
1

Prolog 
Search

Implementing Search in Prolog

• How to represent the problem
• Uninformed Search

– depth first
– breadth first
– iterative deepening search

• Informed Search
– Hill climbing
– Graph Search

• which can do depth first, breadth first, best first, Algorithm A, 
Algorithm A*, etc.



2

Representing the Problem
• Represent the problem space in terms of these 

predicates:
– goal/1
– start/1
– arc/3, arc/2

• goal(S) is true iff S is a goal state.
• start(S) is true iff S is an initial state.
• arc(S1,S2,N) is true iff there is an operator of cost 

N that will take us from state S1 to state S2.
• arc(S1,S2) :- arc(S1,S2,_)

Sam Lloyd’s 15 puzzle
• The eight puzzle is a reduced version of the 

“fifteen puzzle” which is often attributed to 
the famous American game and puzzle 
designer  Sam Loyd (1841-1911)
He invented the modern version of Parcheesi.

• He didn’t invent it, but he did invent a 
variation where the 114 and 15 tiles are 
swapped, with all other tiles in place. 

• In the 1870's he offered a $1000 prize for 
whoever could solve this.

• He knew however that this puzzle could not 
possibly be solved. 

• The 20,000,000,000,000 states form two 
disconnected semi-spaces

• He made a lot of money on this puzzle.



3

Eight Puzzle Example

• Represent a state as a list 
of the eight tiles and o for 
blank.

• E.g., [1,2,3,4,o,5,6,7,8] for

goal([1,2,3,
4,o,5,
6,7,8]).

arc([o,B,C,
D,E,F,
G,H,I],

[B,o,C,
D,E,F,
G,H,I]).

1 2 3
4 o 5
6 7 8

Missionaries and Cannibals
There are 3 missionaries, 3 cannibals, 

and 1 boat that can carry up to two 
people on one side of a river.

• Goal: Move all the missionaries and 
cannibals across the river. 

• Constraint: Missionaries can never be 
outnumbered by cannibals on either side 
of river, or else the missionaries are 
killed. 

• State: configuration of missionaries and 
cannibals and boat on each side of river. 

• Operators: Move boat containing some 
set of occupants across the river (in 
either direction) to the other side.



4

Missionaries and Cannibals Solution
Near side

Far side
0 Initial setup:                   MMMCCC  B        -

1 Two cannibals cross over:        MMMC          B  CC

2 One comes back:                  MMMCC   B        C
3 Two cannibals go over again:     MMM           B  CCC

4 One comes back:                  MMMC    B        CC

5 Two missionaries cross:          MC            B  MMCC
6 A missionary & cannibal return:  MMCC    B        MC

7 Two missionaries cross again:    CC            B  MMMC

8 A cannibal returns:              CCC     B        MMM
9 Two cannibals cross:             C             B  MMMCC

10 One returns:                    CC      B        MMMC

11 And brings over the third:      - B  MMMCCC

Missionaries and Cannibals
% Represent a state as
% [ML,CL,MR,CL,B]
start([3,3,0,0,left]).
goal([0,0,3,3,X]).

% eight possible moves…
arc([ML,CL,MR,CR,left],

[ML2,CL,MR2,CR,right]):-
% two Ms row right
MR2 is MR+2, 
ML2 is ML-2,
legal(ML2,CL2,MR2,CR2).

arc([ML,CL,MR,CR,left],
[ML2,CL,MR2,CR,right]):-

% one M & one C row right
MR2 is MR+1, 
ML2 is ML-1,
CR2 is CR+1, 
CL2 is CL-1,
legal(ML2,CL2,MR2,CR2).

legal(ML,CL,MR,CR) :-
% is this state a legal one?
ML>=0, CL>=0, MR>=0, CR>=0,
ML>=CL, MR>=CR.



5

Depth First Search (1) 

%% this is surely the simplest possible DFS.

dfs(S,[S]) :- goal(S).
dfs(S,[S|Rest]) :-

arc(S,S2), 
dfs(S2,Rest).

Depth First Search (2)

%% this is surely the simplest possible DFS:-

:- ensure_loaded(showPath).
dfs :- dfs(Path), showPath(Path).
dfs(Path) :- start(S), dfs(S,Path).
dfs(S,[S]) :- goal(S).
dfs(S,[S|Rest]) :-

arc(S,S2), 
dfs(S2,Rest).



6

Showpath
:- use_module(library(lists)).

%% Print a search path
showPath(Path) :-

Path=[First|_],
last(Path,Last),
nl, write('A solution from '),
showState(First),
write(' to '),
showState(Last),
nl,
foreach1(member(S,Path),(write('  '), showState(S), nl)).

% call Action for each way to prove P.
foreach1(P,Action) :- P,once(Action),fail.
foreach1(_,_).

%% once(P) execute's P just once.
once(P) :- call(P), !.

showState(S) :- writeState(S) -> true| write(S).

Depth First Search which avoids loops
/* this version of DFS avoids loops by keeping track of the path

as it explores.  It’s also tail recursive! */

:- ensure_loaded(library(lists)).

dfs(S,Path) :-
dfs1(S,[S],ThePath),
reverse(ThePath,Path).

dfs1(S,Path,Path) :- goal(S).
dfs1(S,SoFar,Path) :-
arc(S,S2), 
\+(member(S2,SoFar)),
dfs1(S2,[S2|SoFar], Path).



7

Breadth First Search

bfs :- start(S), bfs(S).

bfs(S) :-
empty_queue(Q1),
queue_head(S,Q1,Q2),
bfs1(Q2).

bfs1(Q) :-
queue_head(S,_,Q),
arc(S,G),
goal(G).

bfs1(Q1) :-
queue_head(S,Q2,Q1),
findall(X,arc(S,X), Xs),
queue_last_list(Xs,Q2,Q3),
bfs1(Q3).

Breadth
First 

Search

:- use_module(library(queues)).

bfs(S,Path) :-
empty_queue(Q1),
queue_head([S],Q1,Q2),
bfs1(Q2,Path).

bfs1(Q,[G,S|Tail]) :-
queue_head([S|Tail],_,Q),
arc(S,G), 
goal(G).

bfs1(Q1,Solution) :-
queue_head([S|Tail],Q2,Q1),
findall([Succ,S|Tail], 

(arc(S,Succ), \+member(Succ,Tail)),
NewPaths),

queue_last_list(NewPaths,Q2,Q3),
bfs1(Q3,Solution).



8

Note on Queues
• :- use_module(library(queues))
• empty_queue(?Q)

– Is true if Q is a queue with no elements. 

• queue_head(?Head, ?Q1, ?Q2)
– Q1 and Q2 are the same queues except that Q2 has Head inserted in 

the front. Can be used to insert or delete from the head of a Queue. 

• queue_last(?Last, ?Q1, ?Q2)
– Q2 is like Q1 but have Last as the last element in the queue. Can be 

used to insert or delete from the end of a Queue. 

• list _ queue(+List, ?Q) 
– Q is the queue representation of the elements in list List.

• Note: Queues are represented as a pair (L,Hole) where list L 
ends with a variable unified with Hole.

4 3 2 1

FrontEnd

More on Queues

enqueue(X,Qin,Qout) :-
queue_last(X,Qin,Qout).

dequeue(X,Qin,Qout) :-
queue_head(X,Qout,Qin).



9

Iterative Deepening
id(S,Path) :-

from(Limit,1,5),
id1(S,0,Limit,Path).

id1(S,Depth,Limit,[S]) :-
Depth<Limit,
goal(S).

id1(S,Depth,Limit,[S|Rest]) :-
Depth<Limit,
Depth2 is Depth+1,
arc(S,S2),
id1(S2,Depth2,Limit,Rest).

% from(-Var,+Val,+Inc)
% instantiates Var to #s
% beginning with Val &
% incrementing by Inc.

from(X,X,Inc).
from(X,N,Inc) :-
N2 is N+Inc,
from(X,N2,Inc).

| ?- from(X,0,5).
X = 0 ? ;
X = 5 ? ;
X = 10 ? ;
X = 15 ? ;
X = 20 ? ;
X = 25 ? ; ...
yes
| ?-

Informed Search
• For informed searching we’ll assume a heuristic 

function h(+S,?D) that relates a state to an estimate 
of the distance to a goal.

• Hill climbing
• Best first search
• General graph search which can be used for

– depth first search
– breadth first search
– best first search
– Algorithm A
– Algorithm A*



10

Hill Climbing
hc(Path) :- start(S), hc(S,Path).

hc(S,[S]) :- goal(S), !.

hc(S,[S|Path]) :-
h(S,H),
findall(HSS-SS,

(arc(S,SS),h(SS,Dist)),
L),

keysort(L,[BestD-BestSS|_]),
H>BestD -> hc(BestSS,Path)

;   (dbug("Local max:~p~n”, [S]), fail).

Best First Search:- ensure_loaded(showPath).
:- ensure_loaded(dbug).
:- use_module(library(lists)).

/* best first search is like dfs but we chose as the next node to expand  the one that 
seems closest to the goal using the heuristic function h(?S,-D) */                                        

bestfs :- bestfs(Path), showPath(Path).

bestfs(Path) :- start(S), bestfs(S,Path).

bestfs(S,[S]) :- goal(S), !.

bestfs(S,[S|Path]) :-
findall(Dist-SS,

(arc(S,SS), h(SS,Dist)),
L),

keysort(L,SortedL),
member(_-NextS,SortedL),
bestfs(NextS,Path).



11

Graph Search

The graph is represented by a collections of facts of the form: 
node(S,Parent,Arcs,G,H) where

• S is a term representing a state in the graph.
• Parent is a term representing S’s immediate parent on the 

best known path from an initial state to S.
• Arcs is either nil (no arcs recorded, i.e. S is in the set open) or 

a list of terms C-S2 which represents an arc from S to S2 of 
cost C.

• G is the cost of the best known path from the state state to S.
• H is the heuristic estimate of the cost of the best path from S 

to the nearest goal state.

Graph Search

In order to use gs, you must define the following predicates:
• goal(S) true if S is a term which represents the goal state.
• arc(S1,S2,C) true iff there is an arc from state S1 to S2 with 

cost C.
• h(S,H) is the heuristic function as defined above.
• f(G,H,F) F is the meteric used to select which nodes to 

expand next.  G and H are as defined above.  Default is 
"f(G,H,F) :- F is G+H.".

• start(S) (optional) S isthe state to start searching from.



12

gs(Start,Solution) :-

retractall(node(_,_,_,_,_)),

addState(Start,Start,0,0),

gSearch(Path),

reverse(Path,Solution).

gSearch(Solution) :-

select(State),

(goal(State)

-> collect_path(State,Solution)

|(expand(State),gSearch(Solution))).

select(State) :-

% find open state with minimal F value.

findall(F-S, 
(node(S,P,nil,G,H),f(G,H,F)), OpenList),

keysort(OpenList,[X-State|Rest]).

expand(State) :-

dbug("Expanding state ~p.~n",[State]),

retract(node(State,Parent,nil,G,H)),

findall(ArcCost-Kid,

(arc(State,Kid,ArcCost),

add_arc(State,Kid,G,ArcCost)),

Arcs),

assert(node(State,Parent,Arcs,G,H)).

add_arc(Parent,Child,ParentG,ArcCost) :-

% Child is a new state, add to the graph.

(\+node(Child,_,_,_,_)),

G is ParentG+ArcCost,

h(Child,H),

dbug("Adding state ~p with parent ~p and 
cost ~p.~n",[Parent,Child,G]),

assert(node(Child,Parent,nil,G,H)), !.

add_arc(Parent,Child,ParentG,ArcCost) :-

% Child state is already in the graph.

% update cost if the new path better.

node(Child,_CurrentParent,Arcs,CurrentG,H),

NewG is ParentG+ArcCost,

CurrentG>NewG, !,

dbug("Updating ~p 's cost thru ~p to 
~p.~n",[State,Parent,NewG]),

retract(node(Child,_,_,_,_)),

assert(node(Child,Parent,Arcs,NewG,H)),

% better way to get to any grandKids?

foreach(member(ArcCost-Child,Arcs),

(NewCostToChild is NewG+ArcCost,

update(Child,State,NewCostToChild))).

add_arc(_,_,_,_).

collect_path(Start,[Start]) :-

node(Start,Start,_Arcs,0,_H).

collect_path(S,[S|Path]) :-

node(S,Parent,_,_,_),

collect_path(Parent,Path).

Note on Sorting
• sort(+L1,?L2) 

– Elements of the list L1 are sorted into the standard order and identical 
elements are merged, yielding the list L2. 

| ?- sort([f,s,foo(2),3,1],L).
L = [1,3,f,s,foo(2)] ? 

• keysort(+L1,?L2) 
– List L1 must consist of items of the form Key-Value. These items are 

sorted into order w.r.t. Key, yielding the list L2. No merging takes place. 
| ?- keysort([3-bob,9-mary,4-alex,1-sue],L).
L = [1-sue,3-bob,4-alex,9-mary] ? 

– Example:
youngestPerson(P) :-

findall(Age-Person,(person(Person),age(Person,Age)),L),
keysort(L,[_-P|_].


