
Introduction to Machine Learning

Marco Cristani

https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf

These slides were assembled by Marco Cristani, with grateful acknowledgement of the many others who made their course
materials freely available online. Feel free to reuse or adapt these slides for your own academic purposes, provided that you
include proper attribution.

https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf

Marco Cristani 73005B - Data Profiling 2

School-leaving
(scientific) 1995

Bachelor+Master@
UNIVR 1995-2002

Erasmus for
the MD thesis

in Lisboa
2001-02

PhD@ UNIVR 2003-
2006

Los Angeles
2004-05

Researcher in CS@
UNIVR 2007-2014

Associate Professor
in CS @ UNIVR 2014-

Team Leader
@ IIT

Genova

Associate
member

Founder and
CRO

2016

CTO
MakarenaLabs

2018

Director of the
Computer Science

Park 2019-

What is machine learning?

• “Learning is any process by which a system improves
performance from experience”
- Herbert Simon (Turing Award 1975, Nobel Prize in

Economics 1978)

• Definition by Tom Mitchell (1998):
Machine Learning is the study of algorithms that
• improve their performance P
• at some task T
• with experience E

A well-defined learning task is given by <P, T, E>

Traditional Programming

Machine Learning

Computer
Data

Program
Output

Computer
Data

Output
Program

Difference w.r.t. traditional programming

No, more like gardening

• Seeds = Algorithms

• Nutrients = Data

• Gardener = You

• Plants = Programs

Magic?

When Do We Use Machine Learning?

• ML is used when:
• Human expertise does not exist

(navigating on Mars, forecasting)

• Humans can’t explain their
expertise (recognition)

• Models must be customized
(personalized medicine)

• Models are based on huge
amounts of data (genomics)

A case of handwritten recognition:
what makes a «2»?

Some more examples of tasks that are best
solved by using a learning algorithm
• Recognizing patterns:

• Facial identities or facial expressions
• Handwritten or spoken words
• Medical images

• Generating patterns:
• Generating images or motion sequences

• Recognizing anomalies:
• Unusual credit card transactions
• Unusual patterns of sensor readings in a nuclear power plant

• Forecasting:
• Future stock prices or currency exchange rates

Some bachelor projects in machine learning

• Expression recognition
• (Dr. Luca Brunelli, now in

Statwolf, data science,
https://www.statwolf.com/)

https://www.statwolf.com/

Some bachelor projects in machine learning

• Scene recognition

h
ttp

://p
laces.csail.m

it.ed
u

/m
.h

tm
l

http://places.csail.mit.edu/m.html

Some bachelor projects in machine learning

• creating 3D
objects from
2D images

2D image
3D generated images

a particular of
the 3D body(Carlo Veronesi,

Nicholas Merci,
their ongoing
bachelor thesis)

Some bachelor projects in machine learning

• creating 3D
objects from
2D images
(2)

2D image
3D generated images

a particular of
the 3D body

(Carlo Veronesi,
Nicholas Merci,
their ongoing
bachelor thesis)

Some bachelor projects in machine learning

• Birth records digitalization
towards family tree
estimation

Rosa

Battezzardi ib tro (???)

• Web search
• Computational biology
• Finance
• E-commerce
• Space exploration
• Robotics
• Information extraction
• Social networks
• Debugging
• [Your favorite area]

Sample applications

Improve on task T, with respect to performance metric P,
based on experience E

Defining the learning task

T: Playing checkers
P: Percentage of games won against an
arbitrary opponent
E: Playing practice games against itself

T: Recognizing hand-written words
P: Percentage of words correctly classified
E: Database of human-labeled images of
handwritten words

T: Driving on four-lane highways using vision sensors
P: Average distance traveled before a human-judged
error
E: A sequence of images and steering commands
recorded while observing a human driver.

T: Categorize email messages as spam or legitimate.
P: Percentage of email messages correctly classified.
E: Database of emails, some with human-given
labels

• Supervised (inductive) learning (= regression|sup.ed classification)

– Given: training data + desired outputs (labels)

• Unsupervised learning

– Given: training data (without desired outputs)

• Semi-supervised learning

– Given: training data + a few desired outputs

• Reinforcement learning

– Rewards from sequence of actions

Types of learning

• Given (x1, y1), (x2, y2), ..., (xn, yn)

• Learn a function f(x) to predict y given x

• – y is real-valued == regression

Supervised Learning: Regression

• Given (x1, y1), (x2, y2), ..., (xn, yn)

• Learn a function f(x) to predict y given x

• – y is categorical == (supervised) classification

Supervised Learning: Classification

• Given (x1, y1), (x2, y2), ..., (xn, yn)

• Learn a function f(x) to predict y given x

• – y is categorical == (supervised) classification

Supervised Learning: Classification

• Given (x1, y1), (x2, y2), ..., (xn, yn)

• Learn a function f(x) to predict y given x

• – y is categorical == (supervised) classification

Supervised Learning: Classification

Supervised Learning

• x can be multi-dimensional

– Each dimension corresponds to an attribute

- Clump Thickness
- Uniformity of Cell Size
- Uniformity of Cell Shape
…

Unsupervised Learning

• Given x1, x2, ..., xn (without labels)

• Output hidden structure behind the x’s

– e.g., clustering

Unsupervised Learning

Unsupervised Learning
• Genomics application: group individuals by genetic similarity

Unsupervised Learning
• Independent component analysis – separate a combined signal into

its original sources

Reinforcement learning
• Given a sequence of states and actions with (delayed) rewards,

output a policy
• Policy is a mapping from states  actions that tells you what to do in a given

state

• Examples:

– Credit assignment problem

– Game playing

– Robot in a maze

– Balance a pole on your hand

The Agent-
Environment
Interface

Reinforcement learning

h
tt

p
s:

//
w

w
w

.y
o

u
tu

b
e.

co
m

/w
at

ch
?v

=4
cg

W
ya

-w
jg

Y

ML in a Nutshell

• Tens of thousands of machine learning algorithms

• Hundreds new every year

• Every machine learning algorithm has three components:
• Representation

• Evaluation

• Optimization

Representation

• Decision trees

• Sets of rules / Logic programs

• Instances

• Graphical models (Bayes/Markov nets)

• Neural networks

• Support vector machines

• Model ensembles

• Etc.

Evaluation

• Accuracy
• Precision and recall
• Squared error
• Likelihood
• Posterior probability
• Cost / Utility
• Margin
• Entropy
• K-L divergence
• Etc.

Optimization

• Combinatorial optimization
• E.g.: Greedy search

• Convex optimization
• E.g.: Gradient descent

• Constrained optimization
• E.g.: Linear programming

Types of Learning

• Supervised (inductive) learning
• Training data includes desired outputs

• Unsupervised learning
• Training data does not include desired outputs

• Semi-supervised learning
• Training data includes a few desired outputs

• Reinforcement learning
• Rewards from sequence of actions

Inductive Learning

• Given examples of a function (X, F(X))

• Predict function F(X) for new examples X
• Discrete F(X): Classification

• Continuous F(X): Regression

• F(X) = Probability(X): Probability estimation

ML in Practice
• Understanding domain, prior knowledge, and goals

• Data integration, selection, cleaning,
pre-processing, etc.

• Learning models

• Interpreting results

• Consolidating and deploying discovered knowledge

• Loop

Thanks to: Deep Learning by Google - Take machine learning to the next level

Deep Neural Networks

Exam
p

le o
f In

cep
tio

n
ism

h
ttp

://w
w

w
.b

o
red

p
an

d
a.co

m
/in

cep
tio

n
ism

-n
eu

ral-n
etw

o
rk-d

eep
-d

ream
-art/

https://www.udacity.com/course/deep-learning--ud730

What is Deep Learning

Machine
Learning

Deep
Learning

Deep Learning (DL) has emerged

around the ‘10 as a general tool to

solve recognition problems in:
● computer vision

● speech recognition

● robotics

● discovering new medicines

● understanding natural language

● understanding documents

● ranking

● … and many other applications!

Feature
Learning

AI

Overview

● History

● Preliminaries: logistic classification

● Training

● Deep networks

● Regularization

● Architectures

○ Convolutional networks

○ Embeddings

○ Recurrent models

History

Everything can be optimized in Computer Science

• Given a problem to solve P, it can be formalized as {P,C,F}
• P := the problem formulation

• C = {c1,c1,...,cn} := set of configurations, each one of them representing a

possible solution to P

• f:C→R := function which provides a goodness measure of the configuration

w.r.t. the problem to be solved

• Casting the problem via minimization means to maximize or minimize

the function f in the C space, independently on the implied meaning of P

Minimization: to be used always?

• Problem P1: sort numbers x1,x2,...,xN in increasing order
• In this case, minimization could be left apart
• In facts, there is at least one algorithm (e.g., quicksort) which brings directly to

the best (in sense of the function f) configuration
• Problem P2: foresee the stocks’ trend

• Much more difficult to formalize into an algorithm
• Minimization comes to help [Yong et al. 2015]

[Yong et al. 2015] Hu, Yong, et al. "Application of evolutionary computation for rule discovery in stock algorithmic trading: A literature review." Applied Soft
Computing 36 (2015): 534-551.

Inside the minimization approach

• The main goal of an optimization approach is that of exploring the
configuration space C looking for the best configuration given the
function f (obviously avoiding the brute force way!)

• The set of configurations C give a space to explore (very often, a
manifold)

• Optimizing means to explore the manifold by iterative approaches (e.g.,
the gradient descent family of strategies)

• The more the manifold is complex (non convex, multimodal), the more
often local minima are met

Neural Networks [1943 - McCulloch & Pitts]

● Optimization approaches which scale very well with data

● We are talking about artificial neurons and layered computation

Neural Networks - Neurons

NN are composed by artificial neurons (1943 - McCulloch & Pitts).

Each neuron has:

● dendrites (inputs)

● a nucleus/soma/perceptron (transfer fuction + activation function)

● an axon (output)

Neural Networks - Neurons (2)

The information flow is unidirectional:

● The neuron get inputs (electric

potentials) from the dendrites, that

weight them (wi’s)

● In the nucleus, the weighted inputs

are summed together (the transfer Σ

of the whole information coming from

the dendrites)

● In the nucleus, the summation flows

into an activation function, which

may inhibit, diminish or amplify it

● The output of the activation function

Krizhevsky’
s

AlexNet

Neural Networks - the renaissance

1980 1990 2000 2010 2020

Le Cun’s
LeNet-5

Fukushima’s
Neocognitro

n
...

What happened?

http://people.csail.mit.edu/torralba/research/drawCNN/drawNet.html

Neural Networks and Deep Learning

GPUs DataNeural
Networks

Deep
Neural

Networks

Supervised Classification

● Traditional kind of problem the

NN do solve

○ Regression

○ Ranking

○ Reinforcement Learning

○ Detection

Labels {‘a’, ‘b’, ‘c’, ‘d’,
‘e’}

Preliminaries: logistic classification

● It assigns a score y to the input x

through a linear model (W,b)

● The score helps to identify the

class label that wins

Logistic Classifier

xW + b = y
1xF FxC 1xC 1xC

To be trained via a
training procedure

x = input or feature vector; F = number of features; W = weights matrix;
C = number of classes b = biases; y = output or logits/scores vector

Logistic Classifier - the score is not enough

xW + b = y

2.0

1.0

0.1

s(y)

0.7

0.2

0.1
score
s

probabiliti
es

s(y) is the SOFTMAX
function

● Converts scores into probability

distributions

○ ℝ→ (0,1)

○ Open codomain!

● The softmax function highlights the

largest values and suppress values which

are significantly below the maximum

value

Softmax function

2.0

1.0

0.1
score
s

0.7

0.2

0.1
probabiliti
es

0.1 1.0 2.0

1.1
2.7

7.4

● → There is only one correct label for each input

sample

● → There is the need to evaluate the classification

result

● OHE encodes labels for a C-class problem in RC,

indicating the c-th class label with 1, the rest

with 0’s

● OHE needs sparse representation which is

inefficient especially in the case C is very big

(thousands or millions of classes...!)

One-Hot Encoding (OHE)

s(y)

our
results

g.t. labels

1.0

0.0

0.0

0.7

0.2

0.1

Which distance
measure?

?

Cross-Entropy

GOAL: computes the distance between two

probability vectors

● Non symmetric function

0.7

0.2

0.1

1.0

0.0

0.0

s(y
)

L

= 0.36D(s,L)
→ 0 high similarity

→ ∞ low similarity

● The log(·) makes the training

faster to converge than the

other alternative MSE function

(Σ(s(y)-l)2)

Résumé

2.0

1.0

0.1
score
s

0.7

0.2

0.1
probabiliti
es

1.0

0.0

0.0
1-hot
labels

input

xW +
b

s(y
)

D(s,L)

x y s(y
)

L

linear model softmax cross-
entropy

Multinomial Logistic Classification

D(s(xW+b), L)

x0

x1

x2

Training

Gradient Descent

θ = set of parameters

GOAL: search for the nearest local minimum of a function F

IDEA: iterate on the parameter set proportionally to the negative of the function gradient

such that

Gradient Descent

● GOAL: minimize a loss function

● Needs to compute the entire training

set performance of our linear model,

that consists in N inputs (which is, in

general, very big)

● Needs to minimize a loss function,

which depends on W (big matrix) and b

D(s,L)
→ 0 good

→ ∞ bad

N = number of input vectors; α: learning rate value

Loss = average cross-
entropy

w
i

w
j

learning
step

Stochastic Gradient Descent (SGD)

● IDEA: use a random subset (batch) of the

data (of a given size) to compute an

approximation of the gradient of the loss

function
Iterative implementation of the GD algorithm

At each step, a new batch is extracted

○ Pros:

■ simple but sufficiently effective

■ fast (depending on batch size)

■ scale the problem with data and

model size

○ Cons:

■ needs more iterations to converge

■ bad approximation of the loss

w
i

w
j

… but tricks to ameliorate SGD are
present!

● GOAL: improve the convergence of the

optimizer exploiting the accumulated

knowledge from previous steps

● IDEA: add a fraction of the previous

update vector to the current update

vector

SGD trick 1: momentum

w
i

w
j

M = momentum; β: friction value (usually 0.9)
faster convergence and oscillation
reduction

● GOAL: make the optimization more

robust and accurate over time

● IDEA: apply a decay function to the

learning rate or reduce it when the loss

function reaches a plateau

SGD trick 2: learning-rate decay

tim
e

α

w
i

w
j

● GOAL: avoid numerical instability

The values involved in the calculation of the

gradient descent never get too big or too

small

● IDEA: remove the mean and normalize

over the variance of the i-th feature of

the input vector x

z-normalization

SGD trick 3: z-normalization

http://cs231n.github.io/

http://cs231n.github.io/

A random initialization of the weights and

the zero-init of the biases is critical to get a

good starting point for the training phase

and the convergence of the SGD algorithm.

SGD trick 4: initialization

equal probability
of the weights

(no prior)

Gradient Descent: graphical representation (2D)

http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

Gradient Descent: graphical representation (3D)

http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

SGD: tuning

SGD: H. Robinds and S. Monro, “A stochastic approximation method,” Annals of Mathematical Statistics, vol. 22, pp. 400–407, 1951.
AdaGrad: J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online leaning and stochastic optimization,” in COLT, 2010.

SGD

Many hyperparameters:

● initial learning rate

● learning rate decay

● momentum

● batch size

● weight initialization

AdaGrad

SGD modification which implicitly applies

momentum and learning rate decay. It uses

fewer parameters:

From MLC to NN to Deep-NN

● Multinomial Logistic Classification (MLC)

○ fast: efficient computation due to the linear

model

○ stable: small input variations generates small

output variations and the derivative of the

model is constant

but...

○ trains only a “small” parameter set

○ can’t represent non linear relations among

the inputs

● What if I concatenate multiple MLCs?

D(s(xW+b), L)

W1 b1+x =

still a linear model…!

x1 + x2 x1 * x2

y1 W2 b2+ = y2 W3 b3+x = y3

From MLC to NN to Deep-NN

● GOAL: build a bigger and non linear

model

● IDEA: concatenate many linear systems

(MLC) and insert a non linear function

between two consecutive MLCs, that is,

the activation function

?→ →

Which function?

W1 b1+x = y1 W2 b2+ = y2 → s(y2)

Choose the (non linear) activation function

● simplest function
● constant derivative

● similar to sigmoid● A perceptron
classic

http://adilmoujahid.com/posts/2016/06/introduction-deep-learning-python-caffe/

http://adilmoujahid.com/posts/2016/06/introduction-deep-learning-python-caffe/

ReLU: Rectified Linear Unit

no more linear…!

1

x

y y

x

derivative

http://www.kdnuggets.com/2016/03/must-know-tips-deep-learning-part-2.html

→ →W1 b1+x = y1 W2 b2+ = y2 → s(y2)

http://www.kdnuggets.com/2016/03/must-know-tips-deep-learning-part-2.html

Résumé

hidden
layer

H

H = number of “neurons” in the hidden layer

linear model softmaxlinear model

non linear
model

→ →W1 b1+x = y1 W2 b2+ = y2

→
s(y2)

Practical example (1/2)

1xF FxC 1xC 1xC

→
s(y1)

Image
28x28
pixels 3

#classes
(C)

#features
(F) W1 b1+x = y1

Practical example (2/2)

R
e
L
U

1xF FxH 1xH 1xH HxC 1xC 1xC

3

#hidden_neurons
(H)

→ →W1 b1+x = y1 W2 b2+ = y2

→
s(y2)

x * W1 + b1 = y1 → ReLU(y1) * W2 + b2 = y2

Examples of deep networks - conclusions

