Propositions

- An interpretation is an assignment of values to all variables.
- A model is an interpretation that satisfies the constraints.
- Often we don't want to just find a model, but want to know what is true in all models.
- A proposition is statement that is true or false in each interpretation.

Why propositions?

- Specifying logical formulae is often more natural than filling in tables
- It is easier to check correctness and debug formulae than tables
- We can exploit the Boolean nature for efficient reasoning
- We need a language for asking queries (of what follows in all models) that may be more complicated than asking for the value of a variable
- It is easy to incrementally add formulae
- It can be extended to infinitely many variables with infinite domains (using logical quantification)

Human's view of semantics

- Step 1 Begin with a task domain.
- Step 2 Choose atoms in the computer to denote propositions. These atoms have meaning to the KB designer.
- Step 3 Tell the system knowledge about the domain.
- Step 4 Ask the system questions.
- the system can tell you whether the question is a logical consequence.
- You can interpret the answer with the meaning associated with the atoms.

Role of semantics

In computer:

```
light1\_broken \leftarrow sw\_up
\land power \land unlit\_light1.
sw\_up.
power \leftarrow lit\_light2.
unlit\_light1.
lit\_light2.
```

In user's mind:

- *light1_broken*: light #1 is broken
- sw_up: switch is up
- power: there is power in the building
- unlit_light1: light #1 isn't lit
- lit_light2: light #2 is lit

Conclusion: *light1_broken*

- The computer doesn't know the meaning of the symbols
- The user can interpret the symbol using their meaning

Simple language: propositional definite clauses

- An atom is a symbol starting with a lower case letter
- A body is an atom or is of the form $b_1 \wedge b_2$ where b_1 and b_2 are bodies.
- A definite clause is an atom or is a rule of the form $h \leftarrow b$ where h is an atom and b is a body.
- A knowledge base is a set of definite clauses

Semantics

- An interpretation I assigns a truth value to each atom.
- A body $b_1 \wedge b_2$ is true in I if b_1 is true in I and b_2 is true in I.
- A rule $h \leftarrow b$ is false in I if b is true in I and h is false in I. The rule is true otherwise.
- A knowledge base KB is true in I if and only if every clause in KB is true in I.

Models and Logical Consequence

- A model of a set of clauses is an interpretation in which all the clauses are true.
- If KB is a set of clauses and g is a conjunction of atoms, g is a logical consequence of KB, written $KB \models g$, if g is true in every model of KB.
- That is, $KB \models g$ if there is no interpretation in which KB is *true* and g is *false*.

$$KB = \left\{ egin{array}{l} p \leftarrow q. \\ q. \\ r \leftarrow s. \end{array} \right.$$

	p	q	r	S
I_1	true	true	true	true
I_2	false	false	false	false
I_3	true	true	false	false
I_4	true	true	true	false
<i>I</i> ₅	true	true	false	true

model?

$$KB = \left\{ egin{array}{l} p \leftarrow q. \\ q. \\ r \leftarrow s. \end{array} \right.$$

	p	q	r	S
I_1	true	true	true	true
I_2	false	false	false	false
I_3	true	true	false	false
I_4	true	true	true	false
<i>I</i> ₅	true	true	false	true

model?

is a model of *KB* not a model of *KB* is a model of *KB* is a model of *KB* not a model of *KB*

$$KB = \left\{ egin{array}{l} p \leftarrow q. \\ q. \\ r \leftarrow s. \end{array} \right.$$

	p	q	r	S	model?
	true				is a model of <i>KB</i>
I_2	false	false	false	false	not a model of KB
I_3	true	true	false	false	is a model of <i>KB</i>
	true				is a model of <i>KB</i>
<i>I</i> ₅	true	true	false	true	not a model of KB

Which of p, q, r, q logically follow from KB?

$$KB = \left\{ egin{array}{l} p \leftarrow q. \\ q. \\ r \leftarrow s. \end{array} \right.$$

	p	q	r	S	model?
I_1	true	true	true	true	is a model of <i>KB</i>
I_2	false	false	false	false	not a model of KB
	true				is a model of <i>KB</i>
	true				is a model of <i>KB</i>
I_5	true	true	false	true	not a model of <i>KB</i>

Which of p, q, r, q logically follow from KB? $KB \models p$, $KB \models q$, $KB \not\models r$, $KB \not\models s$

User's view of Semantics

- Choose a task domain: intended interpretation.
- ② Associate an atom with each proposition you want to represent.
- Tell the system clauses that are true in the intended interpretation: axiomatizing the domain.
- 4 Ask questions about the intended interpretation.
- **1** If $KB \models g$, then g must be true in the intended interpretation.
- Users can interpret the answer using their intended interpretation of the symbols.

Computer's view of semantics

- The computer doesn't have access to the intended interpretation.
- All it knows is the knowledge base.
- The computer can determine if a formula is a logical consequence of KB.
- If $KB \models g$ then g must be true in the intended interpretation.
- If $KB \not\models g$ then there is a model of KB in which g is false. This could be the intended interpretation.

Electrical Environment

$light_{-}l_{1}$.	$lit_{-}l_{1} \leftarrow live_{-}w_{0} \wedge ok_{-}l_{1}$
$light_{-}l_{2}$.	$live_w_0 \leftarrow live_w_1 \wedge up_s_2$.
$down_{-}s_{1}$.	$live_w_0 \leftarrow live_w_2 \land down_s_2$.
up_ s ₂.	$live_w_1 \leftarrow live_w_3 \land up_s_1.$
up_s_3 .	$live_w_2 \leftarrow live_w_3 \land down_s_1.$
ok_l1.	$lit_{-}l_{2} \leftarrow live_{-}w_{4} \wedge ok_{-}l_{2}.$
ok_h.	$live_w_4 \leftarrow live_w_3 \wedge up_s_3$.
ok_cb ₁ .	$live_p_1 \leftarrow live_w_3$.
ok_cb_1 .	$live_w_3 \leftarrow live_w_5 \land ok_cb_1$.
live outside.	$live_p_2 \leftarrow live_w_6$.
iive_outsiae.	$live_w_6 \leftarrow live_w_5 \land ok_cb_2.$
	$live_w_5 \leftarrow live_outside$.
	nvc_vv5 \ nvc_outside.