
Integrity Constraints

In the electrical domain, what if we predict that a light should
be on, but observe that it isn’t?
What can we conclude?

We will expand the definite clause language to include
integrity constraints which are rules that imply false, where
false is an atom that is false in all interpretations.

This will allow us to make conclusions from a contradiction.

A definite clause knowledge base is always consistent. This
won’t be true with the rules that imply false.

Enrico Franconi, 2012 Intelligent Systems - 5.5 1/20



Horn clauses

An integrity constraint is a clause of the form

false ← a1 ∧ . . . ∧ ak

where the ai are atoms and false is a special atom that is false in
all interpretations.

A Horn clause is either a definite clause or an integrity
constraint.

Enrico Franconi, 2012 Intelligent Systems - 5.5 2/20



Negative Conclusions

Negations can follow from a Horn clause KB.

The negation of α, written ¬α is a formula that

is true in interpretation I if α is false in I , and
is false in interpretation I if α is true in I .

Example:

KB =


false ← a ∧ b.
a← c .
b ← c .

 KB |= ¬c .

Enrico Franconi, 2012 Intelligent Systems - 5.5 3/20



Disjunctive Conclusions

Disjunctions can follow from a Horn clause KB.
The disjunction of α and β, written α ∨ β, is

true in interpretation I if α is true in I or β is true in I (or both
are true in I ).
false in interpretation I if α and β are both false in I .

Example:

KB =


false ← a ∧ b.
a← c .
b ← d .

 KB |= ¬c ∨ ¬d .

It is always possible to find a model for a set of definite clauses.

A set of Horn clauses can be unsatisfiable.

The top-down and the bottom-up proof procedures can be used
to prove inconsistency, by using false as the query: a Horn clause
knowledge base is inconsistent if and only if false can be derived.

Enrico Franconi, 2012 Intelligent Systems - 5.5 4/20



Reasoning from contradictions

For many activities it is useful to know that some combination
of assumptions is incompatible. For example:

it is useful in planning to know that some combination of
actions an agent is trying to do is impossible;
it is useful in design to know that some combination of
components cannot work together.

In a diagnostic application it is useful to be able to prove that
some components working normally is inconsistent with the
observations of the system.

Consider a system that has a description of how it is supposed
to work and some observations.
If the system does not work according to its specification, a
diagnostic agent must identify which components could be
faulty.

Enrico Franconi, 2012 Intelligent Systems - 5.5 5/20



Questions and Answers in Horn KBs

An assumable is an atom that can be assumed in a proof by
contradiction. A proof by contradiction derives a disjunction of
the negation of the assumables.

With a Horn KB and explicit assumables, if the system can
prove a contradiction from some assumptions, it can extract
combinations of assumptions that cannot all be true.

A conflict of KB is a set of assumables that, given KB imply
false.

A minimal conflict is a conflict such that no strict subset is also
a conflict.

Enrico Franconi, 2012 Intelligent Systems - 5.5 6/20



Conflict Example

Example: If {c , d , e, f , g , h} are the assumables

KB =


false ← a ∧ b.
a← c .
b ← d .
b ← e.


{c , d} is a conflict

{c , e} is a conflict

{c , d , e, h} is a conflict

Enrico Franconi, 2012 Intelligent Systems - 5.5 7/20



Consistency-based diagnosis

Making assumptions about what is working normally, and
deriving what components could be abnormal, is the basis of
consistency-based diagnosis.

Suppose a fault is something that is wrong with a system.
The aim of consistency-based diagnosis is to determine the
possible faults based on a model of the system and observations
of the system.
By making the absence of faults assumable, conflicts can be
used to prove what is wrong with the system.

Enrico Franconi, 2012 Intelligent Systems - 5.5 8/20



Using Conflicts for Diagnosis

Assume that the user is able to observe whether a light is lit or
dark and whether a power outlet is dead or live.

A light can’t be both lit and dark. An outlet can’t be both live
and dead:

false ← dark l1 & lit l1.

false ← dark l2 & lit l2.

false ← dead p1 & live p2.

Assume the individual components are working correctly:

assumable ok l1.

assumable ok s2.

. . .

Suppose switches s1, s2, and s3 are all up:
up s1. up s2. up s3.

Enrico Franconi, 2012 Intelligent Systems - 5.5 9/20



Electrical Environment

light

two-way
switch

switch

off

on

power
outlet

circuit�
breaker

outside power

�

l1

l2

w1

w0

w2

w4

w3

w6

w5

p2

p1

cb2

cb1
s1

s2
s3

Enrico Franconi, 2012 Intelligent Systems - 5.5 10/20



Representing the Electrical Environment

light l1.

light l2.

up s1.

up s2.

up s3.

live outside.

lit l1 ← live w0 ∧ ok l1.

live w0 ← live w1 ∧ up s2 ∧ ok s2.

live w0 ← live w2 ∧ down s2 ∧ ok s2.

live w1 ← live w3 ∧ up s1 ∧ ok s1.

live w2 ← live w3 ∧ down s1 ∧ ok s1.

lit l2 ← live w4 ∧ ok l2.

live w4 ← live w3 ∧ up s3 ∧ ok s3.

live p1 ← live w3.

live w3 ← live w5 ∧ ok cb1.

live p2 ← live w6.

live w6 ← live w5 ∧ ok cb2.

live w5 ← live outside.
Enrico Franconi, 2012 Intelligent Systems - 5.5 11/20



If the user has observed l1 and l2 are both dark:

dark l1. dark l2.

There are two minimal conflicts:

{ok cb1, ok s1, ok s2, ok l1} and

{ok cb1, ok s3, ok l2}.
You can derive:

¬ok cb1 ∨ ¬ok s1 ∨ ¬ok s2 ∨ ¬ok l1

¬ok cb1 ∨ ¬ok s3 ∨ ¬ok l2.

Either cb1 is broken or there is one of six double faults.

Enrico Franconi, 2012 Intelligent Systems - 5.5 12/20



Diagnoses

Given the set of all conflicts, a user can determine what may be
wrong with the system being diagnosed.

Some of the questions that a user may want to know are
whether all of the conflicts could be accounted for a by a single
fault or a pair of faults.

A consistency-based diagnosis is a set of assumables that has
at least one element in each conflict.

A minimal diagnosis is a diagnosis such that no subset is also a
diagnosis.

Intuitively, one of the minimal diagnoses must hold. A diagnosis
holds if all of its elements are false.

Example: For the proceeding example there are seven minimal
diagnoses: {ok cb1}, {ok s1, ok s3}, {ok s1, ok l2},
{ok s2, ok s3},. . .

Enrico Franconi, 2012 Intelligent Systems - 5.5 13/20



Recall: top-down consequence finding

To solve the query ?q1 ∧ . . . ∧ qk :

ac := “yes ← q1 ∧ . . . ∧ qk”
repeat

select atom ai from the body of ac ;
choose clause C from KB with ai as head;
replace ai in the body of ac by the body of C

until ac is an answer.

Enrico Franconi, 2012 Intelligent Systems - 5.5 14/20



Implementing conflict finding: top down

Query is false.

Don’t select an atom that is assumable.

Stop when all of the atoms in the body of the generalised query
are assumable:

this is a conflict

Enrico Franconi, 2012 Intelligent Systems - 5.5 15/20



Example

false ← a.

a← b & c .

b ← d .

b ← e.

c ← f .

c ← g .

e ← h & w .

e ← g .

w ← f .

assumable d , f , g , h.

Enrico Franconi, 2012 Intelligent Systems - 5.5 16/20



Example

light-l1. light-l2. live-outside.
live-l1 ← live-w0.
live-w0 ← live-w1, up-s2, ok-s2.
live-w0 ← live-w2, down-s2, ok-s2.
live-w1 ← live-w3, up-s1, ok-s1.
live-w2 ← live-w3, down-s1, ok-s1.
live-l2 ← live-w4.
live-w4 ← live-w3, up-s3, ok-s3.
live-p1 ← live-w3.
live-w3 ← live-w5, ok-cb1.
live-p2 ← live-w6.
live-w6 ← live-w5, ok-cb2.
live-w5 ← live-outside.
lit-l1 ← light-l1, live-l1, ok-l1.
lit-l2 ← light-l2, live-l2, ok-l2.
false ← dark-l1, lit-l1.
false ← dark-l2, lit-l2.
assumable ok-cb1,ok-cb2,ok-s1,· · · .

{false}
{dark-l1,lit-l1}
{lit-l1}
{light-l1,live-l1, ok-l1}
{live-l1, ok-l1}
{live-w0, ok-l1}
{live-w1, up-s2, ok-s2, ok-l1}
{live-w3, up-s1, ok-s1, up-s2, ok-s2, ok-l1}
{live-w5, ok-cb1, up-s1, ok-s1, up-s2, ok-s2,
ok-l1}
{live-outside, ok-cb1, up-s1, ok-s1, up-s2,
ok-s2, ok-l1}
{ok-cb1, up-s1, ok-s1, up-s2, ok-s2, ok-l1}
{ok-cb1, ok-s1, up-s2, ok-s2, ok-l1}
{ok-cb1, ok-s1, ok-s2, ok-l1}.

Enrico Franconi, 2012 Intelligent Systems - 5.5 17/20



Bottom-up Conflict Finding

Conclusions are pairs 〈a,A〉, where a is an atom and A is a set
of assumables that imply a.

Initially, conclusion set C = {〈a, {a}〉 : a is assumable}.
If there is a rule h← b1 ∧ . . . ∧ bm such that
for each bi there is some Ai such that 〈bi ,Ai〉 ∈ C , then
〈h,A1 ∪ . . . ∪ Am〉 can be added to C .

If 〈a,A1〉 and 〈a,A2〉 are in C , where A1 ⊂ A2, then 〈a,A2〉 can
be removed from C .

If 〈false,A1〉 and 〈a,A2〉 are in C , where A1 ⊆ A2, then 〈a,A2〉
can be removed from C .

Enrico Franconi, 2012 Intelligent Systems - 5.5 18/20



Bottom-up Conflict Finding Code

C := {〈a, {a}〉 : a is assumable };
repeat

select clause “h← b1 ∧ . . . ∧ bm” in T such that
〈bi ,Ai〉 ∈ C for all i and
there is no 〈h,A′〉 ∈ C or 〈false,A′〉 ∈ C

such that A′ ⊆ A where A = A1 ∪ . . . ∪ Am;
C := C ∪ {〈h,A〉}
Remove any elements of C that can now be pruned;

until no more selections are possible

Enrico Franconi, 2012 Intelligent Systems - 5.5 19/20



Example

light-l1. light-l2. live-outside.
live-l1 ← live-w0.
live-w0 ← live-w1, up-s2, ok-s2.
live-w0 ← live-w2, down-s2, ok-s2.
live-w1 ← live-w3, up-s1, ok-s1.
live-w2 ← live-w3, down-s1, ok-s1.
live-l2 ← live-w4.
live-w4 ← live-w3, up-s3, ok-s3.
live-p1 ← live-w3.
live-w3 ← live-w5, ok-cb1.
live-p2 ← live-w6.
live-w6 ← live-w5, ok-cb2.
live-w5 ← live-outside.
lit-l1 ← light-l1, live-l1, ok-l1.
lit-l2 ← light-l2, live-l2, ok-l2.
false ← dark-l1, lit-l1.
false ← dark-l2, lit-l2.
assumable ok-cb1,ok-cb2,ok-s1,· · · .

{〈ok-l1,{ok-l1}〉,〈ok-l2,{ok-l2}〉, · · · }.
〈live-outside,{}〉
〈connected-to-w5,outside,{}〉
〈live-w5,{}〉
〈connected-to-w3,w5,{ok-cb1}〉
〈live-w3,{ok-cb1}〉
〈up-s3,{}〉
〈connected-to-w4,w3,{ok-s3}〉
〈live-w4,{ok-cb1,ok-s3}〉
〈connected-to-l2,w4,{}〉
〈live-l2,{ok-cb1,ok-s3}〉
〈light-l2,{}〉
〈lit-l2,{ok-cb1,ok-s3,ok-l2}〉
〈dark-l2,{}〉
〈false,{ok-cb1,ok-s3,ok-l2}〉.
Thus, the knowledge base entails:
¬ok-cb1 ∧ ¬ok-s3 ∧ ¬ok-l2.

Enrico Franconi, 2012 Intelligent Systems - 5.5 20/20


