
Complete Knowledge Assumption

Often you want to assume that your knowledge is complete.

Example: you can state what switches are up and the agent can
assume that the other switches are down.

Example: assume that a database of what students are enrolled in a
course is complete.

The definite clause language is monotonic: adding clauses can’t
invalidate a previous conclusion.

Under the complete knowledge assumption, the system is
non-monotonic: adding clauses can invalidate a previous conclusion.

Enrico Franconi, 2012 Intelligent Systems - 5.6 1/16



Completion of a knowledge base

Suppose the rules for atom a are

a← b1.
...

a← bn.

equivalently a← b1 ∨ . . . ∨ bn.

Under the Complete Knowledge Assumption, if a is true, one of the bi

must be true:

a→ b1 ∨ . . . ∨ bn.

Under the CKA, the clauses for a mean Clark’s completion:

a↔ b1 ∨ . . . ∨ bn

Enrico Franconi, 2012 Intelligent Systems - 5.6 2/16



Clark’s Completion of a KB

Clark’s completion of a knowledge base consists of the completion of
every atom.

Clark’s completion means that if there are no rules for an atom a, the
completion of this atom is a↔ false, which means that a is false.

Enrico Franconi, 2012 Intelligent Systems - 5.6 3/16



Example of Clark’s Completion

down-s1. up-s2.
live-l1 ← live-w0.
live-w0 ← live-w1 ∧ up-s2.
live-w0 ← live-w2 ∧ down-s2.
live-w1 ← live-w3 ∧ up-s1.

The completion of these atoms is:

down-s1 ↔ true.
up-s1 ↔ false.
up-s2 ↔ true.
down-s2 ↔ false.
live-l1 ↔ live-w0.
live-w0 ↔ (live-w1 ∧ up-s2) ∨ (live-w2 ∧ down-s2).
live-w1 ↔ live-w3 ∧ up-s1.

This implies that up-s1 is false, and live-w1 is false.

Enrico Franconi, 2012 Intelligent Systems - 5.6 4/16



Negation as Failure

With the completion, the system can derive negations, and so it is
useful to extend the language to allow negations in the body of
clauses.

The definition of a definite clause can be extended to allow literals in
the body rather than just atoms.

We write the negation of atom a under the complete knowledge
assumption as ∼a to distinguish it from classical negation that does
not assume the completion.

∼a means that a is false under the complete knowledge assumption.
This is negation as failure .

Clark’s completion of an acyclic knowledge base is always consistent
and always gives a truth value to each atom. We assume that the
knowledge bases are acyclic.

Enrico Franconi, 2012 Intelligent Systems - 5.6 5/16



Example

Consider the usual axiomatization of the circuits. Representing a domain
can be made simpler by expecting the user to tell the system only what
switches are up and by the system concluding that a switch is down if it
has not been told the switch is up.

down-s1 ← ∼up-s1.
down-s2 ← ∼up-s2.
down-s3 ← ∼up-s3.

The circuit breakers are okay unless it has been told they are broken:

ok-cb1 ← ∼broken-cb1.
ok-cb2 ← ∼broken-cb2.

The user has to specify only what is up and what is broken. This may save
time if being down is normal for switches and being okay is normal for
circuit breakers.

Enrico Franconi, 2012 Intelligent Systems - 5.6 6/16



Electrical Environment

light

two-way
switch

switch
off

on

power
outlet

circuit breaker

outside power
cb1

s1

w1
s2 w2

w0

l1

w3
s3

w4

l2
p1

w5

cb2

w6

p2

Enrico Franconi, 2012 Intelligent Systems - 5.6 7/16



Representing the Electrical Environment (standard)

light l1.

light l2.

down s1.

up s2.

up s3.

ok l1.

ok l2.

ok cb1.

ok cb2.

live outside.

lit l1 ← live w0 ∧ ok l1

live w0 ← live w1 ∧ up s2.

live w0 ← live w2 ∧ down s2.

live w1 ← live w3 ∧ up s1.

live w2 ← live w3 ∧ down s1.

lit l2 ← live w4 ∧ ok l2.

live w4 ← live w3 ∧ up s3.

live p1 ← live w3.

live w3 ← live w5 ∧ ok cb1.

live p2 ← live w6.

live w6 ← live w5 ∧ ok cb2.

live w5 ← live outside.

Enrico Franconi, 2012 Intelligent Systems - 5.6 8/16



State with negation as failure

To represent the state, the user just specifies: up-s2. up-s3.

The system infers that s1 is down and both circuit breakers are okay.
The completion of the knowledge base is:

down-s1 ↔ ¬up-s1.
down-s2 ↔ ¬up-s2.
down-s3 ↔ ¬up-s3.
ok-cb1 ↔ ¬broken-cb1.
ok-cb2 ↔ ¬broken-cb2.
up-s1 ↔ false.
up-s2 ↔ true.
up-s3 ↔ true.
broken-cb1 ↔ false.
broken-cb2 ↔ false.

Enrico Franconi, 2012 Intelligent Systems - 5.6 9/16



Non-monotonic Reasoning

The (definite) clause logic is monotonic in the sense that anything
that could be concluded before a clause is added can still be
concluded after it is added; adding knowledge does not reduce the set
of propositions that can be derived.

A logic is non-monotonic if some conclusions can be invalidated by
adding more knowledge.

The logic of definite clauses with negation as failure is non-monotonic.

Non-monotonic reasoning is useful for representing defaults.

A default is a rule that can be used unless it overridden by an
exception.

Enrico Franconi, 2012 Intelligent Systems - 5.6 10/16



Defaults via absence of anormality

To say that b is normally true if c is true, a knowledge base designer
can write a rule of the form

b ← c ∧ ∼ab(a).

where ab(a) is an atom that means abnormal with respect to some
aspect a.

Given c , the agent can infer b unless it is told ab(a). Adding ab(a) to
the knowledge base can prevent the conclusion of b.

Rules that imply ab(a) can be used to prevent the default under the
conditions of the body of the rule.

Enrico Franconi, 2012 Intelligent Systems - 5.6 11/16



Non-monotonic Reasoning: example

Suppose the purchasing agent is investigating purchasing holidays.
A resort may be adjacent to a beach or away from a beach.
If the resort was adjacent to a beach, the knowledge provider would specify this.

away-from-beach ← ∼on-beach.
If the resort is on the beach, we expect that resort users would have access to the beach.
If they have access to a beach, we would expect them to be able to swim at the beach.

beach-access ← on-beach ∧ ∼ab(beach-access).
swim-at-beach ← beach-access ∧ ∼ab(swim-at-beach).

If there is an enclosed bay and a big city, then there is no swimming, by default:

ab(swim-at-beach) ← enclosed-bay ∧ big-city ∧ ∼ab(no-swimming-near-city).

We could say that British Columbia is abnormal with respect to swimming near cities:

ab(no-swimming-near-city) ← in-BC ∧ ∼ab(BC-beaches).
Given only the preceding rules, an agent infers away-from-beach. If it is then told
on-beach, it can no longer infer away-from-beach, but it can now infer beach-access and
swim-at-beach. If it is also told enclosed-bay and big-city, it can no longer infer
swim-at-beach. However, if it is then told in-BC, it can then infer swim-at-beach.

Enrico Franconi, 2012 Intelligent Systems - 5.6 12/16



Computing negation as failure with bottom-up procedure

The bottom-up procedure for negation as failure is a modification of
the bottom-up procedure for definite clauses.

The difference is that it can add literals of the form ∼p to the set C
of consequences that have been derived; ∼p is added to C when it
can determine that p must fail.

Failure can be defined recursively:

p fails when every body of a clause with p as the head fails.
A body fails if one of the literals in the body fails.
An atom bi in a body fails if ∼bi has been derived.
A negation ∼bi in a body fails if bi has been derived.

Enrico Franconi, 2012 Intelligent Systems - 5.6 13/16



Negation as failure example

Consider the following clauses:
p ← q ∧ ∼r . p ← s. q ← ∼s.
r ← ∼t. t. s ← w .

Suppose the query is ask p.

Initially G={p}.
Using the first rule for p, G becomes {q, ∼r}.
Selecting q, and replacing it with the body of the third rule, G
becomes {∼s, ∼r}.
It then selects ∼s and starts a proof for s. This proof for s fails, and
thus G becomes {∼r}.
It then selects ∼r and tries to prove r. In the proof for r, there is the
subgoal ∼t, and thus it tries to prove t. This proof for t succeeds.
Thus, the proof for ∼t fails and, because there are no more rules for
r, the proof for r fails. Thus, the proof for ∼r succeeds.

G is empty and so it returns yes as the answer to the top-level query.

Enrico Franconi, 2012 Intelligent Systems - 5.6 14/16



Bottom-up negation as failure interpreter

C := {};
repeat

either
select r ∈ KB such that

r is “h← b1 ∧ . . . ∧ bm”
bi ∈ C for all i , and
h /∈ C ;

C := C ∪ {h}
or

select h such that for every rule “h← b1 ∧ . . . ∧ bm” ∈ KB
either for some bi ,∼bi ∈ C
or some bi = ∼g and g ∈ C

C := C ∪ {∼h}
until no more selections are possible

Enrico Franconi, 2012 Intelligent Systems - 5.6 15/16



Top-Down negation as failure proof procedure

The top-down procedure for the complete knowledge assumption
proceeds by negation as failure.

This is a non-deterministic procedure that can be implemented by
searching over choices that succeed:

When a negated atom ∼a is selected, a new proof for atom a is
started.

If the proof for a fails, ∼a succeeds.
If the proof for a succeeds, the algorithm fails and must make other
choices.

Suppose you have rules for atom a:
a← b1

...
a← bn

If each body bi fails, a fails.
A body fails if one of the conjuncts in the body fails.

Note that you need finite failure. Example p ← p.

Enrico Franconi, 2012 Intelligent Systems - 5.6 16/16


