```
Procedure Unify(t1,t2)
    Inputs
            t1,t2: atoms Output
            most general unifier of t1 and t2 if it exists or }\perp\mathrm{ otherwise
    Local
            E: a set of equality statements
            S: substitution
    E\leftarrow{t1=t2}
    S={}
        while (E\not={})
            select and remove x=y from E
            if ( }\textrm{y}\mathrm{ is not identical to }x\mathrm{ ) then
                            if (x is a variable) then
                    replace x with y everywhere in E and S
                    S\leftarrow{x/y}\cupS
                else if (y is a variable) then
                    replace y with x everywhere in E and S
                    S\leftarrow{y/x}\cupS
                    else if (x is f(x1,\ldots,xn) and y is f(y1,\ldots,yn)) then
                            E\leftarrowE\cup{x1=y1,\ldots,xn=yn}
                    else
                    return \perp
    return S
```

Example Suppose we want to unify $p(X, Y, Y)$ with $p(a, Z, b)$. Initially E is $\{p(X, Y, Y)=p(a, Z, b)\}$. The first time through the while loop, E becomes $\{X=a, Y=Z, Y=b\}$. Suppose $X=a$ is selected next. Then S becomes $\{X / a\}$ and E becomes $\{Y=Z, Y=b\}$. Suppose $Y=Z$ is selected. Then Y is replaced by Z in S and E. S becomes $\{X / a, Y / Z\}$ and E becomes $\{Z=b\}$. Finally $Z=b$ is selected, Z is replaced by b, S becomes $\{X / a, Y / b, Z / b\}$, and E becomes empty. The substitution $\{X / a, Y / b, Z / b\}$ is returned as an $M G U$.

