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...what we want s a
machine that can learn
from experience.

Alan Turing, 1947
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What is machine learning?

“Learning is any process by WhICh a system improves
performance from experience”

- Herbert Simon (Turing Award 1975, Nobel Prize in
Economics 1978)

 Definition by Tom Mitchell (1998):

Machine Learning is the study of algorithms that
* improve their performance P
e atsometask T
* with experience E

A well-defined learning task is given by <P T, E>




Difference w.r.t. traditional programming

Traditional Programming

Data

Output
Program
Machine Learning
Data
Program

Output




Magic?

No, more like gardening

= Algorithms
* Nutrients = Data
* Gardener = You
* Plants = Programs




When Do We Use Machine Learning?

* ML is used when:

* Human expertise does not exist
(navigating on Mars, forecasting)

dme2aQ 2 A5 7
* Humans can’t explain their
expertise (recognition) 21é 43449 494659

« Models must be customized le £\7 2N 71T A9
(personalized medicine)
P8 78 L 94g 7

* Models are based on huge A case of handwritten recognition:
amounts of data (genomics) what makes a «2»?




Some more examples of tasks that are best
solved by using a learning algorithm

* Recognizing patterns:
* Facial identities or facial expressions
 Handwritten or spoken words
 Medical images

* Generating patterns:
* Generating images or motion sequences

* Recognizing anomalies:
* Unusual credit card transactions
* Unusual patterns of sensor readings in a nuclear power plant

* Forecasting:
* Future stock prices or currency exchange rates



Some bachelor projects in machine learning

* Expression recognition

* (Dr. Luca Brunelli, now in
Statwolf, data science,
https://www.statwolf.com/)

<

STATWOLF

Angry NULL Disgust Feor Happy SodnessSurprise


https://www.statwolf.com/

Predictions:

* Type of environment: indoor

o Semantic categories: office:0.61, home_office:0.13,

e SUN scene attributes: enclosedarea, nohorizon, cloth, man-made,
electricindoorlighting, matte, research, sterile

|wly w/npa‘lwr’|iesd sade|d//:dny


http://places.csail.mit.edu/m.html

Some bachelor projects in machine learning

* creating 3D
objects from
2D images

a particular of
the 3D body

(Carlo Veronesi,
Nicholas Merci,
their ongoing

bachelor thesis)

!
|

{ ('. ¢

3D generated images

2D image



Some bachelor projects in machine learning

* creating 3D
objects from
2D images

(2)

a particular of
the 3D body

(Carlo Veronesi,
Nicholas Merci,

thelr ongoing 2D 3D generated images
bachelor thesis) Image



Some bachelor projects in machine learning
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Sample applications

* Web search
 Computational biology
* Finance

* E-commerce

* Space exploration

* Robotics

* Information extraction
* Social networks

* Debugging

* [Your favorite area]



Defining the learning task

Improve on task T, with respect to performance metric P,
based on experience E

T: Playing checkers

P: Percentage of games won against an
arbitrary opponent

E: Playing practice games against itself

T: Recognizing hand-written words
P: Percentage of words correctly classified

E: Database of human-labeled images of
handwritten words

T: Driving on four-lane highways using vision sensors
P: Average distance traveled before a human-judged
error

E: A sequence of images and steering commands
recorded while observing a human driver.

T: Categorize email messages as spam or legitimate.
P: Percentage of email messages correctly classified.

E: Database of emails, some with human-given
labels



Types of learning

* Supervised (inductive) learning (= regression [sup.ed classification)
— Given: training data + desired outputs (labels)

* Unsupervised learning
— Given: training data (without desired outputs)

* Semi-supervised learning
— Given: training data + a few desired outputs

* Reinforcement learning

— Rewards from sequence of actions



Supervised Learning: Regression

* Given (x1, y1), (x2, y2), ..., (xn, yn)
 Learn a function f(x) to predict y given x

e —vy is real-valued == regression

September Arctic Sea Ice Extent
(1,000,000 sg km)

0 I 1 1 1 1
1970 1980 1990 2000 2010 2020

Year

Data from G. Witt. Journal of Statistics Education, Volume 21, Number 1 (2013)



Supervised Learning: Classification

* Given (x1, y1), (x2, y2), ..., (xn, yn)
 Learn a function f(x) to predict y given x
e — v is categorical == (supervised) classification

Breast Cancer (Malignant / Benign)
A

1(Malignant) == ® 0 ® 00

0(Benign) +—@-0D—0—0—0

Tumor Size
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Supervised Learning: Classification

* Given (x1, y1), (x2, y2), ..., (xn, yn)
 Learn a function f(x) to predict y given x
e — v is categorical == (supervised) classification

Breast Cancer (Malignant / Benign)

A
1(Malignant) == ® 0 ® 00
0(Benign) +—O~C0L—0O—0—0 >
Tumor Size

Predict Benign | Predict Malignant
—000—9@ w
o/
Tumor Size



Supervised Learning

* X can be multi-dimensional

— Each dimension corresponds to an attribute

A

- Clump Thickness
- Uniformity of Cell Size
- Uniformity of Cell Shape

Age

Tumor Size



Unsupervised Learning

* Given x1, x2, ..., xn (without labels)
e OQutput hidden structure behind the x’s
—e.g., clustering

A A
Co %0
O e
°® N o

O ©

O ° . o
% oo %

>




Unsupervised Learning

iy

Social network analysis

Market segmentation

Astronomical data analysis



Unsupervised Learning

 Genomics application: group individuals by genetic similarity
A A A A A \

Genes

A I N OO MO RO O NN T R TR

Individuals



Unsupervised Learning

* Independent component analysis — separate a combined signal into
its original sources

Input video (two people speaking together)

Speaker 1 DANNG
J T T

Speaker 1
Recovered

WYL
SRRELIAEY

Speaker 2
Recovered




Reinforcement learning

e Given a sequence of states and actions with (delayed) rewards,
output a policy

* Policy is a mapping from states = actions that tells you what to do in a given
state

e Examples:

— Credit assignment problem
— Game playing
— Robot in a maze

— Balance a pole on your hand



The Agent-
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Interface dis
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Agent and environment interact at discrete time steps : ¢ =0,1,2,K
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* Tens of thousands of machine learning algorithms
* Hundreds new every year

* Every machine learning algorithm has three components:
* Representation
e Evaluation
* Optimization



* Decision trees

* Sets of rules / Logic programs

* Instances

* Graphical models (Bayes/Markov nets)
* Neural networks

* Support vector machines

* Model ensembles

* Etc.



* Accuracy

* Precision and recall
e Squared error

* Likelihood

* Posterior probability
* Cost / Utility

* Margin

* Entropy

* K-L divergence

* Etc.



* Combinatorial optimization
* E.g.: Greedy search

* Convex optimization
* E.g.: Gradient descent

* Constrained optimization
* E.g.: Linear programming



» Supervised (inductive) learning
* Training data includes desired outputs

* Unsupervised learning
* Training data does not include desired outputs

* Semi-supervised learning
* Training data includes a few desired outputs

* Reinforcement learning
* Rewards from sequence of actions



e Given examples of a function (X, F(X))

* Predict function F(X) for new examples X
e Discrete F(X): Classification
e Continuous F(X): Regression
* F(X) = Probability(X): Probability estimation



* Understanding domain, prior knowledge, and goals

e Data integration, selection, cleaning,
pre-processing, etc.

* Learning models

* Interpreting results

* Consolidating and deploying discovered knowledge
* Loop



STILLWAITING




Deep Neural Networks

Thanks to: Deep Learning by Google - Take machine learning to the next level

/ue-wea)p-daap-womlauqEJ nau-wsjuodasul/wod epuedpaloq mmm//:diry

wsjuoiadasuj yo ajdwex3


https://www.udacity.com/course/deep-learning--ud730

What is Deep Learning

Machine
Learni

Deep Learning (DL) has emerged
around the ‘10 as a general tool to
solve recognition problems in:

computer vision

speech recognition

robotics

discovering new medicines
understanding natural language
understanding documents
ranking

... and many other applications!



Overview

History

Preliminaries: logistic classification
Training

Deep networks

Regularization

Architectures
o Convolutional networks
o Embeddings
O Recurrent models



History



ARTIFICIAL
INTELLIG_ENCE

MACHINE
LEARNING

DEEP

V S LEARNING

1950's 1960’s 1970’s 1980's 1990's 2000’s 2010's

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence - first machine learning, then
deep learning, a subset of machine learning - have created ever larger disruptions.



Everything can be optimized in Computer Science

* Given a problem to solve P, it can be formalized as {P,C,F}
* P :=the problem formulation

 C={cycy,...,C,} := set of configurations, each one of them representing a
possible solution to P

* f:C—>R :=function which provides a goodness measure of the configuration
w.r.t. the problem to be solved

e Casting the problem via minimization means to maximize or minimize
the function f in the C space, independently on the implied meaning of P



Minimization: to be used always?

* Problem P,: sort numbers x,,x,,...,Xy in increasing order
* |n this case, minimization could be left apart
* In facts, there is at least one algorithm (e.g., quicksort) which brings directly to
the best (in sense of the function f) configuration
* Problem P,: foresee the stocks’ trend
 Much more difficult to formalize into an algorithm
* Minimization comes to help [vongetal. 2015

[Yong et al. 2015] Hu, Yong, et al. "Application of evolutionary computation for rule discovery in stock algorithmic trading: A literature review." Applied Soft
Computing 36 (2015): 534-551.



Inside the minimization approach

 The main goal of an optimization approach is that of exploring the
configuration space C looking for the best configuration given the
function f (obviously avoiding the brute force way!)

* The set of configurations C give a space to explore (very often, a
manifold)

* Optimizing means to explore the manifold by iterative approaches (e.g.,
the gradient descent family of strategies)

 The more the manifold is complex (non convex, multimodal), the more
often local minima are met



Neural Networks (10s-mecuioch & pitts

e Optimization approaches which scale very well with data

e We are talking about artificial neurons and lavered comnutation

Artificial Neural Network

Input Layer

Hidden Layer 1



Neural Networks - Neurons

NN are composed by artificial neurons (1943 - McCulloch & Pitts).

Each neuron has:
® dendrites (inputs)
® 3 nucleus/soma/perceptron (trar\cfnr fiirtinn 4 artivatinn fiinrtinn)

Perceptron
(artificial neuron)

Transfer J- Activation
Function Function




Neural Networks - Neurons (2)

The information flow is unidirectional:

® The neuron get inputs (electric
potentials) from the dendrites, that
weight them (w/’s)

® In the nucleus, the weighted inputs
are summed together (the transfer 2
of the whole information coming from
the dendrites)

® |n the nucleus, the summation flows
into an activation function, which
may inhibit, diminish or amplify it

® The output of the activation function

Perceptron
(artificial neuron)

®

Transfer
Function

Activation
Function



Electronic Brain

Multi-layered
Perceptron
ADALINE (Backpropagation)
4 A
Perceptron
I i O [N, DarkAge CAIWinter’)
1957 1960 1969 1986

1970

1980

A

Deep Neural Network
(Pretraining)

A

2006

S. McCulloch - W. Pitts

F. Rosenblatt

B. Widrow - M. Hoff

M. Minsky - S. Papert

D. Rumelhart - G. Hinton - R. Wiliams

V. Vapnik - C. Cortes

G. Hinton - S. f?uslari

Foward Activity —=———jp»

«@—— Backward Error

XAND Y XORY NOT X
gP _ ® I O ‘@ } O
+1 4] -2 w1+l -] -1 i 35
iy Fls | = ® \ ® O l’
X Y + X Y *] X
* Adjustable Weights » Learnable Weights and Threshold » XOR Problem

» Weights are not Learned

+» Solution to nonlinearly separable problems
» Big computation, local optima and overfitting * Kernel function: Human Intervention

* Limitations of learning prior knowledge

* Hierarchical feature Learning




Neural Networks - the renaissance

Le Cun’s What happened?
LeNet 5

Fukushima’s

Neocognltro Krizhevsky

oooooooooo

1980 1990 2000 2010 2020

http://people.csail.mit.edu/torralba/research/drawCNN/drawNet.html



Neural Networks and Deep Learning

Hidden

Diagonal
Line

::> D
Neural GPUs ﬂﬂ Data > €ep
Networks Neural

Networks



Supervised Classification

e Traditional kind of problem the

state E_eward action
5 ! @

NN do solve

O Regression
O Ranking

O Reinforcement leag

. JE—
P Meural Met

Labels {‘a’, ‘b’, ’c’, ‘d’,
lel}




Preliminaries: logistic classification



Logistic Classifier

® |t assigns a score y to the input x
through a linear model (W,b)

® The score helps to identify the
class label that wins +

o

To be trained via a
training procedure

X = input or feature vector; F = number of features; W = weights matrix;
C = number of classes b = biases; y = output or logits/scores vector



Logistic Classifier - the score is not enough

+h=y

X
|

&

2.0

1.0
0.1

\

S

score

S

— s(y)

probabiliti

€S

s(y) is the SOFTMAX

function
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0.2
0.1
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Softmax function

e Converts scores into probability

distributions

o R-(0,1)

O Open codomain!

® The softmax function highlights the

12

10

largest valrues\and suppress values which

are signif
value

3

1.0

0.1

Score

y below the maximum

-0.5 0.0

0.5 1.0 15

=)

2.0

r a

0.7
0.2

(0.1

2.5 3.0

probabiliti

es



One-Hot Encoding (OHE)

® — There is only one correct label for each input

sample

® — There is the need to evaluate the classification

result

e OHE encodes labels for a C-class problem in RS,

|nd|cat|ng tT )th class IabeI with 1, the rest

0.7

?

nee[’ presentation

icient especially in t1@-8€ﬂse Cis very big

\_
(thousands or millions of gasses...!)
our

results

)

Which distance
measure?

.0
g.t. labels

MSE

Cr Oss.




Cross-Entropy

s(y L

CY Y

GOAL: computes the distance between two ) 0.7 1.0
probability vectors | |
0.2 0.0

e Non sym@%rjiilf)u%tkgmh S) /ﬁ ~0.0°
, C

by | >0 highsimilarity D(s,L) = — Z Lilog s; =036
j=1

— > oo |ow similarity
® The log(-) makes the training
faster to converge than the

other alternative MSE function
(S(cly/\_112)




)

X y s(y L
r ) r ) f) ) r )
Xo | linear model | 2.0 softmax 0.7 Cross- 1.0

|
X1 > 1.0 > 0.2 < " > 0.0
x\W + s(y D(s,L)

. X2 J (0.1 ) .0.1. 0.0/

input score probabiliti 1-hot

k S es labels

f

Multinomial Logistic Classification

D(s(x\W+b), L)



Training



Gradient Descent

GOAL: search for the nearest local minimum of a function F

IDEA: iterate on the parameter set proportionally to the negative of the function gradient

- 01 = 0, — aVE(0,),t >0

such that F(6y) > F(61) > F(Qg) > ..

& = set of parameters



Gradient Descent

—

-0
® GOAL: minimize a loss function > DisL) -
® Needs to compute the entire training — oo bad
set performance of our linear model, L(w;, w;)
A 7

that consists in N inputs (whichis, in
general, very big) j
e Needsitqinimize a loss function,
hichhde n@&%(ﬁ‘\fd/(tﬁg?%a%l) and b
= learning

—aV géw;, w;)

Loss = average cross-
entropy >

N = number of input vectors; a: learning rate value W




Stochastic Gradient Descent (SGD)

e |IDEA: use a random subset (batch) of the ,
data (of a given size) to compute an A (wi, w;)
approximation of the gradient of the loss

function

Iterative implementation of the GD algorithm
At each step, a new batch is extracted

m simple but sufficiently effective
m fast (depending on batch size)

m scale the problem with data and >

model size w

o Cons: [:> ... but tricks to amelioraté SGD are
m needs more iterations to converge present!



SGD trick 1: momentum

e GOAL: improve the convergence of the
optimizer exploiting the accumulated A
knowledge from previous steps

E(wi, ’LUj)

e |IDEA: add a fraction of the previous

Mpsatewyetiontothg curent update
vector

Mt = OZV,Ct(wij wj) - /BMt—l

(wsi, wj)e = (wi, wj)y — M, >
W
i
faster convergence and oscillation

M = momentum; 8: friction value (usually 0.9) radiirtiAn



SGD trick 2: learning-rate decay

® GOAL: make the optimization more

robust and accurate over time A L{wi, w;)
W
j
e IDEA: apply a decay function to the
learning rate or reduce it when the loss
functio® reaches a plateau
W
i

tim



SGD trick 3: z-normalization

® GOAL: avoid numerical instability

original data zero-centered data normalized data
10 10

e
P

The values involved in the calculation of the

gradient descent never get too big or too

small

e IDEA: remove the mean and normalize
over the variance of the i-th feature of
the input vggtorxC Elx E[x]=0
Var|x]
V(i,j), Var[x;] = Var[x,]

z-normalization

http://cs231n.github.io/



http://cs231n.github.io/

SGD trick 4: initialization

A random initialization of the weights and 11N
the zero-init of the biases is critical to get a
good starting point for the training phase

and tbuei QW‘fﬁe:”ff gflt\%)SGD algorithm.

-30 =20 -lo| u lo 20 30

b=1[0; 0y .. 0c]

p=0N0o—-0 = V(i,7),w; =w; e

&

equal probability
of the weights
(no prior)



Gradient Descent: graphical representation (2D)

momentum || ] = SGD -
.;_:J.i nag :: : Momentumg
7 — adagrad | sy '::G -
adadelta |4 = agrad
/ A Adadelta
s b k‘-‘ Rmsprop
5
0 20 4-0 60 80 100 120

http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html



http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

Gradient Descent: graphical representation (3D

— SGD -  SGD
- Momentum - Momentum
- NAG -  NAG
— Adagrad — Adagrad
- Adadelta Adadelta
a - Rmsprop
Rmspro
; prop
0 - =2
-2
-4

1.0

http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html



http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

SGD: tuning

Tweaking Neural Net

SGD ﬁ
Many hyperparameters: ———1

e initial learning rate —

® |learning rate decay ﬁ

® momentum

e batch size Parameters.........

e weight initialization
AdaGrad

SGD modification which implicitly applies

momentum and learning rate decay, Ituses
SGD: H. Robinds and S. Monro, “A stochastic approximation method,””Annals of Mathematical Statistics, vol. 22, pp. 400-407, 1951.
AdaGnFéw‘:hipEal-faéaﬁ]@féFgger, “Adaptive subgradient methods for online leaning and stochastic optimization,” in COLT, 2010.



From MLC to NN to Deep-NN

e Multinomial Logistic Classification (MLC)
O fast: efficient computation due to the linear

model

o stable: small input variations generates small
output variations and the derivative of the

model is constant

( but... | \
~*-aine -y
X W, 'ntp es
e ir S

What i fiole MLCS?

o“_

Y1

(¢

L

\

~1127 \

~~=~met~- "2t

W, b

still a linear model...!

ns
2 =1 Y2

ngj>

D(s(x\W+b), L)

© Q

X1+ X,

*
Xy

Y3




From MLC to NN to Deep-NN

® GOAL: build a bigger and non linear

) -
model Which function:

. \J *8Mmojg
e |IDEA: concatenate many linear systems Re

(MLC) and insert a non linear function tanh
between two consecutive MLCs, that is,

the activation function

X W, + b, =y, |2 2 |7 W, + b, =1y, | 2>sly,)




Choose the (non linear) activation function

Sigmoid TanH RelLU
1.2 15 10
1.0 1 15 8 flz) = { 0 for <0
0.8 xz for z>0
0.5 6
0.6
0.0 4
04
0.2 05 <
0.0 -1.0 0
-0.2 -15 -2
-6 -4 -2 0 2 4 6 -6 -4 =, 0 . 4 6 -6 -4 -2 0 2 4
® A perceptron ® similar to sigmoid ® simplest function
classic ® constant derivative

http://adilmoujahid.com/posts/2016/06/introduction-deep-learning-python-caffe/
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RelLU: Rectified Linear Unit

ReLU (x) = max (0, x) derivative

A A
y y

1

x> X»
X W, +b =1y o /12 W, + by =1y, | >sly,)
\ }
|

no more linear...!

http://www.kdnuggets.com/2016/03/must-know-tips-deep-learning-part-2.html
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non linear

hidden
layer

H = number of “neurons” in the hidden layer




Practical example (1/2)

Image
28x28
pixels 784 \
X N \ il o
#features

(F) X W, + b, =]y,

Hclasses

(C)

\

oovcx

O OR OR OR O
OR OR©

5(V1)

1xF FxC 1xC 1xC



Practical example (2/2)

[ O Q
( Q O 0
Q Q Q R Q Q
784 1 O 1024 | QO Q| 3{0 -
Q /O Q u Q
Q Q Q
/ V ”
#hidden_neurons
(H) X*W,+b, =y, > RelLU(y,) *W, +b, =y,
l |
x W, + b =1y -2 /9W2+b2=y29
i s(Y,)

1xF FxH 1xH 1xH HxC 1xC 1xC



Examples of deep networks - conclusions



