Agent Architectures

You don’t need to implement an intelligent agent as:

I Perception I*I Reasoning I*

as three independent modules, each feeding into the the next.

@ It's too slow.

@ High-level strategic reasoning takes more time than the reaction
time needed to avoid obstacles.

@ The output of the perception depends on what you will do with
it.

Enrico Franconi, 2012 Intelligent Systems - 2.2 1/13

Hierarchical Control

@ A better architecture is a hierarchy of controllers.

@ Each controller sees the controllers below it as a virtual body
from which it gets percepts and sends commands.

@ The lower-level controllers can

e run much faster, and react to the world more quickly
e deliver a simpler view of the world to the higher-level controllers.

Enrico Franconi, 2012 Intelligent Systems - 2.2 2/13

Hierarchical Robotic System Architecture

L. high-level high-level
percepts commands

ﬁ H previous next
=>
7 . state state
Agent low-level |OW'|eV8|d
L - commands
| Environment | percepts
Enrico Franconi, 2012 Intelligent Systems - 2.2

3/13

Inputs/Outputs of layers

@ There are three types of inputs to each layer at each time:
o the features that come from the belief state, which are referred
to as the remembered or previous values of these features;
e the features representing the percepts from the layer below in
the hierarchy; and
o the features representing the commands from the layer above in
the hierarchy.

@ There are three types of outputs from each layer at each time:
e the higher-level percepts for the layer above,
o the lower-level commands for the layer below, and
e the next values for the belief-state features.
@ An implementation of a layer specifies how the outputs of a layer
are a of its inputs.

Enrico Franconi, 2012 Intelligent Systems - 2.2 4/13

Example: delivery robot

@ The robot has three actions: go straight, go right, go left.
(Its velocity doesn't change).

@ It can be given a plan consisting of sequence of named
locations for the robot to go to in turn.

@ The robot must avoid obstacles.

@ It has a single whisker sensor pointing forward and to the right.
The robot can detect if the whisker hits an object. The robot
knows where it is.

@ The obstacles and locations can be moved dynamically.
Obstacles and new locations can be created dynamically.

Enrico Franconi, 2012 Intelligent Systems - 2.2 5/13

A Decomposition of the Delivery Robot

Iplan
DELIVERY ROBOT

— —> f0_do
follow plan goal_pos

arrivedT) goal_pos

go to location &
avoid obstacles

A
robot_pos
_ compass steer
whisker_sensor v

steer robot & report
obstacles & position

\ 2
environment

Enrico Franconi, 2012 Intelligent Systems - 2.2 6/13

Top Layer

@ The top layer takes in a plan to execute. The plan is a list of
named locations to visit in order.

@ The locations are selected in order. Each selected location
becomes the current target.

@ This layer determines the x-y coordinates of the target. These
coordinates are the target position for the lower level.

@ The upper level knows about the names of locations, but the
lower levels only know about coordinates.

@ The top layer maintains a belief state consisting of a list of
names of locations that the robot still needs to visit and the
coordinates of the current target.

@ It issues commands to the middle layer in terms of the
coordinates of the current target.

Enrico Franconi, 2012 Intelligent Systems - 2.2 7/13

Middle Layer

@ |t tries to keep traveling toward the current target position,
avoiding obstacles.

@ The target position is obtained from the top layer.

@ When the middle layer has arrived at the target position, it
signals to the top layer that it has achieved the target.

@ When notified, the top layer then changes the target position to
the coordinates of the next location on the plan.

@ The middle layer uses a simple strategy of trying to head toward
the target unless it is blocked, in which case it turns left.

@ The middle layer is built on a lower layer that provides a simple
view of the robot: it takes in steering commands and reports the
robot’s position, orientation, and whether the sensor is on or off.

Enrico Franconi, 2012 Intelligent Systems - 2.2 8/13

Code for the Middle Layer of the Delivery Robot

if whisker_sensor = on
then steer = left

else if straight_ahead(robot_pos, robot _dir, current_goal_pos)
then steer = straight

else if left_of (robot_position, robot_dir, current_goal _pos)
then steer = left

else steer = right

arrived = distance(previous_goal_pos, robot_pos)
< threshold

Enrico Franconi, 2012 Intelligent Systems - 2.2 9/13

Code for the Top Layer of the Delivery Robot

The top layer has two belief state variables:
@ to_do is the list of all pending locations

@ goal_pos is the current goal position

if arrived

then goal_pos = coordinates(head(to_do")).
if arrived

then to_do = tail(to_do’).

Here to_do’ is the previous value for the to_do feature.

Enrico Franconi, 2012 Intelligent Systems - 2.2

10/13

Simulation of the Robot

60 : :
robot path e
obstacle e=
40+ goals @

Q.

20!
O start D
‘ 20 40

0 60 80 100

to_do = [goto(0109), goto(storage), goto(0109),
goto(0103)]
arrived = true

Enrico Franconi, 2012 Intelligent Systems - 2.2

11/13

What should be in an agent’s belief state?

@ An agent decides what to do based on its belief state and what
it observes.

@ A purely reactive agent doesn't have a belief state.
A dead reckoning agent doesn’t perceive the world.
— neither work very well in complicated domains.

@ It is often useful for the agent's belief state to be a model of the
world (itself and the environment).

Enrico Franconi, 2012 Intelligent Systems - 2.2 12/13

Embedded and Simulated Agents

@ An embedded agent is one that is run in the real world, where
the actions are carried out in a real domain and where the
sensing comes from a domain.

@ A simulated agent is one that is run with a simulated body and
environment; that is, where a program takes in the commands
and returns appropriate percepts. This is often used to debug a
controller before it is deployed.

@ A agent system model is where there are models of the
controller (which may or may not be the actual code), the body,
and the environment that can answer questions about how the
agent will behave. Such a model can be used to prove properties
of agents before they are built, or it can be used to answer
hypothetical questions about an agent that may be difficult or
dangerous to answer with the real agent.

Enrico Franconi, 2012 Intelligent Systems - 2.2 13/13

