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Explanation in DL-Lite

Alexander Borgida1, Diego Calvanese2, Mariano Rodriguez-Muro2

1 Dept. of Computer Science
Rutgers University, USA

2 Faculty of Computer Science
Free University of Bozen-Bolzano, Italy

Abstract. The paper addresses the problem of explaining some reasoning tasks
associated with the DL-Lite Description Logic. Because of the simplicity of the
language, standard concept level reasoning is quite easy, and the only contribu-
tion is an alternate, more accessible syntax, plus a focus on brevity of proofs. Of
greater interest is the explanation of reasoning in finite models, which is moti-
vated by the use of DL-Lite for database access. The fame of DL-Lite rests on its
ability to answer efficiently conjunctive queries over KBs, and the paper makes
three contributions in this regard: (1) a method for explaining why a value b was
returned by a query; (2) a method for finding minimal explanations for why a
conjunctive query is unsatisfiable; (3) the beginnings of a theory for explaining
why a value b was not returned by a query.

1 Introduction
It is by now widely accepted that end-users of information systems which do more
than simple fact retrieval require some sort of facility for explaining the reason for
their answers. For example, in the area of deductive databases there has been work
on explaining answers returned by Datalog-query processors [1].In Description Logics
(DLs), starting from the work in [2], there have been a number of papers studying
the explanation of deductions such as concept subsumption (e.g., [3]) and knowledge
base inconsistency (e.g., [4]).More generally, the work on the Inference Web [5] has
produced a substrate on which general explanation facilities for reasoners can be built.

DL-Lite is a DL that was introduced to capture most of the features of conceptual
modeling languages such as ER and UML, while at the same time maintaining efficient
query processing (low data complexity) similar to standard databases [6].

The present research considers the problem of explaining reasoning and query an-
swering for DL-Lite. As for any DL, there are standard judgements such as concept
subsumption, TBox , and ABox consistency, etc. which require more or less straight-
forward explanations. Because of its use for database conceptual modeling, and the fact
that databases are almost always considered to represent finite structures in which the
conceptual models are interpreted, one important novel feature of the above reasoning
tasks is the possibility of requiring finite models (which for DL-Lite enable additional
inferences, i.e., the logic lacks the finite-model property!). A second distinguishing fea-
ture of DL-Lite is the emphasis on conjunctive query processing, which will require
new kinds of explanations. The rest of the paper has the following structure: Section 2
provides formal background on DL-Lite and explanations; Section 3 considers the rel-
atively straightforward reasoning tasks associated with DL-Lite, but also looks at the

1



more unusual notion of finite-model reasoning; Section 4 considers in detail explaining
why some value is returned as one of the answers to a conjunctive query posed to a
DL-Lite ABox; while Section 5 discusses the difficulties of explaining why a particu-
lar value was not returned in a conjunctive query answer, even in the case of regular
databases, and gives a special-purpose solution for the case when this occurs because
the query is itself unsatisfiable.

2 Background
For reasons of space, we deal only with the DL-LiteF variant of the DL-Lite family
of DLs [6]. However, the present work can be extended with little effort also to other
variants, so we continue to use the term DL-Lite.

Starting from atomic concepts A and atomic roles S, in DL-Lite one can construct
so called basic concepts B of the form A, ∃S, and ∃S−. In addition, we make use of
the negation ¬B of a basic concept B. The semantics is the standard one, i.e., given
an interpretation I = 〈∆I , ·I〉, a concept C denotes a subset CI of the interpretation
domain ∆I , and a role S denotes a binary relation SI ⊆ ∆I ×∆I , satisfying (∃S)I =
{x | ∃y.(x, y) ∈ SI}, (∃S−)I = {y | ∃x.(x, y) ∈ SI}, and (¬B)I = ∆I \BI .

A knowledge base (KB)K = 〈T ,A〉 consists of a TBox T of terminological axioms
and an ABox A of facts about individuals. Axioms in T have the form B1 v B2, B1 v
¬B2, and (funct S) and assert, respectively, subsumptions and disjointness between
two basic concepts B1 and B2, and the functionality of role S. An interpretation I
satisfies an assertion B v C if BI ⊆ CI , and it satisfies (funct S) if ∀x, y, z.(x, y) ∈
SI ∧ (x, z) ∈ SI → y = z. Each individual d in A is interpreted as a domain element
dI ∈ ∆I under the unique name assumption. Assertions in A have the form A(d) and
S(d1, d2), and they are satisfied in an interpretation I if dI ∈ AI and (dI1 , d

I
2 ) ∈ SI ,

respectively.
An interpretation that satisfies all assertions in K is called a model of K. The rea-

soning tasks of KB satisfiability, subsumption, classification, and concept consistency
are defined in the standard way, by referring to the set of models of a KB. Finite model
reasoning restricts the attention only to models whose domain is finite.

We are interested also in answering conjunctive queries (CQs) over DL-Lite KBs.
A CQ over a DL-Lite KB K has the form Q(x) ← conj (x,y), where conj (x,y) is a
conjunction of atoms whose predicates are atomic concepts and roles of K, and whose
variables are among x and y. Q(x) is interpreted in I as the set Q(x)I of tuples d of
elements of ∆I such that, when we assign d to x, the formula ∃y.conj (x,y) evaluates
to true in I. The set of certain answers to Q(x) over K is the set of tuples c of ABox
individuals such that cI ∈ Q(x)I , for every model I of K. Q1(x) is consistent wrt K,
if there is a model I of K such that Q(x)I 6= ∅. Q1(x) is contained in Q2(x)) wrt K if
Q1(x)I ⊆ Q1(x)I , for every model I of K. When the ABox A is treated as a “closed
database” (i.e., a single interpretation), Q(x)A denotes the evaluation of Q(x) in A.

As far as explanations, it is almost universally accepted that they are formal proof s,
constructed from premises using rules of inference. For better explanations, proofs
should be as short as possible, and inference rules as self-evident as possible. In addition
to the proof, there is also the matter of its presentation. There is a decided preference
(e.g.,[2, 5]) for tree-shaped proofs, produced by rules of inference with a single conclu-
sion, and zero or more antecedents. Such proofs support, through follow-up questions,
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IsA-trans

T ` B1 v B2
T ` B2 v B3
T ` B1 v B3

B1 ,B2 ,B3 concepts Given T , α ` α α any axiom

IsA-refl T ` B v B
B a concept Nothing T ` ⊥ v B

B a concept

Inc-disj
T ` B v B1 T ` B v B2
T , (disjointB1 B2) ` B v ⊥ C,B1 ,B2 concepts

Inc-dom
T ` range(R) v ⊥
T ` domain(R) v ⊥ R a role Inc-rng

T ` domain(R) v ⊥
T ` range(R) v ⊥ R a role

Func-composite T , (functR1), . . . , (functRk) ` (functR1 ◦ · · · ◦ Rk)

Rng-composite

T ` domain(Rk) v range(R1 ◦ · · · ◦ Rk−1)
T ` B2 v range(Rk)

T ` B2 v range(R1 ◦ · · · ◦ Rk) k ≥ 2 Dom-composite
T ` domain(R1) v B1

T ` domain(R1 ◦ · · · ◦ Rk) v B1

Inherit
T ` B1 v B2 〈T ,A〉 ` Holds(B1(e))

〈T ,A〉 ` Holds(B2(e))
B1 ,B2 concepts;
e an individual

Fig. 1. Inference rules
the interactive and gradual unfolding of relevant parts under user control. Although [5]
suggests a specific XML-based syntax for inference rule schemas, we will use the more
concise notation used in Programming Languages, and first applied to DLs in [7], but
which can easily be translated to the rules in [5].

We use the inference rule Isa-trans in Figure 1, expressing the transitivity of the v
relationship, to illustrate the notation. Here, the name of the rule schema is Isa-trans,
the antecedent says that B1 v B2 and B2 v B3 can be deduced from T , while the
conclusion allows one to also deduce B1 v B3 from T ; the side-condition of the rule
requires B1, B2, and B3 to be concept expressions.

3 Explanations of Standard Inferences

3.1 Modified Syntax of DL-Lite

A number of notions in DL-Lite (and their notation), such as existential constraints,
inverses of roles, and complements of concepts are mathematically too sophisticated
for users familiar only with notations like UML diagrams. For this reason, we propose
to eliminate the notations ∃S and ∃S−, and replace them by the more familiar notions of
“the current domain of role S” and “the current range of role S”, written as domain(S)
and range(S)1.

The only remaining use of role inverses is in axioms of the form (funct S−), as
in (funct makes−). Normally, we would suggest replacing makes− bymadeBy , and
domain(makes) (resp., range(makes)) by range(madeBy) (resp., domain(madeBy)).
This leaves the case of having both (funct S) and (funct S−) in the TBox (e.g.,
(funct wife),(funct wife−)). To deal with these, while eliminating the S− nota-
tion, we permit declaring a name for the inverse role, using an axiom of the form
(inverseFunctionalRoles wifeOf husbandOf ), which introduces pairs of inverse roles
but also requires these to be functions. To eliminate ¬, we also replace each axiom
of the form B1 v ¬B2, expressing disjointness of two basic concepts, by the axiom
(disjoint B1 B2), having the same semantics.

As a result of the above simplifications, subsumption axioms will now only relate
atomic concepts and/or current domains/ranges of roles. And in addition to subsump-
tion, we have axioms for disjointness of concepts, functionality of roles, and declara-
tions of names for role inverses.

1 The use of the word “current” is meant to emphasize the distinction from OWL “domain”,
which describe the potential set of objects to which a property may apply.
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3.2 TBox Reasoning

Subsumption reasoning in DL-Lite is a particularly simple form of structural subsump-
tion, in part because there are no nested concepts. Therefore one does not need any of
the complications suggested in [2], such as atomic concepts etc., and for normalized
concepts, the standard v-inference rules for givens, reflexivity and transitivity suffice.
Moreover, a DL-Lite concept can only be unsatisfiable either due to subsumption by
disjoint concepts, or because it is subsumed by the current domain (resp., range) of a
role whose current range (resp., domain) is unsatisfiable. Hence, we get (see Figure 1)

Proposition 1 For DL-Lite, the following is a sound and complete set of rules of infer-
ence: {Given, IsA-refl, IsA-trans, Nothing, Inc-disj, Inc-dom, Inc-rng}.
This means that all reasoning about v reduces to simple classification of atomic con-
cepts and expressions denoting the current domains/ranges of roles, i.e., computing the
so-called Hasse diagram induced by the v axioms in the TBox, plus detecting incon-
sistency. Once this is done, explaining B1 v B2 for satisfiable concepts involves only
finding the shortest path between them.

To explain unsatisfiability of a concept B, we have to find two v-paths from B to
two concepts, say B1, B2, asserted to be disjoint, whose total length is minimal2. To
find this, one can use a breadth-first-search strategy, where rule Isa-trans is applied in
parallel waves, and each concept inferred to subsume B is decorated with a superscript
that is one higher than that of the antecedent concept, thereby capturing the wave when
it was added. (B is assigned superscript 0.) Then, if a disjointness is detected the first
time between nB1 and jB2 (with n ≥ j, say), then the length of the explanation for
this is n + j. Unfortunately, this may not be the shortest explanation, because the total
length of such an explanation could be as high as 2n; on the other hand, there might
be another disjointness between, say, 1B3 and n+1B4 added in the (n + 1)st pass say,
which would only have total explanation length n+ 2. To find the shortest explanation
one must therefore continue beyond wave n up to wave 2n− 1.

3.3 ABox Reasoning
In DL-Lite, one infers new facts about existing individuals by applying inclusion ax-
ioms, and recognizing that R(a, b) entails domain(R)(a) and range(R)(b).3

To detect inconsistencies in a KB, one simply looks for objects belonging to con-
cepts which can be deduced to be subsumed by ⊥, or to violated functionality con-
straints. The one nontrivial aspect is that, as usual, we prefer shorter explanations. In
the case of inconsistent ABoxes, one wants the shortest derivation of a conflict from the
original ABox – one with fewest rule applications. To find this, one can use a strategy
similar to the one described above for finding the shortest proof of inconsistency, using
rule Inherit instead of rule Isa-trans.

We note that while the above looks for evidence of knowledge base inconsistency,
this is not the same problem as diagnosing errors in the knowledge base. Pinpointing
[4], and related orthogonal techniques are much more likely to be useful for this task.

2 We would have to consider also paths fromB to some domain(R) (resp., range(R)) for which
range(R) (resp., domain(R)) is unsatisfiable, but we simplify here for lack of space.

3 ABox reasoning can also be formalized with inference rules, using a judgment Holds(β) for
facts β, as in rule Inherit, but lack of space prevents us from giving these axioms.
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3.4 Reasoning in Finite Models
Example 1. Consider the following TBox

(funct tutors)
domain(tutors) v TA

Student v range(tutors)
TA v Student

Since, tutors is a function, there can be at most as many values in its range as in its
domain. Since the current range of tutors contains all Students, there can be at most
as many Students as values in the domain of tutors . And since domain(tutors) is
contained in the set of TAs, there can be at most as many Students as TAs. If, in
addition, now one has that TA v Student , this implies that there are at most as many
TAs as Students, and therefore the number of TAs and Students is the same. In an
infinite model, this leads to no new conclusions, even if one recalls that TA is a subset
of Student . However, in a finite model, these two facts imply that the extensions of TA
and Student must be identical, which means that a new subsumption has been inferred:
Student v TA.

Clearly, the above pattern can be generalized by replacing tutors with the composition
of an arbitrary set of roles R1 ◦R2 ◦ · · · ◦Rk, obtaining rule Same-cardinality:

T ` (funct R1 ◦ · · · ◦Rk)
T ` domain(R1 ◦ · · · ◦Rk) v B1

T ` B2 v range(R1 ◦ · · · ◦Rk)
T ` B1 v B2

T ` B2 v B1

B1, B2 concepts;
R1 a role

The remaining question is how one can deduce properties of a composition of roles,
given only DL-Lite axioms. First, rule Func-composite captures that if all roles are
functions, then their composition will be a function. And since the current domain of
a composition is contained in the current domain of the first role, we also have rule
Dom-composite. However, B2 v range(R1 ◦ · · · ◦ Rk) does not follow from B2 v
range(Rk) alone, because the current range of the composition may be smaller, if not
all values in domain(Rk) are reached by R1 ◦ · · · ◦Rk−1. So one also needs the entire
current domain of Rk to be contained in the current range of R1 ◦ · · · ◦ Rk−1, leading
to the rule Rng-composite.

It follows from results by [8] that these are all the possible additional subsumption
inferences needed for the finite model case.

Proposition 2 The only additional inference rules needed for deducing subsump-
tions in the case of DL-Lite TBoxes with finite domains are Same-cardinality, Func-
composite, Dom-composite, Rng-composite.

As far as explanations are concerned, this is a prime example where the user will need
separate explanations for the rules of inference themselves.

4 Explaining positive answers for queries over an ABox
Consider first the simple issue of answering conjunctive queries over a regular database.
To explain why Q(b) is true in a database requires showing why the database, treated
as an interpretation, makes the body of the query evaluate to true. For conjunc-
tive queries, the only interesting aspect is exhibiting the values used for existen-
tially quantified variables. For example, if MIMI is an answer to query Q0(x) ←
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Student(x), supervisedBy(x, y), teaches(y, z), one would locate some “witness” val-
ues ANNA and ENG101 for variables y and w, and then explain that Student(MIMI),
supervisedBy(MIMI,ANNA), and teaches(MIMI,ENG101) are given in the database.

In the case of DL-Lite, the difficulty is that the ABox is not a closed database,
but instead must be “completed” according to the axioms. For example, if we have
Student(MIMI) and Student v Person , then we must also add Person(MIMI); and
if we have Professor(TOM) and Professor v domain(teaches), then one can conclude
that there is some hypothetical individual, say @c, representing what TOM teaches, and
that teaches(TOM,@c) holds. Such hypothetical individuals may also get additional
properties. Unfortunately, the result can be an infinite database since the axioms may
contain cyclic dependencies; e.g., Nat v domain(succ), range(succ) v Nat .

From theoretical results [6], we do however know that from the TBox T and the
ABox A one can derive a (generally infinite) canonical model can(T ,A), representing
all possible databases extending A, as far as CQ evaluation is concerned. Essentially,
can(T ,A) extends the facts in the ABox as illustrated in the example above. The crucial
property of can(T ,A) is that each CQQ can be answered by evaluating it, as in regular
databases, over only a finite “small” portion of can(T ,A) (whose size depends on Q).

We exploit this fact to explain why Q(b) holds, by essentially constructing the finite
part of can(T ,A) that is needed to explain the truth of the query body forQ(b). In order
to generate the relevant part of can(T ,A), we resort to a (suitably adapted version of)
the algorithm for query answering in DL-Lite. Query answering in DL-Lite [6] is per-
formed by first rewriting the original query Q(x) into a set S = {Q0(x), . . . , Qk(x)}
of alternate queries, then evaluating these over the original ABox (treated as a closed
database), and finally returning the union of the results.

Example 2. Consider the following TBox T
PhD v Student (1)

PhD v domain(supervisedBy) (2)

range(supervisedBy) v Professor (3)

Professor v domain(teaches) (4)

and the query Q0(x) ← Student(x), supervisedBy(x, y), teaches(y, z). The DL-Lite
rewriting algorithm would then rewrite Q0 into the following set of queries:

Q0(x) ← Student(x), supervisedBy(x, y), teaches(y, z)
Q1(x) ← PhD(x), supervisedBy(x, y), teaches(y, z)
Q2(x) ← PhD(x), supervisedBy(x, y),Professor(y)
Q3(x) ← PhD(x), supervisedBy(x, y), supervisedBy(w, y)
Q4(x) ← PhD(x), supervisedBy(x, y)
Q5(x) ← PhD(x),PhD(x)

We recall briefly, using the above query as an example, the basic steps of the rewriting
algorithm that are necessary to understand its use in our explanation setting; for the full
details we refer to [6]. Essentially, the algorithm makes use of replacement and unifica-
tion steps. A replacement can be applied to an atom when the corresponding predicate
appears on the right hand side of an inclusion axiom; e.g., query Q1(x) is obtained
fromQ0(x) by replacing Student(x) with PhD(x), due to axiom (1). Similarly,Q2(x)
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is obtained from Q1(x) by making use of axiom (4).4 On the other hand, a unification
step collapses two atoms with the same predicate when the corresponding variables
can be unified; e.g., query Q4(x) is obtained from Q3(x) by unifying the two atoms
supervisedBy(x, y) and supervisedBy(w, y).

The key observation is that the replacement rewriting steps correspond to the “in-
verses” of the additions made to the canonical model of the knowledge base. Hence,
we can use them to guide the explanation of why a given individual is in the certain
answers to the original query. Suppose that an individual b is part of the certain answers
to Q(x), and we want to explain why5. In our example, suppose the ABox contains
PhD(BOB), and no other facts about BOB, and we want to explain why BOB is in the
answer to Q0(x). To do so, we proceed as follows.

Step 1. We compute the set S of rewritings of Q(x), building a data structure that
tracks how (changed) atoms in one query are derived from a predecessor query.

In our example, queries Q0(x) to Q5(x) will be part of the set S of rewritings,
though if there were other axioms, there may be many more, irrelevant to BOB.

Step 2. Since Q(b) was true, we select from S a rewriting Qk(x) that produces b as
an answer when directly evaluated over the ABox (viewed as a closed database)6. This
means that there is an assignment θ of ABox individuals to the variables in Qk(x) such
that θ(x) = b, and for each atom β in Qk(x), θ(β) is an ABox fact.

In our example, we would select Q5(x), with θ(x) = BOB, where PhD(BOB) in
the ABox would satisfy the two identical atoms of Q5(x).

Step 3. Traversing backwards the sequence of rewritings from Qk(x) to Q(x), we
extend the substitution θ to the variables in only the intervening queries, by keeping
track of unifications, or assigning to such variables newly introduced skolem constants
(corresponding to objects introduced by the inclusion axioms). More precisely, when
going backwards fromQi toQj (the query from whichQi was generated), if no variable
has been eliminated when rewriting Qj to Qi, then θ need not be extended. When a
variable z has been eliminated because it has been unified with a variable y, then we
set θ(z) = θ(y). While when a variable z has been eliminated in Qi by replacing an
atom A(y) for R(y, z) (resp., R(z, y)), due to inclusion axiom A v domain(R) (resp.,
A v range(R)), then we set θ(z) = @c, where @c is a fresh skolem constant. In this
way, when one reaches the original query Q(x), θ will have assigned to each variable
appearing in it either an ABox individual or a skolem constant. In analogy to the case
of standard databases, one then initially shows to the user θ(Q(x)), i.e., the set of atoms
of the original query to which θ has been applied.

In our example, we would get θ(x) = BOB for Q5(x), and the following new as-
signments: θ(y) = @1 for Q4(x), θ(w) = θ(x) = BOB for Q3(x), and θ(z) = @2
for Q1(x). The resulting initial explanation shown to the user would be the sequence of
ground atoms matching the query conjuncts:

Q0(BOB)← Student(BOB), supervisedBy(BOB,@1), teaches(@1,@2)
4 Technical note: a replacement where a variable (z, in the example) is removed from the result-

ing query is allowed only when such a variable does not occur anywhere else in the query.
5 Everything below can be generalized for the case when the query returns a tuple of values.
6 By completeness of the query answering algorithm based on query rewriting [6], such a rewrit-

ing Qk(x) will always exist.
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Step 4. At this point, the user is allowed to ask follow-up explanations for any
of the atoms f = θ(β) appearing above. The data structure set up in Step 1 allows
one to find either that f is given in the ABox, or the first replacement (not unifi-
cation!) which replaced β by β′ say. The explanation for f is then θ(β′) together
with the inclusion axiom supporting it. In our example, if the user asks for the ex-
planation of Student(BOB), the answer is “PhD(BOB), because PhDs are Students.”
obtained from the Q0 to Q1 rewriting, based on axiom (1). And the explanation
of teaches(@1,@2), is “Professor(BOB), because Professors are in the domain of
teaches” obtained from the Q1 to Q2 rewriting, based on axiom (4).

A critical point in the above explanation procedure is the selection of the rewriting
Qk(x) in Step 2. First, we need an efficient way of selecting only the indexes k of those
rewritings that actually contribute to Q(b). This can be done by associating to each of
the queries Qi(x) in S a distinct tag, and returning such tags as part of the answer. If
S = {Q1(x), . . . , Qn(x)}, then the modified rewriting is written in SQL as:

SELECT x, 1 AS tag FROM ... WHERE Q1(x) UNION
SELECT x, 2 AS tag FROM ... WHERE Q2(x) UNION ...

If more than one query in S returns b as an answer, it might be best to explain the one
whose total number of atoms plus number of applied transformations is minimal. (This
assumes that users find explanations of ground atom look-ups as easy to understand as
axiom applications. If not, one can weight the latter more heavily.)

5 Failed Answers to Conjunctive Queries — First Steps
The previous section dealt with the problem of explaining why some individual b was
returned by a query Q(x), i.e., why Q(b) was “satisfied” in the current KB. In this
section we begin to consider explaining why an individual b was not returned by the
query Q(b); such explanations are needed because, presumably, the user was expecting
Q(b) to be satisfied in the current KB, but in fact it was not.

There are actually two alternative reasons for this: the query itself is unsatisfiable
(so it can never return any answers), or just that b was not one of the values returned.

5.1 Conjunctive query unsatisfiability in DL-Lite
The reason to treat this case separately is because it is hard to see why one would want
to pose a query that would never be able to return an answer — a question akin to why
would one want to define an unsatisfiable concept in an ontology.

In the case of ordinary CQs over regular databases, every query is satisfiable, so
this problem does not arise. However, in DL-Lite, this no longer holds because of the
presence of integrity constraints in the TBox. For example, a DL-Lite query would be
unsatisfiable if it had a sub-queryB1(x), B2(x) whereB1 andB2 are disjoint concepts.

In general, one way to determine whether a query Q(x) is unsatisfiable wrt a TBox
T is to check if it is contained wrt T in the query Q⊥(x) ← ⊥(x). Following [9], we
can show that, in general, containment of a query Q1(x) in a query Q2(x) wrt T can
be checked by adapting the standard technique based on reducing query containment
to query evaluation, i.e.: (i) The atoms in the body of Q1(x) are viewed as a collection
of facts in an ABox AQ1 , except that the query variables (e.g., x, y) are replaced by
constant (e.g., cx, cy) that do not have the unique name assumption. (ii) Functionality
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is propagated in AQ1 , i.e., if R(a, b) and R(a, b′) are encountered, (funct R) ∈ T ,
and either of b or b′ (say b) comes from a variable name, then b is unified with b′. Let
A′Q1

be the resulting ABox. (iii) Q2(x) is evaluated over 〈T ,A′Q1
〉. Then, Q1(x) is

contained in Q2(x) wrt T iff cx is returned as answer in step (iii). Now, when Q2(x)
is ⊥(x), the only way it can return cx is when A′Q1

is inconsistent. The explanation of
such inconsistencies was discussed in Section 3, though it needs to be enriched with the
explanation of the propagation of functionality.

5.2 Explaining failed answers in ordinary databases
Considering the case of CQs over regular databases7, we are interested in the reason
why some value b was not returned as part of the answer to query Q(x), e.g.,

Q1(x) ← Italian(x), friendOf (x, y),Woman(y), drives(y, z),Ferrari(z)

This corresponds to explaining why the body of the query Q(b) evaluates to false in the
interpretation consisting of the database, e.g., why ¬∃y, z.Italian(b)∧friendOf (b, y)∧
· · · ∧ Ferrari(z) evaluates to false. Unfortunately, attempting a direct, value-level ex-
planation of this would likely be impractical because y and z are actually universally
quantified, and one would need to exhibit all combinations of values for them in the
database. Note however that one kind of failed answer that can be explained trivially is
the non-membership of a (set of) individuals in a table: there is nothing to do (except
maybe let the user see the values that are in the table).

To the best of our knowledge, the problem of explaining negated queries was ad-
dressed only in [10], which considers Datalog queries with negation. Unfortunately, the
solution proposed there takes a rule such as p(x)← t(x, y), s(y, z), and explains “Why
not p(2)?” with the statement “because t(2, 4) but not s(4, Z)”. But this deals with only
one possible value of y (namely 4), while one actually needs to explain why none of
the possible values work. Therefore, we devote the rest of this section to uncovering
intuitions about appropriate explanations, formalizing these, and then sketching some
special cases in which the intuitions can be realized.

So consider query Q1(x) above. Suppose that TED was not returned as one of the
answers, i.e., Q1(TED)A was false. First, note that the simplest explanation for this
would be the fact that TED is not Italian or has no friends at all, i.e., TED is not in
the current domain of friendsOf . (A simple way to handle the second case would be
to expand the query so that every time it contains an atom like friendOf (x, y), an ad-
ditional conjunct of the form domain(friendOf )(x) is added.) Second, an explanation
like “TED had no female friends who drive a Ferrari” would be considered inappropri-
ate by natural-language speakers if, in fact, it was the case that TED had no friends at
all, or even if TED had no female friends, because the first sentence presupposes the ex-
istence of objects of the other kind. Third, even if the explanation “TED was Italian but
had no friends” broke no presuppositions, it would be considered inferior to one which
simply stated that “TED had no friends”, since the second one is more concise. Fourth,
after an explanation such as “TED had no women friends who drive” (with no failed
presuppositions) one should allow explanations for several follow-up questions, espe-
cially “Who are all the women friends of TED?”, with possible follow up questions of

7 We view the ABox as the database.
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why any are present in this set; or, for any object h in the domain of drives , “Why isn’t
h one of TED’s women friends?”. We generalize, suggesting the following definition:

Definition 1. The explanation of why Q(b)A failed for a satisfiable conjunctive query
Q(x) is either a single unsatisfied atom β in Q(b) (a trivial base case to explain) or
starts with finding a sub-query subqQ(b, y) of Q(b) plus an additional atom atomQ(y)
inQ(b) such that: (i) S := subqQ(b, y)A is non-empty (to avoid failed presuppositions).
(ii) None of the elements d in S satisfy atomQ, i.e., are in the table for atomQ (to ensure
that subqQ(b, y) ∧ atomQ(y) is also a failing sub-query of Q(b)). (iii) subqQ(b, y) is
minimal, in the sense that no atoms can be removed from it while preserving (i) and (ii).

Since for anyQ(b), there may be more than one such pair of formulas (subqQ, atomQ),
there are additional possibilities for minimizing explanations, including: (i) choose the
subqQ with smallest size, assuming that users rarely want to consider the exact values
in S; (ii) minimize the size of set S, so there are fewer individuals to be displayed when
follow-up questions arise; (iii) minimize the total length of follow-up explanations of
why any value is/isn’t in S. Let us focus here on the first criterion only.

Given conjunctive query Q, one can first construct a directed graph GQ that has
as vertices the variables and constants of Q, and edges corresponding to the atoms
in Q. Unfortunately, in general, it is reasonable to expect that minimizing the size of
subqQ will be a combinatorially difficult problem (in the length of the query) because
it involves, in principle, considering all subgraphs of GQ. (A formal proof of the in-
tractability of the problem is deferred to another paper.)

One special case where the problem is tractable occurs for what we call “path
queries”: ones whose role-induced edges form a single chain in the graph, starting from
the constant b (whose absence is to be explained), and where every node has a small,
bounded number of associated concepts8. Query Q1(x) is an example of such a path
query. In this case, one can start from the node for b, and consider successively longer
paths, performing for each the relational join of the tables named by the edges. The
first path π ◦ T such that π does not return the empty set, but π ./ T does, provides a
minimal size subqQ, equal to π.

This approach can be generalized to “tree queries” by performing a breadth-first
search through the paths of the query graph that start from the root. And in fact one
can try to find spanning trees whose join returns the empty set even for arbitrary graphs
(though finding the minimal one is likely to remain a hard problem). The case where no
sub-query subqQ is a tree remains an even more open problem because we have not yet
found a strategy for presenting subqQ, and follow-up queries, to the user.

5.3 Generalizing to failed answers in DL-Lite ABoxes
Even assuming some solution to the problem of explaining non-answers to CQs, gener-
alizing this to the case of DL-Lite is a non-trivial task.

In particular, if, as usual in DL-Lite, the original query Q(x) is expanded to the set
of queries S = {Q1(x), Q2(x), . . .}, then in order to explain why b is not in the certain
answers to Q(x), it is not sufficient to explain why each Qi(b) fails over the ABox, for
i = 1, 2, . . .; one must also be prepared to explain why there are no additional queries
in the set S — a highly non-trivial task akin to the proof in [6].

8 This number is bounded in any case by the cardinality of the TBox alphabet.
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A better approach will be to once again start from the potentially infinite canonical
database, introducing anonymous constants @c, etc., except that in this case we must be
prepared to answer follow-up questions about why some constants do not necessarily
have to exist, or why they need not necessarily have some properties. One does this
by appealing to statements such as “the only way to require that b has property A is
to have one of the concepts currently describing b entail (be subsumed by) A; this is
not the case. Would you like to see why?” — a follow-up question which may lead to
non-subsumption explanations.

6 Conclusions
We have tackled the problem of explaining DL-Lite reasoning, which we view as (i) re-
quiring inference rules for building proofs, and (ii) finding short proofs. For standard
concept level reasoning, essentially we rely on an alternate more accessible syntax. Of
greater novelty and complexity is the explanation of reasoning in finite models. Since
DL-Lite is intended to support efficient CQ evaluation over a DL KB, we address for
the first time explanation for this, providing three contributions: (i) a theoretically sound
technique for explaining why a value was returned by a query; (ii) explanation of why
a CQ is unsatisfiable, which rests on an algorithm for finding minimal length proofs of
the unsatisfiability of an ABox; (iii) explanation of why a value was not returned by a
CQ, a problem that, surprisingly, has not been addressed even for CQs over ordinary
databases. For lack of space we do not provide inference rules for all aspects, which
would make clear how to implement our explanations following [5].
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