Reasoning with Variables

- An instance of an atom or a clause is obtained by uniformly substituting terms for variables.
- A substitution is a finite set of the form $\left\{V_{1} / t_{1}, \ldots, V_{n} / t_{n}\right\}$, where each V_{i} is a distinct variable and each t_{i} is a term.
- The application of a substitution $\sigma=\left\{V_{1} / t_{1}, \ldots, V_{n} / t_{n}\right\}$ to an atom or clause e, written $e \sigma$, is the instance of e with every occurrence of V_{i} replaced by t_{i}.

Application Examples

The following are substitutions:

- $\sigma_{1}=\{X / A, Y / b, Z / C, D / e\}$
- $\sigma_{2}=\{A / X, Y / b, C / Z, D / e\}$
- $\sigma_{3}=\{A / V, X / V, Y / b, C / W, Z / W, D / e\}$

The following shows some applications:

- $p(A, b, C, D) \sigma_{1}=$
- $p(X, Y, Z, e) \sigma_{1}=$
- $p(A, b, C, D) \sigma_{2}=$
- $p(X, Y, Z, e) \sigma_{2}=$
- $p(A, b, C, D) \sigma_{3}=$
- $p(X, Y, Z, e) \sigma_{3}=$

Application Examples

The following are substitutions:

- $\sigma_{1}=\{X / A, Y / b, Z / C, D / e\}$
- $\sigma_{2}=\{A / X, Y / b, C / Z, D / e\}$
- $\sigma_{3}=\{A / V, X / V, Y / b, C / W, Z / W, D / e\}$

The following shows some applications:

- $p(A, b, C, D) \sigma_{1}=p(A, b, C, e)$
- $p(X, Y, Z, e) \sigma_{1}=p(A, b, C, e)$
- $p(A, b, C, D) \sigma_{2}=p(X, b, Z, e)$
- $p(X, Y, Z, e) \sigma_{2}=p(X, b, Z, e)$
- $p(A, b, C, D) \sigma_{3}=p(V, b, W, e)$
- $p(X, Y, Z, e) \sigma_{3}=p(V, b, W, e)$

Unifiers

- Substitution σ is a unifier of e_{1} and e_{2} if $e_{1} \sigma=e_{2} \sigma$.
- Substitution σ is a most general unifier (mgu) of e_{1} and e_{2} if
- σ is a unifier of e_{1} and e_{2}; and
- if substitution σ^{\prime} also unifies e_{1} and e_{2}, then $e \sigma^{\prime}$ is an instance of $e \sigma$ for all atoms e.
- If two atoms have a unifier, they have a most general unifier.

Unification Example

Which of the following are unifiers of $p(A, b, C, D)$ and $p(X, Y, Z, e)$:

- $\sigma_{1}=\{X / A, Y / b, Z / C, D / e\}$
- $\sigma_{2}=\{Y / b, D / e\}$
- $\sigma_{3}=\{X / A, Y / b, Z / C, D / e, W / a\}$
- $\sigma_{4}=\{A / X, Y / b, C / Z, D / e\}$
- $\sigma_{5}=\{X / a, Y / b, Z / c, D / e\}$
- $\sigma_{6}=\{A / a, X / a, Y / b, C / c, Z / c, D / e\}$
- $\sigma_{7}=\{A / V, X / V, Y / b, C / W, Z / W, D / e\}$
- $\sigma_{8}=\{X / A, Y / b, Z / A, C / A, D / e\}$

Which are most general unifiers?

Unification Example

$p(A, b, C, D)$ and $p(X, Y, Z, e)$ have as unifiers:

- $\sigma_{1}=\{X / A, Y / b, Z / C, D / e\}$
- $\sigma_{4}=\{A / X, Y / b, C / Z, D / e\}$
- $\sigma_{7}=\{A / V, X / V, Y / b, C / W, Z / W, D / e\}$
- $\sigma_{6}=\{A / a, X / a, Y / b, C / c, Z / c, D / e\}$
- $\sigma_{8}=\{X / A, Y / b, Z / A, C / A, D / e\}$
- $\sigma_{3}=\{X / A, Y / b, Z / C, D / e, W / a\}$

The first three are most general unifiers.
The following substitutions are not unifiers:

- $\sigma_{2}=\{Y / b, D / e\}$
- $\sigma_{5}=\{X / a, Y / b, Z / c, D / e\}$

Proofs

- A proof is a mechanically derivable demonstration that a formula logically follows from a knowledge base.
- Given a proof procedure, $K B \vdash g$ means g can be derived from knowledge base $K B$.
- Recall $K B \models g$ means g is true in all models of $K B$.
- A proof procedure is sound if $K B \vdash g$ implies $K B \models g$.
- A proof procedure is complete if $K B \models g$ implies $K B \vdash g$.

Bottom-up proof procedure

$K B \vdash g$ if there is g^{\prime} added to C in this procedure where $g=g^{\prime} \theta$:
$C:=\{ \} ;$

repeat

select clause " $h \leftarrow b_{1} \wedge \ldots \wedge b_{m}$ " in $K B$ such that there is a substitution θ such that for all i, there exists $b_{i}^{\prime} \in C$ where $b_{i} \theta=b_{i}^{\prime} \theta$ and there is no $h^{\prime} \in C$ such that h^{\prime} is more general than $h \theta$
$C:=C \cup\{h \theta\}$
until no more clauses can be selected.

Example

live $(Y) \leftarrow$ connected_to $(Y, Z) \wedge$ live (Z). live(outside). connected_to($\left.w_{6}, w_{5}\right)$. connected_to(w_{5}, outside).

Example

live $(Y) \leftarrow$ connected_to $(Y, Z) \wedge$ live (Z). live(outside).
connected_to($\left.w_{6}, w_{5}\right)$. connected_to(w_{5}, outside).
$C=\{$ live(outside),
connected_to ($\left.w_{6}, w_{5}\right)$,
connected_to(w_{5}, outside),
live (w_{5}),
live $\left.\left(w_{6}\right)\right\}$

Soundness of bottom-up proof procedure

If $K B \vdash g$ then $K B \models g$.

- Suppose there is a g such that $K B \vdash g$ and $K B \not \vDash g$.
- Then there must be a first atom added to C that has an instance that isn't true in every model of KB. Call it h. Suppose h isn't true in model I of $K B$.
- There must be a clause in $K B$ of form

$$
h^{\prime} \leftarrow b_{1} \wedge \ldots \wedge b_{m}
$$

where $h=h^{\prime} \theta$. Each b_{i} is true in $I . h$ is false in I. So this clause is false in I. Therefore I isn't a model of $K B$.

- Contradiction.

Fixed Point

- The C generated by the bottom-up algorithm is called a fixed point.
- C can be infinite; we require the selection to be fair.
- Herbrand interpretation: The domain is the set of constants. We invent one if the KB or query doesn't contain one.
Each constant denotes itself.
- Let I be the Herbrand interpretation in which every ground instance of every element of the fixed point is true and every other atom is false.
- I is a model of $K B$.

Proof: suppose $h \leftarrow b_{1} \wedge \ldots \wedge b_{m}$ in $K B$ is false in I. Then h is false and each b_{i} is true in l. Thus h can be added to C. Contradiction to
C being the fixed point.

- l is called a Minimal Model.

Completeness

If $K B \models g$ then $K B \vdash g$.

- Suppose $K B \vDash g$. Then g is true in all models of $K B$.
- Thus g is true in the minimal model.
- Thus g is in the fixed point.
- Thus g is generated by the bottom up algorithm.
- Thus $K B \vdash g$.

Top-down Proof procedure

- A generalized answer clause is of the form

$$
\operatorname{yes}\left(t_{1}, \ldots, t_{k}\right) \leftarrow a_{1} \wedge a_{2} \wedge \ldots \wedge a_{m}
$$

where t_{1}, \ldots, t_{k} are terms and a_{1}, \ldots, a_{m} are atoms.

- The SLD resolution of this generalized answer clause on a_{i} with the clause

$$
a \leftarrow b_{1} \wedge \ldots \wedge b_{p}
$$

where a_{i} and a have most general unifier θ, is

$$
\begin{aligned}
& \left(y e s\left(t_{1}, \ldots, t_{k}\right) \leftarrow\right. \\
& \left.\quad a_{1} \wedge \ldots \wedge a_{i-1} \wedge b_{1} \wedge \ldots \wedge b_{p} \wedge a_{i+1} \wedge \ldots \wedge a_{m}\right) \theta .
\end{aligned}
$$

To solve query ? B with variables V_{1}, \ldots, V_{k} :

Set $a c$ to generalized answer clause $y e s\left(V_{1}, \ldots, V_{k}\right) \leftarrow B$;
While ac is not an answer do
Suppose ac is yes $\left(t_{1}, \ldots, t_{k}\right) \leftarrow a_{1} \wedge a_{2} \wedge \ldots \wedge a_{m}$
Select atom a_{i} in the body of $a c$;
Choose clause $a \leftarrow b_{1} \wedge \ldots \wedge b_{p}$ in $K B$;
Rename all variables in $a \leftarrow b_{1} \wedge \ldots \wedge b_{p}$;
Let θ be the most general unifier of a_{i} and a.
Fail if they don't unify;
Set ac to $\left(\operatorname{yes}\left(t_{1}, \ldots, t_{k}\right) \leftarrow a_{1} \wedge \ldots \wedge a_{i-1} \wedge\right.$

$$
\left.b_{1} \wedge \ldots \wedge b_{p} \wedge a_{i+1} \wedge \ldots \wedge a_{m}\right) \theta
$$

end while.

Example

live $(Y) \leftarrow$ connected_to $(Y, Z) \wedge$ live (Z). live(outside). connected_to $\left(w_{6}, w_{5}\right)$. connected_to(w_{5}, outside). ?live (A).

Example

live $(Y) \leftarrow$ connected_to $(Y, Z) \wedge$ live (Z). live(outside). connected_to $\left(w_{6}, w_{5}\right)$. connected_to(w_{5}, outside).
?live (A).

```
yes (A)}\leftarrowlive(A)
yes(A)\leftarrow connected_to (A, Z Z ) ^ live (Z Z ).
yes (w6) L live(w5).
yes ( }\mp@subsup{w}{6}{})\leftarrow\mathrm{ connected_to ( }\mp@subsup{w}{5}{},\mp@subsup{Z}{2}{})\wedge\mathrm{ live ( }\mp@subsup{Z}{2}{})
yes(\mp@subsup{w}{6}{})\leftarrow live(outside).
yes (w6)\leftarrow.
```

```
Procedure Unify(t1,t2)
    Inputs:
            t1,t2: atoms Output
    Output: most general unifier of t1 and t2 if it exists or }\perp\mathrm{ otherwise
    Local
            E: a set of equality statements
            S: substitution
    E}\leftarrow{t1=t2
    S={}
        while (E\not={})
            select and remove x=y from E
            if ( }\textrm{y}\mathrm{ is not identical to }x\mathrm{ ) then
                    if (x is a variable) then
                    replace x with y everywhere in E and S
                    S\leftarrow{x/y}\cupS
                else if (y is a variable) then
                    replace y with x everywhere in E and S
                    S}\leftarrow{y/x}\cup
                    else if (x is f(x1,\ldots,xn) and y is f(y1,\ldots,yn)) then
                            E\leftarrowE\cup{x1=y1,\ldots,xn=yn}
                else
                    return \perp
    return S
```

Example Suppose we want to unify $p(X, Y, Y)$ with $p(a, Z, b)$. Initially E is $\{p(X, Y, Y)=p(a, Z, b)\}$. The first time through the while loop, E becomes $\{X=a, Y=Z, Y=b\}$. Suppose $X=a$ is selected next. Then S becomes $\{X / a\}$ and E becomes $\{Y=Z, Y=b\}$. Suppose $Y=Z$ is selected. Then Y is replaced by Z in S and E. S becomes $\{X / a, Y / Z\}$ and E becomes $\{Z=b\}$. Finally $Z=b$ is selected, Z is replaced by b, S becomes $\{X / a, Y / b, Z / b\}$, and E becomes empty. The substitution $\{X / a, Y / b, Z / b\}$ is returned as an $M G U$.

Function Symbols

- Often we want to refer to individuals in terms of components.
- Examples: 4:55 p.m. English sentences. A classlist.
- We extend the notion of term. So that a term can be $f\left(t_{1}, \ldots, t_{n}\right)$ where f is a function symbol and the t_{i} are terms.
- In an interpretation and with a variable assignment, term $f\left(t_{1}, \ldots, t_{n}\right)$ denotes an individual in the domain.
- One function symbol and one constant can refer to infinitely many individuals.

Times during the day

- You can use the function symbol am so that am(H,M) denotes the time $\mathrm{H}: \mathrm{M}$ a.m., when H is an integer between 1 and 12 and M is an integer between 0 and 59.
- For example, am(10,38) denotes the time 10:38 a.m.; am denotes a function from pairs of integers into times.
- Similarly, you can define the symbol pm to denote the times after noon.

```
before(am(H1,M1),pm(H2,M2)).
before(am(12,M1),am(H2,M2)) \leftarrow H2<12.
before(am(H1,M1),am(H2,M2)) \leftarrow H1<H2 ^ H2<12.
before(am(H,M1),am(H,M2)) \leftarrow M1<M2.
before(pm(12,M1),pm(H2,M2)) \leftarrow H2<12.
```

```
before(pm(H1,M1),pm(H2,M2)) \leftarrow H1<H2 ^ H2<12.
before(pm(H,M1),pm(H,M2)) \leftarrow M1<M2.
```


Lists

- A list is an ordered sequence of elements.
- Let's use the constant nil to denote the empty list, and the function cons (H, T) to denote the list with first element H and rest-of-list T.

These are not built-in.

- The list containing sue, kim and randy is

$$
\operatorname{cons}(\operatorname{sue}, \operatorname{cons}(\text { kim, cons(randy, nil))) }
$$

- append (X, Y, Z) is true if list Z contains the elements of X followed by the elements of Y

$$
\begin{aligned}
& \text { append }(n i l, Z, Z) \text {. } \\
& \operatorname{append}(\operatorname{cons}(A, X), Y, \operatorname{cons}(A, Z)) \leftarrow \operatorname{append}(X, Y, Z) \text {. }
\end{aligned}
$$

append(c(A,X),Y,c(A,Z)). $\leftarrow \operatorname{append}(X, Y, Z)$.
append(nil,Z,Z).
ask append(F,c(L,nil),c(l,c(i,c(s,c(t,nil))))).
$\operatorname{yes}(F, L) \leftarrow \operatorname{append}(F, c(L$, nil $), c(1, c(i, c(s, c(t, n i l)))))$
resolve with append $(\mathrm{c}(\mathrm{A} 1, \mathrm{X} 1), \mathrm{Y} 1, \mathrm{c}(\mathrm{A} 1, \mathrm{Z} 1)) \leftarrow$ append $(\mathrm{X} 1, \mathrm{Y} 1, \mathrm{Z} 1)$ substitution: \{F/c(I,X1), Y1/c(L,nil), A1/l ,Z1/c(i,c(s,c(t,nil)))\}
$\operatorname{yes}(\mathrm{c}(\mathrm{I}, \mathrm{X} 1), \mathrm{L}) \leftarrow \operatorname{append}(\mathrm{X} 1, \mathrm{c}(\mathrm{L}, \mathrm{nil}), \mathrm{c}(\mathrm{i}, \mathrm{c}(\mathrm{s}, \mathrm{c}(\mathrm{t}, \mathrm{nil}))))$
resolve with append(c(A2,X2),Y2,c(A2,Z2)) \leftarrow append(X2,Y2,Z2) substitution: $\{\mathrm{X} 1 / \mathrm{c}(\mathrm{i}, \mathrm{X} 2), \mathrm{Y} 2 / \mathrm{c}(\mathrm{L}, \mathrm{nil}), \mathrm{A} 2 / \mathrm{i}, \mathrm{Z2} / \mathrm{c}(\mathrm{s}, \mathrm{c}(\mathrm{t}$, nil) $)$ \}
$\operatorname{yes}(c(I, c(i, X 2)), L) \leftarrow \operatorname{append}(X 2, c(L, n i l), c(s, c(t, n i l)))$
resolve with append(c(A3,X3),Y3,c(A3,Z3)) \leftarrow append $(X 3, Y 3, Z 3)$ substitution: $\{\mathrm{X} 2 / \mathrm{c}(\mathrm{s}, \mathrm{X} 3), \mathrm{Y} 3 / \mathrm{c}(\mathrm{L}$, nil), $\mathrm{A} 3 / \mathrm{s}, \mathrm{Z} 3 / \mathrm{c}(\mathrm{t}, \mathrm{nil})\}$
yes(c(I,c(i,c(s,X3))),L) \leftarrow append (X3,c(L,nil),c(t,nil))
Both clauses are applicable. Choosing the first clause gives:
resolve with append $(\mathrm{c}(\mathrm{A} 4, \mathrm{X} 4), \mathrm{Y} 4, \mathrm{c}(\mathrm{A} 4, \mathrm{Z} 4)) \leftarrow$ append $(\mathrm{X} 4, \mathrm{Y} 4, \mathrm{Z} 4)$ substitution: \{X3/c(t,X4), Y4/c(L,nil), A4/t ,Z4/nil\}
yes(c(l,c(i,c(s,X3))),L) $\leftarrow \operatorname{append}(X 4, c(L, n i l)$, nil $)$
There are no clauses whose head unifies with the atom in the generalized answer clause's body. The proof fails.

Choosing the second clause instead of the first gives:
resolve with append(nil,Z5,Z5).
substitution: $\{Z 5 / \mathrm{c}(\mathrm{t}$, nil), X3/nil,L/t $\}$
yes(c(l,c(i,c(s,nil))),t) \leftarrow
At this point, the proof succeeds, with answer $\mathrm{F}=\mathrm{c}(\mathrm{l}, \mathrm{c}(\mathrm{i}, \mathrm{c}(\mathrm{s}$, nil) $))$, $\mathrm{L}=\mathrm{t}$.

Using the list notation, append from the previous example can be written as:
append $([A \mid X], Y,[A \mid Z]) \leftarrow$ append (X, Y, Z). append ([],Z,Z).

The query:
ask append(F,[L],[l,i,s,t])
has an answer $F=[1, i, s], L=t$.
The proof is exactly as in the previous example. As far as the proof procedure is concerned, nothing has changed; there is just a renamed function symbol and constant.

