- An instance of an atom or a clause is obtained by uniformly substituting terms for variables.
- A substitution is a finite set of the form $\{V_1/t_1, \ldots, V_n/t_n\}$, where each V_i is a distinct variable and each t_i is a term.
- The application of a substitution $\sigma = \{V_1/t_1, \dots, V_n/t_n\}$ to an atom or clause *e*, written $e\sigma$, is the instance of *e* with every occurrence of V_i replaced by t_i .

Application Examples

The following are substitutions:

•
$$\sigma_1 = \{X/A, Y/b, Z/C, D/e\}$$

•
$$\sigma_2 = \{A/X, Y/b, C/Z, D/e\}$$

• $\sigma_3 = \{A/V, X/V, Y/b, C/W, Z/W, D/e\}$

The following shows some applications:

- $p(A, b, C, D)\sigma_1 =$
- $p(X, Y, Z, e)\sigma_1 =$
- $p(A, b, C, D)\sigma_2 =$
- $p(X, Y, Z, e)\sigma_2 =$
- $p(A, b, C, D)\sigma_3 =$
- $p(X, Y, Z, e)\sigma_3 =$

Application Examples

The following are substitutions:

•
$$\sigma_1 = \{X/A, Y/b, Z/C, D/e\}$$

•
$$\sigma_2 = \{A/X, Y/b, C/Z, D/e\}$$

• $\sigma_3 = \{A/V, X/V, Y/b, C/W, Z/W, D/e\}$

The following shows some applications:

- Substitution σ is a unifier of e_1 and e_2 if $e_1\sigma = e_2\sigma$.
- Substitution σ is a most general unifier (mgu) of e_1 and e_2 if
 - σ is a unifier of e_1 and e_2 ; and
 - if substitution σ' also unifies e_1 and e_2 , then $e\sigma'$ is an instance of $e\sigma$ for all atoms e.
- If two atoms have a unifier, they have a most general unifier.

Unification Example

Which of the following are unifiers of p(A, b, C, D) and p(X, Y, Z, e):

•
$$\sigma_1 = \{X/A, Y/b, Z/C, D/e\}$$

• $\sigma_2 = \{Y/b, D/e\}$

•
$$\sigma_3 = \{X/A, Y/b, Z/C, D/e, W/a\}$$

•
$$\sigma_4 = \{A/X, Y/b, C/Z, D/e\}$$

•
$$\sigma_5 = \{X/a, Y/b, Z/c, D/e\}$$

•
$$\sigma_6 = \{A/a, X/a, Y/b, C/c, Z/c, D/e\}$$

•
$$\sigma_7 = \{A/V, X/V, Y/b, C/W, Z/W, D/e\}$$

•
$$\sigma_8 = \{X/A, Y/b, Z/A, C/A, D/e\}$$

Which are most general unifiers?

Unification Example

$$p(A, b, C, D) \text{ and } p(X, Y, Z, e) \text{ have as unifiers:}$$

$$\sigma_1 = \{X/A, Y/b, Z/C, D/e\}$$

$$\sigma_4 = \{A/X, Y/b, C/Z, D/e\}$$

$$\sigma_7 = \{A/V, X/V, Y/b, C/W, Z/W, D/e\}$$

$$\sigma_6 = \{A/a, X/a, Y/b, C/c, Z/c, D/e\}$$

$$\sigma_8 = \{X/A, Y/b, Z/A, C/A, D/e\}$$

•
$$\sigma_3 = \{X/A, Y/b, Z/C, D/e, W/a\}$$

The first three are most general unifiers. The following substitutions are not unifiers:

•
$$\sigma_2 = \{Y/b, D/e\}$$

•
$$\sigma_5 = \{X/a, Y/b, Z/c, D/e\}$$

- A proof is a mechanically derivable demonstration that a formula logically follows from a knowledge base.
- Given a proof procedure, $KB \vdash g$ means g can be derived from knowledge base KB.
- Recall $KB \models g$ means g is true in all models of KB.
- A proof procedure is sound if $KB \vdash g$ implies $KB \models g$.
- A proof procedure is complete if $KB \models g$ implies $KB \vdash g$.

 $KB \vdash g$ if there is g' added to C in this procedure where $g = g'\theta$:

 $C := \{\};$

repeat

select clause " $h \leftarrow b_1 \land \ldots \land b_m$ " in KB such that there is a substitution θ such that for all *i*, there exists $b'_i \in C$ where $b_i \theta = b'_i \theta$ and there is no $h' \in C$ such that h' is more general than $h\theta$ $C := C \cup \{h\theta\}$

until no more clauses can be selected.

 $live(Y) \leftarrow connected_to(Y, Z) \land live(Z).$ live(outside). $connected_to(w_6, w_5).$ $connected_to(w_5, outside).$ $live(Y) \leftarrow connected_to(Y, Z) \land live(Z). \ live(outside).$ $connected_to(w_6, w_5). \ \ connected_to(w_5, outside).$ $C = \{live(outside), \\ connected_to(w_6, w_5), \\ connected_to(w_5, outside), \\ live(w_5), \\ live(w_6)\}$

Soundness of bottom-up proof procedure

If $KB \vdash g$ then $KB \models g$.

- Suppose there is a g such that $KB \vdash g$ and $KB \not\models g$.
- Then there must be a first atom added to C that has an instance that isn't true in every model of KB. Call it h. Suppose h isn't true in model I of KB.
- There must be a clause in KB of form

 $h' \leftarrow b_1 \land \ldots \land b_m$

where $h = h'\theta$. Each b_i is true in *I*. *h* is false in *I*. So this clause is false in *I*. Therefore *I* isn't a model of *KB*.

Contradiction.

Fixed Point

- The C generated by the bottom-up algorithm is called a fixed point.
- C can be infinite; we require the selection to be fair.
- Herbrand interpretation: The domain is the set of constants. We invent one if the KB or query doesn't contain one. Each constant denotes itself.
- Let *I* be the Herbrand interpretation in which every ground instance of every element of the fixed point is true and every other atom is false.
- *I* is a model of *KB*. Proof: suppose $h \leftarrow b_1 \land \ldots \land b_m$ in *KB* is false in *I*. Then *h* is false and each b_i is true in *I*. Thus *h* can be added to *C*. Contradiction to *C* being the fixed point.
- *I* is called a Minimal Model.

If $KB \models g$ then $KB \vdash g$.

- Suppose $KB \models g$. Then g is true in all models of KB.
- Thus g is true in the minimal model.
- Thus g is in the fixed point.
- Thus g is generated by the bottom up algorithm.
- Thus $KB \vdash g$.

Top-down Proof procedure

• A generalized answer clause is of the form

$$yes(t_1,\ldots,t_k) \leftarrow a_1 \wedge a_2 \wedge \ldots \wedge a_m,$$

where t_1, \ldots, t_k are terms and a_1, \ldots, a_m are atoms.

• The SLD resolution of this generalized answer clause on *a_i* with the clause

$$a \leftarrow b_1 \wedge \ldots \wedge b_p,$$

where a_i and a have most general unifier θ , is

$$(yes(t_1,\ldots,t_k) \leftarrow a_1 \wedge \ldots \wedge a_{i-1} \wedge b_1 \wedge \ldots \wedge b_p \wedge a_{i+1} \wedge \ldots \wedge a_m) \theta.$$

To solve query ?*B* with variables V_1, \ldots, V_k :

Set *ac* to generalized answer clause $yes(V_1, \ldots, V_k) \leftarrow B$; While *ac* is not an answer **do**

Suppose *ac* is $yes(t_1, ..., t_k) \leftarrow a_1 \land a_2 \land ... \land a_m$ Select atom a_i in the body of *ac*; Choose clause $a \leftarrow b_1 \land ... \land b_p$ in *KB*; Rename all variables in $a \leftarrow b_1 \land ... \land b_p$; Let θ be the most general unifier of a_i and a. Fail if they don't unify; Set *ac* to $(yes(t_1, ..., t_k) \leftarrow a_1 \land ... \land a_{i-1} \land b_1 \land ... \land b_p \land a_{i+1} \land ... \land a_m)\theta$

end while.

Example

 $live(Y) \leftarrow connected_to(Y, Z) \land live(Z).$ live(outside). $connected_to(w_6, w_5).$ $connected_to(w_5, outside).$?live(A).

Example

 $live(Y) \leftarrow connected_to(Y, Z) \land live(Z).$ live(outside). $connected_to(w_6, w_5).$ $connected_to(w_5, outside).$?live(A).

$$yes(A) \leftarrow live(A).$$

 $yes(A) \leftarrow connected_to(A, Z_1) \land live(Z_1).$
 $yes(w_6) \leftarrow live(w_5).$
 $yes(w_6) \leftarrow connected_to(w_5, Z_2) \land live(Z_2).$
 $yes(w_6) \leftarrow live(outside).$
 $yes(w_6) \leftarrow .$

1: Procedure Unify(t1,t2)	
2. 3: 4:	t1,t2: atoms Output Output: most general unifier of t1 and t2 if it exists or ⊥ otherwise
5:	Local
6:	E: a set of equality statements
7:	S: substitution
8:	E ←{t1=t2}
9:	S={}
10:	while (E≠{})
11:	select and remove x=y from E
12:	if (y is not identical to x) then
13:	if (x is a variable) then
14:	replace x with y everywhere in E and S
15:	S←{x/y}∪S
16:	else if (y is a variable) then
17:	replace y with x everywhere in E and S
18:	S←{y/x}∪S
19:	else if (x is f(x1,,xn) and y is f(y1,,yn)) then
20:	E←E∪{x1=y1,,xn=yn}
21:	else
22:	return ⊥
23:	return S

Example Suppose we want to unify p(X,Y,Y) with p(a,Z,b). Initially E is $\{p(X,Y,Y)=p(a,Z,b)\}$. The first time through the while loop, E becomes $\{X=a,Y=Z,Y=b\}$. Suppose X=a is selected next. Then S becomes $\{X/a\}$ and E becomes $\{Y=Z,Y=b\}$. Suppose Y=Z is selected. Then Y is replaced by Z in S and E. S becomes $\{X/a,Y/Z\}$ and E becomes $\{Z=b\}$. Finally Z=b is selected, Z is replaced by b, S becomes $\{X/a,Y/b,Z/b\}$, and E becomes empty. The substitution $\{X/a,Y/b,Z/b\}$ is returned as an MGU.

- Often we want to refer to individuals in terms of components.
- Examples: 4:55 p.m. English sentences. A classlist.
- We extend the notion of term. So that a term can be $f(t_1, \ldots, t_n)$ where f is a function symbol and the t_i are terms.
- In an interpretation and with a variable assignment, term $f(t_1, \ldots, t_n)$ denotes an individual in the domain.
- One function symbol and one constant can refer to infinitely many individuals.

Times during the day

- You can use the function symbol am so that am(H,M) denotes the time H:M a.m., when H is an integer between 1 and 12 and M is an integer between 0 and 59.
- For example, am(10,38) denotes the time 10:38 a.m.; am denotes a function from pairs of integers into times.
- Similarly, you can define the symbol pm to denote the times after noon.

```
before(am(H1,M1),pm(H2,M2)).
before(am(12,M1),am(H2,M2)) ← H2<12.
before(am(H1,M1),am(H2,M2)) ← H1<H2 ∧ H2<12.
before(am(H,M1),am(H,M2)) ← M1<M2.
before(pm(12,M1),pm(H2,M2)) ← H2<12.</pre>
```

before(pm(H1,M1),pm(H2,M2)) \leftarrow H1<H2 \land H2<12. before(pm(H,M1),pm(H,M2)) \leftarrow M1<M2.

Lists

- A list is an ordered sequence of elements.
- Let's use the constant *nil* to denote the empty list, and the function cons(H, T) to denote the list with first element H and rest-of-list T.
 These are not built-in.
- The list containing sue, kim and randy is

cons(sue, cons(kim, cons(randy, nil)))

append(X, Y, Z) is true if list Z contains the elements of X followed by the elements of Y append(nil, Z, Z).
 append(cons(A, X), Y, cons(A, Z)) ← append(X, Y, Z).

```
append(c(A,X),Y,c(A,Z)). \leftarrow append(X,Y,Z).
append(nil,Z,Z).
```

```
ask append(F,c(L,nil),c(I,c(i,c(s,c(t,nil))))).
```

```
yes(F,L)←append(F,c(L,nil),c(I,c(i,c(s,c(t,nil)))))
resolve with append(c(A1,X1),Y1,c(A1,Z1))←append(X1,Y1,Z1)
substitution: {F/c(I,X1), Y1/c(L,nil), A1/I,Z1/c(i,c(s,c(t,nil)))}
```

```
yes(c(I,X1),L)←append(X1,c(L,nil),c(i,c(s,c(t,nil))))
resolve with append(c(A2,X2),Y2,c(A2,Z2))←append(X2,Y2,Z2)
substitution: {X1/c(i,X2), Y2/c(L,nil), A2/i,Z2/c(s,c(t,nil))}
```

```
yes(c(I,c(i,X2)),L)←append(X2,c(L,nil),c(s,c(t,nil)))
resolve with append(c(A3,X3),Y3,c(A3,Z3))←append(X3,Y3,Z3)
substitution: {X2/c(s,X3), Y3/c(L,nil), A3/s ,Z3/c(t,nil)}
```

 $yes(c(I,c(i,c(s,X3))),L) \leftarrow append(X3,c(L,nil),c(t,nil))$

Both clauses are applicable. Choosing the first clause gives: resolve with append(c(A4,X4),Y4,c(A4,Z4))←append(X4,Y4,Z4) substitution: {X3/c(t,X4), Y4/c(L,nil), A4/t ,Z4/nil}

yes(c(I,c(i,c(s,X3))),L)←append(X4,c(L,nil),nil)

There are no clauses whose head unifies with the atom in the generalized answer clause's body. The proof fails.

Choosing the second clause instead of the first gives: resolve with append(nil,Z5,Z5). substitution: {Z5/c(t,nil),X3/nil,L/t}

yes(c(l,c(i,c(s,nil))),t)←

At this point, the proof succeeds, with answer F=c(I,c(i,c(s,nil))), L=t.

Using the list notation, append from the previous example can be written as:

```
append([A|X], Y, [A|Z]) \leftarrow append(X, Y, Z).
append([], Z, Z).
```

The query:

```
ask append(F,[L],[l,i,s,t])
```

```
has an answer F=[l,i,s], L=t.
```

The proof is exactly as in the previous example. As far as the proof procedure is concerned, nothing has changed; there is just a renamed function symbol and constant.