Prolog
Search

Implementing Search in Prolog

* How to represent the problem

* Uninformed Search
— depth first
— breadth first
— iterative deepening search

* Informed Search
— Hill climbing
— Graph Search

» which can do depth first, breadth first, best first, Algorithm A,
Algorithm A*, etc.

Representing the Problem

 Represent the problem space in terms of these

predicates:

—goal/l

—start/1

—arc/3, arc/2
* goal(S) is true iff S is a goal state.
» start(S) is true iff S is an initial state.

* arc(S1,S2,N) is true iff there is an operator of cost
N that will take us from state S1 to state S2.

e arc(S1,S2) :- arc(S1,S2,)

Sam Lloyd’s 15 puzzle

* The eight puzzle is a reduced version of the
“fifteen puzzle” which is often attributed to
the famous American game and puzzle
designer Sam Loyd (1841-1911)

He invented the modern version of Parcheesi.
* He didn’t invent it, but he did invent a
variation where the 114 and 15 tiles are
swapped, with all other tiles in place.

* In the 1870's he offered a $1000 prize for

whoever could solve this. T T 3 A
* He knew however that this puzzle could not 1 :2 34 _«'F-_.:

possibly be solved. 5j 6 ﬂa
» The 20,000,000,000,000 states form two || Q 10 1 11 12

disconnected semi-spaces s =1
* He made a lot of money on this puzzle. ? L L

Eight Puzzle Example

* Represent a state as a list goal([1,2,3,
of the eight tiles and o for 4,0,5,
blank. 6,7,8]).

*E.g.,[1,2,3,4,0,5,6,7,8] for arc([o,B,C,

D,E,F,

G,H,I],
11213 [B,o,C,
4lo0]5 D,EF,
01718 G,H,1]).

Missionaries and Cannibals

There are 3 missionaries, 3 cannibals,
and 1 boat that can carry up to two

people on one side of a river. Missianry'
. . . Missionany?
* Goal: Move all the missionaries and Missionary3
cannibals across the river. comibert |
. . . . Cannibal2
» Constraint: Missionaries can never be Cannibal3

outnumbered by cannibals on either side

of river, or else the missionaries are
killed.

State: configuration of missionaries and
cannibals and boat on each side of river.

Operators: Move boat containing some
set of occupants across the river (in
either direction) to the other side.

3 Missionaries and 3 Cannibals wish to cross
the river. They have a boat that will carmy two
people. Everyone can navigatathe boat. I at
any time the Cannibals outnumber the
migsionaries on either bank ofthe river. they
will eatthe Missionaries. Find the smallest
nurnber of crossings that will allow eversone
to cross the river safely

The problem can be solved in 11 moves. But
people rarely getthe optimal solution,
because the MC problem contains a fricky!
state atthe end, where two people mowve
back across the river

Missionaries and Cannibals Solution

Near side

Far side
0 Initial setup: MMMCCC B -
1 Two cannibals cross over: MMMC B CC
2 One comes back: MMMCC B C
3 Two cannibals go over again: MMM B CCC
4 One comes back: MMMC B cc
5 Two missionaries cross: MC B MMCC
6 A missionary & cannibal return: MMCC B MC
7 Two missionaries cross again: cC B MMMC
8 A cannibal returns: CCC B MMM
9 Two cannibals cross: C B MMMCC
10 One returns: cC B MMMC
11 And brings over the third: - B MMMCCC
Missionaries and Cannibals
% Represent a state as arc([ML,CL,MR,CRleft],
% [ML,CL,MR,CL,B] [ML2,CL,MR2,CR,right]):-
start([3,3,0,0, left]). % one M & one C row right
goal([0,0,3,3,X]). MR2 is MR+1,
ML2 is ML-1,
% eight possible moves... CR2 is CR+1,
arc([ML,CL,MR,CRleft], CL2is CL-1,
[ML2,CL,MR2,CRright]):- legal(ML2,CL2,MR2,CR2).
% two Ms row right
MR2 is MR+2, legal(ML,CL,MR,CR) :-
ML2 is ML-2, % is this state a legal one?

legal(ML2,CL2,MR2,CR2). =~ ML>=0, CL>=0, MR>=0, CR>=(
ML>=CL, MR>=CR,

Depth First Search (1)

%% this is surely the simplest possible DFS.
dfs(S,[S]) :- goal(S).
dfs(S,[S|Rest)) :-

arc(S,S2),

dfs(S2,Rest).

Depth First Search (2)

%% this is surely the simplest possible DFS:-
.- ensure_loaded(showPath).
dfs :- dfs(Path), showPath(Path).
dfs(Path) :- start(S), dfs(S,Path).
dfs(S,[S]) :- goal(S).
dfs(S,[S|Rest]) :-

arc(S,S2),

dfs(S2,Rest).

:- use_module(library(lists)).

%% Print a search path ShOWp ath
showPath(Path) :-

Path=[First|],

last(Path,Last),

nl, write('A solution from '),

showState(First),

write(' to '),

showState(Last),

nl,

foreach1(member(S,Path),(write(" '), showState(S), nl)).

% call Action for each way to prove P.
foreach1(P,Action) :- P,once(Action),fail.
foreachl(_,).

%% once(P) execute's P just once.
once(P) :- call(P), !.

showState(S) :- writeState(S) -> true| write(S).

Depth First Search which avoids loops

/* this version of DFS avoids loops by keeping track of the path
as it explores. It's also tail recursive! */

:- ensure_loaded(library(lists)).

dfs(S,Path) :-
dfs1(S,[S], ThePath),
reverse(ThePath,Path).

dfs1(S,Path,Path) :- goal(S).

dfs1(S,SoFar,Path) :-
arc(S,S2),
\+(member(S2,SoFar)),
dfs1(S2,[S2|SoFar], Path).

Breadth First Search

bfs :- start(S), bfs(S).

bfs(S) :-
empty queue(Ql1),
queue_head(S,Q1,Q2),
bfs1(Q2).

bfs1(Q) :-
queue head(S, ,Q),

arc(S,G),
goal(QG).

bfs1(Q1) :-

queue_head(S,Q2,Q1),
findall(X,arc(S,X), Xs),
queue last list(Xs,Q2,Q3),
bfs1(Q3).

:- use_module(library(queues)).

bfs(S,Path) :-
empty_queue(Q1),
queue_head([S],Q1,Q2),
bfs1(Q2,Path).

bfs1(Q,[G,S|Tail]) :-
queue_head([S|Tail],_,Q),
arc(S,G),
goal(G).

bfs1(Q1,Solution) :-
queue_head([S|Tail],Q2,Q1),
findall([Succ,S|Tail],
(arc(S,Succ), \+member(Succ,Tail)),
NewPaths),
queue_last_list(NewPaths,Q2,Q3),
bfs1(Q3,Solution).

Breadth
First
Search

Note on Queues
= =

* :- use_module(library(queues)) End Front

* empty_queue(?Q)
— Is true if Q is a queue with no elements.
* queue_head(?Head, 7Q1, ?Q?2)
— QI and Q2 are the same queues except that Q2 has Head inserted in
the front. Can be used to insert or delete from the head of a Queue.

* queue_last(?Last, 7Q1, 2Q2)

— Q2 is like Q1 but have Last as the last element in the queue. Can be
used to insert or delete from the end of a Queue.

* list _queue(+List, ?Q)
— Q is the queue representation of the elements in list List.

* Note: Queues are represented as a pair (L,Hole) where list L
ends with a variable unified with Hole.

More on Queues

enqueue(X,Qin,Qout) :-
queue_last(X,Qin,Qout).

dequeue(X,Qin,Qout) :-
queue_head(X,Qout,Qin).

Iterative Deepening

% from(-Var,+Val,+Inc)

id(S,Path_) % instantiates Var to #s
Trom(le_lt,?), % beginning with Val &
id1(S,0,Limit,Path). % incrementing by Inc.

id1(S,Depth,Limit,[S]) :- from(X,X,Inc).
Depth<Limit, from(X;N,Inc) :-

from(X,N2,Inc).
|d1(S,Dept_h,lrlmlt,[S|Rest]) - | 7- from(X,0,5).
Depth<Limit, X=07?7;
: X=57?7;
Depth2 is Depth+1, X=10%;
arc(S,S2), X=157?;
. o X=207?;
id1(S2,Depth2,Limit,Rest). X=257"
yes

Informed Search

* For informed searching we’ll assume a heuristic
function h(+S,?D) that relates a state to an estimate
of the distance to a goal.

« Hill climbing

* Best first search

* General graph search which can be used for

— depth first search
— breadth first search
— best first search

— Algorithm A

— Algorithm A*

Hill Climbing
hc(Path) :- start(S), hc(S,Path).
hc(S,[S]) :- goal(S), !.

hc(S,[S|Path]) :-
h(S,H),
findall(HSS-SS,
(arc(S,SS),h(SS,Dist)),
L),
keysort(L,[BestD-BestSS|_]),
H>BestD -> hc(BestSS,Path)
; (dbug("Local max:~p~n”, [S]), fail).

:- ensure_loaded(showPath). Best First Search

:- ensure_loaded(dbug).
:- use_module(library(lists)).

/* best first search is like dfs but we chose as the next node to expand the one that
seems closest to the goal using the heuristic function h(?S,-D) */

bestfs :- bestfs(Path), showPath(Path).
bestfs(Path) :- start(S), bestfs(S,Path).
bestfs(S,[S]) :- goal(S), !.

bestfs(S,[S|Path]) :-
findall(Dist-SS,
(arc(S,SS), h(SS,Dist)),
L),
keysort(L,SortedL),
member(_-NextS,SortedL),
bestfs(NextS,Path).

Graph Search

The graph is represented by a collections of facts of the form:
node(S,Parent,Arcs,G,H) where

* S is a term representing a state in the graph.

* Parent is a term representing S’s immediate parent on the
best known path from an initial state to S.

* Arecs is either ni/ (no arcs recorded, i.e. S is in the set open) or
a list of terms C-S2 which represents an arc from S to S2 of
cost C.

* G is the cost of the best known path from the state state to S.

* H is the heuristic estimate of the cost of the best path from S
to the nearest goal state.

Graph Search

In order to use gs, you must define the following predicates:
+ goal(S) true if S is a term which represents the goal state.

* arc(S1,S2,C) true iff there is an arc from state S1 to S2 with
cost C.

* h(S,H) is the heuristic function as defined above.

* f(G,H,F) F is the meteric used to select which nodes to

expand next. G and H are as defined above. Default is
"f(G HF) :- Fis G+H.".
« start(S) (optional) S isthe state to start searching from.

gs(Start, Solution) :-

addState(Start, Start, 0, 0),
gSear ch(Path),
reverse(Path, Sol ution).

gSearch(Sol ution) :-
sel ect(State),
(goal (State)
-> col | ect _path(State, Sol ution)

| (expand(State), gSearch(Sol ution))).

select(State) :-
% find open state with mniml F value.
findall (F-S,

(node(S,P,nil,GH),f(GHF)), OpenList),

keysort (OpenList, [X-State| Rest]).

add_ar c(Parent, Child, Parent G ArcCost) : -
%Child is a new state, add to the graph.
(\+node(Child, _, _,_,)),
G i s Parent G+Ar cCost ,
h(Child, H,
dbug("Adding state ~p with parent ~p and
cost ~p.~n",[Parent, Child, G),
assert (node(Child, Parent,nil,GH), !.

add_ar c(Parent, Child, Parent G ArcCost) : -
% Child state is already in the graph.
% update cost if the new path better.
node(Child, _CurrentParent, Arcs, CurrentG H),
NewG i s Par ent G+Ar cCost ,
Current GNewG, !,

dbug("Updating ~p 's cost thru ~p to
~p.~n",[State, Parent, Newd),

retract(node(Child, _,_,_,_)),

assert (node(Child, Parent, Arcs, NewG H)),

% better way to get to any grandKids?

f or each(menber (ArcCost - Chi |l d, Arcs),
(NewCost ToChi | d i s NewG+Ar cCost,
updat e(Chi | d, St at e, NewCost ToChi | d))).

expand(State) :-

dbug(" Expandi ng state ~p.~n",[State]),

retract(node(State, Parent,nil,GH)),

findal | (ArcCost-Kid,
(arc(State, Kid, ArcCost),

add_arc(State, Kid, G ArcCost)),
Arcs),
assert(node(State, Parent, Arcs,G H)).

add_arc(_, _, _,).

col lect_path(Start,[Start]) :-
node(Start, Start, _Arcs, 0, _H).
col l ect _path(S,[S|Path]) :-
node(S, Parent, _, _,),
col | ect _pat h(Parent, Path).

Note on Sorting

* sort(+L1,7L2)
— Elements of the list L1 are sorted into the standard order and identical
elements are merged, yielding the list L2.
| 2- sort([f,s,foo(2),3,1],L).
L =[1,3,fs,f00(2)] ?
* keysort(+L1,7L2)
— List L1 must consist of items of the form Key-Value. These items are
sorted into order w.r.t. Key, yielding the list L2. No merging takes place.
| 2- keysort([3-bob,9-mary,4-alex,1-sue],L).
L = [1-sue,3-bob,4-alex,9-mary] ?
— Example:
youngestPerson(P) :-
findall(Age-Person,(person(Person),age(Person,Age)),L),
keysort(L,[_-P|_].

