
Logic

The Meaning of Entity-Relationship Diagrams,
part II

Enrico Franconi

franconi@inf.unibz.it

http://www.inf.unibz.it/˜franconi

Faculty of Computer Science, Free University of Bozen-Bolzano

(1/23)

Motivation

Show how a Conceptual Data Model – like temporal Entity-Relationship – can be

extended and mapped to an underlying logical formalism.

Advantages:

• a clear semantics for the various ER constructs

• ability to express complex integrity constraints

• availability of decision procedures for consistency and logical implication in

the enriched data model.

(2/23)

Entity-Relationship and First Order Logic

• Entity-Relationship is a visual language to specify a set of constraints that

should be satisfied by the relational database realising the ER diagram.

• The interpretation of an ER diagram is defined as the collection of all the legal

databases – i.e., all the (finite) relational structures which conform to the

constraints imposed by the conceptual schema.

• In order to formally define the interpretation, an ER diagram is mapped into a

set of closed First Order Logic (FOL) formulas.

• The legal databases of an ER diagram are all the finite relational structures in

which the translated set of FOL formulas evaluate to true.

(3/23)

ER Vs. FOL: The Alphabet

The Alphabet of the FOL language will have the following set of Predicate

symbols:

• 1-ary predicate symbols: E1, E2, . . . , En for each Entity-set;

D1, D2, . . . , Dm for each Basic Domain.

• binary predicate symbols: A1, A2, . . . , Ak for each Attribute.

• n-ary predicate symbols: R1, R2, . . . , Rp for each Relationship-set.

(4/23)

FOL Notation

• Vector variables indicated as x stand for an n-tuple of variables:

x = x1, . . . , xn

• Counting existential quantifier indicated as ∃≤n or ∃≥n.

∃≤nx. ϕ(x) ≡

∀x1, . . . , xn, xn+1. ϕ(x1) ∧ . . . ∧ ϕ(xn) ∧ ϕ(xn+1) →

(x1 = x2) ∨ . . . ∨ (x1 = xn) ∨ (x1 = xn+1) ∨

(x2 = x3) ∨ . . . ∨ (x2 = xn) ∨ (x2 = xn+1) ∨

. ∨ (xn = xn+1)

∃≥nx. ϕ(x) ≡

∃x1, . . . , xn. ϕ(x1) ∧ . . . ∧ ϕ(xn) ∧

¬(x1 = x2) ∧ . . . ∧ ¬(x1 = xn) ∧

¬(x2 = x3) ∧ . . . ∧ ¬(x2 = xn) ∧

. ∧ (xn−1 = xn)
(5/23)

ER: The Interpretation function

Interpretation: I = 〈D, ·I〉, where D is an arbitrary non-empty set such that:

• D = Ω ∪ B, where:

• B = ∪m
i=1BDi. BDi is the set of values associated with each basic

domain (i.e., integer, string, etc.); and BDi ∩ BDj = ∅, ∀i, j. i 6= j

• Ω is the abstract entity domain such taht B ∩ Ω = ∅.

(6/23)

ER: The Formal Semantics for the Atoms

I is the interpretation function that maps:

• Basic Domain Predicates to elements of the relative basic domain:

Di
I = BDi (e.g., StringI = BString).

• Entity-set Predicates to elements of the entity domain:

Ei
I ⊆ Ω.

• Attribute Predicates to binary relations such that:

Ai
I ⊆ Ω × B.

• Relationship-set Predicates to n-ary relations over the entity domain:

Ri
I ⊆ Ω × Ω . . . × Ω = Ωn.

(7/23)

The Relationship Construct

E1

. . .

EnR

• The meaning of this constraint is:

RI ⊆ E1
I × . . . × En

I

• The FOL translation is the formula:

∀x1, . . . , xn. R(x1, . . . , xn) → E1(x1) ∧ . . . ∧ En(xn)

(8/23)

The Relationship Construct

E1

. . .

EnR

• The meaning of this constraint is:

RI ⊆ E1
I × . . . × En

I

• The FOL translation is the formula:

∀x1, . . . , xn. R(x1, . . . , xn) → E1(x1) ∧ . . . ∧ En(xn)

(8/23)

The Attribute Construct

E
A

D

• The meaning of this constraint is:

EI ⊆ {e ∈ Ω |](AI ∩ ({e} × BD)) ≥ 1}

• The FOL translation is the formula:

∀x. E(x) → ∃y.A(x, y) ∧ D(y)

(9/23)

The Attribute Construct

E
A

D

• The meaning of this constraint is:

EI ⊆ {e ∈ Ω |](AI ∩ ({e} × BD)) ≥ 1}

• The FOL translation is the formula:

∀x. E(x) → ∃y.A(x, y) ∧ D(y)

(9/23)

The Cardinality Construct

E1

Ei

EnR

(p,q)

• The meaning of this constraint is:

Ei
I ⊆ {ei ∈ Ω | p ≤](RI ∩ (Ω × {ei} × Ω)) ≤ q}

• The FOL translation is the formula:

∀xi. E(xi) → ∃≥px1, . . . , xi−1, xi+1, . . . xn. R(x1, . . . , xn) ∧

∃≤qx1, . . . , xi−1, xi+1, . . . xn. R(x1, . . . , xn)

(10/23)

The Cardinality Construct

E1

Ei

EnR

(p,q)

• The meaning of this constraint is:

Ei
I ⊆ {ei ∈ Ω | p ≤](RI ∩ (Ω × {ei} × Ω)) ≤ q}

• The FOL translation is the formula:

∀xi. E(xi) → ∃≥px1, . . . , xi−1, xi+1, . . . xn. R(x1, . . . , xn) ∧

∃≤qx1, . . . , xi−1, xi+1, . . . xn. R(x1, . . . , xn)

(10/23)

The Cardinality Construct: An Example

Professor StudentSupervises
(2,3) (1,1)

A valid Database is:

Professor

professorId

Alex

Bob

Student

studentId

John

Mary

Nick

Paul

Laura

Supervises

professorId studentId

Alex John

Bob Laura

Alex Mary

Bob Nick

Alex Paul

(11/23)

The Cardinality Construct: An Example

Professor StudentSupervises
(2,3) (1,1)

An invalid Database is:

Professor

professorId

Alex

Bob

Student

studentId

John

Mary

Nick

Paul

Laura

Supervises

professorId studentId

Alex John

Bob Laura

Alex Mary

Bob Nick

Alex Paul

Alex Laura

(12/23)

The Cardinality Construct: An Example

Professor StudentSupervises
(2,3) (1,1)

• The FOL translation is:

∀x, y. Supervises(x, y) → Professor(x) ∧ Student(y)

∀x. Professor(x) → ∃≥2y. Supervises(x, y) ∧

∃≤3y. Supervises(x, y)
∀y. Student(y) → ∃=1x. Supervises(x, y)

(13/23)

ISA Relations

The ISA relation is a constraint that specifies subentity sets.

Subentity-set = contains entities with more properties – both more attributes and

different participation in relationships – not pertinent to the Superentity-set.

A Subentity-set inherits all the properties of its Subentity-sets.

We distinguish between the following different ISA relations:

• Overlapping Partial;

• Overlapping Total;

• Disjoint Partial;

• Disjoint Total.

(14/23)

The Overlapping Partial Construct

E

E1
. . . En

• The meaning of this constraint is:

Ei
I ⊆ EI , for all i = 1, . . . , n.

• The FOL translation is the formula:

∀x. Ei(x) → E(x), for all i = 1, . . . , n.

(15/23)

The Overlapping Partial Construct

E

E1
. . . En

• The meaning of this constraint is:

Ei
I ⊆ EI , for all i = 1, . . . , n.

• The FOL translation is the formula:

∀x. Ei(x) → E(x), for all i = 1, . . . , n.

(15/23)

The Overlapping Total Construct

E

E1
. . . En

• The meaning of this constraint is:
Ei

I ⊆ EI , for all i = 1, . . . , n

EI ⊆ E1
I ∪ . . . ∪ En

I

• The FOL translation is the set of formulas:

∀x. Ei(x) → E(x), for all i = 1, . . . , n

∀x. E(x) → E1(x) ∨ . . . ∨ En

(16/23)

The Overlapping Total Construct

E

E1
. . . En

• The meaning of this constraint is:
Ei

I ⊆ EI , for all i = 1, . . . , n

EI ⊆ E1
I ∪ . . . ∪ En

I

• The FOL translation is the set of formulas:

∀x. Ei(x) → E(x), for all i = 1, . . . , n

∀x. E(x) → E1(x) ∨ . . . ∨ En

(16/23)

The Disjoint Partial Construct
E

E1
. . . En

×

• The meaning of this constraint is:
Ei

I ⊆ EI for all i = 1, . . . , n

Ei
I ∩ Ej

I = ∅ for all i 6= j

• The FOL translation is the set of formulas:

∀x. E1(x) → E(x) ∧ ¬E2(x) ∧ . . . ∧ ¬En(x)

∀x. E2(x) → E(x) ∧ ¬E3(x) ∧ . . . ∧ ¬En(x)

∀x. En−1(x) → E(x) ∧ ¬En(x)

∀x. En(x) → E(x)

(17/23)

The Disjoint Partial Construct
E

E1
. . . En

×

• The meaning of this constraint is:
Ei

I ⊆ EI for all i = 1, . . . , n

Ei
I ∩ Ej

I = ∅ for all i 6= j

• The FOL translation is the set of formulas:

∀x. E1(x) → E(x) ∧ ¬E2(x) ∧ . . . ∧ ¬En(x)

∀x. E2(x) → E(x) ∧ ¬E3(x) ∧ . . . ∧ ¬En(x)

∀x. En−1(x) → E(x) ∧ ¬En(x)

∀x. En(x) → E(x)

(17/23)

The Disjoint Total Construct
E

E1
. . . En

×

• The meaning of this constraint is:
Ei

I ⊆ EI for all i = 1, . . . , n

Ei
I ∩ Ej

I = ∅ for all i 6= j

EI ⊆ E1
I ∪ . . . ∪ En

I

• The FOL translation is the set of formulas:
∀x. E(x) → E1(x) ∨ . . . ∨ En

∀x. E1(x) → E(x) ∧ ¬E2(x) ∧ . . . ∧ ¬En(x)

∀x. E2(x) → E(x) ∧ ¬E3(x) ∧ . . . ∧ ¬En(x)

∀x. En−1(x) → E(x) ∧ ¬En(x)

∀x. En(x) → E(x)

(18/23)

The Disjoint Total Construct
E

E1
. . . En

×

• The meaning of this constraint is:
Ei

I ⊆ EI for all i = 1, . . . , n

Ei
I ∩ Ej

I = ∅ for all i 6= j

EI ⊆ E1
I ∪ . . . ∪ En

I

• The FOL translation is the set of formulas:
∀x. E(x) → E1(x) ∨ . . . ∨ En

∀x. E1(x) → E(x) ∧ ¬E2(x) ∧ . . . ∧ ¬En(x)

∀x. E2(x) → E(x) ∧ ¬E3(x) ∧ . . . ∧ ¬En(x)

∀x. En−1(x) → E(x) ∧ ¬En(x)

∀x. En(x) → E(x)

(18/23)

FOL Translation: An Example

Employee

Project
Manager

TopManagerAreaManager

×

Works-for

Manages

(1,n)

(1,1)
(1,1)

∀x, y. Works-for(x, y) → Employee(x) ∧ Project(y)

∀x, y. Manages(x, y) → Top-Manager(x) ∧ Project(y)

∀y. Project(y) → ∃x. Works-for(x, y)

∀y. Project(y) → ∃=1x. Manages(x, y)

∀x. Top-Manager(x) → ∃=1y. Manages(x, y)

∀x. Manager(x) → Employee(x)

∀x. Manager(x) → Area-Manager(x) ∨ Top-Manager(x)

∀x. Area-Manager(x) → Manager(x) ∧ ¬Top-Manager(x)

∀x. Top-Manager(x) → Manager(x)
(19/23)

Additional (integrity) constraints

Employee

Project
Manager

TopManagerAreaManager Department InterestGroup

OrganisationalUnit

×
×

Works-for

Manages

Resp-for

(1,n)

(1,1)

(1,1)

(1,n)

• Managers do not work for a project (she/he just manages it).

∀x. Manager(x) → ∀y.¬WORKS-FOR(x, y)

• If the minimum cardinality for the participation of employees to the works-for

relationship is increased, then . . .

• If an ISA link is added stating that Interest Groups are Departments, then . . .

(20/23)

Additional (integrity) constraints

Employee

Project
Manager

TopManagerAreaManager Department InterestGroup

OrganisationalUnit

×
×

Works-for

Manages

Resp-for

(1,n)

(1,1)

(1,1)

(1,n)

• Managers do not work for a project (she/he just manages it).

∀x. Manager(x) → ∀y.¬WORKS-FOR(x, y)

• If the minimum cardinality for the participation of employees to the works-for

relationship is increased, then . . .

• If an ISA link is added stating that Interest Groups are Departments, then . . .

(20/23)

Additional (integrity) constraints

Employee

Project
Manager

TopManagerAreaManager Department InterestGroup

OrganisationalUnit

×
×

Works-for

Manages

Resp-for

(1,n)

(1,1)

(1,1)

(1,n)

• Managers do not work for a project (she/he just manages it).

∀x. Manager(x) → ∀y.¬WORKS-FOR(x, y)

• If the minimum cardinality for the participation of employees to the works-for

relationship is increased, then . . .

• If an ISA link is added stating that Interest Groups are Departments, then . . .
(20/23)

Key constraints

A key is a set of attributes of an entity whose value uniquely identify elements of

the entity itself.

Employee

PaySlipNumber(Integer)

Salary(Integer)

Project

ProjectCode(String)

Manager

TopManagerAreaManager

×

Works-for

Manages

(1,n)

(1,1)
(1,1)

∀x. Project(x) → ∃=1y. ProjectCode(x, y) ∧ String(y)

∀y. ∃x. ProjectCode(x, y) → ∃=1x. ProjectCode(x, y) ∧ Project(x)
(21/23)

Key constraints and relational schema

• A key is specified for each entity.

• There is a one-to-one correspondence between (tuple) values of key

attribute(s) and instances of an entity.

• This is why entities are mapped into the relational schema directly with the

keys (which have concrete values) rather than with the abstract entity

instances.

• Key values are the concrete representative for the instance of the entity.

(22/23)

Standard mappings to the relational schema

Explain the following:

• No abstract instance is found ever in a database.

• Entities are mapped through their attributes.

• If there is a mandatory one-to-many binary relationship, the key of the

dependant entity is added to the attributes of the main entity.

(23/23)

	@semtitle
	Motivation
	Entity-Relationship and First Order Logic
	ER Vs. FOL: The Alphabet
	FOL Notation
	ER: The Interpretation function
	ER: The Formal Semantics for the Atoms
	The Relationship Construct
	The Attribute Construct
	The Cardinality Construct
	The Cardinality Construct: An Example
	The Cardinality Construct: An Example
	The Cardinality Construct: An Example
	ISA Relations
	The Overlapping Partial Construct
	The Overlapping Total Construct
	The Disjoint Partial Construct
	The Disjoint Total Construct
	FOL Translation: An Example
	Additional (integrity)
constraints
	Key constraints
	Key constraints and relational schema
	Standard mappings to the relational schema

