
Top-down Definite Clause Proof Procedure

Idea: search backward from a query to determine if it is a logical
consequence of KB.
An answer clause is of the form:

yes ← a1 ∧ a2 ∧ . . . ∧ am

The SLD Resolution of this answer clause on atom ai with the clause:

ai ← b1 ∧ . . . ∧ bp

is the answer clause

yes ← a1∧· · ·∧ai−1 ∧ b1∧ · · · ∧bp ∧ ai+1∧ · · · ∧am.

Enrico Franconi Intelligent Systems - 5.3 1/13



Derivations

An answer is an answer clause with m = 0. That is, it is the answer
clause yes ← .

A derivation of query “?q1 ∧ . . . ∧ qk” from KB is a sequence of
answer clauses γ0, γ1, . . . , γn such that

γ0 is the answer clause yes ← q1 ∧ . . . ∧ qk ,
γi is obtained by resolving γi−1 with a clause in KB, and
γn is an answer.

Enrico Franconi Intelligent Systems - 5.3 2/13



Top-down definite clause interpreter

To solve the query ?q1 ∧ . . . ∧ qk :

ac := “yes ← q1 ∧ . . . ∧ qk”
repeat

select atom ai from the body of ac;
choose clause C from KB with ai as head;
replace ai in the body of ac by the body of C

until ac is an answer.

Enrico Franconi Intelligent Systems - 5.3 3/13



Nondeterministic Choice

Algorithms may be non-deterministic:
there are choices in the program that are left unspecified.

Don’t-care nondeterminism If one selection doesn’t lead to a
solution, there is no point trying other alternatives. (select)
Example: resource allocation, where a number of requests occur for a
limited number of resources, and a scheduling algorithm has to select
who gets which resource at each time.
Correctness is not affected by the selection, but efficiency and
termination may be.

Don’t-know nondeterminism If one choice doesn’t lead to a solution,
other choices may. (choose)
An oracle: it specifies, at each point, which choice will lead to a
solution. Because our agent does not have such an oracle, it has to
search through the space of alternate choices.

Enrico Franconi Intelligent Systems - 5.3 4/13



NP problems

Don’t-know non-determinism plays a large role in computational
complexity theory.

The class of P problems contains the problems solvable with time
complexity polynomial in the size of the problem.

The class of NP problems contains the problems that could be solved
in polynomial time with an oracle that chooses the correct value at
each time or, equivalently, if a solution is verifiable in polynomial time.

It is widely conjectured that P 6= NP, which would mean that no such
oracle can exist.

One great result of complexity theory is that the hardest problems in
the NP class of problems are all equally complex; if one can be solved
in polynomial time, they all can. These problems are NP-complete. A
problem is NP-hard if it is at least as hard as an NP-complete
problem.

Enrico Franconi Intelligent Systems - 5.3 5/13



Search and non-determinism

We consistently use the term select for don’t-care non-determinism
and choose for don’t-know non-determinism.

In a non-deterministic procedure, we assume that an oracle makes an
appropriate choice at each time. Thus, a choose statement will result
in a choice that will led to success, or will fail if there are no such
choices.

A non-deterministic procedure may have multiple answers, where
there are multiple choices that succeed, and will fail if there are no
applicable choices.

The oracle is implemented by search.

Enrico Franconi Intelligent Systems - 5.3 6/13



Top-down definite clause interpreter

To solve the query ?q1 ∧ . . . ∧ qk :

ac := “yes ← q1 ∧ . . . ∧ qk”
repeat

select atom ai from the body of ac;
choose clause C from KB with ai as head;
replace ai in the body of ac by the body of C

until ac is an answer.

The best selection strategy is to select the atom that is most likely to fail.

Enrico Franconi Intelligent Systems - 5.3 7/13



Example: successful derivation

a← b ∧ c . a← e ∧ f . b ← f ∧ k .
c ← e. d ← k. e.
f ← j ∧ e. f ← c . j ← c .

Query: ?a

γ0 : yes ← a γ4 : yes ← e
γ1 : yes ← e ∧ f γ5 : yes ←
γ2 : yes ← f
γ3 : yes ← c

Enrico Franconi Intelligent Systems - 5.3 8/13



Same example: failing derivation

a← b ∧ c . a← e ∧ f . b ← f ∧ k .
c ← e. d ← k. e.
f ← j ∧ e. f ← c . j ← c .

Query: ?a

γ0 : yes ← a γ4 : yes ← e ∧ k ∧ c
γ1 : yes ← b ∧ c γ5 : yes ← k ∧ c
γ2 : yes ← f ∧ k ∧ c
γ3 : yes ← c ∧ k ∧ c

Enrico Franconi Intelligent Systems - 5.3 9/13



Top-down vs bottom-up comparison

When the top-down procedure has derived the answer, the rules used
in the derivation can be used in a bottom-up proof procedure to infer
the query.

Similarly, a bottom-up proof of an atom can be used to construct a
corresponding top-down derivation.

This equivalence can be used to show the soundness and
completeness of the top-down proof procedure.

As defined, the top-down proof procedure may spend extra time
re-proving the same atom multiple times, whereas the bottom-up
procedure proves each atom only once. However, the bottom-up
procedure proves every atom, but the top-down procedure proves only
atoms that are relevant to the query.

Enrico Franconi Intelligent Systems - 5.3 10/13



Search

The non-deterministic top-down algorithm together with a selection
strategy induces a search graph, which is a tree.

Each node in the search graph represents an answer clause.

The neighbors of a node “yes ← a1 ∧ . . . ∧ ak”, where ai is the
selected atom, represent all of the possible answer clauses obtained by
resolving on ai .

There is a neighbor for each definite clause whose head is ai .

The goal nodes of the search are of the form yes ← .

Enrico Franconi Intelligent Systems - 5.3 11/13



Search Graph for SLD Resolution

a← b ∧ c . a← g .
a← h. b ← j .
b ← k . d ← m.
d ← p. f ← m.
f ← p. g ← m.
g ← f . k ← m.
h← m. p.
?a ∧ d

yes←a^d

yes←j^c^d
yes←k^c^d

yes←m^c^d

yes←g^dyes←b^c^d

yes←m^d

yes←m^d

yes←f^d

yes←p^d

yes←d

yes←m yes←p

yes←h^d

yes←m^d

yes←

Enrico Franconi Intelligent Systems - 5.3 12/13



Search

For most problems, the search graph is not given statically, because
this would entail anticipating every possible query. More realistically,
the search graph is dynamically constructed as needed. All that is
required is a way to generate the neighbors of a node.

Selecting an atom in the answer clause defines a set of neighbors. A
neighbor exists for each rule with the selected atom as its head.

Any of the search methods introduced before can be used to search
the search space.

Because we are only interested in whether the query is a logical
consequence, we just require a path to a goal node; an optimal path
is not necessary.

There is a different search space for each query. A different selection
of which atom to resolve at each step will result in a different search
space.

Enrico Franconi Intelligent Systems - 5.3 13/13


