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What is machine learning?

• “Learning is any process by which a system improves 
performance from experience”
- Herbert Simon (Turing Award 1975, Nobel Prize in    

Economics 1978)

• Definition by Tom Mitchell (1998):
Machine Learning is the study of algorithms that
• improve their performance P
• at some task T
• with experience E

A well-defined learning task is given by <P, T, E>



Traditional Programming

Machine Learning

Computer
Data

Program
Output

Computer
Data

Output
Program

Difference w.r.t. traditional programming



No, more like gardening

• Seeds = Algorithms

• Nutrients = Data

• Gardener = You

• Plants = Programs

Magic?



When Do We Use Machine Learning?

• ML is used when:
• Human expertise does not exist 

(navigating on Mars, forecasting)

• Humans can’t explain their 
expertise (recognition)

• Models must be customized 
(personalized medicine)

• Models are based on huge 
amounts of data (genomics)

A case of handwritten recognition: 
what makes a «2»?



Some more examples of tasks that are best
solved by using a learning algorithm
• Recognizing patterns:

• Facial identities or facial expressions
• Handwritten or spoken words
• Medical images

• Generating patterns:
• Generating images or motion sequences

• Recognizing anomalies:
• Unusual credit card transactions
• Unusual patterns of sensor readings in a nuclear power plant

• Forecasting:
• Future stock prices or currency exchange rates



Some bachelor projects in machine learning

• Expression recognition
• (Dr. Luca Brunelli, now in  

Statwolf, data science, 
https://www.statwolf.com/)

https://www.statwolf.com/


Some bachelor projects in machine learning

• Scene recognition
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Some bachelor projects in machine learning

• creating 3D 
objects from 
2D images

2D image
3D generated images

a particular of 
the 3D body(Carlo Veronesi, 

Nicholas Merci, 
their ongoing
bachelor thesis)



Some bachelor projects in machine learning

• creating 3D 
objects from 
2D images 
(2)

2D image
3D generated images

a particular of 
the 3D body

(Carlo Veronesi, 
Nicholas Merci, 
their ongoing
bachelor thesis)



Some bachelor projects in machine learning

• Birth records digitalization
towards family tree
estimation

Rosa

Battezzardi ib tro (???) 



• Web search 
• Computational biology
• Finance
• E-commerce
• Space exploration
• Robotics
• Information extraction
• Social networks
• Debugging
• [Your favorite area]

Sample applications



Improve on task T, with respect to performance metric P,
based on experience E

Defining the learning task

T: Playing checkers
P: Percentage of games won against an 
arbitrary opponent
E: Playing practice games against itself

T: Recognizing hand-written words
P: Percentage of words correctly classified
E: Database of human-labeled images of 
handwritten words

T: Driving on four-lane highways using vision sensors
P: Average distance traveled before a human-judged 
error
E: A sequence of images and steering commands 
recorded while observing a human driver.

T: Categorize email messages as spam or legitimate.
P: Percentage of email messages correctly classified.
E: Database of emails, some with human-given 
labels



• Supervised (inductive) learning (= regression|sup.ed classification)

– Given: training data + desired outputs (labels)

• Unsupervised learning

– Given: training data (without desired outputs)

• Semi-supervised learning

– Given: training data + a few desired outputs

• Reinforcement learning

– Rewards from sequence of actions

Types of learning



• Given (x1, y1), (x2, y2), ..., (xn, yn)

• Learn a function f(x) to predict y given x

• – y is real-valued == regression

Supervised Learning: Regression
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• – y is categorical == (supervised) classification

Supervised Learning: Classification



• Given (x1, y1), (x2, y2), ..., (xn, yn)

• Learn a function f(x) to predict y given x

• – y is categorical == (supervised) classification

Supervised Learning: Classification



• Given (x1, y1), (x2, y2), ..., (xn, yn)

• Learn a function f(x) to predict y given x

• – y is categorical == (supervised) classification

Supervised Learning: Classification



Supervised Learning

• x can be multi-dimensional

– Each dimension corresponds to an attribute

- Clump Thickness
- Uniformity of Cell Size
- Uniformity of Cell Shape
…



Unsupervised Learning

• Given x1, x2, ..., xn (without labels)

• Output hidden structure behind the x’s

– e.g., clustering



Unsupervised Learning



Unsupervised Learning
• Genomics application: group individuals by genetic similarity



Unsupervised Learning
• Independent component analysis – separate a combined signal into 

its original sources



Reinforcement learning
• Given a sequence of states and actions with (delayed) rewards, 

output a policy
• Policy is a mapping from states  actions that tells you what to do in a given 

state

• Examples:

– Credit assignment problem

– Game playing

– Robot in a maze

– Balance a pole on your hand



The Agent-
Environment 
Interface



Reinforcement learning
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ML in a Nutshell

• Tens of thousands of machine learning algorithms

• Hundreds new every year

• Every machine learning algorithm has three components:
• Representation

• Evaluation

• Optimization



Representation

• Decision trees

• Sets of rules / Logic programs

• Instances

• Graphical models (Bayes/Markov nets)

• Neural networks

• Support vector machines

• Model ensembles

• Etc.



Evaluation

• Accuracy
• Precision and recall
• Squared error
• Likelihood
• Posterior probability
• Cost / Utility
• Margin
• Entropy
• K-L divergence
• Etc.



Optimization

• Combinatorial optimization
• E.g.: Greedy search

• Convex optimization
• E.g.: Gradient descent

• Constrained optimization
• E.g.: Linear programming



Types of Learning

• Supervised (inductive) learning
• Training data includes desired outputs

• Unsupervised learning
• Training data does not include desired outputs

• Semi-supervised learning
• Training data includes a few desired outputs

• Reinforcement learning
• Rewards from sequence of actions



Inductive Learning

• Given examples of a function (X, F(X))

• Predict function F(X) for new examples X
• Discrete F(X): Classification

• Continuous F(X): Regression

• F(X) = Probability(X): Probability estimation



ML in Practice
• Understanding domain, prior knowledge, and goals

• Data integration, selection, cleaning,
pre-processing, etc.

• Learning models

• Interpreting results

• Consolidating and deploying discovered knowledge

• Loop





Thanks to: Deep Learning by Google - Take machine learning to the next level

Deep Neural Networks
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https://www.udacity.com/course/deep-learning--ud730


What is Deep Learning

Machine 
Learning

Deep 
Learning

Deep Learning (DL) has emerged 

around the ‘10 as a general tool to 

solve recognition problems in:
● computer vision

● speech recognition

● robotics

● discovering new medicines

● understanding natural language

● understanding documents

● ranking 

● … and many other applications!

Feature 
Learning

AI



Overview

● History

● Preliminaries: logistic classification

● Training

● Deep networks

● Regularization

● Architectures

○ Convolutional networks

○ Embeddings

○ Recurrent models



History





Everything can be optimized in Computer Science

• Given a problem to solve P, it can be formalized as {P,C,F}
• P := the problem formulation

• C = {c1,c1,...,cn} := set of configurations, each one of them representing a 

possible solution to P

• f:C→R := function which provides a goodness measure of the configuration 

w.r.t. the problem to be solved

• Casting the problem via minimization means to maximize or minimize 

the function f in the C space, independently on the implied meaning of P



Minimization: to be used always?

• Problem P1: sort numbers x1,x2,...,xN in increasing order
• In this case, minimization could be left apart
• In facts, there is at least one algorithm (e.g., quicksort) which brings directly to 

the best (in sense of the function f) configuration 
• Problem P2: foresee the stocks’ trend

• Much more difficult to formalize into an algorithm
• Minimization comes to help [Yong et al. 2015]

[Yong et al. 2015] Hu, Yong, et al. "Application of evolutionary computation for rule discovery in stock algorithmic trading: A literature review." Applied Soft 
Computing 36 (2015): 534-551.



Inside the minimization approach

• The main goal of an optimization approach is that of exploring the 
configuration space C looking for the best configuration given the 
function f (obviously avoiding the brute force way!)

• The set of configurations C give a space to explore (very often, a 
manifold)

• Optimizing means to explore the manifold by iterative approaches (e.g., 
the gradient descent family of strategies)

• The more the manifold is complex (non convex, multimodal), the more 
often local minima are met



Neural Networks  [1943 - McCulloch & Pitts]

● Optimization approaches which scale very well with data

● We are talking about artificial neurons and layered computation



Neural Networks - Neurons

NN are composed by artificial neurons (1943 - McCulloch & Pitts).

Each neuron has:

● dendrites (inputs)

● a nucleus/soma/perceptron (transfer fuction + activation function)

● an axon (output)



Neural Networks - Neurons (2)

The information flow is unidirectional:

● The neuron get inputs (electric 

potentials) from the dendrites, that 

weight them (wi’s)

● In the nucleus, the weighted inputs 

are summed together (the transfer Σ 

of the whole information coming from 

the dendrites)

● In the nucleus, the summation flows 

into an activation function, which 

may inhibit, diminish or amplify it 

● The output of the activation function 





Krizhevsky’
s

AlexNet

Neural Networks - the renaissance

1980 1990 2000 2010 2020

Le Cun’s
LeNet-5

Fukushima’s
Neocognitro

n
...

What happened?

http://people.csail.mit.edu/torralba/research/drawCNN/drawNet.html



Neural Networks and Deep Learning

GPUs DataNeural
Networks

Deep
Neural

Networks



Supervised Classification

● Traditional kind of problem the 

NN do solve

○ Regression

○ Ranking

○ Reinforcement Learning

○ Detection

Labels {‘a’, ‘b’, ‘c’, ‘d’, 
‘e’}



Preliminaries: logistic classification



● It assigns a score y to the input x

through a linear model (W,b)

● The score helps to identify the 

class label that wins

Logistic Classifier

xW + b = y
1xF FxC 1xC 1xC

To be trained via a 
training procedure

x = input or feature vector; F = number of features; W = weights matrix; 
C = number of classes b = biases; y = output or logits/scores vector



Logistic Classifier - the score is not enough

xW + b = y

2.0

1.0

0.1

s(y)

0.7

0.2

0.1
score
s

probabiliti
es

s(y) is the SOFTMAX
function



● Converts scores into probability 

distributions

○ ℝ→ (0,1)

○ Open codomain!

● The softmax function highlights the 

largest values and suppress values which 

are significantly below the maximum 

value

Softmax function

2.0

1.0

0.1
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1.1
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● → There is only one correct label for each input 

sample

● → There is the need to evaluate the classification 

result

● OHE encodes labels for a C-class problem in RC, 

indicating the c-th class label with 1, the rest 

with 0’s

● OHE needs sparse representation which is 

inefficient especially in the case C is very big 

(thousands or millions of classes...!)

One-Hot Encoding (OHE)

s(y)

our 
results

g.t. labels

1.0

0.0

0.0

0.7

0.2

0.1

Which distance 
measure?

?



Cross-Entropy

GOAL: computes the distance between two 

probability vectors

● Non symmetric function

0.7

0.2

0.1

1.0

0.0

0.0

s(y
)

L

= 0.36D(s,L)
→ 0 high similarity

→ ∞ low similarity

● The log(·) makes the training 

faster to converge than the 

other alternative MSE function 

(Σ(s(y)-l)2)



Résumé

2.0

1.0

0.1
score
s

0.7

0.2

0.1
probabiliti
es

1.0

0.0

0.0
1-hot 
labels

input

xW + 
b

s(y
)

D(s,L)

x y s(y
)

L

linear model softmax cross-
entropy

Multinomial Logistic Classification

D(s(xW+b), L)

x0

x1

x2



Training



Gradient Descent

θ = set of parameters

GOAL: search for the nearest local minimum of a function F

IDEA: iterate on the parameter set proportionally to the negative of the function gradient

such that



Gradient Descent

● GOAL: minimize a loss function

● Needs to compute the entire training 

set performance of our linear model, 

that consists in N inputs (which is, in 

general, very big)

● Needs to minimize a loss function, 

which depends on W (big matrix) and b

D(s,L)
→ 0 good

→ ∞ bad

N = number of input vectors; α: learning rate value

Loss = average cross-
entropy

w
i

w
j

learning 
step



Stochastic Gradient Descent (SGD)

● IDEA: use a random subset (batch) of the 

data (of a given size) to compute an 

approximation of the gradient of the loss 

function
Iterative implementation of the GD algorithm

At each step, a new batch is extracted

○ Pros:

■ simple but sufficiently effective

■ fast (depending on batch size)

■ scale the problem with data and 

model size

○ Cons:

■ needs more iterations to converge

■ bad approximation of the loss

w
i

w
j

… but tricks to ameliorate SGD are 
present!



● GOAL: improve the convergence of the 

optimizer exploiting the accumulated 

knowledge from previous steps

● IDEA: add a fraction of the previous 

update vector to the current update 

vector

SGD trick 1: momentum

w
i

w
j

M = momentum; β: friction value (usually 0.9)
faster convergence and oscillation 
reduction



● GOAL: make the optimization more 

robust and accurate over time

● IDEA: apply a decay function to the 

learning rate or reduce it when the loss 

function reaches a plateau

SGD trick 2: learning-rate decay

tim
e

α

w
i

w
j



● GOAL: avoid numerical instability

The values involved in the calculation of the 

gradient descent never get too big or too 

small

● IDEA: remove the mean and normalize 

over the variance of the i-th feature of 

the input vector x

z-normalization

SGD trick 3: z-normalization

http://cs231n.github.io/

http://cs231n.github.io/


A random initialization of the weights and 

the zero-init of the biases is critical to get a 

good starting point for the training phase 

and the convergence of the SGD algorithm.

SGD trick 4: initialization

equal probability
of the weights

(no prior)



Gradient Descent: graphical representation (2D)

http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html


Gradient Descent: graphical representation (3D)

http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html


SGD: tuning

SGD: H. Robinds and S. Monro, “A stochastic approximation method,” Annals of Mathematical Statistics, vol. 22, pp. 400–407, 1951. 
AdaGrad: J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online leaning and stochastic optimization,” in COLT, 2010.

SGD

Many hyperparameters:

● initial learning rate

● learning rate decay

● momentum

● batch size

● weight initialization

AdaGrad

SGD modification which implicitly applies 

momentum and learning rate decay. It uses 

fewer parameters:



From MLC to NN to Deep-NN

● Multinomial Logistic Classification (MLC)

○ fast: efficient computation due to the linear 

model

○ stable: small input variations generates small 

output variations and the derivative of the 

model is constant

but...

○ trains only a “small” parameter set

○ can’t represent non linear relations among 

the inputs

● What if I concatenate multiple MLCs?

D(s(xW+b), L)

W1 b1+x =

still a linear model…!

x1 + x2 x1 * x2

y1 W2 b2+ = y2 W3 b3+x = y3



From MLC to NN to Deep-NN

● GOAL: build a bigger and non linear 

model

● IDEA: concatenate many linear systems 

(MLC) and insert a non linear function

between two consecutive MLCs, that is, 

the activation function

?→ →

Which function?

W1 b1+x = y1 W2 b2+ = y2 → s(y2)



Choose the (non linear) activation function

● simplest function
● constant derivative

● similar to sigmoid● A perceptron 
classic

http://adilmoujahid.com/posts/2016/06/introduction-deep-learning-python-caffe/

http://adilmoujahid.com/posts/2016/06/introduction-deep-learning-python-caffe/


ReLU: Rectified Linear Unit

no more linear…!

1

x

y y

x

derivative

http://www.kdnuggets.com/2016/03/must-know-tips-deep-learning-part-2.html

→ →W1 b1+x = y1 W2 b2+ = y2 → s(y2)

http://www.kdnuggets.com/2016/03/must-know-tips-deep-learning-part-2.html


Résumé

hidden 
layer

H

H = number of “neurons” in the hidden layer

linear model softmaxlinear model

non linear 
model

→ →W1 b1+x = y1 W2 b2+ = y2

→ 
s(y2)



Practical example (1/2)

1xF                   FxC                          1xC                   1xC

→ 
s(y1)

Image
28x28
pixels 3

#classes 
(C)

#features 
(F) W1 b1+x = y1



Practical example (2/2)

R
e
L
U

1xF                FxH                           1xH                 1xH                                                     HxC                           1xC                 1xC

3

#hidden_neurons 
(H)

→ →W1 b1+x = y1 W2 b2+ = y2

→ 
s(y2)

x * W1 + b1 = y1 → ReLU(y1) * W2 + b2 = y2



Examples of deep networks - conclusions


