1 possible
topological sorts.

In our context, finding a topological sort of a discourse tree can be defined
this way:

Definition 8 (Topological sort of a discourse tree). Given a discourse tree with
n discourse units u1,u2, . . . ,un containing n+1 discourse entities c0, c1, c2, . . . , cn,
a topological sort can be obtained with a permutation π of {1, 2, . . . ,n}, where the
sequence of discourse units (uπ(1),uπ(2), . . . ,uπ(n)) is compatible with the partial
order induced by the discourse tree.

11



Algorithm 2 Generation of all topological sorts
Q← Set of all nodes with no incoming edges
D← ∅ {array containing temporary linear sort}
call CalculateSorts()

procedure CS()
if Q is not empty then

for i = 1 to size(Q) do
remove node ni from Q
add ni to D
for all nodes m with an edge e from ni to m do

remove edge e from the graph
if m has no other incoming edges then

insert m into Q
end if

end for
call CalculateSorts()
restore ni into Q
restore previously removed edges outgoing from ni
remove last element from D

end for
else

output D
end if
if graph has edges then

output error (the graph has a cycle)
end if
end procedure

u1

u2

. . .

un

u1

u2 . . . un

Figure 4: Best and worst cases for topological sorting
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Hereinafter a generic topological sort will be associated and identified with
a permutation π. Given all possible topological sorts of our discourse tree, we
need now to find some constraints with the intent to keep only those orderings
that maximize/minimize some objective function. By means of an objective
function, the aim is to find some common properties of the best orderings, in a
way to be able to infer an algorithm that is able to discern just one of the best
topological sorts.

3.2.1 Centering-Theory-based planning

The constraints we use in this first attempt are borrowed from Centering Theory
which gives us the means to find all possible sequences of discourse units that
maximize coherence.

Centering theory (CT) finds its origins within the theory of discourse struc-
ture that was first developed by [Grosz and Sidner, 1986]. A draft manuscript
describing the centering framework and the first theoretical claims appeared in
1986 [Grosz et al., 1986], and the authors were then urged to publish a more de-
tailed description which appeared in 1995 [Grosz et al., 1995]. This, along with
a previous contribution from [Brennan et al., 1987], contains the main claims of
this theory, which are:

1. for each discourse unit, there is exactly one entity which is the center of
attention;

2. there is a preference for consecutive discourse units that keep the same
entity as center, and for the most salient entity in a discourse unit to be
realized as the center of the next utterance;

3. the center is the entity with the highest probability to be pronominalized.

The assumptions of CT are formalized in terms of C f , Cb, and Cp. Given two
consecutive discourse units uπ(i−1) and uπ(i),

• C f (uπ(i)) (forward looking centers) is a list of all discourse entities contained
in ui;

• Cb(uπ(i)) (backward looking center) is the most highly ranked entity realized
in uπ(i−1) which is also realized in uπ(i); If uπ(i−1) does not exist, there is no
Cb(uπ(i));

• Cp(uπ(i)) (preferred center) is the highest ranked entity of uπ(i).

[Brennan et al., 1987] define ranking of an entity in a discourse unit as the
likelihood that it will be the primary focus of subsequent discourse. It is more com-
mon now defining the rank in terms of grammatical roles (obliqueness), where
subject > direct object > indirect object > others.

With the abovementioned parameters, we list now the following constraints,
whose violations will build-up the cost function we are going to use.

cohesion: Cb(uπ(i)) = Cb(uπ(i−1)) (checks if the center of the current discourse
unit is the same as the preceding one);

salience: Cb(uπ(i)) = Cp(uπ(i)) (checks if the center is realized as subject);
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cheapness: Cb(uπ(i)) = Cp(uπ(i−1)) (checks if the current center was a subject in
the previous discourse unit);

continuity: C f (uπ(i))∩C f (uπ(i−1)) , ∅ (checks whether (or not) there are entities
in common between the previous and the current discourse unit).

We say that there is a violation to one of these constraints, if the corresponding
condition does not hold. If there exists no Cb(uπ(i)), cohesion, salience, and
cheapness are not violated. As a consequence, no violation is accounted for the
first discourse unit uπ(1).

The cost function we want to minimize in order to maximize local coherence
is defined as follows:

Definition 9 (Centering-theory-based cost function). Given the setting of defi-
nition 8, we define this cost function:

φCT(π) =

n∑
i=1

[coh(uπ(i)) + sal(uπ(i)) + che(uπ(i)) + con(uπ(i))]

where:

coh(uπ(i)) =


0 if i ∈ {1, 2} or

i > 2 and Cb(uπ(i)) = Cb(uπ(i−1))
Kcoh if i > 2 and Cb(uπ(i)) , Cb(uπ(i−1))

sal(uπ(i)) =


0 if i = 1 or

i > 1 and Cb(uπ(i)) = Cp(uπ(i))
Ksal if i > 1 and Cb(uπ(i)) , Cp(uπ(i))

che(uπ(i)) =


0 if i = 1 or

i > 1 and Cb(uπ(i)) = Cp(uπ(i−1))
Kche if i > 1 and Cb(uπ(i)) , Cp(uπ(i−1))

con(uπ(i)) =


0 if i = 1 or

i > 1 and C f (uπ(i)) ∩ C f (uπ(i−1)) , ∅
Kcon if i > 1 and C f (uπ(i)) ∩ C f (uπ(i−1)) , ∅

Kcoh, Ksal, Kche, and Kcon represent the weights assigned to each constraint
violation.

We can now use this cost function to discern, among all orderings, the
ones that minimize violations to local coherence in terms of cohesion, salience,
cheapness, and continuity, where the respective weights are assigned according
to the proposal of [Kibble and Power, 2004]: Kcoh = Ksal = Kche = 1, and Kcon = 3.
The assumption made is that for every discourse unit ui(ck, cl), the preferred
center Cp(ui) (subject) will always be the first discourse entity i.e. ck.

We implemented algorithm 2, and conducted experiments over several tree
topologies, isolating all sortings that minimized the given cost function. The
results obtained, quite unexpected, are reported in the next section.

The first result we observed is that salience is never violated. This can be
formalized in the following theorem:

Theorem 2. Given the setting of Definition 8, none of the topological sorts generated
from the discourse tree violates the salience constraint.
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Proof. In order to check salience in any discourse unit uπ(i)(cl, cm) of a generic
topological sort π, we have to check that Cb(uπ(i)(cl, cm)) = Cp(uπ(i)(cl, cm)) where
Cp(uπ(i)(cl, cm)) = cl as we assumed above. To identify the Cb we need the
previous discourse unit uπ(i−1)(c j, ck). If it does not exist, this means that uπ(i) is
the first discourse unit (uπ(1)) and there is no salience violation. If we have a
previous utterance, we distinguish two cases:

1. {cl, cm} ∩ {c j, ck} = ∅: this means that there is no Cb in unit uπ(i), therefore
salience is not violated;

2. {cl, cm}∩{c j, ck} , ∅; the units cannot have two discourse entities in common
because this would mean that either the two entities are the same (c j =
cl ∧ ck = cm) or that we have a cycle in our tree (c j = cm ∧ ck = cl) which
is impossible. We can have only one entity in common, i.e. the following
four cases:

(a) c j = cl: This is a valid case; it implies that Cb(uπ(i)(cl, cm)) = cl which
is equal to Cp(uπ(i)(cl, cm)). The salience constraint is attended.

(b) c j = cm: This case is not valid, because this would imply that uπ(i−1)
should occur after before uπ(i), contradicting our hypothesis.

(c) ck = cl: This is a valid case; it implies that Cb(uπ(i)(cl, cm)) = cl which
is equal to Cp(uπ(i)(cl, cm)). The salience constraint is attended.

(d) ck = cm: This is not a valid case, since it would imply coreference
and therefore a cycle in our tree which is impossible.

�

The second result we obtained pertains a common property shown by all
best topological sorts, i.e. the ones that minimize the cost function. This result
is expressed in the following proposition.

Proposition 1. Given a discourse tree with n discourse units u1,u2, . . . ,un containing
n + 1 discourse entities c0, c1, c2, . . . , cn, the topological sorts that minimize the cost
function expressed in Definition 9 are all and only the ones returned by Algorithm 3.

Algorithm 3 Generation of the best topological sorts (Centering Theory)
D ← u1 {array D stores one by one all best linear sorts; here it is initialized
with the first discourse unit}
n← number of nodes in tree
count← 1 {current size of D}
call CalculateBestSorts(u1)

procedure CalculateBestSorts(u)
L← all children of u
Ld ← children of u having at least one descendant
if Ld , ∅ then

PL ← list of all permutations of L where last node of each permutation is
in Ld

else
PL ← list of all permutations of L
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end if
for all p ∈ PL do

append array p to D
for i = size(p) downto 1 do

call CalculateBestSorts(pi)
end for
count← count + size(p)
if count = n then

output D
end if
remove array p from D
count← count − size(p)

end for
end procedure

In plain words, the best topological sorts are the ones for which every
discourse unit is followed by its remaining siblings, where the last sibling
must be one with descendants (to allow a continuity in the discourse); for each
sibling then, starting from the last one, the list of its children (if any) is output.
E.g. one of the best topological sorts from the discourse tree of Figure 3 is
(u1,u2,u4,u5,u8,u7,u9,u10,u3,u6).

3.2.2 Minimal conceptual distance

The second constraint we decided to experiment with, calculates the sum over
each discourse entity of the distances among discourse units where each entity
is referenced.

This optimization problem can be described as follows:

Definition 10 (Conceptual distance minimization). Given n discourse units,
(u1,u2, . . . ,un) embedding n + 1 discourse entities (c0, c1, c2, . . . , cn); given a per-
mutationπof {1, 2, . . . ,n}where the sequence of discourse units (uπ(1),uπ(2), . . . ,uπ(n))
is compatible with the partial order induced by the tree, we create a hash table
Hπ where its keys correspond to the discourse entities (c0, c1, c2, . . . , cn), and
each value Hπ(ci) is a sorted list of indexes taken from {1, 2, . . . ,n} and referring
to some positions of the permutation.

We want to

min
n∑

i=0

δπ(ci)

where

δπ(ci) =

{ ∑|Hπ(ci)|−1
k=1 (Hπ(ci)[k + 1] −Hπ(ci)[k]) if |Hπ(ci)| > 1

0 if |Hπ(ci)| = 1

We were able to find a common property of all topological sorts that mini-
mizes the newly introduced constraint; it is expressed by the following propo-
sition:

Proposition 2. Given a discourse tree with n discourse units u1,u2, . . . ,un containing
n+1 discourse entities c0, c1, c2, . . . , cn, the topological sorts that minimize the measure
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of conceptual distance as of Definition 10 are those that derive from a depth-first-like
visit of the tree, where at any point, given an output node, the valid visits of its subtrees
are all the ones where the biggest (in terms of number of nodes) subtree comes last with
no other constraints.

In this case, one of the best topological sorts of the tree in Figure 3 is
(u1,u4,u2,u3,u6,u5,u8,u7,u9,u10).

3.2.3 Hybrid approach

The next step was to run topological sorting using a hybrid approach with
both of the two previous constraints. We ran several tests on different tree
topologies.

We first applied the constraints based on centering theory (CT-approach) fol-
lowed by the calculation of the minimal conceptual distance (mCD-approach),
i.e. after minimizing the cost function of the CT-approach, we applied the mCD-
approach on the best orderings. The best results coming out are obviously a
subset of the orderings found by algorithm 3. The best topological sorts are the
ones for which every discourse unit is followed by its remaining siblings, start-
ing from the ones with no children (if any) and continuing with the siblings in
decreasing order of their respective subtree dimensions; for each sibling then,
starting from the last one (LIFO), the list of its children (if any) is output repeat-
ing the same procedure recursively. E.g. one of the best topological sorts from
the discourse tree of figure 3 is (u1,u4,u5,u2,u3,u6,u8,u7,u9,u10). This result is
expressed in the following proposition, where algorithm 4 is a slight variation
of algorithm 3.

Proposition 3. Given a discourse tree with n discourse units u1,u2, . . . ,un containing
n + 1 discourse entities c0, c1, c2, . . . , cn, the topological sorts that minimize the cost
function expressed in Def. 9 first, and then the cost function of Def. 10 next, are all and
only the ones returned by Algorithm 4.

Algorithm 4 Generation of the best topological sorts (Hybrid approach #1 (CT-
mCD))

D ← u1 {array D stores one by one all best linear sorts; here it is initialized
with the first discourse unit}
n← number of nodes in tree
count← 1 {current size of D}
call CalculateBestSorts(u1)

procedure CalculateBestSorts(u)
L← all children of u
Ld ← children of u having at least one descendant
if Ld , ∅ then

PL ← list of all permutations of L where nodes in Ld come last, in decreasing
order of their respective subtree dimensions;

else
PL ← list of all permutations of L

end if
for all p ∈ PL do
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append array p to D
for i = size(p) downto 1 do

call CalculateBestSorts(pi)
end for
count← count + size(p)
if count = n then

output D
end if
remove array p from D
count← count − size(p)

end for
end procedure

We tried then to apply in sequence the mCD-approach first, and the CT-
approach next. We found out that the sequence of discourse units in each best
topological sort follow the rule expressed by Proposition 4.

Proposition 4. Given a discourse tree with n discourse units u1,u2, . . . ,un containing
n + 1 discourse entities c0, c1, c2, . . . , cn, the topological sorts that minimize the cost
function expressed in Def. 10 first, and the cost function of Def. 9 next, are all and only
the ones that derive from a depth-first-like visit of the tree, where at any point, given
an output node, we visit its subtrees ordering them by increasing size.

The interesting feature of the outcoming orderings is that we leave long
elaboration chains at the end, planning the short ones first. If we see it from the
point of view of the reader, this is what she usually expects from a text describing
an object: Immediate characteristics/attributes of the described object come first,
and relations of this object with further entities (possibly nested) are left at the
end.

We propose Algorithm 5 that calculates only one of the best orderings, since
there could be more than one.

Algorithm 5 Generation of one of the best topological sorts (Hybrid approach
#2 (mCD-CT))

n← number of nodes in tree
call CalculateSort(u1)

procedure CalculateSort(u)
output u
L← all children of u sorted by increasing size of respective subtrees
for all p ∈ L do

call CalculateSort(p)
end for
end procedure

3.2.4 User-driven planning

If on one side the previous approaches (Centering-Theory-based, minimal con-
ceptual distance, and hybrid) try to minimize some cost functions in order to
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have a higher local coherence and/or a better distribution of entities within dis-
course units in the text plan, on the other side they don’t take into consideration
how much change is involved in the text plan whenever the user modifies the
query (adding or removing branches to the query tree). The idea would be to
minimize the changes in the order of the discourse units in the text plan when
the user edits the query.

We could think of a text plan where the discourse units have the same
order of insertion followed by the user. In this case any addition to the query
is reflected in a new discourse unit appended to the text plan. E.g. if a new
relation is added to concept c5 in the query tree of figure 2, let’s say r10 along
with the range concept c11, this would generate the query tree of figure 5, and
the discourse tree of figure 6 with the new discourse unit u11.

c1

c2

c3

r2

c6

r5

r1

c4

r3

c5

c7

c9

r8

c10

r9

r6

c8

r7

c11

r10

r4

Figure 5: Adding a new relation to the query tree of Fig. 2

u1(c0 , c1)

u2(c1 , c2)

u3(c2 , c3) u6(c2 , c6)

u4(c1 , c4) u5(c1 , c5)

u7(c5 , c7)

u9(c7 , c9) u10(c7 , c10)

u8(c5 , c8) u11 (c5 , c11 )

Figure 6: Discourse tree derived from the query tree of Fig. 5

The chosen topological sort, according to the planning strategy proposed,
would simply be:

u1(c0, c1),u2(c1, c2),u3(c2, c3),u4(c1, c4),u5(c1, c5),u6(c2, c6),u7(c5, c7),
u8(c5, c8),u9(c7, c9),u10(c7, c10),u11(c5, c11).

A newly inserted discourse unit (as u11(c5, c11) in the example) is always ap-
pended to the text plan, possibly far away from the latest previous discourse
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unit (u8(c5, c8),) having a common discourse referent (c5), and farther from the
unit (u5(c1, c5)) where this referent was first introduced.

Hence this kind of strategy yields on average pretty bad values in terms
of local coherence and overall conceptual distance according to the measures
of Definitions 9 and 10. In fact we cannot expect that the user edits the query
in a coherent way, having the query tree already in mind before typing, and
reproducing it immediately afterwards with a clean depth-first traversal.

The regularity of a user-driven order of discourse units, where the last
inserted unit is always appended to the text plan, doesn’t compensate for the
bad average performance in terms of local coherence or conceptual distance.

It is evident that we need to find an appropriate trade-off between coher-
ence/distance criteria and minimal change in the text plan after each query
editing operation.

3.2.5 Depth-first planning

A good trade-off, slightly unbalanced in favor of the minimization of the change
in the text plan after a query tree edit, is the easiest-to-obtain topological or-
dering, merely a depth-first serialization of the tree. Considering the ordering
strategies discussed above, this is among the ones that can be obtained with the
lowest time complexity, i.e. O(n) where n is the number of the discourse tree
nodes.

Given the tree of figure 6, the topological sort according to this method
would be:

u1(c0, c1),u2(c1, c2),u3(c2, c3),u6(c2, c6),u4(c1, c4),u5(c1, c5),u7(c5, c7),
u9(c7, c9),u10(c7, c10),u8(c5, c8),u11(c5, c11).

Algorithm 6 shows how to obtain such simple ordering.

Algorithm 6 Generation of a topological ordering using depth-first search
n← number of nodes in tree
call CalculateSort(u1)

procedure CalculateSort(u)
output u
L← all children of u from left to right
for all p ∈ L do

call CalculateSort(p)
end for
end procedure

To complete the list of possible planning strategies we tested, we would like
to mention a further one that could be boiled down to a depth-first planning
provided we change the tree topology according to further constraints. It’s
presented in the next subsection.

3.2.6 Relation-priority depth-first planning

This planning strategy, inspired by [Galanis and Androutsopoulos, 2007], re-
quires additional information that must be pre-specified in the ontology and
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attached to each relation. This information consists of ordering annotations as-
signed to relations, and specifies a partial order among those relations having
the same domain concept. This translates into a priority value assigned to each
discourse unit, and valid only locally within each set of discourse units which
are siblings in the discourse tree.

The idea is to keep the query tree edges (relations) that exit from each node,
sorted from left to right according to their order. In other words the sequence
of relations having the same domain concept are not sorted according to the
insertion order followed while creating the query, but respecting the priority
value associated with each relation. It could happen though, that two or more
relations have the same priority; in this case they are sorted by creation order.

The resulting discourse tree is then ready to be linearized with the simple
depth-first traversal proposed above (Algorithm 6).

Figures 7 and 8 show the previous examples of query and discourse tree
whose topology is modified according to the additional ordering annotations.

c1

c4

ro=1
3

c2

c3

ro=1
2

c6

ro=2
5

ro=2
1

c5

c8

ro=1
7

c7

c9

ro=1
8

c10

ro=2
9

ro=2
6

c11

ro=3
10

ro=3
4

Figure 7: Query tree with ordering annotations attached to relations

u1(c0 , c1)

uo=1
4 (c1 , c4) uo=2

2 (c1 , c2)

uo=1
3 (c2 , c3) uo=2

6 (c2 , c6)

uo=3
5 (c1 , c5)

uo=1
8 (c5 , c8) uo=2

7 (c5 , c7)

uo=1
9 (c7 , c9) uo=2

10 (c7 , c10)

uo=3
11 (c5 , c11)

Figure 8: Discourse tree with ordering annotation attached to discourse units

Following this planning strategy, from the discourse tree of Figure 8 we
obtain the following topological sort:

u1(c0, c1),u4(c1, c4),u2(c1, c2),u3(c2, c3),u6(c2, c6),u5(c1, c5),u8(c5, c8),
u7(c5, c7),u9(c7, c9),u10(c7, c10),u11(c5, c11).

21



3.3 Summary

We have presented six possible strategies for discourse planning of a given
complex concept description. We concentrated on three different goals

1. maximization of local referential-coherence (CT);

2. minimization of overall conceptual distance (mCD);

3. minimization of change in the discourse plan between consecutive edits
(user-driven, depth-first, relation-priority depth-first).

If on one side maximizing the referential coherence (CT) among discourse units
seemed to be a good planning strategy, on the other side we noticed that the
overall conceptual proximity in the generated plans for several tree topologies
was not satisfactory. We introduced then the measure of conceptual distance
(mCD) applying it separately in a first attempt, and in hybrid approaches next.
In hybrid planning we tried two strategies: seeking goal 1 and 2 in sequence
(CT-mCD), and in reverse order (mCD-CT). This second hybrid strategy gave
an interesting result, reported in Proposition 4.

While these approaches work well when we consider the complex concept
description as a static input, they fail when we want that the input be created
incrementally by a user requesting a sequence of plan generations. From a
human-machine interaction viewpoint we would like to minimize the changes
in the plan between consecutive edits. This is achieved introducing the third
goal. User-driven planning answers this purpose but doesn’t pay-off the bad
average performance in terms of local coherence or conceptual distance. Depth-
first planning although very simple, yields a better trade-off of the three goals.

We proposed then a last strategy (relation-priority depth-first) which requires
that roles be augmented in the domain ontology with ordering annotations,
specifying a partial order valid among those roles having the same domain
concept. The natural rationale behind this is that when describing a concept,
relations and attributes that better characterize the concept under examination
should be planned first, leaving secondary roles for subsequent positions in the
plan.

Assigning ordering annotations to roles can be regarded as a possible en-
coding of domain communication knowledge (DCK for short). The notion of DCK domain

communication
knowledge

was introduced by [Kittredge et al., 1991] who advanced the hypothesis that

any text planning task relies, explicitly or implicitly, on domain-
specific text planning knowledge.

The authors argue that DCK is a third kind of knowledge that natural language
generators should use, at an intermediate level between domain knowledge and
communication knowledge. The difference between DCK and communication
knowledge is described in [Kittredge et al., 1991] as follows:

Communication knowledge is independent of any particular do-
main knowledge. [. . . ] Consider the task of describing a set of ob-
jects in some domain. Communication knowledge about thematic
structure implies a strategy that describes together those objects
that share some feature. Domain knowledge can supply informa-
tion about which objects share which features. But if there are many
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different features, the task remains of choosing the feature(s) accord-
ing to which the descriptions will be grouped together. This choice
must be based on knowledge that is neither general knowledge
about communication (since the choice depends on the particular
features of objects in the domain) nor actual domain knowledge
(since it is only needed for planning communication).

In our context, communication knowledge is implicitly encoded in the way we
traverse the query tree and therefore the deriving discourse tree. In other terms
with a (relation-priority) depth first traversal we guarantee the fact that, given
an output discourse plan with n discourse units, most couples of successive
discourse units (maximum of n − 1) share one discourse entity (referent).

4 Sentence Planning

The module that usually comes next to a text planner in most NLG systems is
a sentence planner (otherwise called microplanner). It is widely recognized (even
if there still is considerable debate in the NLG research community) that the
main tasks of a sentence planner are

• lexicalization

• aggregation

• referring expression generation

Lexicalization means choosing the right words and syntactic structures
to effectively communicate the message encoded in a text plan. Given the
NLG system we are going to use (KPML), this process is part of the linguistic
realization module, and it will be described in Section 5.

Aggregation deals with the quantity of information that each sentence in
the text must contain.

Referring expression generation suggests which phrases should be used
to refer to each domain entity found in the text plan.

Given these three phases, systems available to-date employ one of two
possible solutions as described in [Reiter and Dale, 2000]:

• a blackboard architecture, where no specific ordering is imposed over the
abovementioned phases;

• a pipelined architecture, which the various phases come in a pre-specified
order.

In our system we start with sentence aggregation, followed by referring
expressions generation, and finally we generate a sentence plan.

4.1 Sentence aggregation

Aggregation can be seen as the task of combining several input elements into a
more complex structure for the sake of coherence, fluency and conciseness.

[Cheng et al., 1997] give an excellent definition of aggregation that reads as
follows:
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Functioning as one or a set of processes acting on some intermediate text
structures in text planning, aggregation decides which pieces of structures
can be combined together to be realized as complex sentences later on so
that a concise and cohesive text can be generated while the meaning of the
text is kept almost the same as that without aggregation.

Car u Off-Roader u Non-SmokerCar

LandRover

madeBy

Engine

Diesel

runOn

ElectricPower

runOn

equippedWith

CarDealer

. . .

name

City

Italy

locInCountry

Trento

locInProvince

situInCity

. . .

phoneNumber

soldBy

Figure 9: A query tree example.

Skipping sentence aggregation would lead to stilted texts composed by sim-
ple subject-verb-object sentences. Starting from the complex concept expressed
by the graph of Figure 9, and using the relation-priority depth-first planning
strategy, without aggregation we would obtain this discourse plan

u1,u11,u13,u4,u2,u3,u6,u5,u8,u7,u9,u10,u12

and the following text after linguistic realization:

u1 I’m looking for a car. u11 The car is an off-roader. u13 The car is
a non-smoker car. u4 The car is made by Land Rover. u2 The car is
equipped with an engine. u3 The engine runs on diesel. u6 The engine
runs on electric power. u5 The car is sold by a car dealer. u8 The car
dealer’s name is [. . . ]. u7 The car dealer is situated in a city. u9 The
city is in Italy. u10 The city is in the province of Trento. u12 The car
dealer’s phone number is [. . . ].

The index i given to each discourse unit ui in the example text above reflects
the order of insertion followed by the user while building this query.

4.1.1 Types of Aggregation

In the past twelve years, researchers working on aggregation have mainly
elaborated on Wilkinson’s [Wilkinson, 1995] classification which is based on
locus of process: “Something which the various treatments of aggregation have differed locus of

processon or left vague is at exactly what levels of language generation aggregation may take
place. . . . In fact, aggregation-like phenomena can occur at such a variety of stages and
in such a variety of ways that the term begins to seem stretched beyond its capacity.”
[Wilkinson, 1995]

The recognized typologies of aggregation are six:
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• Conceptual aggregation: this is the deepest locus of aggregation, where
a complex concept can possibly be reduced to a simpler equivalent one
by means of an inference.

• Discourse (rhetorical) aggregation: any operation that applies to a dis-
course structure, rhetorical structure, or text plan and maps it to a better
structure or plan (how “better” must be defined by a metric).

• Semantic aggregation: the combination of two or more semantic entities
into one by means of semantic grouping; it takes place at a level which is
abstracted from syntax, but is language-dependent. [Reape and Mellish,
1999] note that they “could find no clear examples of semantic aggregation
in the literature which couldn’t alternatively be classified as either conceptual,
syntactic or lexical aggregation.”

• Syntactic aggregation: the most frequent form of aggregation. Aggrega-
tion rules that are commonly specified are (a) subject grouping rules and
(b) predicate grouping rules.

• Lexical aggregation: includes three types of aggregation: (a) the mapping
of more lexical predicates to fewer lexemes, (b) the mapping of (more)
lexical predicates to (fewer) lexical predicates and (c) the mapping of
(more) lexemes to (fewer) lexemes.

• Referential aggregation: this was introduced by [Reape and Mellish,
1999] and is not covered by [Wilkinson, 1995]; it refers to aggregation by
means of referring expression generation.

In our setting, aggregation is meant to detect shared concepts and roles,
and to combine them in order to reduce redundancies and repetitions in the
resulting text. Given a text plan, as sequence of discourse units, we try to
aggregate them according to a set of aggregation template structures which can
be reduced to three types:

• simple conjunction structure,

• shared subject-predicate,

• syntactic embedding,

which are a subset of the aggregation roles foreseen and described in [Melen-
goglou, 2002] for the M-PIRO project.

The three abovementioned types mainly fall under the syntactic aggregation
typology, and they are described below.

Simple conjunction (SC) Simple conjunction can be employed whenever
we want to aggregate several roles of the same concept, and the result is the
aggregation of several propositions with the same subject.

Let’s suppose we have the following relational structure:

Car

LandRover

builtBy

Diesel

runOn

ABS

equippedWith
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Without aggregation the three discourse units would generate three separate
sentences: The car is built by Land Rover. The car runs on diesel. The car is equipped
with ABS. Using simple conjunction we would obtain: The car is built by Land
Rover, it runs on diesel, and it is equipped with ABS, where for the sake of readability
we pronominalized the subjects of the second and third clause (see Section 4.2
on referring expressions generation).

Shared subject-predicate (SSP) There are cases where two or more consecu-
tive discourse units sharing the same domain concept also have the same role
name. This is a case of conjunction with shared subject-predicate, as e.g. in the
following relational structure:

Car

ABS

equippedWith

A/C
equippedWith

ElectricWindows

equippedWith

Without aggregation we would have: The car is equipped with ABS. The car is
equipped with A/C. The car is equipped with electric windows.

Using simple conjunction we obtain: The car is equipped with ABS, A/C, and
electric windows.

We can also use shared subject-predicate aggregation when we need to
express identity among concepts. Given a relational tree this can happen when
a concept is followed by one or more compatible concepts (i.e. non-mutually-
disjoint concepts) as in this example:

Car u Off-roader u Non-smoker car

. . .

. . .

. . .

. . .

. . .

. . .

In aggregated form we have The car is an off-roader and a non-smoker car.

Syntactic embedding (SE) With this kind of aggregation we have a dominant
proposition and a secondary proposition which is realized as a subordinated
constituent as e.g. a non-defining relative clause. Starting from the following
relational tree

Car

CarDealer

Austria

locatedIn

soldBy

we could obtain this aggregated form: The car is sold by a car dealer who is located
in Austria.
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4.1.2 Aggregation Template Structures

The aggregation template structures we mentioned above are now formally
listed in Table 1 sorted by number of discourse units we want to aggregate. The
template structures we propose don’t specify in absolute terms the maximum
number of discourse units allowed (n in the generic templates below), but
they impose some constraints in terms of tree topology, maximum tree depth
(0–2 depending on the template), and maximum number of different roles (0–4
depending on the template) for each template tree.

Table 1 takes into consideration all subtree patterns we try to recognize in
a given relational tree. A maximum number of aggregatable units must be
defined and it represents the maximum value that can be assigned to variable
n. We define with nu the number of unique roles with the same domain concept
(c1 as shown in templates n.2 and n.3).

Table 1: Aggregation template structures

Units ID Template Aggregation

2 2.1 c1 u c2 u c3 shared subject-predicate

2.2

c1

c2

r1

c3

r2
a) simple conjunction
b) shared subject-predicate (if r1 =

r2)

2.3

c1

c2

c3

r2

r1

syntactic embedding

3 3.1 c1 u c2 u c3 u c4 shared subject-predicate

3.2

c1

c2

r1

c3

r2

c4

r3

a) simple conjunction
b) shared subject-predicate (if r1 =

r2 = r3)
c) simple conjunction (between

different roles) + simple con-
junction (for roles that are equal,
if either r1 = r2 or r2 = r3)

3.3

c1

c2

r1

c3

c4

r3

r2 a) simple conjunction + syntactic
embedding

b) shared subject-predicate + syn-
tactic embedding (if r1 = r2)

continued on next page
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Units ID Template Aggregation

3.4

c1

c2

c3

r2

c4

r3

r1

syntactic embedding + shared
subject-predicate (r2 = r3)

n n.1 c1 u c2 u c3 u . . . u cn+1 shared subject-predicate

n.2

c1

c2

r1

c3

r2

. . .

. . .

cn+1

rn

a) simple conjunction (for n ≤ 3
and r1 , r2 , · · · , rn)

b) shared subject-predicate (if r1 =
r2 = · · · = rn)

c) simple conjunction (between
different roles, if 2 ≤ nu ≤ 3)
+ shared subject-predicate (for
roles that are equal1)

n.3

c1

c2

r1

. . .

. . .

cn−m

cn−m+1

rn−m

. . .

. . .

cn+1

rn

rn−m−1

a) if n = m + 2 and r2 = · · · = rn,
syntactic embedding + shared
subject-predicate (if m ≥ 1)

b) simple conjunction (if n = m + 3
and r1 , r2) + syntactic embed-
ding + shared subject-predicate
(if m ≥ 1)

c) shared subject-predicate (if n >
m + 2 and r1 = r2 = · · · = rn−m−1)
+ syntactic embedding + shared
subject-predicate (if m ≥ 1)

d) simple conjunction (between
different roles ∈ {r1, . . . , rn−m−1}

if 2 ≤ nu ≤ 3) + shared
subject-predicate (for roles ∈
{r1, . . . , rn−m−1} that are equal) +
syntactic embedding + shared
subject-predicate (if m ≥ 1)

For all n.3 templates these con-
ditions must hold: m ≥ 0 and
rn−m = · · · = rn.

For the patterns expressed above and in particular for n ∈ {2, 3, 5, 6} we
show in table 2 several examples of aggregation. For n = 6 and n = 7 in
some cases we exceed the limit of maximum number of clauses (with different
roles) aggregatable in one sentence by means of simple conjunction (nu = 4),
therefore we need to use two sentences. On the opposite, in 8.2.c even if we

1Note that the planning algorithm we have chosen (relation-priority depth-first) keeps the roles
(descending from the same concept) ordered according to their priority, where multiple instances
of the same role are always consecutive in the text plan, and never mixed-up with other roles
having their same priority.
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have 8 propositions, we are able to aggregate them all into one single sentence
because nu = 3.

Note that for the sake of readability the last column of table 2 shows the
final surface form after aggregation and pronominalization.

Table 2: Aggregation examples

ID Propositions Aggregated form
2.1 The car is an off-roader. The car is a

non-smoker car.
The car is an off-roader and a non-
smoker car.

2.2.a The car is a Land Rover. It is equipped
with ABS.

The car is a Land Rover and it’s
equipped with ABS.

2.2.b The car is equipped with air condition-
ing. The car is equipped with electric
windows.

The car is equipped with air condition-
ing and electric windows.

2.3.a The car is equipped with an engine.
The engine runs on diesel.

The car is quipped with an engine that
runs on diesel.

3.1 The car is an off-roader. The car is a
demonstration car. The car is a non-
smoker car.

The car is an off-roader, a demonstra-
tion car, and a non-smoker car.

3.2.a The car is a Land Rover. Its model is
Defender. It is equipped with a traction
control system.

The car is a Land Rover, its model is De-
fender, and it is equipped with a trac-
tion control system.

3.2.b The car is equipped with ABS. The car
is equipped with air conditioning. The
car is equipped with electric windows.

The car is equipped with ABS, air con-
ditioning, and electric windows.

3.2.c The car is a Land Rover. The car
is equipped with ABS. The car is
equipped with air conditioning.

The car is a Land Rover and it’s
equipped with ABS and air condition-
ing.

3.3.a The car is an off-roader. It is equipped
with an engine. The engine runs on
diesel.

The car is an off-roader and it’s
equipped with and engine that runs on
diesel.

3.3.b It is equipped with ABS. The car is
equipped with an engine. The engine
runs on diesel.

The car is quipped with ABS and an
engine that runs on diesel.

3.4 The car is equipped with an engine.
The engine runs on gasoline. The en-
gine runs on methane.

The car is quipped with an engine that
runs on gasoline and methane.

5.1 similar to 3.1
5.2.a similar to 3.2.a
5.2.b similar to 3.2.b
5.2.c The car is a Land Rover. The car’s

model is Defender. The car is equipped
with ABS. The car is equipped with air
conditioning. The car is equipped with
electric windows.

The car is a Land Rover, its model is
Defender and it’s equipped with ABS
and air conditioning.

continued on next page
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ID Propositions Aggregated form
5.3.b The car is a Land Rover. The car’s

model is Defender. The car is equipped
with ABS. The car is equipped with air
conditioning. The car is equipped with
an engine. The engine runs on diesel.

The car is a Land Rover, its model is
Defender and it’s equipped with ABS
and an engine that runs on diesel.

5.3.c similar to 3.3.b
5.3.d The car is a Land Rover. The car’s

model is Defender. The car is equipped
with an engine. The engine runs on
gasoline. The engine runs on methane.

The car is a Land Rover, its model
is Defender, and it’s equipped with
an engine that runs on gasoline and
methane.

6.2.d
nu = 4

The car is a Land Rover. The car’s
model is Defender. The car’s color is
yellow. The car is equipped with ABS.
The car is equipped with air condition-
ing. The car is equipped with electric
windows.

The car is a Land Rover, its model is
Defender and it’s color is yellow. It’s
equipped with ABS, air conditioning,
and electric windows.

7.2.c
nu = 4

The car is a Land Rover. The car’s
model is Defender. The car’s color is
yellow. The car’s color is blue. The
car is equipped with ABS. The car is
equipped with air conditioning. The
car is equipped with electric windows.

The car is a Land Rover, its model is De-
fender and its color is yellow and blue.
It’s equipped with ABS, air condition-
ing, and electric windows.

8.2.c The car is a Land Rover. The car’s color
is yellow. The car’s color is blue. The
car’s color is red. The car is equipped
with a traction control system. The
car is equipped with ABS. The car is
equipped with air conditioning. The
car is equipped with electric windows.

The car is a Land Rover, its color is yel-
low, blue, and red, and it’s equipped
with a traction control system, ABS,
and air conditioning.

The next step is meant to find a way to compute the best match of the
patterns of table 1 for a given relational tree taking into consideration that the
text planning algorithm we choose is the relation-priority depth-first.

4.1.3 Best template structure matching

The idea underlying this is to linearize both the relational tree (according to
the chosen planning algorithm) and the template structures, seeking the best
covering match of the linearized templates in the plan that minimizes the
number of sentences in the outcoming sentence plan.

The linearized templates we foresee are listed in table 3. Concepts are
represented as Ci, Ci+1, Ci+2, etc. where the emphasized index (i, i+1, i+2, . . . )
stands for the level in the tree where the concept (as node) is situated. Roles are
represented as Rj, Rj+1, Rj+2, etc. where the emphasized index ( j, j+1, j+2, . . . )
is the same for edges of the tree that represent the same role.

Table 3 groups the linearization of the allowed tree templates ordered by
increasing number of constituents; it also shows that each linearization corre-
sponds to one or more tree templates.
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# Linearized template Original ID
1 Ci+, n.1
2 (CiRjCi+1,)+ n.2.b
3 (CiRjCi+1,)+(Ci+1Rj+1Ci+2,)+ n.3.a, n.3.b, n.3.c
4 (CiRjCi+1,)+(CiRj+1Ci+1,)+ n.2.c
5 (CiRjCi+1,)+(CiRj+1Ci+1,)+(Ci+1Rj+2Ci+2,)+ n.3.d
6 (CiRjCi+1,)+(CiRj+1Ci+1,)+(CiRj+2Ci+1,)+ n.2.a, n.2.c
7 (CiRjCi+1,)+(CiRj+1Ci+1,)+(CiRj+2Ci+1,)+(Ci+1Rj+3Ci+2,)+ n.3.d

Table 3: Linearized templates

In order to find the best template structure match, we need to convert the
text plan output by the previous phase using the same notation employed for
the linearizations above.

c1 u c1,1 u c1,2

c4

r3

c2

c3

r2 = r5

c6

r1

c5

c8

r7

c7

c9

r8

c10

r9

r6

c11

r10

r4

Figure 10: A query tree waiting to be linearized

Let’s suppose we start from the tree of Figure 9 remapped to the one in
Figure 10 for the sake of simplicity. Provided we use the planning algorithm
proposed in section 3.2.6 (relation-priority depth-first planning), the text plan
with the notation introduced above would be:

C1C1C1,C1R1C2,C1R2C2,C2R3C3,C2R3C3,C1R4C2,C2R5C3,C2R6C3,

C3R7C4,C3R8C4,C2R9C3, (1)

The list of templates needs to be instantiated: indexes i and j must be
initialized according to the index (level) of the first concept and the first role
in the text plan respectively. We obtain a list of regular expressions we call
aggregation patterns or simply patterns.
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1 (C1)+,

2 (C1R1C2,)+

3 (C1R1C2,)+(C2R2C3,)+

4 (C1R1C2,)+(C1R2C2,)+

5 (C1R1C2,)+(C1R2C2,)+(C2R3C3,)+

6 (C1R1C2,)+(C1R2C2,)+(C1R3C2,)+

7 (C1R1C2,)+(C1R2C2,)+(C1R3C2,)+(C2R4C3,)+

The pattern matching is done starting from the longest pattern #7 to the
shortest one #1. The first pattern that matches is #1 followed by #5. We are
able to aggregate the first three compatible concepts (C1C1C1,) in a first sen-
tence, followed by another sentence that aggregates four units (C1R1C2,C1R2C2,
C2R3C3,C2R3C3,). After these first two hits, no other pattern matches the re-
maining part of the plan:

C1R4C2,C2R5C3,C2R6C3,C3R7C4,C3R8C4,C2R9C3,

We need to re-instantiate the list of templates setting i = 1 and j = 4. The
patterns become then:

1 (C1+),

2 (C1R4C2,)+

3 (C1R4C2,)+(C2R5C3,)+

4 (C1R4C2,)+(C1R5C2,)+

5 (C1R4C2,)+(C1R5C2,)+(C2R6C3,)+

6 (C1R4C2,)+(C1R5C2,)+(C1R6C2,)+

7 (C1R4C2,)+(C1R5C2,)+(C1R6C2,)+(C2R8C3,)+

This time there is only one pattern that matches, namely #3. The part of the
text plan that remains to be matched is

C2R6C3,C3R7C4,C3R8C4,C2R9C3,

The templates need to be instantiated again with i = 2 and j = 6 yielding
these patterns:

1 (C2)+,

2 (C2R6C3,)+

3 (C2R6C3,)+(C3R7C4,)+

4 (C2R6C3,)+(C2R7C3,)+

5 (C2R6C3,)+(C2R7C3,)+(C3R8C4,)+

6 (C2R6C3,)+(C2R7C3,)+(C2R8C3,)+

7 (C2R6C3,)+(C2R7C3,)+(C2R8C3,)+(C3R10C4,)+

Again, pattern #3 is the only one that matches. There are two more units to
be matched:

C3R8C4,C2R9C3,

This time we need to instantiate just the first four templates (whose mini-
mum length doesn’t exceed the remaining two units), with i = 3 and j = 8:
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1 C3(C3)+,

2 (C3R8C4,)+

3 (C3R8C4,)+(C4R9C5,)+

4 (C3R8C4,)+(C3R9C4,)+

where only pattern #2 matches. Finally the last set of patterns is generated
setting i = 2 and j = 9, in order to match the very last unit with pattern #2
shown below.

C2R9C3,

1 C2(C2)+,

2 (C2R9C3,)+

Summarizing, given the query tree of Figure 10, the text plan resulting from
it is composed by 12 clauses which, according to the proposed templates, can
be joined to form 6 sentences (S1 . . . S6) as reported below:

Sentences Patterns
S1 c1risc1,1 ⊕ssp c1risc1,2 C1C1C1, #1
S2 c1r3c4 ⊕sc c1r1c2 ⊕se c2r2c3 ⊕ssp c2r5c6 C1R1C2,C1R2C2,C2R3C3,C2R3C3, #5
S3 c1r4c5 ⊕se c5r7c8 C1R4C2,C2R5C3, #3
S4 c5r6c7 ⊕se c7r8c9 C2R6C3,C3R7C4, #3
S5 c7r9c10 C3R8C4, #2
S6 c5r10c11 C2R9C3, #2

At this point a few comments on the notation used are necessary. The three
kinds of aggregation we use, namely simple conjunction, shared subject-predicate,
and syntactic embedding are represented with the three symbolic operators ⊕sc,
⊕ssp, and ⊕se. The conjunction of concepts c1,1 and c1,2 with c1 has been splitted
into two clauses aggregated by means of a shared subject-predicate (⊕ssp).
The newly introduced compatibility relation ris accounts for these conjunctions ris

compatibility
relation

i.e. that c1,1 and c1,2 must be compatible (not disjoint) with c1. This relation will
be lexicalized with a copula as shown in the examples n.1 of Table 2.

Using the original concept and role names of Figure 9, the resulting 6 sen-
tences would be:

S1: Car·is·Off-roader ⊕ssp Car·is·Non-SmokerCar

S2: Car·madeBy·Land Rover⊕sc Car·equippedWith·Engine⊕se Engine·runOn·Diesel
⊕ssp Engine·runOn·ElectricPower

S3: Car·soldBy·CarDealer ⊕se CarDealer·name·[. . . ]

S4: CarDealer·situatedInCity·City ⊕se City·locInCountry·Italy

S5: City·locInProvince·Trento

S6: CarDealer·phoneNumber·[. . . ]
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4.1.4 Algorithms

In this section we describe two algorithms: The first one (Algorithm 7) is needed
to obtain the text plan with the notation introduced in the previous section; the
second one (Algorithm 8) finds the best covering match of the text plan using
the aggregation templates of table 3.

Algorithm 7 Linearization of a query tree
u1 ← root node
p← “” {text plan as string}
P← empty vector {text plan as vector of pointers to query entities}
ir ← 1 {role counter}
r−1 ← null {previous role}
call CalculateTextPlan(u1)

procedure CalculateTextPlan(u)
append “C” & level(u) to p
append main concept of u to P;
Cu ← list of compatible concepts in node u
for all c ∈ Cu do

append “C” & level(u) to p
append c to P

end for
append “,” to p
Ru ← all edges (roles) from u {left to right}
for all r ∈ Ru do

v← target node of edge r
{same roles (r = r−1) keep the same index ir in the new notation}
if r , r−1 then

ir ← ir + 1
end if
append “C” & level(u) & “R” & ir & “C” & level(u) + 1 & “,” to p
append main concept of u to P
append r to P
append main concept of v to P
r−1 ← r
call CalculateTextPlan(v)

end for
end procedure

The outputs of this algorithm both represent the text plan as serialization of
a given query tree:

• a string p with the notation shown above;

• a vector P of pointers to the entities composing the query.

Algorithm 8, instead, takes the output string p and calculates the best cov-
ering match of the text plan using the aggregation templates of table 3. The
templates are instantiated at the beginning according to the indexes assigned
to the first concept and the first role of p. The resulting patterns are matched
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against p starting from the longest to the shortest one. The matching template
number and the match are saved; then the match is removed from p. As soon
as none of the patterns matches, the templates are instantiated again as above.
The process stops when p is empty. The output consists of two lists: a list con-
taining the sequence of matches, and a list of the template IDs corresponding
to each match.

Algorithm 8 Calculation of the best covering match
input T {list of templates to be instantiated}
input p {text plan as string}
input P {text plan as vector of pointers to query entities}
ptmp ← p {tmp copy of text plan}
Tinst ← empty list {list of patterns as instances of T}
Lm ← empty list {list of string matches}
Lt ← empty list {list of template IDs that matched}
M ← empty list {array containing in M[0] the match, in M[1] the ID of the
matching pattern}
i← index (level) of first concept in ptmp
j← index of first role in ptmp
Tinst ← generatePatterns(T, i, j)
while ptmp not empty do

M← getMatch(Tinst,&ptmp)
if M = null then

i← index (level) of first concept in ptmp
j← index of first role in ptmp
Tinst ← generatePatterns(T, i, j)
M← getMatch(Tinst,&ptmp)

end if
append M[0] to Lm {match}
append M[1] to Lt {template ID}

end while
output Lm
output Lt

function generatePatterns(T, i, j)
for all t ∈ T do

substitute i, j in t
calculate indexes of concepts C and roles R in T
append t to Tinst

end for
return Tinst
end function

function getMatch(Tinst, ptmp)
M← null
for i = length(Tinst) downto 1 do

if existsMatch(Tinst[i], ptmp) then
M[0]←match Tinst[i] in ptmp
M[1]← i
remove M[0] from ptmp
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break
end if

end for
return M
end function

4.2 Referring expressions generation

Referring expressions represent the ways we can consider to refer to discourse
entities in a message or text in general. As [Reiter and Dale, 2000] clearly
explain, the symbolic names of knowledge base entities within these messages need to
be replaced by the semantic content of noun phrase referring expressions that will be
sufficient to identify the intended referents to the hearer. The reference to a discourse
entity can be done by means of a noun phrase in several ways:

1. definite noun phrases (as e.g. ‘the car’): these are used when referring to
an entity that has already been introduced before, or when the entity is
assumed to be known or inferable by the hearer;

2. indefinite noun phrases (as e.g. ‘a car’): this is the case when we refer to
a new discourse entity that hasn’t been previously mentioned;

3. definite pronouns (he, she, it, . . . ) usually anaphoric2, and typically
referring to entities mentioned in the same or the previous sentence;

4. indefinite pronouns (one, as in ‘the regular one’);

5. relative pronouns as subject (who, that, which), referring to an entity
contained in the previous clause;

6. names, where named entities can be referred to using portions of their
name (‘The writer Richard Wright’→ ‘Richard Wright’)

Of the above categories, we restrict the generation of referring expressions to
definite noun phrases (as subject), indefinite noun phrases (as direct or indirect
object), definite pronouns (as subject), and relative pronouns (as subject).

We also report the use of

• possessive pronouns when referring to one of the attributes of a previ-
ously mentioned entity (e.g. The engine’s displacement size is 2500 cc, and
its weight is 250 kg);

• relative pronouns used as possessives (like whose), to incorporate a refer-
ence to the possessor of an attribute following the pronoun. The posses-
sor is usually introduced in the previous clause within the same sentence
(e.g. I’m looking for a car whose make is Lada).

2A reference is said to be anaphoric if its interpretation depends on a preceding entity in the
discourse, which is called the antecedent.
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We start by listing some constraints we have to take into account during
this phase.

The first and most general constraint is that all entities of the text plan
(except the subject of the first unit which is in first person singular form) will
be rendered in third person singular form.

Moreover, for each one of the referring expressions we use, there are certain
constraints we have to respect that limit the position that the expression can
occupy within a sentence:

indefinite noun phrases (R-INP) are always in (direct or indirect) object posi-
tion, and they are used the first time an entity appears in the text;

definite noun phrases (R-DNP) are always in subject position; otherwise this
would mean that the entity, being also in object position the first time
it was mentioned in the text, is co-referenced by two roles, which is
impossible for our definition of conjunctive query (see Section . . . ).

definite pronouns (R-DP) are always in subject position; in this case we must
be careful to respect the gender of the referent;

relative pronouns as subject (R-RPS) which must be the same as the object of
the previous unit;

possessive pronouns (R-PP) can only precede a subject; they must refer to the
subject of the previous unit, not to the object, otherwise

relative pronouns as possessives (R-RPP) would be the right choice.

Given these constraints it turns out to be very easy to assign the first two
referring expressions: for each discourse unit, the first entity is tagged as a
definite noun phrase (R-DNP) and the second as an indefinite noun phrase (R-INP).
At this point we have to note that this pre-assignment of a definite or indefinite
status to entities will not affect those entities that will be lexicalized either as
proper nouns or uncountable nouns. We will see this further on, when we
handle the generation of sentence plans.

From this point on, the task is to deal with the pronominalization of the
first entity of each unit. We could easily borrow the idea of the local focus of
attention, in particular the pronominalization strategy proposed by Centering
Theory [Grosz et al., 1995], which states in Rule 1 that

If any element of C f (Un) is realized by a pronoun in Un−1, then the
Cb(Un+1) must be realized by a pronoun also.

In other terms, citing again the authors, this means that

[. . . ] no element in an utterance can be realized as a pronoun
unless the backward-looking center of the utterance is realized as a
pronoun also.

where utterance (Un) is what we call discourse unit or simply unit (with a
lower-case notation un).

This rule, though, does not discern among the four categories of pronouns
we have, indicating which one we should use. In principle we could simply
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use definite pronouns (R-DP), but we want to go beyond the simple achievement
of grammatical sentences, having a higher degree of fluency, conciseness, and
avoiding repetitions.

The previous phase (see Section 4.1) yielded the aggregation (where possi-
ble) of several discourse units into what will become multi-clausal sentences.
Within the same sentence we can have clauses (units) whose first entity (sub-
ject) is the same as the second entity (object) of the previous unit. This is a case
in which the pronoun of the latter unit is a relative pronoun as subject (R-RPS), of
what will become a relative clause.

If the role expressed in a unit is concrete (i.e. an attribute of the first entity),
and the first entity of the current unit is the same as the first entity of the
previous unit, the role will be the subject, prepended by a possessive pronoun
(R-PP). The two consecutive units don’t need to be part of the same sentence.

Finally, in the same setting as the previous paragraph, where instead the
first entity of the current unit has to correspond to the second entity of the
previous unit, we would prepend the role (subject) of the present unit with a
relative pronoun used as possessive (R-RPP).

Table 4 reports an example for each one of the referring expressions we took
into consideration.

Table 4: Examples of usage of referring expressions

Ref. expr. Query tree Sentence

R-INP

I

Car

lookFor I’m looking for a car.

R-DNP

Car

ABS

equippedWith The car is equipped with
ABS.

R-DP

Car

FIAT

madeBy

ABS

equippedWith The car is made by FIAT and
it is equipped with ABS.

continued on next page
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Ref. expr. Query tree Sentence

R-RPS

Car

CarDealer

Italy

locatedIn

soldBy

The car is sold by a car dealer
who is located in Italy.

R-PP

Car

Bravo 1.6

model

blue

color The car’s model is Bravo 1.6
and its color is blue.

R-RPP

Car

Engine

. . .

power

equippedWith

The car is equipped with an
engine whose power is . . . .

We condense now all the previous considerations, rules, and constraints
into an algorithm for the generation of referring expressions. The input of the
algorithm is an ordered list of all entities we have in our text plan, with the
additional aggregation information obtained from the aggregation algorithm.

The output will be the same list of entities, where each entity will be com-
pleted with additional information about the referring expression to be used.

To accomplish this task we need a few functions:

• getUnit(ci) returns the discourse unit where entity ci is to be found;

• getPreviousUnit(uk) returns the unit preceding uk;

• getPreviousEntity(ci) returns the entity preceding ci;

• getFirstEntity(uk) returns the first entity in uk;

• getNextEntity(ci) returns the next (to the current one) entity in uk;

• getLastEntity(uk) returns the last entity uk;

• getEntityPosition(ci) returns the relative position of entity ck within its
discourse unit; the position is a positive integer in {1, 2} for units like c jrkcl
or an integer in a bigger set {1, 2, 3, . . .} for units such as ci u ci,1 u ci,2 u . . .
which represent the conjunction of two or more compatible concepts;
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• getSentence(uk) returns the sentence to which unit uk has been assigned
after aggregation;

• inSameSentence(uk, ul) which returns true if the two discourse units uk
and ul are part of the same sentence after aggregation, otherwise it returns
false;

• sameConcept(ci, cj) returns true if the two entities refer to the same
concept;

• setRefExpr(ci, refExpr) sets the given referring expression refExpr in
ci;

• existsRole(ci, cj) returns true if ci and c j are connected by a role, false
otherwise;

• isConcreteRole(ci, cj) returns true if the role having ci as domain and c j
as range is a concrete role (attribute), false if it is an abstract role (relation).

Algorithm 9 Generation of appropriate referring expressions for each entity
present in a given text plan

input P {text plan as vector of discourse entities, which are uniquely identified, even
though it can happen that two entities refer to the same KB concept}
for all c ∈ P do

ucur ← getUnit(c)
uprev ← getPreviousUnit(ucur);
if getEntityPosition(c) = 1 then

cnext = getNextEntity(c)
setRe f Expr(c, R-DNP)
if uprev , NULL then

if sameConcept(getFirstEntity(uprev), c) then
setRe f Expr(c, R-DP)
if existsRole(c, cnext) then

if isConcreteRole(c, cnext) then
setRe f Expr(c, R-PP)

end if
end if

else if inSameSentence(uprev,ucur) then
if sameConcept(getLastEntity((uprev), c)) then

setRe f Expr(c, R-RPS)
if existsRole(c, cnext) then

if isConcreteRole(c, cnext) then
setRe f Expr(c, R-RPP)

end if
end if

end if
end if

end if
else

setRe f Expr(c, R-INP)
end if

end for
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A few comments at this point are necessary. First of all, the use of possessive
pronouns (R-PP) and relative pronouns as possessives (R-RPP) is not restricted
to entities connected with a concrete role: We can have cases where an entity
is followed by an abstract role which behaves as an attribute and is therefore
rendered as a substantive instead of a predicate, as abstract roles usually are.

For example, the query of figure 11 would be rendered as “I am looking
for a car whose make is Santana”, where the abstract role make is rendered as
the subject of the second unit, and the reference to car is incorporated into the
relative pronoun (whose).

I

Car

Santana

make

lookFor

Figure 11: Query with abstract role (make) that is rendered as substantive.

This is to be considered an exception, since the rule is that abstract roles are
usually rendered as a predicate (as e.g. the abstract role lookFor).

Another issue regards the correct choice of a pronoun according to the
gender of the referent (third person singular), and the fact that they are either singular they
human or non human entities. The problem arises when we want to refer to
a single definite person androgynously, i.e. with a gender-neutral pronoun.
There are various viable solutions. We could try to avoid using the pronoun,
but this would lead to annoying repetitions of the name that should have
been pronominalized. In order to avoid sexist writing we could alternate
male and female pronouns: in this case this would be pretty confusing for
the user. We very often see people using both pronouns together but this
is considered by readers and writers stylistically inelegant. Excluding the
possibility of inventing a new pronoun, what remains —and this is the solution
we adopt— is resorting to plural pronouns such as they, and their for singular
uses. This is called the singular they.

Singular they is a popular, non-technical expression for uses of the pronoun
they (and its inflected forms) when plurality is not required by the context.
Singular they remains morphologically and syntactically plural, and its use
as pronoun of indefinite gender and indefinite number is well established in
speech and writing, even in literary and formal contexts [Merriam-Webster,
2007]. We weaved an example of singular they usage in the previous paragraph,
in correspondence of the margin note.

The assignment of the correct pronoun to each pronominalizable entity will
be dealt in detail in the following section. We only anticipate in Table 5 the set
of all pronouns we are going to use.

We recap now the query example of Figure 9 and the successive aggre-
gation result on page 33. The aggregation output is completed with the first
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Non-human Human

Type Indefinite Masculine Feminine Indefinite

R-DP it he she they

R-RPS that who/that

R-PP its his her their

R-RPP whose

Table 5: Complete set of singular pronouns used

introductory sentence S0 and the discourse unit labels u1,u2, . . . ,u13.

S0: u1 (I·lookFor·Car)

S1: u11 (Car·is·Off-roader) ⊕ssp
u13 (Car·is·Non-SmokerCar)

S2: u4 (Car·madeBy·Land Rover)⊕sc
u2 (Car·equippedWith·Engine)⊕se

u3 (Engine·runOn·Diesel)
⊕ssp

u6 (Engine·runOn·ElectricPower)

S3: u5 (Car·soldBy·CarDealer) ⊕se
u8 (CarDealer·name·[. . . ])

S4: u7 (CarDealer·situatedInCity·City) ⊕se
u9 (City·locInCountry·Italy)

S5: u10 (City·locInProvince·Trento)

S6: u12 (CarDealer·phoneNumber·[. . . ])

After running Algorithm 9 on all discourse units except the first one (u1),
each discourse entity is assigned an appropriate referring expression label. The
output is:

S0: u1 (I·lookFor·Car)

S1: u11 (CarR−DP ·is·Off-roaderR−INP ) ⊕ssp
u13 (CarR−DP ·is·Non-SmokerCarR−INP )

S2: u4 (CarR−DP ·madeBy·Land RoverR−INP )⊕sc
u2 (CarR−DP ·equippedWith·EngineR−INP )

⊕se
u3 (EngineR−RPS ·runOn·DieselR−INP )⊕ssp

u6 (EngineR−DP ·runOn·ElectricPowerR−INP )

S3: u5 (CarR−DNP ·soldBy·CarDealerR−INP ) ⊕se
u8 (CarDealerR−RPP ·name·[. . . ]R−INP )

S4: u7 (CarDealerR−DP ·situatedInCity·CityR−INP )⊕se
u9 (CityR−RPS ·locInCountry·ItalyR−INP )

S5: u10 (CityR−DP ·locInProvince·TrentoR−INP )

S6: u12 (CarDealerR−DNP ·phoneNumber·[. . . ]R−INP )

4.3 Generation of a Sentence Plan in SPL

With the outputs obtained from the discourse planning, sentence aggregation,
and referring expression generation phases, we are ready to generate the input
for the linguistic realizer. The input is called sentence plan and the language
used is the Sentence Plan Language or simply SPL, a language devised by Robert
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Kasper [Kasper, 1989]. The details of this formalism are thoroughly explained
in Section 6.4.

In short, SPL is the form of non-linguistic input adopted by several linguistic
realizers, among which we mention [Bateman, 1997a], the one we adopted.
In a more general way we can say that an SPL is the semantic specification of a
sentence.

We start with some examples, where for each one we show the query, the
sentence plan it is mapped into, and the -generated text.

Example 1 In this first example the query is a conjunction of three compatible
concepts: Used-car, Off-Roader, and Non-smoker-car.

Query

Used-car u Off-roader u Non-smoker-car

Sentence Plan

(s1 / class-ascription

:modality must

:domain

(c1 / used-car

:determiner the)

:range

(:and

(c2 / off-roader)

(c3 / non-smoker-car))

)

Generated text

The used-car must be an off-roader and a non-smoker car.

These three concepts are represented in the sentence plan by three variables
c1, c2, and c3; s1 instead, is the variable representing the relational process we
use in order to verbalize our input query in a descriptive way. The process
is a class-ascription, one of the process types defined in the Merged Upper
Model (see Section 6.3), a general task- and domain-independent linguistically-
motivated ontology used for mediating between domain knowledge and the
linguistic realizer. A class-ascription process must have at least two partic-
ipants, which are called :domain and :range: The domain is the first concept
(Used-car), and the range is the conjunction of all other concepts (in this case
Off-roader and Non-smoker-car).  generates the class ascription as a
copula that relates domain and range as subsets i.e. the used car we are looking
for is contained in the intersection of the sets of all off-roaders and non-smoker
cars. We also added the :modality property to the class ascription process, in
order to emphasize that this is a query expressing user requirements.

Example 2 Here the query is composed by three concepts (Used-car, Air-con-
ditioning, and Central-locking) and two instances of the same role (equip-
ped-with).
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Query

Used-car

Air-conditioning

equipped-with

Central-locking

equipped-with

Sentence Plan

(s2 / equipped-with

:modality must

:domain

(c1 / used-car

:pronoun it)

:range

(:and

(c2 / air-conditioning)

(c3 / central-locking)))

Generated text

It must be equipped with air-conditioning and central locking.

The derived sentence plan contains a process named equipped-withwhich
is subsumed by the more general Upper-Model (UM) concept called genera-
lized-possession. The participants are the used car as :domain and both
air-conditioning and central-locking as :range. We decided to pronominalize
the subject of the sentence.

Example 3 We show here a more complex query, containing five concepts and
three roles.
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Query

Used-car

FIAT

make

Engine

Methane

run-on

Gasoline

run-on

equipped-with

Sentence Plan

((s3 s4)

(s3 / class-ascription

:modality must

:domain

(c1 / make

:lex make

:determiner the

:owned-by

(c2 / used-car

:pronoun it

:determiner the))

:range

(c3 / fiat))

(s4 / equipped-with

:lex equipped-with

:modality must

:domain

(c2 / used-car

:determiner the

:pronoun it)

:range

(c4 / engine

:process

(s5 / run-on

:tense present

:actor c4

:actee

(:and

(c5 / methane)

(c6 / gasoline))))))

Generated text

Its make must be FIAT, and it must be equipped with an engine that runs on methane and
gasoline.

The sentence plan is made up of two main coordinate clauses, s3 and s4,
which are associated to two processes: aclass-ascriptionandequipped-with
(seen in the previous example). The latter contains a further process (run-on)
that gives additional information about the engine’s fuel (methaneandgasoline):
This sub-process is realized as a relative clause (. . . that runs on methane and gaso-
line). Sincerun-on is subsumed by the UM-processdispositive-material-ac-
tion, the participants of this process have to be named :actor and :actee. We
also want to remark the use of a possessive (its) and a definite pronoun (it)
referring to used-car, along with the relative pronoun (that) referring to the
engine, automatically generated by the realizer as subject of the sub-process.

We proceed now formally by describing how to map each one of the tem-
plates we listed in Table 3 into a corresponding text plan. Indexes of concepts
in that table are equal for concepts on the same level, while here indexes are
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numbered differently for different concepts. For each template, we show the
corresponding generic query, its linearization and the generated sentence plan.

We draw the attention of the reader to the fact that all concepts included in
the following sentence plans may seem confusing because of a name duplica-
tion. When we write (ci / ci), the first ci is a variable, the second one is the
name of the concept assigned to the variable, also called type as we will see in
Section 6.4.

Template 1. ris is the “compatibility relation” we introduced on page 33 and
that is mapped to a class-ascription in the sentence plan..

Query

c1 u c2 u . . . u cn

Linearization

(c1risc2 ⊕ssp . . . ⊕ssp c1riscn)

Sentence Plan

(s1 / class-ascription

:modality must

:domain

(c1 / c1

:determiner ???

:pronoun ???)

:range

(:and

(c2 / c2)

(... / ...)

(cn / cn)))

Template 2. r1 is an abstract role in the domain ontology:

Query

c1

c2

r1

. . .

r1

cn

r1

r1: abstract role

Linearization

(c1r1c2 ⊕ssp c1r1c3 ⊕ssp . . . ⊕ssp c1r1cn)

Sentence Plan

(s1 / r1

:modality must

:domain (c1 / c1

:determiner ???

:pronoun ???)

:range

(:and

(c2 / c2)

(... / ...)

(cn / cn)))

or, if r1 is a concrete role in the domain ontology:
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Query

c1

c2

r1

. . .

r1

cn

r1

r1: concrete role

Linearization

(c1r1c2 ⊕ssp c1r1c3 ⊕ssp . . . ⊕ssp c1r1cn)

Sentence Plan

(s1 / class-ascription

:modality must

:domain

(r1 / r1

:owned-by

(c1 / c1

:determiner ???

:pronoun ???))

:range

(:and

(c2 / c2)

(... / ...)

(cn / cn)))

Template 3. If r1 and r2 are both abstract roles:

Query

c1

c2

r1

. . .

r1

cn

cn+1

r2

. . .

r2

cn+m

r2

r1

r1, r2: abstract roles

Linearization

(c1r1c2 ⊕ssp . . . ⊕ssp c1r1cn ⊕se

cnr2cn+1 ⊕ssp . . . ⊕ssp cnr2cn+m)

Sentence Plan

(s1 / r1

:modality must

:domain

(c1 / c1

:determiner ???

:pronoun ???)

:range

(:and

(c2 / c2)

(... / ...)

(cn / cn

:process

(r2 / r2

:tense present

:actor cn

:actee

(:and

(cn+1 / cn+1)

(... / ...)

(cn+m / cn+m))))))

otherwise, if r2 is a concrete role we have:
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Query

c1

c2

r1

. . .

r1

cn

cn+1

r2

. . .

r2

cn+m

r2

r1

r1: abstract role
r2: concrete role

Linearization

(c1r1c2 ⊕ssp . . . ⊕ssp c1r1cn ⊕se

cnr2cn+1 ⊕ssp . . . ⊕ssp cnr2cn+m)

Sentence Plan

(s1 / r1

:modality must

:domain

(c1 / c1

:determiner ???

:pronoun ???)

:range

(:and

(c2 / c2)

(... / ...)

(cn / cn

:process

(r / class-ascription

:tense present

:extracted-variable-id r2

:domain

(r2 / r2

:relations

(o1 / ownership

:domain cn

:range r2))

:range

(:and

(cn+1 / cn+1)

(.../...)

(cn+m / cn+m))))))

The attribute :process in the SPL code above and in the sentence plan of
Example 3 is used to produce a complex modification of the preceding concept
(cn), modification that will be rendered as a relative clause.

Template 4. Here we have four possibilities, depending on the fact that r1 and
r2 can either be abstract or concrete roles. We start with the case that r1 and r2
are abstract roles.
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Query

c1

c2

r1

. . . cn

r1

cn+1

r2

. . . cn+m

r2

r1, r2: abstract roles

Linearization

(c1r1c2 ⊕ssp . . . ⊕ssp c1r1cn ⊕sc

c1r2cn+1 ⊕ssp . . . ⊕ssp c1r2cn+m)

Sentence Plan

((s1 s2)

(s1 / r1

:modality must

:domain

(c1 / c1

:determiner ???

:pronoun ???)

:range

(:and

(c2 / c2)

(... / ...)

(cn / cn)))

(s2 / r2

:modality must

:domain

(c1 / c1

:determiner ???

:pronoun ???)

:range

(:and

(cn+1 / cn+2)

(.. / ..)

(cn+m / cn+m))))

If either one of r1 or r2 (or both) is a concrete role (say ry), the previous
sentence plan is no longer valid. We need to replace the sentence plan chunk
containing ry (left box below) with the one on the right.

(sx / ry

:modality must

:domain

(c1 / c1

:determiner ???

:pronoun ???)

(sx / class-ascription

:modality must

:domain

(ry / ry

:owned-by

(c1 / c1

:determiner ???

:pronoun ???))

Template 5. If r1, r2, and r3 are abstract roles:
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Query

c1

c2

r1

. . . cn

r1

cn+1

r2

. . . cn+m

cn+m+1

r3

. . . cn+m+p

r3

r2

r1, r2, r3: abstract roles

Linearization

(c1r1c2 ⊕ssp . . . ⊕ssp c1r1cn ⊕sc

c1r2cn+1 ⊕ssp . . . ⊕ssp c1r2cn+m ⊕se

cn+mr3cn+m+1 ⊕ssp . . . ⊕ssp cn+mr3cn+m+p)

Sentence Plan

((s1 s2)

(s1 / r1

:modality must

:domain (c1 / c1

:determiner ???

:pronoun ???)

:range

(:and

(c2 / c2)

(... / ...)

(cn / cn)))

(s2 / r2

:modality must

:domain (c1 / c1

:determiner ???

:pronoun ???)

:range

(:and

(cn+1 / cn+1)

(... / ...)

(cn+m / cn+m

:process

(r3 / r3

:tense present

:actor cn+m

:actee

(:and

(cn+m+1 / cn+m+1)

(... / ...)

(cn+m+p / cn+m+p))

)))))

If r1 is a concrete role we should substitute in the previous plan the chunk
reported in the left box below with the one on the right box.

(s1 / r1

:modality must

:domain (c1 / c1

:determiner ???

:pronoun ???)

(s1 / class-ascription

:modality must

:domain

(r1 / r1

:owned-by

(c1 / c1

:determiner ???

:pronoun ???))

Since r2 cannot be a concrete role (otherwise cn+m would be a concrete data
type, which is not possible because it should be a leaf), the last variant to this
sentence plan is that r3 is a concrete role. The substitution we perform in this
case is:
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(r3 / r3

:tense present

:actor cn

:actee

(:and

(cn+m+1 / cn+m+1)

(... / ...)

(cn+m+p / cn+m+p)))

(s3 / class-ascription

:tense present

:extracted-variable-id r3

:domain

(r3 / r3

:relations

(o1 / ownership

:domain cn

:range r3))

:range

(:and

(cn+m+1 / cn+m+1)

(... / ...)

(cn+m+p / cn+m+p)))

Template 6. If r1, r2, and r3 are abstract roles:

Query

c1

c2

r1

. . . cn

r1

cn+1

r2

. . . cn+m

r2

cn+m+1

r3

. . . cn+m+p

r3

r1, r2, r3: abstract roles

Linearization

(c1r1c2 ⊕ssp . . . ⊕ssp c1r1cn ⊕sc

c1r2cn+1 ⊕ssp . . . ⊕ssp c1r2cn+m ⊕sc

cn+mr3cn+m+1 ⊕ssp . . . , cn+mr3cn+m+p)

Sentence Plan
((s1 s2 s3)

(s1 / r1

:modality must

:domain (c1 / c1

:determiner ???

:pronoun ???)

:range

(:and

(c2 / c2)

(.. / ..)

(cn / cn)))

(s2 / r2

:modality must

:domain (c1 / c1

:determiner ???

:pronoun ???)

:range

(:and

(cn+1 / cn+2)

(... / ...)

(cn+m / cn+m)))

(s3 / r3

:modality must

:domain (c1 / c1

:determiner ???

:pronoun ???)

:range

(:and

(cn+m+1 / cn+m+1)

(... / ...)

(cn+m+p / cn+m+p))))

Otherwise, if any of r1, r2, or r3 is a concrete role, we perform a substitution
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as we explained for Template 4.

Template 7. If r1, r2, r3, and r4 are abstract roles:

Query

c1

c2

r1

. . . cn

r1

cn+1

r2

. . . cn+m

r2

cn+m+1

r3

. . . cn+m+p

cn+m+p+1

r4

. . . cn+m+p+q

r4

r3

r1, r2, r3, r4: abstract roles

Linearization

(c1r1c2 ⊕ssp . . . ⊕ssp c1r1cn ⊕sc c1r2cn+1 ⊕ssp . . . ⊕ssp c1r2cn+m ⊕sc

c1r3cn+m+1 ⊕ssp . . . ⊕ssp c1r3cn+m+p ⊕se cn+m+pr4cn+m+p+1 ⊕ssp . . . ⊕ssp cn+m+pr4cn+m+p+q)

Sentence Plan
((s1 s2 s3)

(s1 / r1

:modality must

:domain (c1 / c1

:determiner ???

:pronoun ???)

:range

(:and

(c2 / c2)

(.. / ..)

(cn / cn)))

(s2 / r2

:modality must

:domain (c1 / c1

:determiner ???

:pronoun ???)

:range

(:and

(cn+1 / cn+2)

(.. / ..)

(cn+m / cn+m)))

(s3 / r3

:modality must

:domain (c1 / c1

:determiner ???

:pronoun ???)

:range

(:and

(cn+m+1 / cn+m+1)

(... / ...)

(cn+m+p / cn+m+p

:process

(r4 / r4

:tense present

:actor cn+m+p

:actee

(:and

(cn+m+p+1 / cn+m+p+1)

(... / ...)

(cn+m+p+q / cn+m+p+q)))))))

If any of r1, r2, or r4 is a concrete role, we perform a substitution as explained
for Template 4.

Fine tuning of the sentence plans Given the text plan augmented with aggre-
gation information (i.e. the matching templates from Table 3) and the referring
expression types (Table 5) associated to each concept, obtaining the sentence
plan(s) is just a matter of mapping the list of aggregation patterns into the
corresponding SPL chunks as specified above.
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It was not mentioned above that the sentence plan(s) must be preceded by
an introductory one, which declares what the user is looking for (root concept, introductory

sentence plansay c1), at least in our setting where the complex concept description represents
a user query.

One possible introductory sentence could be “I’m looking for c1”, where c1
is the root concept of the query, and the corresponding sentence plan would be
the following:

(s0 / look-for

:actor speaker

:actee (c1 / c1)

:tense present-continuous

)

The type look-for is subsumed by the UM-process dispositive-mate-
rial-action, the participants of this process are :actor and :actee; the actor
in this case is of type speaker and will be realized as a first person singular (I),
and the actee will be the c1. The verb describing the process look-for will be
rendered as a present continuous.

With this initial SPL chunk, we have all needed sentence plans to be passed
to the linguistic realizer. They need to be finalized though.

First of all we need to check if any relation (abstract role) has to be realized as
a passive voice verb. In order to test this, we need a way to directly recognize passive voice
from the role name if the domain concept (subject) will act as source (actor)
or recipient (actee) of the action represented by the role. We will call the
former kind of role active role and the latter as passive role. We can solve this
in two ways. The first solution is adopting a simple naming convention that
helps us recognize passive roles, which is a minus sign (−) put as suffix of the
corresponding active role. E.g. if the active role is sell, the passive role will be
sell-. Therefore, whenever a query contains a passive role, its minus sign is
deleted, and the active role is used in the sentence plan with an additional SPL
line (:pp-theme) specifying that the grammatical subject is the recipient of the
action denoted by the verb. The second solution consists in avoiding naming
conventions and building instead a correspondence map between passive roles
and the respective acive roles, as for example:

Passive role Active role
soldBy sell
madeBy make
. . . . . .

We show below two sentence plans involving an active role and the corre-
sponding passive role.
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Query

Car-Dealer

Car

sell

Query

Car

Car-Dealer

sell-

Sentence plan

(s1 / sell

:actor (c1 / car-dealer

:determiner the)

:actee (c2 / car))

Sentence plan

(s1 / sell

:pp-theme c2

:actor (c1 / car-dealer)

:actee (c2 / car

:determiner the))

Generated text
The car dealer sells a car.

Generated text
The car is sold by a car dealer.

A further adjustment of the generated sentence plans is the correct assign-
ment of values to the parameters :determiner and :pronoun according to the
output of Algorithm 9 together with Table 5. For each concept, the output of referring

expressionsthe algorithm can be one of R-INP, R-DNP, R-DP, R-RPS, R-PP, R-RPP. For each
one we detail now what the effects on the sentence plan (hereinafter SP) are.

R-INP in this case nothing needs to be done because if no :determiner at-
tribute is specified in the SP, the linguistic realizer automatically assigns
an indefinite article (a, an) if the entity is a common countable noun. If the
entity is a proper noun or a mass noun, no indefinite article will be used;
the same happens for adjectives and instances of any concrete datatype
(a generic string, a number, a range of numbers, a date etc.).

R-DNP this triggers the assignment of the article the to the :determiner at-
tribute in the SP (only for common nouns);

R-DP here we must consider first if the concept in question is human or non-
human. This information must be available in the ontology, e.g. under
the form of concepts as Non-Human-Entity and Human-Entity directly or
indirectly subsuming the given concept. If human, we need to check if
it’s either Male or Female using the pronoun he or she respectively, or they
if undefined. For non-human entities we use it. In the SP we assign one
of {it, he, she, they} to the attribute :pronoun;

R-RPS nothing needs to be done here, because the SP structure will already
lead the linguistic realizer to render the concept as a relative pronoun (see
e.g. the process that involves actor cn in Template 3;

R-PP the same considerations made for R-DP are valid here; the pronoun val-
ues of the set {it, he, she, they} are used and associated via the :pronoun
attribute to the owner of a given concrete role; the linguistic realizer
translates then the definite pronoun into the right possessive pronoun;
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R-RPP for the generation of relative pronouns as possessives, nothing needs
to be added to the SP.

The following last consideration shortly discusses the inclusion of a modal
verb in the clauses, needed to emphasize the requirements of the user in terms modal verb
of relations among concepts and their attributes in a query. The modal we
already introduced before is must as e.g. in the sentence The car must be an
off-roader and a non-smoker car. Naively putting it in each sentence would be
quite annoying for the same user rereading the query, but on the other side this
would be the right way of referring to an object we are looking for and precisely
describing.

An option would be the one of rendering the query without modal auxil-
iaries (in our case only must), and the user describes the object how it is instead
of how it must be. The introductory sentence could be extended e.g. as: I’m look-
ing for a THING that is described as follows, where THING stands for the starting
concept chosen by the user. The SP generating this sentence is:

(s0 / look-for

:tense present-continuous

:actor speaker

:actee

(c1 / THING

:process

(s1 / be-described-as

:tense present

:actor c1

:actee

(c2 / template

:pattern "follows"))))

A Complete SPL Example Finally we present the sentence plans we obtain
from the query of Figure 9 with the outputs from the discourse planning,
sentence aggregation, and referring expression generation phases.

(s0 / look-for

:actor speaker

:actee (c1 / car)

:tense present-continuous

)

S0: I’m looking for a car.
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(s1 / class-ascription

:domain

(c1 / car

:determiner the

:pronoun it)

:range

(:and

(c1.1 / off-roader)

(c1.2 / non-smoker-car))

)

S1: It is an off-roader and a non-smoker car.

((s2.1 s2.2)

(s2.1 / make

:pp-theme c2

:actor (c4 / land-rover)

:actee (c1 / car

:determiner the

:pronoun it))

(s2.2 / be-equipped-with

:domain

(c1 / car

:determiner the

:pronoun it)

:range (c2 / engine

:process

(s19 / run-on

:tense present

:actor c2

:actee (:and

(c3 / diesel)

(c6 / electrical-power))))))

S2: It is made by Land Rover, and it is equipped with an engine that runs on diesel and
electrical power.
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(s3 / sell

:pp-theme (c1 / car)

:actor (c5 / car-dealer

:process

(r / class-ascription

:tense present

:extracted-variable-id r7

:domain (r7 / name

:relations

(o1 / ownership

:domain c5

:range r7 ))

:range (c8 / template

:pattern "[...]")))

:actee (c1 / car

:determiner the

:pronoun it))

S3: The car is sold by a car dealer whose name is [...].

(s4 / situated-in-city

:domain (c5 / car-dealer

:determiner the

:pronoun they

:range (c7 / city

:process

(r8 / located-in-country

:tense present

:domain c7

:range (c9 / italy))))

S4: They are situated in a city that is located in Italy.

(s5 / located-in-province-of

:domain (c7 / city

:determiner the

:pronoun it)

:range (c10 / trento))

S5: It is located in Trento.
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(s6 / class-ascription

:domain

(r10 / phone-number

:owned-by (c5 / car-dealer

:determiner the))

:range

(c11 / template

:pattern "[...]"))

S6: The car dealer’s phone number is [...].

Feeding the six sentence plans presented above into a linguistic realizer
supporting SPL (as e.g. the KPML system presented in the coming section), the
complete text output would read as follows:

I’m looking for a car. It is an off-roader and a non-smoker car. It is made
by Land Rover, and it is equipped with an engine that runs on diesel and
electrical power. The car is sold by a car dealer whose name is [...]. They
are situated in a city that is located in Italy. It is located in the province of
Trento. The car dealer’s phone number is [...].

5 Linguistic Realization

Linguistic realization is the last operation of the NLG-pipeline we have de-
scribed so far. The task of a linguistic realizer is to convert sentence-sized
chunks of a suitable input representation (sentence plan) into grammatically
correct sentences.

5.1 Approaches to LR

Four main approaches to text realization are available [Hovy, 1997], differing in
terms of sophistication/expressive power and flexibility. They are listed below,
ordered from the simplest (and less flexible) to the most sophisticated ones:

• canned text systems,

• template systems,

• phrase-based systems,

• feature-based systems.

We will describe in turn each one of these categories.

5.1.1 Canned Text Systems

Whenever we want to generate a piece of text for a very specific purpose,
without the need of modifying it according to some parameters, canned text
is the easiest solution. It has been used by almost every application to convey
a message (warning, error, help, etc.) to the user, a message which is simply
associated with a given code produced by an application event. No syntactic
or morphological process is involved, except, in some cases, capitalizing the
first word in the sentence, and putting a full stop at the end.
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5.1.2 Template-based Systems

Slightly more sophisticated, these systems provide template texts containing
a certain number of placeholders, which at runtime will be substituted with
strings depending on the context (a title, a name, an address, some numbers,
etc.). One typical example is represented by mail-merge applications, where
the same letter with a few variations (receiver, salutation, closing, . . . ) needs
to be created in multiple copies for different receivers.

5.1.3 Phrase-based Systems

In these systems, templates are more general, and resemble phrase structure
grammar rules. They represent the various typologies of phrases we have
in natural language (noun phrases, verb phrases, etc.) along with a set of
rules specifying how phrases can be combined together to form grammatical
sentences. E.g. we could have a pattern like [subject verb object] where
each one of its components can be further decomposed into one of other pos-
sible phrasal patterns as [subject] → [determiner adjectives head-noun

modifiers]. The generation process starts with a top-level sentence pattern
matching the sentence plan, and stops when all pattern constituents have been
replaced by one or more words.

The phrase-based approach is quite flexible in comparison to the ones seen
before, and it is rather simple to implement such a system for a grammar of
limited size; beyond a certain limit though, it is hard to keep track of all phrasal
interrelationships in order to avoid wrong phrase expansions.

5.1.4 Feature-based Systems

These represent the highest level of sophistication and flexibility available for
the generation of sentences. Here every possible alternative for expressing a
sentence or part of it can be chosen by means of features: we can say if a
sentence is positive or negative, if it is declarative, imperative, or a question, which
are the tenses used in its clauses, etc. Generation in this case is accomplished by
incrementally collecting features for each part of the input sentence plan until
the sentence is complete: this can be done either by traversing a feature selection
network (see Sec. 6.1) or via unification ([Kay, 1979]).

The strength of a feature-based approach is that any distinction in language
can be encoded as a feature in the system. On the other side, cons of this
approach are that also in these systems —as in the previous ones— maintenance
of feature interrelationships tends to be quite hard; moreover some authors
[McRoy et al., 2001] report that since quite often the entire grammar needs to
be traversed, such systems had previously tended to be too slow for real-time
applications, but this is no longer an issue nowadays.

5.2 The Linguistic Realizer of Choice

Among the available feature-based linguistic realizers,  is the system we
employed and we just provide a short description of it in this section, leaving
all details for Section 6.
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 (K-Pennman-multilingual) is a grammar development environ-
ment from the University of Bremen [Bateman, 1997a].  is a complex
application, well known for extensive multilingual systemic-functional gram-
mar (SFG) development and maintenance as well as for NL generation. For the
sake of preciseness, as described in [Bateman, 1997b], the intended purposes of
 are:

• to offer generation projects large-scale, general linguistic resources (at
the time of writing available resources include English, Chinese, Czech,
Greek, Japanese, Russian, German, and Spanish in varying stages of
development);

• to offer generation projects an engine for using such resources for gener-
ation;

• to encourage the development of similarly structured resources for lan-
guages where they do not already exist;

• to provide optimal user-support for undertaking such development and
refining general resources to specific needs;

• to minimize the overhead of providing text im multiple languages;

• to encourage contrastive functional linguistic work;

• to raise awareness and acceptance of text generation as a useful endeavor.

 can be used as fully featured grammar development environment, but
it is also available as a simple blackbox linguistic realizer. The environment
offered by the system takes over and extends the functionality of its predecessor,
the Penman text generation system [Mann, 1983a; 1983b] outperforming it in
terms of ease of use, development support, and multilingual design.

The input required by  is an annotated semantic specification (sentence
plan) expressed using the Sentence Plan Language (SPL). Our sentence planner,
as shown above, adopts this language which will be formally described in
Sec. 6.4.

6 Linguistic Realization with Systemic Functional
Grammar

In the previous section we introduced several approaches to linguistic realiza-
tion directing our attention towards one in particular: Feature-based realiza-
tion. In this section we refine our choice a little further describing linguistic
realization done by means of a famous and fascinating linguistic theory, Sys-
temic Functional Linguistics (SFL), which was leveraged for the purpose of
natural language generation giving rise to what is called computational SFL. We
present Systemic Functional Grammar (SFG) and a computational implementa-
tion called the Nigel systemic grammar of English. We will see what the Upper
Model, a linguistic ontology is used for, and what is the input specification to
the chosen realizer we chose (). Finally we will see how  really works
and how we are using it for our purpose.
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6.1 Systemic Functional Grammar

6.1.1 History

Systemic Functional Grammar (SFG) is a grammar model and major influen-
tial linguistic theory developed by Michael Alexander Kirkwood (M. A. K.)
Halliday. It grew out of the work of John Rupert Firth, a British linguist who
influenced a whole generation of linguists for more than twenty years at the
University of London. Firth was an important figure in the foundation of lin-
guistics as an autonomous discipline in Britain, and the popularity of his ideas
among contemporaries gave rise to what was known as the ’London School’
of linguistics. Among Firth’s students, the so-called neo-Firthians were exem-
plified by Michael Halliday, Professor of General Linguistics in the University
of London from 1965 until 1970 when he moved to Australia, establishing the
department of linguistics at the University of Sydney. Through his teaching
there, SFL has spread to a number of institutions throughout Australia, and
around the world.

6.1.2 Theory

Systemic-functional grammar is concerned primarily with the choices that are
made available to speakers of a language by their grammatical systems. These
choices are assumed to be meaningful and relate speakers’ intentions to the
concrete forms of a language.

Language is considered a social resource by means of which speakers and
hearers act meaningfully. Meanings in systemic functional grammar are di-
vided into three broad areas, called metafunctions: the ideational, the interper-
sonal and the textual, as extensively described in the  literature, in particular
[Halliday and Matthiessen, 2004].

• The ideational is grammar for representing the world. That is, the propo-
sitional content, which is concerned with ideation providing the speaker
with the resources for interpreting and representing reality. It is divided
into two subtypes, the experiential and the logical metafunctions: The
former is reflected in terms of configurations of processes and partici-
pants. We could name e.g. the  structure of the clause, which
describes what in other theories are known as semantic relations. The
experiential part of the ideational metafunction also includes systems for
circumstantials, types of prepositional phrase, tense, noun-types, etc. The
logical part, instead, is the mode for creating various kinds of complexes
that are hypotactically or paratactically related.

• The interpersonal is grammar for enacting social relationships such as
asking, requests, asserting control, or ordering. Thus the interpersonal
metafunction is very much about interaction between human beings,
society and culture.

• Finally, the textual is grammar for binding linguistic elements together
into broader texts (via pronominalizations, grammatical topicalization,
thematization, expressing the newsworthiness of information, etc.), or
more simply, the rhetorical structure of a text. What is a subordinate
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clause? What is an independent clause? These are the kinds of questions
that deal with the textual element of meaning.

Systemic functional grammar deals with all of these areas of meaning
equally and within the grammatical system itself.

From a higher level perspective, as clearly explained in [Teich, 1999, pages
8–9],  view of language rests upon four main considerations:

• language is behaviour potential, realized by systems that support the
theoretical notion of choice;

• language construes meaning which is realized by stratification (phonol-
ogy, grammar, semantics), represented in  as paradigmatically orga-
nized resources;

• language is multifunctional, where functional diversification is repre-
sented by the metafunctions descripted above;

• using language is choice in the potential and ultimately actualization of
the potential, by means of realization statements.

In the following subsections we will see in more detail what a system and
a system network are, along with an explanation on how to specify linguistic
structure by means of realization.

The System Network A system network is a directed graph whose nodes are
choice points called systems. Each system consists of entry conditions and output
features. A small section of systemic network for the English grammar is shown
in Figure 12, where system names are capitalized.

...
RANK

clauses

PROCESS-

TYPE

mental

verbal

relational

RELATION-

TYPE

intensive

possessive

circumstantial

RELATIONAL-

AGENCY

ascriptive

equative

material

MOOD-

TYPE

indicative
INDICATIVE-

TYPE

interrogative
INTERROGATIVE-

TYPE

wh-

yes/no

declarative
TAGGING tagged

untagged

imperative

THEME markedtheme

unmarkedtheme

groups

words

]

Figure 12: Example of system network fragment

The “MOOD TYPE” system e.g. has an entry condition which is “clause”,
and two alternative output features which are “indicative” and “imperative”.
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Entry conditions can be conjunctions or disjunctions of output features of other
systems. The “TAGGING” system for example has a disjunctive entry condi-
tion, which can be either the “declarative” or “imperative” feature. There can
be simultaneous systems that share entry conditions, such as “PROCESS TYPE”
and “MOOD TYPE”; this means that both are relevant in the paradigmatic
context described by the entry condition “clause” and both must be entered as
soon as the system “RANK” outputs “clause”.

Connections among systems define a partial ordering that spans, if we con-
sider the graphical representation, from least delicate (most general) systems
on the left to most delicate (most specific) systems on the right. We have
an incremental description refinement as discussed in [Mellish, 1988], a scale of
delicacy representing a left-to-right dimension. An interesting aspect is that
paradigmatic choices in systems take place not only between grammatical al-
ternatives, but also between lexical alternatives. In fact Halliday introduces
the term lexico-grammar to include both of them, meaning that there is no clear
division between grammar and lexicon, and if on the left part of the network
we have grammatical choices, towards the right side of it lexical choices take
place. This is summarized in Halliday’s expression of lexis as the most delicate
grammar.

We still need to see how systems are related to the functional side of , in
particular with metafunctions. The relation is that each system pertains to one
and only one metafunction. Moreover, systems of the same metafunction are
strictly connected, in a measure that they are largely independent from systems
of other metafunctions. If we refer to Figure 12, “PROCESS-TYPE” and the
systems depending on it are in the “TRANSITIVITY” region of the ideational
metafunction; “MOOD TYPE” and its successors are in the “MOOD” region3 of
the interpersonal metafunction, while “THEME” and other systems connected
to it are in the “MOOD” region of the textual metafunction. Table 6 shows
the main systems in  according to some high-level entry conditions and the
three metafunction.

ideational interpersonal textual

clause TRANSITIVITY MOOD THEME

verbal group TENSE MODALITY VOICE

nominal group MODIFICATION PERSON DETERMINATION

Table 6: Main systems in 

Specifications of linguistic structure The way syntactic structure is created
in  is by means of realization statements which are associated with the output
features of systems, and show how the paradigmatic choices in the systems are
expressed as syntagmatic chains in the language structures. In Figure 13 we
show a system network fragment augmented with realization statements.

3Regions are groups of systems within the same metafunction, possessing strong intra-region
dependencies, and weak inter-region dependencies, creating a modularity that is beneficial for
grammar design, maintenance and development.
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clauses
MOOD-

TYPE

indicative

+Subject 

+Finite

INDICATIVE-

TYPE

interrogative
INTERROGATIVE-

TYPE

wh-

+Wh 

Wh ^ Finite

yes/no

Finite ^ Subject

declarative

Finite ^ Subject

imperative

Figure 13: Example of system network fragment with realization statements

The “indicative” feature e.g. embeds two realization statements, “+Subject”
and “+Finite” which are insertion realizations. The “yes/no” feature instead has
just one, “Subject∧ Finite”, which is an ordering realization. Table 7 summarizes
the realization statements of .

Name Notation and example Description

insert +Subject this statement requires the presence of
this function as constituent

order Subject ∧ Finite this requires that the two functions
must be ordered one after the other

conflate Subject / Agent requires that the two functions are re-
alized by the same element of structure

expand Mood (Finite) the first function is expanded to have
the one in brackets as constituent

preselect Subject : singular this constrains the realization of the
function to display the given feature

Table 7: Realization statements used in 

We terminate with a simplified example (Figure 14) of the kind of informa-
tion that is specified in an  syntagmatic unit.

In your car Paul you will find a navigation system

Theme Rheme textual

Mood Residue interpersonal

Vocative Subject Finite

Locative Actor Process Complement ideational

Figure 14: Simplified example of metafunctional layering

6.2 The Nigel systemic grammar of English

Nigel represents the biggest freely available computational systemic functional
grammar for English available to-date. Nigel has been under development
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since the early 1980s [Matthiessen, 1981; 1983; Mann and Matthiessen, 1983],
when it was used within the Penman project for English generation. It was
mainly developed by Christian Matthiessen on the foundation of work by
Michael Halliday. Since then many people have contributed to various parts of
its coverage.

The latest version consists of around 765 systems4, where the first one to be
entered is the “RANK” system reported below, whose output features are the
items of the rank scale5 : clauses, group-phrases, words or morphemes. rank scale

(SYSTEM

:NAME RANK

:INPUTS START

:OUTPUTS

((0.2 CLAUSES)

(0.2 GROUPS-PHRASES)

(0.2 WORDS

(INSERT STEM)

(PRESELECT STEM MORPHEMES))

(0.2 MORPHEMES

(INSERT HEAD)))

:CHOOSER RANK-CHOOSER

:REGION RANKING

:METAFUNCTION LOGICAL

)

At word and morpheme level, the Nigel grammar does not provide a unified
lexicogrammar of  as in the theory; lexis and morphology are treated apart in
an external lexicon. At the clause level the grammar can generate clause com-
plexes of two clauses in paratactic or hypotactic relation. In order to generate,
the system network is traversed starting from the “RANK” system; the rule is
that whenever an output feature is chosen, the next step is to collect all systems
having the same entry conditions as the preceding output feature, and to enter
each one of them on turn in random order, provided all other entry conditions
are satisfied. Every time an output feature is chosen, the realization statements
attached to it are immediately executed, except the ordering realizations which
are collected and executed later.

The choice among output features is done by means of choosers and in-
quiries, an explicit formalization developed by William C. Mann under the
name of inquiry semantics or chooser/inquiry interface [Mann, 1983a]. Each sys-
tem with more than one output feature specifies a chooser, a small “choice
expert” that knows how to make appropriate choices among the grammatical
features available. This is done by traversing a decision tree from the root to
one of the leaf nodes which represents the chosen feature. Inquiries are oracles
which can be relied on to motivate grammatical alternations for the current
communicative goals being pursued. Figure 15 shows the same network of

4The total count of systems includes 324 gates which are symplified system having only one
output feature.

5The rank scale defines the typologies of linguistic units used in the grammar. Units are hier-
archically ordered by rank according to their constituency relation: higher-ranking units are built
with units of the next lower rank. Units categorized under the lowest rank cannot be decomposed
further. The English grammatical rank scale consists of clause, group/phrase, word, and morpheme.

65



figure 13 augmented with choosers.

Figure 15: Example of system network with choosers

6.3 The Upper Model

The Upper Model, also known as a linguistic ontology, was born within the
Penman project [Matthiessen, 1987] as a fundamental resource for organizing
domain knowledge appropriately for linguistic realization. It is a domain-
and task-independent ontology meant to support and simplify the interface
between domain knowledge and linguistic resources [Bateman, 1990]. The
importance of this interface is clear if we think that most ideational inquiries
ask questions regarding the classification of an input category in terms of ab-
stract semantic categories. The Upper Model is based on the Bloomington Lattice
[Matthiessen, 2005, page 168], an ideational grammatical semantic typology for
English started by Michael Halliday and Christian Matthiessen during the sum-
mer of 1986. It reflects the English lexicogrammatical semantics, the ideational
metafunction only, and it is called the ideation base. Figure 16 shows an excerpt
of the higher level classes of the Penman Upper model and their taxonomical
relations.

The Penman Upper Model was augmented to account for the grammar of
German in the 1990’s and it became the Merged Upper Model [Henschel, 1993;
Henschel and Bateman, 1994] for use in the KOMET-Penman Multilingual
Development Environment (KPML) system (see Section 6.5 below).

In order to provide more linguistic coverage, both in terms of the generation
ability in a given language, but also in various other languages, and to bring
the Merged Upper Model more in line with the systemic work of Halliday
and Matthiessen [Halliday and Matthiessen, 1999], the Generalized Upper Model
(GUM) [Bateman et al., 1995] was created. At the time of writing, the latest
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Figure 16: Excerpt of the Penman Upper Model taxonomy

version of GUM is 3.06. In terms of representation format, the GUM, originally
written in LOOM [MacGregor and Bates, 1987], has been made available as an
OWL-DL7 file.

The contents of the Penman Upper Model were used in conjunction with
the Sentence Plan Language (SPL) [Kasper, 1989] (presented below) as input to
the Penman generation system. The  system, instead, employs the Merged
Upper Model (LOOM format), hereinafter referred to as the Upper Model..

6.4 Input specification: the Sentence Plan Language

An SPL representation is a list of terms which describe the entities that need
to be expressed in NL along with the particular attributes of those entities.
Attributes may specify semantic relations that are to be expressed from the
domain model or they may specify responses to inquiries about grammatical
features of sentences. The syntax of SPL, specified in [Kasper, 1989], is reported
here:

Plan → Term+

Term → (Variable / Type Attribute∗) | Variable | Constant |
(Term+) | (: and Term+) | (: or Term+)

Type → ConceptName | (ConceptName+)
Attribute → Keyword Term
Keyword → RelationName |MacroName | InquiryName (Variable+) |

SpecialKeyword

6http://purl.org/net/gum
7http://www.w3.org/TR/owl-guide
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Example 2. A sentence plan for “The car is equipped with a service booklet.”
could be:

(e1 / be-equipped-with

:actor (e2 / car

:determiner the)

:actee (e3 / service-booklet))

e1 represents the main term of this plan, and it denotes an entity of the do-
main model. The type of e1 is be-equipped-with which is defined as special-
ization of generalized-possession, a reified relation from the upper model.
It has two main attributes named :actor and :actee. The actor is denoted by
the variable e2 (referring to the concept car) and the actee by e3 (referring to
the concept service-booklet).

The syntax of SPL permits the use of macros as keywords also. With a macro
we can express in a succint manner a set of delicate features to generate some
specific grammatical phenomenon. E.g. if we want to express English tense in
general terms, we should provide precise inquiry responses, setting three times
and the ordering relations among them:

• the actual speaking time

• the event time, and

• the time of reference with which the event is contrasted.

The :tense macro was created to simply avoid specifying these tempo-
ral relations, simply distinguishing the English tenses using values that are
expanded into the appropriate inquiry responses.
 contains a package of macro keywords that greatly help in simplifying

the creation of a sentence plan.

Example 3. To modify the previous sentence plan in order to generate the sentence
“The car was equipped with a service booklet”, we can use the :tense macro as
follows:

(e1 / be-equipped-with

:actor (e2 / car

:determiner the)

:actee (e3 / service-booklet)

:tense past)

Another facility provided by  is a way of defining default values for
inquiries in order to predefine sentence features that do not change frequently
in a given application domain. The SP given above doesn’t specify if the
sentence to be generated must be a statement, a question, or a command, nor
does it say if it should have positive or negative polarity. This is because the
 system generates by default statements with positive polarity.

The interpretation of a SP is done by  in two phases:

1. the plan is first transformed into an internal representation, where all
macros are expanded, and type information is distributed to variable
terms whose consistency is also checked. The first term of the plan is
treated as the initial unit to be expressed (main clause of the sentence).
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2. given this representation, the generation process is guided by means of
a series of inquiries to the sentence plan and the available knowledge
sources according to this order:

(a) SPL keyword: The SP is searched first for a keyword matching the
name of the inquiry, and the value is returned;

(b) knowledge sources: inquiries may have a function associated with
them called the inquiry implementation, which searches the domain
and upper model for the type or the attributes of the SPL terms;

(c) active default value: If an undefined answer is supplied by the
inquiry implementation, or if there is no inquiry implementation,
then the current active default value is used.

6.5 The KPML System

In this section, proceeding from the introduction of Section 5.2, we present
the architecture of the  system along with an overview of the generation
process (based on [Bateman, 1997b]) and the resources that the system uses for
this purpose.

6.5.1 The KPML Generation Process

 uses a Penman-style generation architecture that is depicted in Figure 17.
Generation in  proceeds in cycles of traversal through the system network.
The outcome of this traversal is a set of grammatical features called selection
expressions and a resulting grammatical structure. It is by resolving grammat-
ical constraints associated with features of the selection expression that the
grammatical structure is created. Features chosen during network traversal are
selected according to the semantic input that needs to be expressed, an opera-
tion that is mediated by the chooser and inquiry framework (see Section 6.2):
Choosers organize inquiries into “decision trees”, and inquiries are responsible
for (a) inspecting the semantic specification that is being expressed in order
to classify it and (b) providing access to particular portions of the semantic
specification in order to trigger further realization. The connection between the
systemic grammar and the semantic input is made via a function association table
that relates grammatical functions (labels for grammatical constituents) and se-
mantic “hubs” (labels for the semantic input chunks that need to be expressed).
The input arguments for inquiries are grammatical functions.

Cycles of generation will continue for all sub-constituents of a grammatical
unit until all sub-constituents are filled by some linguistic substance, usually
lexemes or morphemes. One thing that has to be avoided is underconstraining
grammatical constituents, which would cause infinite regression. There are four
ways in  to correctly specify a grammatical constituent so that it receives
lexical material and doesn’t trigger another cycle through the grammar:

1. an explicit lexical entry can be selected with the realization statement
lexify;

2. a set of lexical features can be associated with a grammatical constituent
using the classify realization statement; on completion of a traversal
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Figure 17: KPML Penman-style generation architecture (based on [Bateman,
1997b])

through the grammar, the complete collection of lexical features for a
grammatical constituent is used to pick a matching lexical item (i.e. a
lexical item whose features unify);

3. the inquiry term-resolve-id can be invoked to ask for an explicit lexi-
calization on semantic grounds;

4. an explicit selection of a morpheme can be made with the morphological
realization operators, which are: preselect-substance, preselect-subs-
tance-as-stem, or preselect-substance-as-property.

It must be noted that if a constituent has been classified, the selection of a
lexical item as shown in (2) will not respect any additional information since
it follows a purely lexicogrammar internal selection. This means that no se-
mantic information or SPL input will be consulted. If we need to take into
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account semantic information also, option (3) must be chosen by including the
term-resolve-id inquiry in some chooser that is activated at an appropriate
point during generation.

The semantic organization adopted by  foresees first of all a linguistic
ontology called the Upper Model that was presented in Section 6.3. All of the
 resources are defined in a way that generation is possible with respect to
a single Upper Model, as concrete instantiation of the ideation base. The domain
model representing the universe of discourse we want to generate natural
language about, must be connected with the upper model. This way we can
directly use entities from the domain model to formulate SPL inputs for the
generator. Two other “bases” are needed (as shown in Figure 17): Interaction
and text base. The interaction base represents the knowledge that the system
has about the social and epistemic relationship between speaker (machine)
and the hearer; this can be instantiated as a user model. The text base instead,
is concerned with the system’s knowledge about which discourse structures,
coherence relations, and cohesive ties need to be used, which grammatically
are interpreted as theme-rheme structure, conjunctions, referring-expressions,
etc.

6.5.2 KPML Input Resources

In order to be able to generate, the  system needs the following linguistic
resources:

• a domain model,

• a grammar,

• and a lexicon.

We introduce them briefly hereinafter, suggesting the reader to refer to [Bate-
man, 1997b, Section 12.2] for an in-depth description of resource organization
and definition formats.

Domain Model Given a domain model on which we want to generate, its
concepts and properties (relations and attributes) must be subordinated to the
Upper Model entities by means of LOOM axioms. This means we have to
rewrite the original domain ontology in the input format required by 
(LOOM), subordinating it to the Upper Model. It has to be noted that KPML is
now moving towards OWL-DL [W3C, 2008] and will soon untie its dependency
on LOOM. For generation purposes, not all axioms of the original ontology need
to be translated, but just concept and role (abstract and concrete) definitions,
and subsumption relations. The mapping is quite simple, since all source
entities (both concepts and roles) will be translated into LOOM concepts, and
either subordinated to an UM Object or a Process or one of their descendants
(see Table 8).

Since attribute descriptions will be rendered using a copula (e.g. “the en-
gine’s power is 250 HP”, “the car’s weight is 1500 kg”), an UM Class Ascription
(Process) needs to be used in the sentence plan to describe this process. Further-
more the reified attribute (see Table 8) will most probably become the subject of
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Domain Ontology Entity . . . mapped into a . . . subordinated by an UM

concept concept Object

relationv concept Process

relationa concept Object

attribute concept Object

Table 8: Mapping of domain ontology entities and subordination to UM entiti-
ties

the clause, and the domain concept of the attribute will be used as the subject’s
modifier.

Relations instead, have been distinguished into two categories: relationv
and relationa. The former represents relations which will be expressed as verbs
describing the respective processes as in “the car runs on gasoline”. The latter
refers to those relations that act as attributes (but have a concept as range instead
of a concrete datatype) and are treated the same way as attributes are (e.g. ”the
car’s make is VW”, “the car’s model is Golf GTD”).

(defconcept Vehicle

:is (:and Penman-kb::Decomposable-Object :primitive))

(kpml::annotate-concept Vehicle :lex-items (vehicle))

(defconcept Car

:is (:and Vehicle :primitive))

(kpml::annotate-concept Car :lex-items (car))

(defconcept Car-Dealer

:is (:and Penman-kb::Object :primitive))

(kpml::annotate-concept Car-Dealer :lex-items (car-dealer))

(defconcept Make

:is (:and Penman-kb::Object :primitive))

(kpml::annotate-concept Car :lex-items (make))

(defconcept Model

:is (:and Penman-kb::Object :primitive))

(kpml::annotate-concept Model :lex-items (model))

(defconcept Sell

:is (:and Penman-kb::Dispositive-Material-Action :primitive))

(kpml::annotate-concept Sell :lex-items (sell))

Figure 18: Excerpt of LOOM ontology from the automotive domain

Some example concept definitions in LOOM format regarding the automo-
tive domain are reported in Figure 18. The :primitive predicate means that
the concept it refers to is incompletely specified, i.e. there are hidden attributes
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about objects of that type that are not represented and the concept is thus con-
sidered as a ‘primitive’. The classifier will not try and put it somewhere else
on the basis of any features it may or may not have. This is necessary because
otherwise it would be unified with other concepts from which it is not formally
differentiated. v-type relations of the original domain ontology must be rei-
fied and represented as concepts subsumed by one of the “processes” of the
Upper Model (see Figure 16). The remaining a-type relations are reified and
classified under the Object sub-hierarchy (see concepts Make or Model above)
and, as stated above, will be usually rendered as subject of the generated clause
(e.g. ”the car’s make is Opel”). The domain concept of the relation will be used
as subject modifier (as car’s in the previous example).

The kpml::annotate-concept lines following concept definitions are nec-
essary to create a link between the defined concept and the respective lexical
items contained in the Lexicon.

Grammar Although in our work we currently generate in English using the
latest Nigel Grammar for English (Section 6.2), it is good to know that there are
other resources available for a range of languages (including resources for Chi-
nese, Czech, Greek, Japanese, Russian, German, and Spanish in varying stages
of development)8. The Nigel Grammar for English consists of 42 functional
regions (see Table 9), each one giving its name to three files, one containing
the systems, one the choosers and the third one the enquiries for that region.
E.g. the RANKING region is covered by the three files which are RANKING.systems,
RANKING.choosers, and RANKING.inquiries.

ADJECTIVAL-COMPARISON

ADJECTIVAL-GROUP

ADVERBIAL

ATTITUDE

CIRCUMSTANTIAL

CLASSIFICATION

CLAUSECOMPLEX

CONJUNCTION

COUNTNUMBER

CULMINATION

DEPENDENCY

DETERMINATION

ELABORATION

ELLIPSIS

EPITHET

GATES

MOOD

NOMINALGROUPCOMPLEXITY

NOMINAL-PERSON

NONRELATIONALTRANSIT.

NOUNTYPE

ORDINALITY

PHRASAL-MOOD

POLARITY

POST-DEICTICITY

PPCOMPLEXITY

PPOTHER

PPSPATIOTEMPORAL

PROCESSUALTHINGTYPE

PRONOUN

QUALIFICATION

QUANTIFICATION

QUANTITY-GROUP

RANKING

RELATIONALTRANSITIVITY

SELECTION

TAG

TENSE

THEME

UNIFYINGGATES

VOICE

WORD-FORMS

Table 9: Functional regions in the Nigel Grammar for English

8A collection of systemic-functional grammars for natural language generation can be found in
the Generation Bank of the University of Bremen. The generation bank is a website that is being con-
structed to contain lexicogrammars for tactical generation in a variety of languages. All grammars
have the same form and can be used by the same generator i.e. the KPML system. When complete,
each grammar fragment will contain a complete grammar definition in KPML-standard format,
including example sets (’target suites’) that provide a summary of coverage and corresponding se-
mantic inputs. It’s available here: http://www.fb10.uni-bremen.de/anglistik/langpro/kpml/
genbank/generation-bank.html.
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The grammar files are written using LISP-like syntax, as shown in the fol-
lowing triplet of system, chooser, and inquiry taken from the MOOD region.

(SYSTEM

:NAME MOOD-TYPE

:INPUTS INDEPENDENT-CLAUSE-SIMPLEX

:OUTPUTS

((0.5 INDICATIVE)

(0.5 IMPERATIVE

(INSERT NONFINITIVE)

(INFLECTIFY NONFINITIVE STEM)))

:CHOOSER MOOD-TYPE-CHOOSER

:REGION MOOD

:METAFUNCTION INTERPERSONAL

)

(CHOOSER

:NAME MOOD-TYPE-CHOOSER

:DEFINITION

((ASK (COMMAND-Q SPEECHACT)

(COMMAND

(IDENTIFY SUBJECT

(COMMAND-RESPONSIBLE-ID SPEECHACT))

(CHOOSE IMPERATIVE))

(NOCOMMAND

(CHOOSE INDICATIVE)))

)

(ASKOPERATOR

:NAME COMMAND-Q

:DOMAIN TP

:PARAMETERS (ACT1)

:ENGLISH (

" Is the illocutionary point of the surface level"

"speech act represented by"

ACT1

" a command, i.e. a request of an action by the"

"hearer?"

)

:OPERATORCODE KPML::COMMAND-Q-CODE

:PARAMETERASSOCIATIONTYPES (CONCEPT)

:ANSWERSET (COMMAND NOCOMMAND)

)

Finally we see how lexical items are stored and described in .

Lexicon Three lexical items taken from the automotive domain are presented
in Figure 19.
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(lexical-item

:name car

:spelling "car"

:sample-sentence "This car is a Land Rover."

:features (common-noun noun)

:editor "PAOLO DONGILLI"

:date "Mon Sep 19 15:26:39 CEST 2006"

)

(lexical-item

:name sell

:spelling "sell"

:sample-sentence "This car is sold by a car dealer."

:features (disposal-verb do-verb effective-verb s-irr)

:properties ((pastform "sold")

(edparticipleform "sold"))

:editor "PAOLO DONGILLI"

:date "Wed Sep 14 11:11:39 CEST 2006"

)

(lexical-item

:name car-dealer

:spelling "car dealer"

:sample-sentence "The car dealer is located in Germany."

:features (common-noun noun)

:editor "PAOLO DONGILLI"

:date "Wed Sep 14 10:59:45 CEST 2006"

)

Figure 19: Lexical items from the automotive domain

The features that appear under the features slot depend on the concrete
linguistic resources defined to the system. The properties slot, instead, is
used for holding idiosyncratic exceptions to general morphological processes.
A resource-external morphology handling is adopted in , i.e. the resource
definitions assume that the morphological features that they use are interpreted
by some non-systemic component of . One example of such a resource def-
inition is the Nigel grammar of English, for which the Penman system provided
hardcoded English morphology. This hardcoded morphology is inherited by
9.

9The current version of the Nigel grammar released as a -resource set, does however include
systemic resources for morphology. This provides a more flexible and transparent representation
of the linguistic resources at word and morpheme rank, but increases the generation time a little
since further cycles through the grammar are required.
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7 Conclusions

This work presented our efforts in terms of devising an NLG pipelined architec-
ture to render in natural language a given conjunctive query over a Description
Logics knowledge base. We analyzed in depth the main modules of our ar-
chitecture, including, if seen at high level, text planning, sentence planning, and
linguistic realization (otherwise called surface realization). Each one of these high-
level phases was further split into its subtasks.

We started presenting six possible strategies for discourse planning of a given
complex concept description, concentrating on three different goals:

1. maximization of local referential-coherence (CT);

2. minimization of overall conceptual distance (mCD);

3. minimization of change in the discourse plan between consecutive edits
(user-driven, depth-first, relation-priority depth-first).

After showing the pros and cons of every approach, we chose the relation-
priority depth-first strategy, recognizing in the usage of relation priorities a
possible encoding of domain communication knowledge.

Under sentence planning we focused first on sentence aggregation proposing
several aggregation templates and Algorithm 8 for calculating the best covering
match. As far as referring expression generation is concerned, after constraining
the number of aggregation expressions needed, we proposed Algorithm 9 for
the assignment of appropriate referring expressions for each entity present in
a given text plan.

With the outputs obtained from the discourse planning, sentence aggrega-
tion, and referring expression generation phases, we described in detail how
to employ these pieces of information to correctly generate the input for the
linguistic realizer. The input is called sentence plan and the language used is the
Sentence Plan Language (SPL).

At last we described the linguistic realization phase along with its possible
approaches. Among the feature-based systems which guarantee the highest
level of sophistication and flexibility, we chose to employ and describe the 
system, a free multilingual systemic-functional grammar (SFG) development
application and linguistic realizer that uses SPL as input language.

With a whole NLG pipeline in place we are now able to start implementing
a new interface (described in [Dongilli et al., 2006]) for our intelligent query
tool, an interface with natural language feedback according to the 
paradigm [Power and Scott, 1998].
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Appendix

English semantics for generation with 

We report here for commodity the introductory guide by Juan Rafael Zamorano
Mansilla [Zamorano Mansilla, 2003] which provides details about the possible
forms that can be used when building SPL specifications for driving natural
language generation with KPML.

The main kinds of information that are necessary when generating sentences
from SPL specifications are the following:

• Choice of process type: this determines the basic semantic domain of the
specification;

• Choice of circumstances: these provide additional information concern-
ing when, where, how, etc. the process took place;

• Choice of sentence types: this specifies forms of sentences according to
their intended function in discourse.

Process types

The following tree shows the process types defined in the Merged Upper Model
and usable in SPL input specifications for generating natural language with
the  system. The most common process types are shown in boldface, and
followed by the participants (in brackets) that are inherent to them. An example
sentence illustrates an instance of that process type.

1. RELATIONAL-PROCESS

1.1. ONE-PLACE-RELATION

1.1.1. EXISTENCE (:domain) There is a book on the table.

1.2. TWO-PLACE-RELATION

1.2.1. GENERALIZED-POSSESSION (:domain, :range) I’ve got
two brothers.
1.2.2. CIRCUMSTANTIAL (:domain, :range) The stone weighs
eight kilos.
1.2.3. INTENSIVE

1.2.3.1. ASCRIPTION
1.2.3.1.1. PROPERTY-ASCRIPTION (:domain, :range)
My tailor is rich.
1.2.3.1.2. CLASS-ASCRIPTION (:domain, :range) My fa-
ther is a teacher.
1.2.3.1.3. QUANTITY-ASCRIPTION

1.2.3.2. UM-IDENTITY
1.2.3.3. SYMBOLIZATION

2. MENTAL-PROCESS

2.1. MENTAL-ACTIVE
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2.2. MENTAL-INACTIVE

2.2.1. COGNITION (:senser, :phenomenon) I know the answer.
2.2.1.1. BELIEVE
2.2.1.2. KNOW
2.2.1.3. THINK

2.2.2. REACTION (:senser, :phenomenon) I don’t like tea.
2.2.2.1. LIKING
2.2.2.2. STRIVING
2.2.2.3. WANTING
2.2.2.4. DISLIKING
2.2.2.5. FEARING

2.2.3. PERCEPTION (:senser, :phenomenon) Nobody saw the
accident.

3. VERBAL-PROCESS

3.1. ADDRESSEE-ORIENTED-VERBAL-PROCESS (:sayer, :say-
ing, :recipient) I told her the news.

3.2. NON-ADDRESSEE-ORIENTED-VERBAL-PROCESS (:sayer,
:saying) I didn’t say that.

4. MATERIAL-PROCESS

4.1. DIRECTED-ACTION

4.1.1. CREATIVE-MATERIAL-ACTION (:actor, :actee, :benefi-
ciary) My brother has written a book.
4.1.2. DISPOSITIVE-MATERIAL-ACTION (:actor, :actee, :ben-
eficiary) We have changed the first chapter.

4.2. NONDIRECTED-ACTION (:actor ) He died.

4.2.1. AMBIENT-PROCESS (usually no participant involved)
It’s raining.

Circumstances

This is a list of the circumstances recognized by the semantic organization built
into KPML. Most circumstances types are defined just like participants: first
you type the circumstance type after a colon (shown in blue below), and then
in brackets you write the name of the circumstance, the semantics of the con-
stituent that comes with the preposition and the rest of information (which is
the same as for participants, because you always have participants or processes
after prepositions). Other circumstances however have a more complex for-
malism, including two names and two places for semantics. NAME1 refers to
the name given to the circumstance relation, while NAME2 refers to the name
of the participant that comes with the preposition. Logically, the semantics
relative to that participant are placed next to NAME2. Sometimes, however,
it is important to specify the precise semantics to obtain the right generation.
In these cases the semantics appears in bold. Examples, again drawing on the
results that would be produced by the Nigel grammar of English, are:
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:inclusive (accom-1 / object :lex money)

:destination (Fr / object :lex France)

:absolute-temporal-extent (tempo / object :lex day :number plural)

:matter-q matter

:matter-id

(abo1 / empty :domain x :range (book / object :lex book :determiner the))

In red you can find the result of generation with these commands.

ACCOMPANIMENT

• with
:inclusive ([name] / [semantics] :lex [item])

• as well as
:additive ([name] / [semantics] :lex [item])

• instead of
alternative ([name] / [semantics] :lex [item])

• without
:exclusive ([name] / [semantics] :lex [item])

CAUSE

• because of
:reason ([name] / [semantics] :lex [item])

• for (purpose)
:purpose ([name] / [semantics] :lex [item])

• for (client)
:client ([name] / [semantics] :lex [item])

• in spite of
:causal-relation ([name] / [semantics] :lex [item])

COMPARISON

• like
:similarity ([name] / [semantics] :lex [item])

• similar to
:know-manner-q known
:process-manner-id ([name1] / [semantics]

:resemblance-q resemblance
:formal-register-q formal
:concrete-comparison-q concrete
:domain x
:range ([name2] / [semantics of the participant that comes with

the preposition] ))
• different from

:know-manner-q known
:process-manner-id ([name1] / [semantics]

:resemblance-q resemblance
:resemblance-type-q difference
:domain x
:range ([name2] / [semantics of the participant that comes with

the preposition] ))
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MEANS

• Adverbial Group
:manner ([name] / [semantics] :lex [item])

• by (generalized means)
:generalized-means ([name] / [semantics] :lex [item])

• by (enablement)
:enablement ([name] / [semantics] :lex [item])

• by (agentive)
:agentive ([name] / [semantics] :lex [item])

• by means of
:know-manner-q known
:process-manner-id ([name1] / enablement

:explicit-means-q explicit
:domain x
:range ([name2] / [semantics of the participant that comes with

the preposition] ))

• with (instrumental)
:instrumental ([name] / [semantics] :lex [item])

SUBJECT-MATTER

• concerning
:specific-matter ([name] / [semantics] :lex [item])

• in the case of
:matter-q matter
:matter-id ([name1] / specific-matter

:matter-coverage-q clause
:domain x
:range ([name2] / [semantics of the participant that comes with

the preposition] ))

• about :diffuse-matter ([name] / [semantics] :lex [item])

• as to
:matter-q matter
:matter-id ([name1] / diffuse-matter
:matter-coverage-q clause
:domain x
:range ([name2] / [semantics of the participant that comes with

the preposition] ))

• of
:matter-q matter
:matter-id ([name1] / diffuse-matter

:formal-register-q formal
:domain x
:range ([name2] / [semantics of the participant that comes with

the preposition] ))

ROLE-PLAYING
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• as :role-playing ([name] / [semantics] :lex [item])

TEMPORAL EXTENT

• for (temporal extent)
:absolute-temporal-extent ([name] / [semantics] :lex [item])

• in (temporal extent)
:relative-temporal-extent ([name] / [semantics] :lex [item])

• during
:exhaustive-duration ([name] / [semantics] :lex [item])

SPATIAL EXTENT

• for (spatial extent)
:absolute-spatial-extent ([name] / [semantics] :lex [item])

• along
:parallel-extent ([name] / [semantics] :lex [item])

• across
:nonparallel-extent ([name] / [semantics] :lex [item])

SPATIAL LOCATION

• Adverbial Group
:spatial-location-specification-q spatiallocation
:spatial-location-id ([name1] / [semantics]

:identifiability-q identifiable
:location-relation-specificity-q unspecified
:lex [item])

• at (spatial location)
:spatial-locating ([name] / space-point :lex [item])

• in (spatial location)
:spatial-locating ([name] / three-d-location :lex [item])

• outside
:spatial-location-specification-q spatiallocation
:spatial-location-id ([name1] / [semantics]

:containment-q noncontainment
:domain x
:range ([name2] / three-d-location :lex [item] ))

• inside
:spatial-location-specification-q spatiallocation
:spatial-location-id ([name1] / [semantics]

:explicit-containment-q explicit
:domain x
:range ([name2] / three-d-location :lex [item] ))

• on
:spatial-locating ([name] / one-or-two-d-location :lex [item])

• beside
:horizontal ([name] / [semantics] :lex [item])
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• next to
:spatial-location-specification-q spatiallocation
:spatial-location-id ([name1] / horizontal

:immediate-adjacency-q adjacent
:specify-adjacency-q specified
:domain x
:range ([name2] / [semantics] :lex [item] ))

• between
:between ([name] / [semantics] :lex [item])

• behind
:behind ([name] / [semantics] :lex [item])

• below
:below ([name] / [semantics] :lex [item])

• underneath
:spatial-location-specification-q spatiallocation
:spatial-location-id ([name1] / below

:area-of-coverage-q partial
:domain x
:range ([name2] / [semantics] :lex [item] ))

• under
:spatial-location-specification-q spatiallocation
:spatial-location-id ([name1] / below

:area-of-coverage-q partial
:surface-contact-q noncontact
:domain x
:range ([name2] / [semantics] :lex [item] ))

• above
:above ([name] / [semantics] :lex [item])

• over
:spatial-location-specification-q spatiallocation
:spatial-location-id ([name1] / above

:area-of-coverage-q partial
:surface-contact-q noncontact
:domain x
:range ([name2] / [semantics] :lex [item] ))

• on top of
:spatial-location-specification-q spatiallocation
:spatial-location-id ([name1] / above

:area-of-coverage-q partial
:domain x
:range ([name2] / [semantics] :lex [item] ))

• in front of
:facing ([name] / [semantics] :lex [item]) to (destination)
:destination ([name] / [semantics] :lex [item])

• onto
:spatial-location-specification-q spatiallocation
:spatial-location-id ([name1] / destination
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:domain x
:range ([name2] / one-or-two-d-location :lex [item] ))

• into
:spatial-location-specification-q spatiallocation
:spatial-location-id ([name1] / destination

:domain x
:range ([name2] / three-d-location :lex [item] ))

• towards
:spatial-location-specification-q spatiallocation
:spatial-location-id ([name1] / destination

:orientation-q oriented
:domain x
:range ([name2] / [semantics] :lex [item] ))

• from
:source ([name] / [semantics] :lex [item])

• off
:spatial-location-specification-q spatiallocation
:spatial-location-id ([name1] / source

:domain x
:range ([name2] / one-or-two-d-location :lex [item] ))

• out of
:spatial-location-specification-q spatiallocation
:spatial-location-id ([name1] / source

:domain x
:range ([name2] / three-d-location :lex [item] ))

• away from
:spatial-location-specification-q spatiallocation
:spatial-location-id ([name1] / source

:orientation-q oriented
:domain x
:range ([name2] / [semantics] :lex [item] ))

TEMPORAL LOCATION

• Adverbial Group
:temporal-location-specification-q temporallocation
:temporal-location-id ([name1] / [semantics]

:identifiability-q identifiable
:location-relation-specificity-q unspecified
:lex [item])

• at
:temporal-locating ([name] / time-point :lex [item])

• in
:temporal-locating ([name] / three-d-time :lex [item])

• on
:temporal-locating ([name] / one-or-two-d-time :lex [item])

• by (temporal location)
:temporal-ordering ([name] / [semantics] :lex [item])
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• before
:anterior ([name] / [semantics] :lex [item])

• until
:temporal-location-specification-q temporallocation
:temporal-location-id ([name1] / anterior

:period-extremal-q periodextremal
:domain x :range ([name2] / [semantics] :lex [item] ))

• after
:posterior ([name] / [semantics] :lex [item])

• since
:temporal-location-specification-q temporallocation
:temporal-location-id ([name1] / posterior

:period-extremal-q periodextremal :domain x :range
([name2] / [semantics] :lex [item] ))

• from
:temporal-location-specification-q temporallocation
:temporal-location-id ([name1] / posterior

:period-extremal-q periodextremal
:period-time-or-state-q state-or-activity
:domain x
:range ([name2] / [semantics] :lex [item] ))

Sentence Types

Many of these specifications are actually ’macros’, which means that they are
shorthand for something more complex. They allow to write simple SPLs
without worrying about the semantic specification that is behind them. For ex-
ample, “:tense present” produces a sentence in the simple present tense without
requiring that you know that this shorthand for a specific set of temporal rela-
tions between the time of speaking and the time of the event described. There
are occasions when you need to delve more deeply, but for a beginning you can
often get by without.

• WH-QUESTIONS
:speech-act-id (q / question :polarity positive)
:question-item-id [name of the participant or circumstance asked about]

• YES/NO-QUESTIONS
:speech-act-id (q / question :polarity variable)

• TENSE
:tense [present, past, future, present-continuous (or present-progressive),
past-continuous (or past-progressive), future-continuous (or future-progressive),
present-perfect, past-perfect, future-perfect, future-in-present (going to),
present-perfect-continuous]

• VOICE
:voice [active/passive]

• POLARITY
:polarity [positive/negative]
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• MODALITY
:modality [can, cant, could, couldnt, may, might, must, neednt, should,
shouldnt, will, wont, would, wouldnt]
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