Integrity Constraints

@ In the electrical domain, what if we predict that a light should
be on, but observe that it isn't?
What can we conclude?

@ We will expand the definite clause language to include
integrity constraints which are rules that imply false, where
false is an atom that is false in all interpretations.

@ This will allow us to make conclusions from a contradiction.

@ A definite clause knowledge base is always consistent. This
won't be true with the rules that imply false.

Enrico Franconi, 2012 Intelligent Systems - 5.5 1/20



Horn clauses

@ An integrity constraint is a clause of the form
false < a1 N\ ... A ax

where the a; are atoms and false is a special atom that is false in
all interpretations.

@ A Horn clause is either a definite clause or an integrity
constraint.

Enrico Franconi, 2012 Intelligent Systems - 5.5 2/20



Negative Conclusions

@ Negations can follow from a Horn clause KB.
@ The negation of «, written —« is a formula that

@ is true in interpretation / if « is false in /, and
e is false in interpretation / if « is true in /.

e Example:
false < a A b.

KB=4{ a<+c. KB = —c.
b+ c.

Enrico Franconi, 2012 Intelligent Systems - 5.5 3/20



Disjunctive Conclusions

Disjunctions can follow from a Horn clause KB.
The disjunction of o and 3, written a V 3, is
e true in interpretation / if « is true in [ or (3 is true in | (or both
are true in /).
e false in interpretation / if & and 3 are both false in /.

Example:

® ©

(]

false < a A b.
KB=<{ a+c. KB = —c V —d.
b+ d.

It is always possible to find a model for a set of definite clauses.
A set of Horn clauses can be unsatisfiable.

The top-down and the bottom-up proof procedures can be used
to prove inconsistency, by using false as the query: a Horn clause
knowledge base is inconsistent if and only if false can be derived.

®© 6 o

Enrico Franconi, 2012 Intelligent Systems - 5.5 4/20



Reasoning from contradictions

e For many activities it is useful to know that some combination
of assumptions is incompatible. For example:

e it is useful in planning to know that some combination of
actions an agent is trying to do is impossible;

e it is useful in design to know that some combination of
components cannot work together.

@ In a diagnostic application it is useful to be able to prove that
some components working normally is inconsistent with the
observations of the system.

e Consider a system that has a description of how it is supposed
to work and some observations.

e If the system does not work according to its specification, a
diagnostic agent must identify which components could be
faulty.

Enrico Franconi, 2012 Intelligent Systems - 5.5 5/20



Questions and Answers in Horn KBs

@ An assumable is an atom that can be assumed in a proof by
contradiction. A proof by contradiction derives a disjunction of
the negation of the assumables.

@ With a Horn KB and explicit assumables, if the system can
prove a contradiction from some assumptions, it can extract
combinations of assumptions that cannot all be true.

@ A conflict of KB is a set of assumables that, given KB imply
false.

@ A minimal conflict is a conflict such that no strict subset is also
a conflict.

Enrico Franconi, 2012 Intelligent Systems - 5.5 6/20



Conflict Example

Example: If {c,d,e,f,g, h} are the assumables

false < a A b.
a<c.
b+« d.
b <+ e.

KB =

e {c,d} is a conflict
e {c,e} is a conflict

e {c,d, e, h} is a conflict

Enrico Franconi, 2012 Intelligent Systems - 5.5

7/20



Consistency-based diagnosis

e Making assumptions about what is working normally, and
deriving what components could be abnormal, is the basis of
consistency-based diagnosis.

e Suppose a fault is something that is wrong with a system.

e The aim of consistency-based diagnosis is to determine the
possible faults based on a model of the system and observations
of the system.

e By making the absence of faults assumable, conflicts can be
used to prove what is wrong with the system.

Enrico Franconi, 2012 Intelligent Systems - 5.5 8/20



Using Conflicts for Diagnosis

@ Assume that the user is able to observe whether a light is lit or
dark and whether a power outlet is dead or live.

@ A light can't be both lit and dark. An outlet can't be both live
and dead:

false < dark_l & lit_};.
false < dark_bL & lit_b.
false < dead_p; & live_p,.
@ Assume the individual components are working correctly:
assumable ok_I;.

assumable ok_s,.

@ Suppose switches s, s,, and sz are all up:
Up_Sy. UP_Sy. UP_S3.

Enrico Franconi, 2012 Intelligent Systems - 5.5 9/20



Electrical Environment

outside power

cb,;
w
d _@_ circuitd
breaker
cb
swnch
We S
twao-way
::]:;;EE}-— switon Y
/ <3%§> light
2 P>
S _Q ower
Py 8uﬂet
Enrico Franconi, 2012 Intelligent Systems - 5.5

10/20



Representing the Electrical Environment

light_.
light_b.
up_s.
up_s,.

up_ss.

live_outside.

lit_l; < live_wg N ok_I.

live_wy < live_wy A\ up_s, N\ ok_s;.
live_wy < live_w, A\ down_s, N\ ok_s,.
live_wy < live_ws A\ up_s; N\ ok_s;.
live_wy < live_ws A down_s; N\ ok_s;.
lit_l < live_ws N ok_b.

live_wy < live_ws A\ up_s3 N\ ok_ss.
live_py < live_ws.

live_ws < live_ws A ok_cb;.

live_p> < live_wg.

live_wg < live_ws N ok_cb,.

live_ws < live_outside.

Enrico Franconi, 2012 Intelligent Systems - 5.5 11/20



@ If the user has observed /; and k are both dark:
dark,ll. dark,lz.

@ There are two minimal conflicts:
{ok_cby, 0k_s;, 0k s, 0k _l} and
{ok_cby, ok_s3, 0k_h}.
@ You can derive:
—0k_cby V —ok_s; V —ok_s, V —ok_h
—0k_cb, V —0ok_s3 V —ok_b.
@ Either cb; is broken or there is one of six double faults.

Enrico Franconi, 2012 Intelligent Systems - 5.5 12/20



Diagnoses

@ Given the set of all conflicts, a user can determine what may be
wrong with the system being diagnosed.

@ Some of the questions that a user may want to know are
whether all of the conflicts could be accounted for a by a single
fault or a pair of faults.

@ A consistency-based diagnosis is a set of assumables that has
at least one element in each conflict.

@ A minimal diagnosis is a diagnosis such that no subset is also a
diagnosis.

@ Intuitively, one of the minimal diagnoses must hold. A diagnosis
holds if all of its elements are false.

o Example: For the proceeding example there are seven minimal
diagnoses: {ok_cb;}, {ok_s;, 0k_s3}, {ok_si, ok_h},

{ok_sy, ok_s3},. ..

Enrico Franconi, 2012 Intelligent Systems - 5.5 13/20



Recall: top-down consequence finding

To solve the query 7g; A ... A gx:

n

ac:= "yes< q1 N ...\ Qk
repeat

select atom a; from the body of ac;

choose clause C from KB with a; as head;

replace a; in the body of ac by the body of C
until ac is an answer.

Enrico Franconi, 2012 Intelligent Systems - 5.5

14/20



Implementing conflict finding: top down

@ Query is false.
@ Don't select an atom that is assumable.

@ Stop when all of the atoms in the body of the generalised query
are assumable:

e this is a conflict

Enrico Franconi, 2012 Intelligent Systems - 5.5 15/20



Example

false < a.

a< b&c.

b+ d.

b+ e.

c<«f.

c+ g.

e« h&w.

e+ g.

w < f.

assumable d, f, g, h.

Enrico Franconi, 2012 Intelligent Systems - 5.5 16/20



Example

light-11. light-12. live-outside.
live-11 < live-wOQ.
live-w0 < live-wl, up-s2, ok-s2.

live-w0 < live-w2, down-s2, ok-s2.

live-wl < live-w3, up-s1, ok-sl.

live-w2 < live-w3, down-sl, ok-s1.

live-12 < live-w4.

live-w4 <+ live-w3, up-s3, ok-s3.
live-pl < live-w3.

live-w3 < live-wb, ok-cbl.
live-p2 < live-wb.

live-wb < live-wb, ok-cb2.
live-wh <« live-outside.

lit-11 < light-11, live-I1, ok-I1.
lit-12 < light-12, live-12, ok-I12.
false < dark-I1, lit-I1.

false + dark-12, lit-12.

assumable ok-cbl,ok-cb2,0k-s1,- - -.

Enrico Franconi, 2012

{false}

{dark-I1,lit-11}

{lit-11}
{light-I1,live-11, ok-11}
{live-11, ok-I1}
{live-w0, ok-I11}

{live-w1, up-s2, ok-s2, ok-11}

{live-w3, up-sl, ok-sl, up-s2, ok-s2, ok-11}
{live-w5, ok-cbl, up-sl, ok-s1, up-s2, ok-s2,
ok-11}

{live-outside, ok-cbl, up-sl, ok-sl, up-s2,
ok-s2, ok-11}

{ok-cbl, up-sl, ok-s1, up-s2, ok-s2, ok-I1}
{ok-cbl, ok-s1, up-s2, ok-s2, ok-I1}
{ok-cbl, ok-s1, ok-s2, ok-I1}.

Intelligent Systems - 5.5 17/20



Bottom-up Conflict Finding

e Conclusions are pairs (a, A), where a is an atom and A is a set
of assumables that imply a.

e Initially, conclusion set C = {(a, {a}) : a is assumable}.

@ If thereis a rule h< b; A ... A b, such that
for each b; there is some A; such that (b;, A;) € C, then
(h Ay U...UA,) can be added to C.

e If (a, A1) and (a, A;) are in C, where A; C A, then (a, Ay) can
be removed from C.

o If (false, A1) and (a, Ay) are in C, where A; C Ay, then (a, Ay)
can be removed from C.

Enrico Franconi, 2012 Intelligent Systems - 5.5 18/20



Bottom-up Conflict Finding Code

C :={(a,{a}) : ais assumable };
repeat
select clause "h < by A ... A by" in T such that
(bi, A;) € C for all i and
there is no (h, A’) € C or (false, A') € C
such that A C Awhere A=A U...UA,;
C:=CU{(h A}
Remove any elements of C that can now be pruned;
until no more selections are possible

Enrico Franconi, 2012 Intelligent Systems - 5.5

19/20



Example

light-11. light-12. live-outside.
live-11 < live-wOQ.
live-w0 < live-wl, up-s2, ok-s2.

live-w0 < live-w2, down-s2, ok-s2.

live-wl < live-w3, up-s1, ok-sl.

live-w2 < live-w3, down-sl, ok-s1.

live-12 < live-w4.

live-w4 <+ live-w3, up-s3, ok-s3.
live-pl < live-w3.

live-w3 < live-wb, ok-cbl.
live-p2 < live-wb.

live-wb < live-wb, ok-cb2.
live-wh <« live-outside.

lit-11 < light-11, live-I1, ok-I1.
lit-12 < light-12, live-12, ok-I12.
false < dark-I1, lit-I1.

false + dark-12, lit-12.

assumable ok-cbl,ok-cb2,0k-s1,- - -.

Enrico Franconi, 2012

{{ok-11,{ok-11}),(ok-12,{ok-12}), - - }.

live-outside, {})
connected-to-w5,outside,{ })
live-w5,{})
connected-to-w3,w5,{ok-cb1})
live-w3,{ok-cb1})

up-s3,{})
connected-to-w4,w3,{ok-s3})
live-w4,{ok-cb1,0k-s3})
connected-to-12,w4,{})
live-12,{ok-cb1,0k-s3})
light-12,{})
lit-12,{ok-cb1,0k-s3,0k-12})
dark-12,{})
false,{ok-cb1,0k-s3,0k-12}).

Thus, the knowledge base entails:
—ok-cbl A —ok-s3 A —ok-I12.

o~~~ o~~~ o~~~ o~ o~~~

Intelligent Systems - 5.5

20/20



