Many learning algorithms can be seen as deriving from:

- decision trees
- linear (and non-linear) classifiers
- Bayesian classifiers

- Representation is a decision tree.
- Bias is towards simple decision trees.
- Search through the space of decision trees, from simple decision trees to more complex ones.

- A (binary) decision tree (for a particular output feature) is a tree where:
  - Each nonleaf node is labeled with an test (function of input features).
  - The arcs out of a node labeled with values for the test.
  - The leaves of the tree are labeled with point prediction of the output feature.

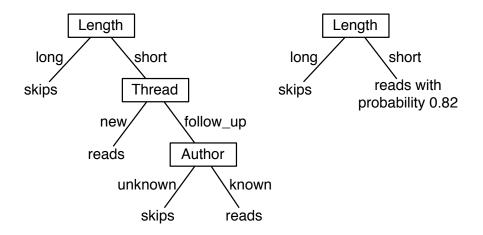
#### Example Classification Data

#### Training Examples:

|               | Action | Author  | Thread | Length | Where |
|---------------|--------|---------|--------|--------|-------|
| e1            | skips  | known   | new    | long   | home  |
| e2            | reads  | unknown | new    | short  | work  |
| e3            | skips  | unknown | old    | long   | work  |
| e4            | skips  | known   | old    | long   | home  |
| e5            | reads  | known   | new    | short  | home  |
| e6            | skips  | known   | old    | long   | work  |
| New Examples: |        |         |        |        |       |
| e7            | ???    | known   | new    | short  | work  |
| e8            | ???    | unknown | new    | short  | work  |

We want to classify new examples on feature *Action* based on the examples' *Author*, *Thread*, *Length*, and *Where*.

#### Example Decision Trees

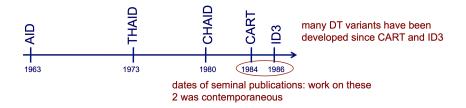


 $skips \leftarrow long.$   $reads \leftarrow short \land new.$   $reads \leftarrow short \land follow\_up \land known.$  $skips \leftarrow short \land follow\_up \land unknown.$ 

#### Issues in decision-tree learning

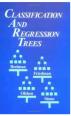
- Given some training examples, which decision tree should be generated?
- A decision tree can represent any discrete function of the input features.
- You need a bias. Example, prefer the smallest tree. Least depth? Fewest nodes? Which trees are the best predictors of unseen data?
- How should you go about building a decision tree? The space of decision trees is too big for systematic search for the smallest decision tree.

#### History of decision tree learning



#### CART developed by Leo Breiman, Jerome Friedman, Charles Olshen, R.A. Stone





# C45



#### ID3, C4.5, C5.0 developed by Ross Quinlan

- The input is a set of input features, a target feature and, a set of training examples.
- Either:
  - Stop and return the a value for the target feature or a distribution over target feature values
  - Choose a test (e.g. an input feature) to split on. For each value of the test, build a subtree for those examples with this value for the test.

#### Choices in implementing the algorithm

• When to stop:

#### Choices in implementing the algorithm

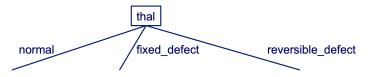
- When to stop:
  - no more input features
  - all examples are classified the same
  - too few examples to make an informative split

#### Top-down decision tree learning

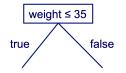
```
MakeSubtree(set of training instances D)
C = DetermineCandidateSplits(D)
if stopping criteria met
  make a leaf node N
  determine class label/probabilities for N
else
  make an internal node N
  S = FindBestSplit(D, C)
  for each outcome k of S
    D_k = subset of instances that have outcome k
    k^{th} child of N = MakeSubtree(D_k)
return subtree rooted at N
```

#### Candidate splits

• splits on nominal features have one branch per value



• splits on continuous features use a threshold



#### Candidate splits on continuous features

given a set of training instances D and a specific feature F

- sort the values of F in D
- evaluate split thresholds in intervals between instances of different classes



- could use midpoint of each considered interval as the threshold
- C4.5 instead picks the largest value of *F* in the entire training set that does not exceed the midpoint

#### Candidate splits on a numeric feature

;; For each numeric feature at each node of DT induction DetermineCandidateNumericSplits(training instances D, feature  $x_i$ )  $C = \{\}$ ;; initialize set of candidate splits for feature  $x_i$ S = partition instances in D into sets  $s_1 \ldots s_V$ where the instances in each set have the same value for  $x_i$ let  $v_i$  denote the value of  $x_i$  for set  $s_i$ sort the sets in S using  $v_i$  as the key for each  $s_i$ for each pair of adjacent sets  $s_i$ ,  $s_{i+1}$  in sorted S if  $s_i$ ,  $s_{i+1}$  contain pair of instances with different class labels ;; use midpoints for splits add candidate split  $x_i \leq (v_i + v_{i+1})/2$  to C

return C

- How should we select the best feature to split on at each step?
- Key hypothesis: the simplest tree that classifies the training examples accurately will work well on previously unseen examples

- attributed to 14th century William of Ockham
- Nunquam ponenda est pluralitis sin necesitate
- Entities should not be multiplied beyond necessity
- should proceed to simpler theories until simplicity can be traded for greater explanatory power
- when you have two competing theories that make exactly the same predictions, the simpler one is the better

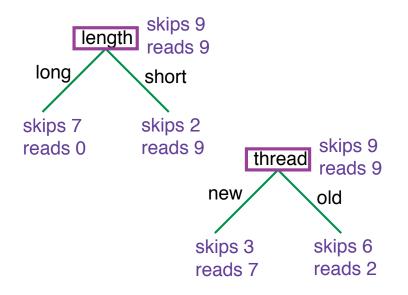
Why is Occams razor a reasonable heuristic for decision tree learning?

- there are fewer short models (i.e. small trees) than long ones
- a short model is unlikely to fit the training data well by chance
- a long model is more likely to fit the training data well coincidentally

#### Finding the best splits

- Which test to split on isn't defined.
- Can we return the smallest possible decision tree that accurately classifies the training set?
   NO! This is an NP-hard problem
- Instead, well use an information-theoretic heuristic to *greedily* choose splits
- Often we use myopic split: which single split gives smallest error.
- Myopia is a limitation: an important feature may not appear to be informative until used in conjunction with other features;
  - a lookahead search strategy can potentially alleviate this limitation.
- With multi-valued features, the text can be can to split on all values or split values into half. More complex tests are possible.

#### Example: possible splits



• This algorithm can overfit the data.

This occurs when noise and correlations in the training set that are not reflected in the data as a whole.

- To handle overfitting:
  - restrict the splitting, and split only when the split is useful.
  - allow unrestricted splitting and prune the resulting tree where it makes unwarranted distinctions.
  - learn multiple trees and average them.

## Handling Overfitting

- This algorithm can overfit the data. This occurs when noise and correlations in the training set that are not reflected in the data as a whole.
- To handle overfitting:
  - restrict the splitting, and split only when the split is useful.
  - allow unrestricted splitting and prune the resulting tree where it makes unwarranted distinctions.
  - learn multiple trees and average them.

## Handling Overfitting

- This algorithm can overfit the data. This occurs when noise and correlations in the training set that are not reflected in the data as a whole.
- To handle overfitting:
  - restrict the splitting, and split only when the split is useful.
  - allow unrestricted splitting and prune the resulting tree where it makes unwarranted distinctions.
  - learn multiple trees and average them.

• This algorithm can overfit the data.

This occurs when noise and correlations in the training set that are not reflected in the data as a whole.

- To handle overfitting:
  - restrict the splitting, and split only when the split is useful.
  - allow unrestricted splitting and prune the resulting tree where it makes unwarranted distinctions.
  - learn multiple trees and average them.