Strategy Synthesis for decision-aware process models

Paolo Felli
unibz

paolo.felli@unibz.it

August 28, 2020

1/28

paolo.felli@unibz.it

Motivations

Many complex processes are described in terms of their constituent tasks, and how
the resulting execution is affected by the data that these tasks manipulate.

Control-flow dimension + data dimension

These tasks operate over a finite set of variables with infinite domain, and their
executability is guarded by conditions on the values of these variables.

2/ 28

Motivations

Many complex processes are described in terms of their constituent tasks, and how
the resulting execution is affected by the data that these tasks manipulate.

Control-flow dimension + data dimension

These tasks operate over a finite set of variables with infinite domain, and their
executability is guarded by conditions on the values of these variables.

These processes are nondeterministic

. when it comes to resolve decision points with multiple enabled conditions, or to
choose which value to pick when updating the content of a variable.

2/ 28

Motivations

We need models of data-aware dynamic systems that are expressive enough to
capture decision-driven processes. They should also be simple enough to be learned
from event data by combining control-flow discovery and decision mining techniques.

And we need computational approaches for the analysis of both dimensions, to be
able to assess the correctness of the process w.r.t. given specifications.

3/28

Processes with data and conditions (/decisions)

the customer requests amount

credit
request

the bank checks the

update
request

T

the customer
requests
smaller amount

refuse proposal

requirements

veri
iy yes

no

prepare

reject
request

only if proposal less than request

A

the customer
refuses the offer

N

the bank proposes

make
proposal

aloan amount,
possibly smaller

only if the loan
was accpeted l

update
proposal

the bank raises
the amount

: only if only if the request
open credit loan > 10k was rejected
loan
inform inform
acceptance VIP rejection

end

-

4/ 28

Processes with data and conditions (/decisions)

the customer requests amount

credit
request

the bank checks the

requirements

update
request

T

refuse proposal

the customer
refuses the offer

veri
fy Tos prepare
{° " the bank proposes
h aloan amount,
the custotmer - make | possibly smaller
smaller amourt reject Rippeesl
ul request
only if proposal less than request update
< proposal
W ifthe | the bank raises
only It the loan the amount
was accpeted l
: only if only if the request
open credit loan > 10k was rejected
loan
inform inform
acceptance VIP rejection

end

-

Correctness of processes with data and conditions

A naive approach might be to disregard data.

@ Remove data and conditions

® Check the desired specifications, for instance:

5/28

Correctness of processes with data and conditions

A naive approach might be to disregard data.

@ Remove data and conditions

® Check the desired specifications, for instance:

Classical notions of soundness:

e the end of the process is always reachable;
® no thread/branch is left active;
® cach task can be executed in some execution.

Temporal constraints

E.g., expressed in Linear Temporal Logic on finite strings (LTLf), where traces are
only constituted by sequences of task symbols.

LTL(f) allows to express linear properties of traces such as:

e eventually in the trace an task is executed;
® 3 deadlock is never reached;
® arbitrary patterns...

5/28

Issues

This would not be enough.

1. The analysis must be data/decision-aware

6/ 28

Issues

And if we do consider the data dimension:

2. These processes are intrinsically infinite-state

In general, we can always
write fresh values, taken
from an infinite domain.

3. How can we adapt known verification/synthesis techniques for LTLf

7/ 28

Verification of data-aware properties

For instance, we may want to check whether there exists a way of receiving a VIP
acceptance for a loan larger than the requested amount, after the request is initially
denied, and executing “update request” at least once.

the customer requests amount the bank checks the
requirements
credit > 5
verii -> repare
request iy yes BIER
{0 \‘ the bank proposes
the " aloan amount,
update e cus olmer - make | possibly smaller
roquest |, S oo proposa
T request
only if proposal less than request 4/' UPdateI
refuse proposal proposal
Iy if the I the bank raises
onlyif the loan the amount
the customer
refuses the offer was acopeted 1
" only if only if the request
I L loan > 10k was rejected
loan
inform inform
acceptance VIP rejection

8/ 28

Data-aware processes with multiple actors

Moreover, processes typically involve multiple actors that control different sources

of nondeterminism.

Verification approaches of these models often adopt the simplifying assumption that
these actors cooperate.

9/28

Data-aware processes with multiple actors

Moreover, processes typically involve multiple actors that control different sources
of nondeterminism.

Verification approaches of these models often adopt the simplifying assumption that
these actors cooperate.

Instead, we assume that each task and each data variable is controlled by one actor.

If then we adopt the perspective of one such actor, so that all the tasks that are not
controlled by the actor are assumed to be controlled by an abstract antagonist
controlling everything else, we might be interested in checking whether the actor can
make their choices so that the induced executions of the process satisfy a given
specification.

9/28

Data-aware processes with multiple actors

In the example, we can easily identify two actors:

the customer requests amount e ba
e
credit 2
veri
request) yes prepare
QL N e bank propo
a loan amo
update | the "“S“’{“er make [IRYTRTS
roquest | ovse ot proposa
T request
only if proposal less than request updatel
refuse proposal [« proposal
> el s

only if the loan =

the customer 2o
refuses the offer was accpeted l
- only if only if the request
open credit loan > 10k was rejected
loan
inform inform
acceptance VIP rejection

end

If the actor we choose is the customer, can the customer select what to execute (and
how write their variables) so that a property is true in the resulting executions?

10/ 28

The approach

@ We propose and adopt a simple model of data-aware processes, based on Petri
nets

® We define a specification language for data-aware processes, that allow to
express requirements on the control-flow as well as simple data conditions

© We define the notion of existence of strategies that satisfy a given formula

@ We adapt the usual reactive synthesis approach and captured the problem as a
two-player adversarial DFA game, to automatically compute such strategies.

11/ 28

Step 1: data-aware process models: DPNs

We consider a set of data variables V' (either booleans or in R) and define:

V" ={v" | ve V} — denoting the current value of v
V¥ ={v" | v e V} — denoting the next value of v after a task is executed
A constraint is a simple comparison of:

e A variable v{ € V" with a constant or another variable v; € V';

examples: (x" >5), (x" <=y"), (z = true) ...

e A variable v{ € V" with a constant or a variable v; € V';
examples: (x" >5) or (x" <=y") ...

For simplicity, in these slides we assume only the domain R and the operators {<,>,=,#,<,>}, or the
boolean domain (with {=, #}), but the approach works for finite domains and for domains that are dense
(wrt the operators).

12/ 28

Step 1 (cont’d): DPNs

Then we represent a data-aware process as a DPN N: essentially, a bounded Petri
net (for the control-flow) with all transitions associated to one constraints as before
(for the data dimension).

(reqd” > 0)

(okv # 1)
i credit n Moo 1
request L very g

(reqd® < reqd") (granted® < reqd)

update
pr:posal (granted® > grantedr)
Pa

(okT = ialsa)

refuse
proposal

(grant(:d’ > mk)

(ok™ = true)
open credit loan P | inform acceptance VIP | | inform rejection I
. %ND — pM
i
il

We assume an initial and a final marking to be fixed.

13/ 28

Step 1 (cont'd): runs of DPNs

On DPNs, we define the notions of runs, i.e., runs of the DPN in which, at each
step, we have the marking and a set of constraints that are true at that step.

t1,81 2,82

p= (Mo, Go) 22 (My, G1) 22 . 25 (M, C,)

A couple t, 3 is a transition firing: a transition in the net associated to a function
that, informally, specifies how the variables are updated as the transition is fired.

example (the condition associated to credit request is reqd” >0)
([7], {(reqd = 0), (ok = false), (granted = 0)})

credit request,{S(reqd")=3999}
—

([p1],{(reqd = 3999), (ok = false), (granted = 0)})

14/ 28

Step 2: specification language

The runs of a DPN can be infinite, but in line with the intuition that “each process
execution must eventually terminate”, we define a specification language with a
semantics defined on finite runs (analogous to LTLf).

Given a DPN N, consider the language with grammar:

Yp=true | C|[M| |ratha [PV [()| oy | DY

where C is a set of constraints and M is a marking of N.

15/ 28

Step 2: semantics

76 9 ns~n
p=(Mo, Co) 25 (My, G1) 222 .. 25 (m,, C,)

Given a finite run p of a DPN N and a formula 1, we say that p satisfies v, written
p E 1, iff p,0 =1 according to the following semantics, where i € [0, lenght(p)-1]:

p, I E true

piEC iff Cu G is satisfiable, with p[i] = (b, C;)
pieM iff p[i]= (M, C) for some C

piE - ff p it

p, i EYL AN iff pyiEr and p,iE s

piE () ff p[i] 22 pli+ 1] and pit1E W

p, i E oY iff 3j s.t. i<j<last(p) and p,j =¥

p, i EOY iff Vj s.t. i<j<last(p) we have p,jE

Where the positions of a run p, is denoted by p[i], for i € [0, length(p) — 1].

16/ 28

Step 3: strategies: satisfaction of formulae in a DPN

We call terminal those runs that end with a marking of the DPN that is final.

informally:

Given a DPN N and a formula v as before, 1) is true in N, iff every run is a prefix of
a terminal run, and p £ v for every terminal (thus finite) run p.

Note that we are requesting 2 things:

® runs can always potentially lead to the end of the process, and

e for terminal runs the formula is true.

17/ 28

Step 3: strategies

As already discussed, one actor typically does not control everything (they do not
select at each step which task is executed and do not choose the values of all
variables when these are updated/written).

Hence, when executing a strategy that specifies what an actor does at each step, we
still need to face nondeterministic executions.

qd™ > 0
) (req) (ok¥ # 1)
K credit P P2
: request verify ? prepare (ak’ = true)

(ok" = falsa) ps
w - .
(read” < read) maxe (gmnted""
proposal

refuse

proposal I P3 P4
Ps ? ~|AND splill ?\

(ok" = true) (gmnted’ > 1

Step 3: strategies: controllability

Consider a simple example with two variables x, y, where x is controlled by the actor.
Also, the actor controls the task A. The rest is controlled by other actors (the
antagonist). We can compute the transition firings (thus the set of sets of successor
states) that the actor can enforce.

A and C update x with a value > 0
B updates y with a value > 0

19/ 28

Step 3: strategies that make a formula true

Based on this, we define strategies:

informally:

A strategy for an actor is a partial function ¢ which, given a finite run prefix of a
DPN N, either returns a set of legal transition firings that can be enforced by the
actor or it is undefined (if the run prefix is terminal).

20/ 28

Step 3: strategies that make a formula true

Based on this, we define strategies:

informally:

A strategy for an actor is a partial function ¢ which, given a finite run prefix of a
DPN N, either returns a set of legal transition firings that can be enforced by the
actor or it is undefined (if the run prefix is terminal).

informally:

We say that a strategy ¢ for an actor satisfies a given formula iff the formula is true
in N, but without considering all runs of N that are not enforced by .

20/ 28

Step 3: strategies that make a formula true

However:

In general, we can always
write fresh values, taken
from an infinite domain.

Hence in step 4 (the final synthesis step), we adopt an abstraction technique.

21/ 28

Step 4: preparation: Interval abstraction

We abstract all possible runs of the net as a finite-state transition system, adopting
a simple interval abstraction on the possible values of all variables.

x=9 Assume that the only value
|:| y=0 of x that is ever tested, in
any decision point in the
x=10 process, is 10
y=0
HESK
y=0
[Jx=ss
y=0

These abstractions are faithful w.r.t. our specification language: a formula is true in
a DPN iff it is true in its abstraction.

22/ 28

Step 4: preparation: Interval abstraction: example

A number is chosen, then a guess is made. If the guess is equal or larger than the
chosen number, the game is won. The transition cheat makes the current guess
always wrong. All initial values are 0.

val >= num"

23/ 28

Step 4: preparation: Interval abstraction: example

A number is chosen, then a guess is made. If the guess is equal or larger than the
chosen number, the game is won. The transition cheat makes the current guess
always wrong. All initial values are 0.

O—{onoose |~y

numW > 0

val >= num"

w r
numW > val
valV >= val'

guess

num > 0
val =

val < num

num > 0
val =0

val < num

} Wﬁ))

N

{

guess

)
2/
num > 0
val >0
val < num

cheat
} é) {m‘::l>>vgl} ? {}
t

cheat wai

choose

guess

/

{

)

2/
num > 0
val >0
val > num

} {}

cheat|

win o
{-}

wait

)
&

Our abstraction guarantees that only finitely many states can be generated.

23/ 28

Step 4: synthesis

We follow a quite standard, automata-based approach for synthesis:

e We compute the deterministic finite-state automaton (DFA) for the formula;
e We abstract the DPN and trivially transform the abstraction into a DFA;

e We compute a DFA game arena by computing their (special) product, in which
the satisfiability of combinations of constraint sets is checked.

We then resolve the DFA game, which is finite-state: by applying a backwards
fixpoint computation from terminal states, we compute the portion of the game that
can be forced by the actor. If the initial state is in such set, then a strategy exists
and we can compute it.

24/ 28

Step 4: synthesis: example

The specification formula, requiring the chosen real to be smaller than 3 and next
(by executing the task win) the guess to be exact.

1 = O((num < 3) A (win)(val = num))

The corresponding DFA:

{(num < 3),win, (num = val)}
{(num < 3), win, (num # val)}
{(num < 3),—|win, (num = val)}
{(num < 3), ~win, (num # val)}

{(num > 3),win, (num = val)}
{(num < 3) win, (num = val)}

{(num > 3),—|w!n, (num = val)}
{(num > 3), —win, (num # val)}

25/ 28

Step 4: synthesis: example

Below, in red, it is shown a possible winning strategy for the DFA game, from which
we can show how to extract a strategy for the initial DFA.

wait, cheat wait, cheat

num > 0 num < 3 @ @ num > 0 num < 3 un >0
val =0 { } val >0 { } val >0
val < num nun # val val < num | (™% # val val > num
num > 0 num > 0 wait (63)
num = 0 val =0 val > 0 A4
{}{} val =0 val < num val > num num > 0 num<3
N\ val >0 { } num = val
a— num
s) rwen) e val > num
{ num < 3 num < 3 cheat val > 0 num > val
@ e
num # val num = val num > val
num > 0 nun > 3 num # val
val =0 { . } 0 . 1
val < mup | L0UR 7 val um > num < 3 wait, cheat val> 0 num > va’
guess val >0 num # val b2 num > val oum < 3
. val < num num # val

This shows that the game can be won by an actor if the variables num and val, and
the tasks wait and cheat, are controlled by the actor.

26/ 28

Complexity

Given a DPN N and a formula 1), synthesizing a strategy that guarantees ¥ on N is
exponential in N (due to the size of its abstraction) and doubly exponential in ¢
(first, compute a NFA, then transform it into a DFA).

The hardness is given by strategy synthesis for LTLf, which corresponds to a special
case of this problem.

27/ 28

Conclusions

We have developed an automata-based technique for computing winning strategies
for data-aware processes for temporal specifications that also capture constraints on
the data that these systems manipulate.

We achieved this by combining interval-based data abstraction techniques with
standard automata-based constructions for verification.

The novelty is not related to the use of automata-based techniques for two-player
adversarial games, but in the enrichment of these techniques with a data-aware
feature.

The construction used in this paper can be directly implemented.

References.

[1] Strategy Synthesis for Data-Aware Dynamic Systems with Multiple Actors (to appear). M. de Leoni,
P. Felli and Marco Montali. 17th International Conference on Principles of Knowledge Representation and
Reasoning (KR 2020).

[2] Soundness Verification of Decision-Aware Process Models with Variable-to-Variable Conditions. P.
Felli, M. de Leoni, M. Montali. 19th International Conference on Application of Concurrency to System
Design (ACSD 2019).

[3] A Holistic Approach for Soundness Verification of Decision-Aware Process Models. M. de Leoni, P.
Felli, M. Montali. 37th International Conference on Conceptual Modeling (ER 2018).

28/ 28

