
Reasoning with Variables

An instance of an atom or a clause is obtained by uniformly
substituting terms for variables.

A substitution is a finite set of the form {V1/t1, . . . ,Vn/tn}, where
each Vi is a distinct variable and each ti is a term.

The application of a substitution � = {V1/t1, . . . ,Vn/tn} to an
atom or clause e, written e�, is the instance of e with every
occurrence of Vi replaced by ti .

Enrico Franconi, 2012 Intelligent Systems - 12.4 1/19

Application Examples

The following are substitutions:

�1 = {X/A,Y /b,Z/C ,D/e}
�2 = {A/X ,Y /b,C/Z ,D/e}
�3 = {A/V ,X/V ,Y /b,C/W ,Z/W ,D/e}

The following shows some applications:

p(A, b,C ,D)�1 =

p(A, b,C , e)

p(X ,Y ,Z , e)�1 =

p(A, b,C , e)

p(A, b,C ,D)�2 =

p(X , b,Z , e)

p(X ,Y ,Z , e)�2 =

p(X , b,Z , e)

p(A, b,C ,D)�3 =

p(V , b,W , e)

p(X ,Y ,Z , e)�3 =

p(V , b,W , e)

Enrico Franconi, 2012 Intelligent Systems - 12.4 2/19

Application Examples

The following are substitutions:

�1 = {X/A,Y /b,Z/C ,D/e}
�2 = {A/X ,Y /b,C/Z ,D/e}
�3 = {A/V ,X/V ,Y /b,C/W ,Z/W ,D/e}

The following shows some applications:

p(A, b,C ,D)�1 = p(A, b,C , e)

p(X ,Y ,Z , e)�1 = p(A, b,C , e)

p(A, b,C ,D)�2 = p(X , b,Z , e)

p(X ,Y ,Z , e)�2 = p(X , b,Z , e)

p(A, b,C ,D)�3 = p(V , b,W , e)

p(X ,Y ,Z , e)�3 = p(V , b,W , e)

Enrico Franconi, 2012 Intelligent Systems - 12.4 3/19

Unifiers

Substitution � is a unifier of e1 and e2 if e1� = e2�.

Substitution � is a most general unifier (mgu) of e1 and e2 if

� is a unifier of e1 and e2; and
if substitution �0 also unifies e1 and e2, then e�0 is an instance of e�
for all atoms e.

If two atoms have a unifier, they have a most general unifier.

Enrico Franconi, 2012 Intelligent Systems - 12.4 4/19

Unification Example

Which of the following are unifiers of p(A, b,C ,D) and p(X ,Y ,Z , e):

�1 = {X/A,Y /b,Z/C ,D/e}
�2 = {Y /b,D/e}
�3 = {X/A,Y /b,Z/C ,D/e,W /a}
�4 = {A/X ,Y /b,C/Z ,D/e}
�5 = {X/a,Y /b,Z/c ,D/e}
�6 = {A/a,X/a,Y /b,C/c ,Z/c ,D/e}
�7 = {A/V ,X/V ,Y /b,C/W ,Z/W ,D/e}
�8 = {X/A,Y /b,Z/A,C/A,D/e}

Which are most general unifiers?

Enrico Franconi, 2012 Intelligent Systems - 12.4 5/19

Unification Example

p(A, b,C ,D) and p(X ,Y ,Z , e) have as unifiers:

�1 = {X/A,Y /b,Z/C ,D/e}
�4 = {A/X ,Y /b,C/Z ,D/e}
�7 = {A/V ,X/V ,Y /b,C/W ,Z/W ,D/e}
�6 = {A/a,X/a,Y /b,C/c ,Z/c ,D/e}
�8 = {X/A,Y /b,Z/A,C/A,D/e}
�3 = {X/A,Y /b,Z/C ,D/e,W /a}

The first three are most general unifiers.
The following substitutions are not unifiers:

�2 = {Y /b,D/e}
�5 = {X/a,Y /b,Z/c ,D/e}

Enrico Franconi, 2012 Intelligent Systems - 12.4 6/19

Proofs

A proof is a mechanically derivable demonstration that a formula
logically follows from a knowledge base.

Given a proof procedure, KB ` g means g can be derived from
knowledge base KB .

Recall KB |= g means g is true in all models of KB .

A proof procedure is sound if KB ` g implies KB |= g .

A proof procedure is complete if KB |= g implies KB ` g .

Enrico Franconi, 2012 Intelligent Systems - 12.4 7/19

Bottom-up proof procedure

KB ` g if there is g 0 added to C in this procedure where g = g 0✓:

C := {};
repeat

select clause “h b1 ^ . . . ^ bm” in KB such that
there is a substitution ✓ such that
for all i , there exists b0i 2 C where bi✓ = b0i✓ and
there is no h0 2 C such that h0 is more general than h✓

C := C [{h✓}
until no more clauses can be selected.

Enrico Franconi, 2012 Intelligent Systems - 12.4 8/19

Example

live(Y) connected to(Y ,Z) ^ live(Z). live(outside).

connected to(w6,w5). connected to(w5, outside).

C = {live(outside),
connected to(w6,w5),

connected to(w5, outside),

live(w5),

live(w6)}

Enrico Franconi, 2012 Intelligent Systems - 12.4 9/19

Example

live(Y) connected to(Y ,Z) ^ live(Z). live(outside).

connected to(w6,w5). connected to(w5, outside).

C = {live(outside),
connected to(w6,w5),

connected to(w5, outside),

live(w5),

live(w6)}

Enrico Franconi, 2012 Intelligent Systems - 12.4 10/19

Soundness of bottom-up proof procedure

If KB ` g then KB |= g .

Suppose there is a g such that KB ` g and KB 6|= g .

Then there must be a first atom added to C that has an instance that
isn’t true in every model of KB . Call it h. Suppose h isn’t true in
model I of KB .

There must be a clause in KB of form

h0 b1 ^ . . . ^ bm

where h = h0✓. Each bi is true in I . h is false in I . So this clause is
false in I . Therefore I isn’t a model of KB .

Contradiction.

Enrico Franconi, 2012 Intelligent Systems - 12.4 11/19

Fixed Point

The C generated by the bottom-up algorithm is called a fixed point.

C can be infinite; we require the selection to be fair.

Herbrand interpretation: The domain is the set of constants.
We invent one if the KB or query doesn’t contain one.
Each constant denotes itself.

Let I be the Herbrand interpretation in which every ground instance of
every element of the fixed point is true and every other atom is false.

I is a model of KB .
Proof: suppose h b1 ^ . . . ^ bm in KB is false in I . Then h is false
and each bi is true in I . Thus h can be added to C . Contradiction to
C being the fixed point.

I is called a Minimal Model.

Enrico Franconi, 2012 Intelligent Systems - 12.4 12/19

Completeness

If KB |= g then KB ` g .

Suppose KB |= g . Then g is true in all models of KB .

Thus g is true in the minimal model.

Thus g is in the fixed point.

Thus g is generated by the bottom up algorithm.

Thus KB ` g .

Enrico Franconi, 2012 Intelligent Systems - 12.4 13/19

Top-down Proof procedure

A generalized answer clause is of the form

yes(t1, . . . , tk) a1 ^ a2 ^ . . . ^ am,

where t1, . . . , tk are terms and a1, . . . , am are atoms.

The SLD resolution of this generalized answer clause on ai with the
clause

a b1 ^ . . . ^ bp,

where ai and a have most general unifier ✓, is

(yes(t1, . . . , tk)
a1^ . . .^ai�1 ^ b1^ . . .^bp ^ ai+1^ . . .^am)✓.

Enrico Franconi, 2012 Intelligent Systems - 12.4 14/19

To solve query ?B with variables V1, . . . ,Vk :

Set ac to generalized answer clause yes(V1, . . . ,Vk) B ;
While ac is not an answer do

Suppose ac is yes(t1, . . . , tk) a1 ^ a2 ^ . . . ^ am
Select atom ai in the body of ac ;
Choose clause a b1 ^ . . . ^ bp in KB ;
Rename all variables in a b1 ^ . . . ^ bp;
Let ✓ be the most general unifier of ai and a.

Fail if they don’t unify;
Set ac to (yes(t1, . . . , tk) a1 ^ . . . ^ ai�1^

b1 ^ . . . ^ bp ^ ai+1 ^ . . . ^ am)✓
end while.

Enrico Franconi, 2012 Intelligent Systems - 12.4 15/19

Example

live(Y) connected to(Y ,Z) ^ live(Z). live(outside).

connected to(w6,w5). connected to(w5, outside).

?live(A).

yes(A) live(A).

yes(A) connected to(A,Z1) ^ live(Z1).

yes(w6) live(w5).

yes(w6) connected to(w5,Z2) ^ live(Z2).

yes(w6) live(outside).

yes(w6) .

Enrico Franconi, 2012 Intelligent Systems - 12.4 16/19

Example

live(Y) connected to(Y ,Z) ^ live(Z). live(outside).

connected to(w6,w5). connected to(w5, outside).

?live(A).

yes(A) live(A).

yes(A) connected to(A,Z1) ^ live(Z1).

yes(w6) live(w5).

yes(w6) connected to(w5,Z2) ^ live(Z2).

yes(w6) live(outside).

yes(w6) .

Enrico Franconi, 2012 Intelligent Systems - 12.4 17/19

1: Procedure Unify(t1,t2)
2: Inputs:
3: t1,t2: atoms Output
4: Output: most general unifier of t1 and t2 if it exists or ⊥ otherwise

5: Local
6: E: a set of equality statements
7: S: substitution
8: E ←{t1=t2}

9: S={}
10: while (E≠{})
11: select and remove x=y from E
12: if (y is not identical to x) then
13: if (x is a variable) then
14: replace x with y everywhere in E and S
15: S←{x/y}∪S

16: else if (y is a variable) then
17: replace y with x everywhere in E and S
18: S←{y/x}∪S

19: else if (x is f(x1,...,xn) and y is f(y1,...,yn)) then
20: E←E∪{x1=y1,...,xn=yn}

21: else
22: return ⊥

23: return S

Example Suppose we want to unify p(X,Y,Y) with p(a,Z,b). Initially E is {p(X,Y,Y)=p(a,Z,b)}. The first time through the while

loop, E becomes {X=a,Y=Z,Y=b}. Suppose X=a is selected next. Then S becomes {X/a} and E becomes {Y=Z,Y=b}. Suppose Y=Z
is selected. Then Y is replaced by Z in S and E. S becomes {X/a,Y/Z} and E becomes {Z=b}. Finally Z=b is selected, Z is replaced
by b, S becomes {X/a,Y/b,Z/b}, and E becomes empty. The substitution {X/a,Y/b,Z/b} is returned as an MGU.

Function Symbols

Often we want to refer to individuals in terms of components.

Examples: 4:55 p.m. English sentences. A classlist.

We extend the notion of term . So that a term can be f (t1, . . . , tn)
where f is a function symbol and the ti are terms.

In an interpretation and with a variable assignment, term f (t1, . . . , tn)
denotes an individual in the domain.

One function symbol and one constant can refer to infinitely many
individuals.

Enrico Franconi, 2012 Intelligent Systems - 12.4 18/19

Times during the day

• You can use the function symbol am so that am(H,M) denotes the

time H:M a.m., when H is an integer between 1 and 12 and M is an

integer between 0 and 59.

• For example, am(10,38) denotes the time 10:38 a.m.; am denotes

a function from pairs of integers into times.

• Similarly, you can define the symbol pm to denote the times after

noon.

before(am(H1,M1),pm(H2,M2)).

before(am(12,M1),am(H2,M2)) ← H2<12.
before(am(H1,M1),am(H2,M2)) ← H1<H2 ∧ H2<12.
before(am(H,M1),am(H,M2)) ← M1<M2.
before(pm(12,M1),pm(H2,M2)) ← H2<12.

before(pm(H1,M1),pm(H2,M2)) ← H1<H2 ∧ H2<12.
before(pm(H,M1),pm(H,M2)) ← M1<M2.

Lists

A list is an ordered sequence of elements.

Let’s use the constant nil to denote the empty list, and the function

cons(H,T) to denote the list with first element H and rest-of-list T .

These are not built-in.

The list containing sue, kim and randy is

cons(sue, cons(kim, cons(randy , nil)))

append(X ,Y ,Z) is true if list Z contains the elements of X
followed by the elements of Y

append(nil ,Z ,Z).

append(cons(A,X),Y , cons(A,Z)) append(X ,Y ,Z).

Enrico Franconi, 2012 Intelligent Systems - 12.4 19/19

append(c(A,X),Y,c(A,Z)). ← append(X,Y,Z).

append(nil,Z,Z).

ask append(F,c(L,nil),c(l,c(i,c(s,c(t,nil))))).

yes(F,L)←append(F,c(L,nil),c(l,c(i,c(s,c(t,nil)))))

 resolve with append(c(A1,X1),Y1,c(A1,Z1))←append(X1,Y1,Z1)

 substitution: {F/c(l,X1), Y1/c(L,nil), A1/l ,Z1/c(i,c(s,c(t,nil)))}

yes(c(l,X1),L)←append(X1,c(L,nil),c(i,c(s,c(t,nil))))

 resolve with append(c(A2,X2),Y2,c(A2,Z2))←append(X2,Y2,Z2)

 substitution: {X1/c(i,X2), Y2/c(L,nil), A2/i ,Z2/c(s,c(t,nil))}

yes(c(l,c(i,X2)),L)←append(X2,c(L,nil),c(s,c(t,nil)))

 resolve with append(c(A3,X3),Y3,c(A3,Z3))←append(X3,Y3,Z3)

 substitution: {X2/c(s,X3), Y3/c(L,nil), A3/s ,Z3/c(t,nil)}

yes(c(l,c(i,c(s,X3))),L)←append(X3,c(L,nil),c(t,nil))

Both clauses are applicable. Choosing the first clause gives:
 resolve with append(c(A4,X4),Y4,c(A4,Z4))←append(X4,Y4,Z4)

 substitution: {X3/c(t,X4), Y4/c(L,nil), A4/t ,Z4/nil}

yes(c(l,c(i,c(s,X3))),L)←append(X4,c(L,nil),nil)

There are no clauses whose head unifies with the atom in the
generalized answer clause's body. The proof fails.

Choosing the second clause instead of the first gives:
 resolve with append(nil,Z5,Z5).
 substitution: {Z5/c(t,nil),X3/nil,L/t}

yes(c(l,c(i,c(s,nil))),t)←
At this point, the proof succeeds, with answer F=c(l,c(i,c(s,nil))), L=t.

Using the list notation, append from the previous example can be

written as:

append([A|X],Y,[A|Z]) ← append(X,Y,Z).
append([],Z,Z).

The query:

ask append(F,[L],[l,i,s,t])

has an answer F=[l,i,s], L=t.

The proof is exactly as in the previous example. As far as the

proof procedure is concerned, nothing has changed; there is just

a renamed function symbol and constant.

