https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf

Introduction to Machine Learning

Marco Cristani

These slides were assembled by Marco Cristani, with grateful acknowledgement of the many others who made their course materials freely available online. Feel free to reuse or adapt these slides for your own academic purposes, provided that you include proper attribution.

Director of the Computer Science Park 2019-

What is machine learning?

- "Learning is any process by which a system improves performance from experience"
- Herbert Simon (Turing Award 1975, Nobel Prize in Economics 1978)

- Definition by Tom Mitchell (1998):

Machine Learning is the study of algorithms that

- improve their performance P
- at some task T
- with experience E

A well-defined learning task is given by $\langle P, T, E\rangle$

Difference w.r.t. traditional programming

Traditional Programming

Machine Learning

No, more like gardening

- Seeds = Algorithms
- Nutrients = Data
- Gardener = You
- Plants = Programs

When Do We Use Machine Learning?

- ML is used when:
- Human expertise does not exist (navigating on Mars, forecasting)
- Humans cant explain their expertise (recognition)
- Models must be customized (personalized medicine)
- Models are based on huge amounts of data (genomics)

$00011(1112$ $34444455>5$
 898894999 what makes a « $2 »$?

Some more examples of tasks that are best solved by using a learning algorithm

- Recognizing patterns:
- Facial identities or facial expressions
- Handwritten or spoken words
- Medical images
- Generating patterns:
- Generating images or motion sequences
- Recognizing anomalies:
- Unusual credit card transactions
- Unusual patterns of sensor readings in a nuclear power plant
- Forecasting:
- Future stock prices or currency exchange rates

Some bachelor projects in machine learning

- Expression recognition
- (Dr. Luca Brunelli, now in Statwolf, data science, https://www.statwolf.com/)

STATWOLF

Some bachelor projects in machine learning

- Scene recognition

Predictions

- Type of environment: indoor
- Semantic categories: office:0.61, home_office:0.13,
- SUN scene attributes: enclosedarea, nohorizon, cloth, man-made, electricindoorlighting, matte, research, sterile

Some bachelor projects in machine learning

- creating 3D objects from 2D images

(Carlo Veronesi, Nicholas Merci, their ongoing bachelor thesis)

a particular of the 3D body

Some bachelor projects in machine learning

- creating 3D objects from 2D images (2)

(Carlo Veronesi, Nicholas Merci, their ongoing bachelor thesis)

Some bachelor projects in machine learning

- Birth records digitalization towards family tree estimation

Rosa

Battezzardi ib tro (???)

Sample applications

- Web search
- Computational biology
- Finance
- E-commerce
- Space exploration
- Robotics
- Information extraction
- Social networks
- Debugging
- [Your favorite area]

Defining the learning task

Improve on task T, with respect to performance metric P, based on experience E

T: Playing checkers
P: Percentage of games won against an arbitrary opponent
E: Playing practice games against itself

T: Recognizing hand-written words
P: Percentage of words correctly classified
E : Database of human-labeled images of handwritten words

T: Driving on four-lane highways using vision sensors P: Average distance traveled before a human-judged error
E : A sequence of images and steering commands recorded while observing a human driver.

T: Categorize email messages as spam or legitimate. P: Percentage of email messages correctly classified. E: Database of emails, some with human-given labels

Types of learning

- Supervised (inductive) learning (= regression/sup.ed classification)
- Given: training data + desired outputs (labels)
- Unsupervised learning
- Given: training data (without desired outputs)
- Semi-supervised learning
- Given: training data + a few desired outputs
- Reinforcement learning
- Rewards from sequence of actions

Supervised Learning: Regression

- Given (x1, y1), (x2, y2), ..., (xn, yn)
- Learn a function $f(x)$ to predict y given x
- -y is real-valued $==$ regression

Supervised Learning: Classification

- Given (x1, y1), (x2, y2), ..., (xn, yn)
- Learn a function $f(x)$ to predict y given x
- -y is categorical $==$ (supervised) classification

Breast Cancer (Malignant / Benign)

Supervised Learning: Classification

- Given (x1, y1), (x2, y2), ..., (xn, yn)
- Learn a function $f(x)$ to predict y given x
- -y is categorical $==$ (supervised) classification

Breast Cancer (Malignant / Benign)

Supervised Learning: Classification

- Given (x1, y1), (x2, y2), ..., (xn, yn)
- Learn a function $f(x)$ to predict y given x
- -y is categorical $==$ (supervised) classification

Supervised Learning

- x can be multi-dimensional
- Each dimension corresponds to an attribute

Unsupervised Learning

- Given $\times 1, \times 2, \ldots$, xn (without labels)
- Output hidden structure behind the x 's
- e.g., clustering

Unsupervised Learning

Astronomical data analysis

Unsupervised Learning

- Genomics application: group individuals by genetic similarity

Individuals

Unsupervised Learning

- Independent component analysis - separate a combined signal into its original sources

Input video (two people speaking together)

Reinforcement learning

- Given a sequence of states and actions with (delayed) rewards, output a policy
- Policy is a mapping from states \rightarrow actions that tells you what to do in a given state
- Examples:
- Credit assignment problem
- Game playing
- Robot in a maze
- Balance a pole on your hand

The AgentEnvironment Interface

Agent and environment interact at discrete time steps : $t=0,1,2, \mathrm{~K}$
Agent observes state at step $t: \quad s_{t} \in S$
produces action at step $t: a_{t} \in A\left(s_{t}\right)$
gets resulting reward : $\quad r_{t+1} \in \Re$ and resulting next state : s_{t+1}
$\cdots-s_{t}{ }_{a_{t}} \cdot{ }^{r_{t+1}} s_{t+1}{ }_{a_{t+1}}^{r_{t+2}} s_{t+2}{ }_{a_{t+2}}^{r_{t+3}} s_{t+3}{ }_{a_{t+3}} \cdots$

Reinforcement learning

ML in a Nutshell

- Tens of thousands of machine learning algorithms
- Hundreds new every year
- Every machine learning algorithm has three components:
- Representation
- Evaluation
- Optimization

Representation

- Decision trees
- Sets of rules / Logic programs
- Instances
- Graphical models (Bayes/Markov nets)
- Neural networks
- Support vector machines
- Model ensembles
- Etc.

Evaluation

- Accuracy
- Precision and recall
- Squared error
- Likelihood
- Posterior probability
- Cost / Utility
- Margin
- Entropy
- K-L divergence
- Etc.

Optimization

- Combinatorial optimization
- E.g.: Greedy search
- Convex optimization
- E.g.: Gradient descent
- Constrained optimization
- E.g.: Linear programming

Types of Learning

- Supervised (inductive) learning
- Training data includes desired outputs
- Unsupervised learning
- Training data does not include desired outputs
- Semi-supervised learning
- Training data includes a few desired outputs
- Reinforcement learning
- Rewards from sequence of actions

Inductive Learning

- Given examples of a function ($X, F(X)$)
- Predict function $F(X)$ for new examples X
- Discrete $F(X)$: Classification
- Continuous $F(X)$: Regression
- $F(X)=\operatorname{Probability}(X)$: Probability estimation

ML in Practice

- Understanding domain, prior knowledge, and goals
- Data integration, selection, cleaning, pre-processing, etc.
- Learning models
- Interpreting results
- Consolidating and deploying discovered knowledge
- Loop

Deep Neural Networks

Thanks to: Deep Learning by Google - Take machine learning to the next level

What is Deep Learning

Deep Learning (DL) has emerged around the ' 10 as a general tool to solve recognition problems in:

- computer vision
- speech recognition
- robotics
- discovering new medicines
- understanding natural language
- understanding documents
- ranking
- ... and many other applications!

Overview

- History
- Preliminaries: logistic classification
- Training
- Deep networks
- Regularization
- Architectures
- Convolutional networks
- Embeddings
- Recurrent models

History

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence - first machine learning, then deep learning, a subset of machine learning - have created ever larger disruptions.

Everything can be optimized in Computer Science

- Given a problem to solve P, it can be formalized as $\{P, C, F\}$
- P := the problem formulation
- $C=\left\{c_{1}, c_{1}, \ldots, c_{n}\right\}:=$ set of configurations, each one of them representing a possible solution to P
- $\mathrm{f}: \mathrm{C} \rightarrow \mathrm{R}:=$ function which provides a goodness measure of the configuration w.r.t. the problem to be solved
- Casting the problem via minimization means to maximize or minimize the function f in the C space, independently on the implied meaning of P

Minimization: to be used always?

- Problem P_{1} : sort numbers $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{N}}$ in increasing order
- In this case, minimization could be left apart
- In facts, there is at least one algorithm (e.g., quicksort) which brings directly to the best (in sense of the function f) configuration
- Problem P_{2} : foresee the stocks' trend
- Much more difficult to formalize into an algorithm
- Minimization comes to help [Yong et al. 2015]

Inside the minimization approach

- The main goal of an optimization approach is that of exploring the configuration space C looking for the best configuration given the function f (obviously avoiding the brute force way!)
- The set of configurations C give a space to explore (very often, a manifold)
- Optimizing means to explore the manifold by iterative approaches (e.g., the gradient descent family of strategies)
- The more the manifold is complex (non convex, multimodal), the more often local minima are met

Neural Networks 1993 - Mcculocs 8 Pitss

- Optimization approaches which scale very well with data
- We are talking about artificial neurons and lavered comoutation

Neural Networks - Neurons

NN are composed by artificial neurons (1943-McCulloch \& Pitts).
Each neuron has:

- dendrites (inputs)
- a nucleus/soma/perceptron (trancfor fıirtinn + artivatinn fıinrtinn)

Neural Networks - Neurons (2)

The information flow is unidirectional:

- The neuron get inputs (electric potentials) from the dendrites, that weight them ($w_{i}^{\prime} \mathrm{s}$)
- In the nucleus, the weighted inputs are summed together (the transfer Σ of the whole information coming from the dendrites)
- In the nucleus, the summation flows
 into an activation function, which may inhibit, diminish or amplify it
- The output of the activation function

Neural Networks - the renaissance

Neural Networks and Deep Learning

GPUs $\}$ Data

$\square \xrightarrow[\substack{\text { Neural } \\ \text { Networks }}]{\substack{\text { Deep } \\ \text { Netw }}}$

Supervised Classification

- Traditional kind of problem the NN do solve

- Regression
- Ranking
o Reinforcement lea

Preliminaries: logistic classification

Logistic Classifier

- It assigns a score y to the input \mathbf{x} through a linear model (W,b)
- The score helps to identify the class label that wins

To be trained via a training procedure

Logistic Classifier - the score is not enough

 $\mathrm{xW}+\mathrm{b}=\mathrm{y} \quad \Longrightarrow \mathrm{s}(\mathrm{y})$
$s(y)$ is the SOFTMAX
function

Softmax function

- Converts scores into probability distributions
$\circ \mathbb{R} \rightarrow(0,1)$

- Open codomain!
- The softmax function highlights the largest values and suppress values which are signiffcantly below the maximum value $s\left(y_{i}\right)=$

One-Hot Encoding (OHE)

Which distance

measure?

MSE
sample

- \rightarrow There is the need to evaluate the classification result
- OHE encodes labels for a C-class problem in R^{C}, indicating the che th $^{\text {th }}$ class label with 1 , the rest
$0_{0}{ }^{\text {indicating the }}(\mathrm{y})$
nee icient especially in the. Zase C is very big (thousands or millions of glasses...!)ut
- \rightarrow There is only one correct label for each input our

Cross-Entropy

GOAL: computes the distance between two probability vectors

- Non sympetria functign (\mathbf{L}, \mathbf{s})

$$
D(\mathrm{~s}, \mathrm{~L}) \begin{cases}\rightarrow 0 & \text { high similarity } \\ \rightarrow \infty & \text { low similarity }\end{cases}
$$

- The $\log (\cdot)$ makes the training faster to converge than the other alternative MSE function $\left(5(c(v)-1)^{2}\right)$

Résumé

$$
D(s(x W+b), L)
$$

Training

Gradient Descent

GOAL: search for the nearest local minimum of a function F

IDEA: iterate on the parameter set proportionally to the negative of the function gradient

$$
\theta_{t+1}=\theta_{t}-\alpha \nabla F\left(\theta_{t}\right), t \geq 0
$$

such that

$$
F\left(\theta_{0}\right) \geq F\left(\theta_{1}\right) \geq F\left(\theta_{2}\right) \geq \ldots
$$

Gradient Descent

- GOAL: minimize a loss function
- Needs to compute the entire training set performance of our linear model, that consists in N inputs (which is, in general, very big)
- Needsfto Minimize a loss function, Guhichdepends $s s_{i=1}^{x} W$ (big matrix) and \mathbf{b}

Loss = average crossentropy

Stochastic Gradient Descent (SGD)

- IDEA: use a random subset (batch) of the data (of a given size) to compute an approximation of the gradient of the loss function

Iterative implementation of the GD algorithm
At each step, a new batch is extracted

- Pros:

■ simple but sufficiently effective

- fast (depending on batch size)
- scale the problem with data and model size
o Cons:
■ needs more iterations to converge

SGD trick 1: momentum

- GOAL: improve the convergence of the optimizer exploiting the accumulated knowledge from previous steps
- IDEA: add a fraction of the previous \#4pdatevector to, the curryent update vector
$M_{t}=\alpha \nabla \mathcal{L}_{t}\left(w_{i}, w_{j}\right)+\beta M_{t-1}$
$\left(w_{i}, w_{j}\right)_{t}=\left(w_{i}, w_{j}\right)_{t}-M_{t}$

faster convergence and oscillation redurtion

SGD trick 2: learning-rate decay

- GOAL: make the optimization more robust and accurate over time
- IDEA: apply a decay function to the learning rate or reduce it when the loss functiond reaches a plateau

SGD trick 3: z-normalization

- GOAL: avoid numerical instability

The values involved in the calculation of the gradient descent never get too big or too small
original data

zero-centered data

- IDEA: remove the mean and normalize over the variance of the i-th feature of the input vector $\frac{{ }^{\mathbf{x}} \mathbf{x}-E[\mathbf{x}]}{\operatorname{Var}[\mathbf{x}]}$

$$
\begin{gathered}
E[\mathbf{x}]=0 \\
\forall(i, j), \operatorname{Var}\left[\mathbf{x}_{i}\right]=\operatorname{Var}\left[\mathbf{x}_{j}\right]
\end{gathered}
$$

z-normalization

SGD trick 4: initialization

A random initialization of the weights and the zero-init of the biases is critical to get a good starting point for the training phase and the convergence of the $w_{i} S G D$ algorithm.

$$
\begin{aligned}
& \mathbf{b}=\left[\begin{array}{llll}
0_{1} & 0_{2} & \ldots & 0_{C}
\end{array}\right] \\
& \mu=0 \wedge \sigma \rightarrow 0 \Longrightarrow \forall(i, j), w_{i}=w_{j} \pm \epsilon
\end{aligned}
$$

equal probability of the weights (no prior)

Gradient Descent: graphical representation (2D)

Gradient Descent: graphical representation (3D)

SGD: tuning

SGD

Many hyperparameters:

- initial learning rate
- learning rate decay
- momentum
- batch size

- weight initialization

AdaGrad

SGD modification which implicitly applies

From MLC to NN to Deep-NN

- Multinomial Logistic Classification (MLC)
- fast: efficient computation due to the linear model
- stable: small input variations generates small output variations and the derivative of the model is constant

- What if I concatenate multiple MLCs? still a linear model...!

From MLC to NN to Deep-NN

- GOAL: build a bigger and non linear model
- IDEA: concatenate many linear systems (MLC) and insert a non linear function between two consecutive MLCs, that is, the activation function

Choose the (non linear) activation function

- A perceptron
- similar to sigmoid
- simplest function
- constant derivative

ReLU: Rectified Linear Unit

$$
\operatorname{Re} L U(x)=\max (0, x)
$$

Résumé

Practical example (1/2)

Practical example (2/2)

\#hidden_neurons
(H)

$$
\mathbf{x} * \mathrm{~W}_{1}+\mathbf{b}_{1}=\mathbf{y}_{1} \rightarrow \operatorname{ReLU}\left(\mathbf{y}_{1}\right) * \mathrm{~W}_{2}+\mathbf{b}_{2}=\mathbf{y}_{2}
$$

Examples of deep networks - conclusions

