## Propositions

- An interpretation is an assignment of values to all variables.
- A model is an interpretation that satisfies the constraints.
- Often we don't want to just find a model, but want to know what is true in all models.
- A proposition is statement that is true or false in each interpretation.


## Why propositions?

- Specifying logical formulae is often more natural than filling in tables
- It is easier to check correctness and debug formulae than tables
- We can exploit the Boolean nature for efficient reasoning
- We need a language for asking queries (of what follows in all models) that may be more complicated than asking for the value of a variable
- It is easy to incrementally add formulae
- It can be extended to infinitely many variables with infinite domains (using logical quantification)


## Human's view of semantics

Step 1 Begin with a task domain.
Step 2 Choose atoms in the computer to denote propositions. These atoms have meaning to the KB designer.
Step 3 Tell the system knowledge about the domain.
Step 4 Ask the system questions.

- the system can tell you whether the question is a logical consequence.
- You can interpret the answer with the meaning associated with the atoms.


## Role of semantics

## In computer:

```
light1_broken \(\leftarrow\) sw_up
\(\wedge\) power ^unlit_light1.
sw_up.
power \(\leftarrow\) lit_light2.
unlit_light1.
lit_light2.
```


## In user's mind:

- light1_broken: light \#1 is broken
- sw_up: switch is up
- power: there is power in the building
- unlit_light1: light \#1 isn't lit
- lit_light2: light \#2 is lit

Conclusion: light1_broken

- The computer doesn't know the meaning of the symbols
- The user can interpret the symbol using their meaning


## Simple language: propositional definite clauses

- An atom is a symbol starting with a lower case letter
- A body is an atom or is of the form $b_{1} \wedge b_{2}$ where $b_{1}$ and $b_{2}$ are bodies.
- A definite clause is an atom or is a rule of the form $h \leftarrow b$ where $h$ is an atom and $b$ is a body.
- A knowledge base is a set of definite clauses


## Semantics

- An interpretation I assigns a truth value to each atom.
- A body $b_{1} \wedge b_{2}$ is true in $I$ if $b_{1}$ is true in $I$ and $b_{2}$ is true in $I$.
- A rule $h \leftarrow b$ is false in $I$ if $b$ is true in $I$ and $h$ is false in $I$. The rule is true otherwise.
- A knowledge base $K B$ is true in $I$ if and only if every clause in $K B$ is true in $l$.


## Models and Logical Consequence

- A model of a set of clauses is an interpretation in which all the clauses are true.
- If $K B$ is a set of clauses and $g$ is a conjunction of atoms, $g$ is a logical consequence of $K B$, written $K B \models g$, if $g$ is true in every model of $K B$.
- That is, $K B \models g$ if there is no interpretation in which $K B$ is true and $g$ is false.


## Simple Example

$$
K B=\left\{\begin{array}{l}
p \leftarrow q . \\
q . \\
r \leftarrow s
\end{array}\right.
$$

|  | $p$ | $q$ | $r$ | $s$ | model? |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $I_{1}$ | true | true | true | true |  |
| $I_{2}$ | false | false | false | false |  |
| $I_{3}$ | true | true | false | false |  |
| $I_{4}$ | true | true | true | false |  |
| $I_{5}$ | true | true | false | true |  |

## Simple Example

$$
K B=\left\{\begin{array}{l}
p \leftarrow q \\
q . \\
r \leftarrow s
\end{array}\right.
$$

|  | $p$ | $q$ | $r$ | $s$ |  |
| :---: | :---: | :---: | :---: | :---: | :--- |
| model? |  |  |  |  |  |
| $I_{1}$ | true | true | true | true |  |
| is a model of $K B$ |  |  |  |  |  |
| $I_{2}$ | false | false | false | false |  |
| not a model of $K B$ |  |  |  |  |  |
| $I_{3}$ | true | true | false | false | is a model of $K B$ |
| $I_{4}$ | true | true | true | false | is a model of $K B$ |
| $I_{5}$ | true | true | false | true | not a model of $K B$ |

## Simple Example

$$
K B=\left\{\begin{array}{l}
p \leftarrow q \\
q . \\
r \leftarrow s
\end{array}\right.
$$

|  | $p$ | $q$ | $r$ | $s$ |  |
| :---: | :---: | :---: | :---: | :---: | :--- |
| model? |  |  |  |  |  |
| $I_{1}$ | true | true | true | true |  |
| is a model of $K B$ |  |  |  |  |  |
| $I_{2}$ | false | false | false | false |  |
| not a model of $K B$ |  |  |  |  |  |
| $I_{3}$ | true | true | false | false | is a model of $K B$ |
| $I_{4}$ | true | true | true | false | is a model of $K B$ |
| $I_{5}$ | true | true | false | true | not a model of $K B$ |

Which of $p, q, r, q$ logically follow from KB ?

## Simple Example

$$
K B=\left\{\begin{array}{l}
p \leftarrow q \\
q \\
r \leftarrow s
\end{array}\right.
$$

|  | $p$ | $q$ | $r$ | $s$ |  |
| :---: | :---: | :---: | :---: | :---: | :--- |
| model? |  |  |  |  |  |
| $I_{1}$ | true | true | true | true |  |
| is a model of $K B$ |  |  |  |  |  |
| $I_{2}$ | false | false | false | false |  |
| not a model of $K B$ |  |  |  |  |  |
| $I_{3}$ | true | true | false | false | is a model of $K B$ |
| $I_{4}$ | true | true | true | false | is a model of $K B$ |
| $I_{5}$ | true | true | false | true | not a model of $K B$ |

Which of $p, q, r, q$ logically follow from KB ?
$K B \models p, K B \models q, K B \not \vDash r, K B \not \vDash s$

## User's view of Semantics

(1) Choose a task domain: intended interpretation.
(2) Associate an atom with each proposition you want to represent.
(3) Tell the system clauses that are true in the intended interpretation: axiomatizing the domain.
(9) Ask questions about the intended interpretation.
(0) If $K B \models g$, then $g$ must be true in the intended interpretation.
(0) Users can interpret the answer using their intended interpretation of the symbols.

## Computer's view of semantics

- The computer doesn't have access to the intended interpretation.
- All it knows is the knowledge base.
- The computer can determine if a formula is a logical consequence of KB.
- If $K B \models g$ then $g$ must be true in the intended interpretation.
- If $K B \not \vDash g$ then there is a model of $K B$ in which $g$ is false. This could be the intended interpretation.


## Electrical Environment



