Variables

- Variables are universally quantified in the scope of a clause.
- A variable assignment is a function from variables into the domain.
- Given an interpretation and a variable assignment, each term denotes an individual and each clause is either true or false.
- A clause containing variables is true in an interpretation if it is true for all variable assignments.

Queries and Answers

A query is a way to ask if a body is a logical consequence of the knowledge base:
$? b_{1} \wedge \cdots \wedge b_{m}$.
An answer is either

- an instance of the query that is a logical consequence of the knowledge base $K B$, or
- no if no instance is a logical consequence of $K B$.

Example Queries

```
\(K B=\left\{\begin{array}{l}\text { in }(\text { kim, } r 123) . \\ \text { part_of }(r 123, \text { cs_building }) . \\ \text { in }(X, Y) \leftarrow \text { part_of }(Z, Y) \wedge i n(X, Z) .\end{array}\right.\)
```

Query Answer
?part_of(r123, B).

Example Queries

$$
K B=\left\{\begin{array}{l}
\text { in(kim, } r 123) . \\
\text { part_of }(r 123, \text { cs_building }) . \\
i n(X, Y) \leftarrow \text { part_of }(Z, Y) \wedge i n(X, Z) .
\end{array}\right.
$$

Query	Answer
?part_of $(r 123, B)$.	part_of (r123, cs_building $)$

?part_of(r023, cs_building).

Example Queries

$$
K B=\left\{\begin{array}{l}
\text { in }(\text { kim, } r 123) . \\
\text { part_of }(r 123, \text { cs_building }) . \\
i n(X, Y) \leftarrow \text { part_of }(Z, Y) \wedge i n(X, Z) .
\end{array}\right.
$$

Query	Answer
?part_of $(r 123, B)$.	part_of(r123, cs_building $)$
?part_of $(r 023$, cs_building $)$.	no
?in(kim, r023).	

Example Queries

$$
K B=\left\{\begin{array}{l}
\text { in }(\text { kim, } r 123) . \\
\text { part_of }(r 123, \text { cs_building }) . \\
i n(X, Y) \leftarrow \text { part_of }(Z, Y) \wedge i n(X, Z) .
\end{array}\right.
$$

Query	Answer
?part_of(r123, B).	part_of(r123, cs_building)

?part_of(r023, cs_building). no
?in(kim, r023). no
? in (kim, B).

Example Queries

$$
K B=\left\{\begin{array}{l}
\text { in }(\text { kim, } r 123) . \\
\text { part_of }(r 123, \text { cs_building }) . \\
i n(X, Y) \leftarrow \text { part_of }(Z, Y) \wedge i n(X, Z) .
\end{array}\right.
$$

Query	Answer
?part_of(r123, $B)$.	part_of(r123, cs_buid
?part_of(r023, cs_building). no	
?in(kim, r023).	no
?in(kim, B).	in (kim, r123)
	in(kim, cs_building)

Logical Consequence

Atom g is a logical consequence of $K B$ if and only if:

- g is a fact in $K B$, or
- there is a rule

$$
g \leftarrow b_{1} \wedge \ldots \wedge b_{k}
$$

in $K B$ such that each b_{i} is a logical consequence of $K B$.

Debugging false conclusions

To debug answer g that is false in the intended interpretation:

- If g is a fact in $K B$, this fact is wrong.
- Otherwise, suppose g was proved using the rule:

$$
g \leftarrow b_{1} \wedge \ldots \wedge b_{k}
$$

where each b_{i} is a logical consequence of $K B$.

- If each b_{i} is true in the intended interpretation, this clause is false in the intended interpretation.
- If some b_{i} is false in the intended interpretation, debug b_{i}.

Electrical Environment

Axiomatizing the Electrical Environment

$\% \operatorname{light}(L)$ is true if L is a light
$\operatorname{light}\left(I_{1}\right)$. light $\left(I_{2}\right)$.
\% down(S) is true if switch S is down
down $\left(s_{1}\right)$. up $\left(s_{2}\right)$. up $\left(s_{3}\right)$.
\% ok(D) is true if D is not broken
ok $\left(I_{1}\right)$. ok $\left(I_{2}\right)$. ok $\left(c b_{1}\right)$. ok $\left(c b_{2}\right)$.
?light $\left(I_{1}\right)$.

Axiomatizing the Electrical Environment

$\% \operatorname{light}(L)$ is true if L is a light
$\operatorname{light}\left(I_{1}\right)$. light $\left(I_{2}\right)$.
\% down(S) is true if switch S is down
down $\left(s_{1}\right)$. up $\left(s_{2}\right)$. up $\left(s_{3}\right)$.
\% ok(D) is true if D is not broken
ok $\left(I_{1}\right)$. ok $\left(I_{2}\right)$. ok $\left(c b_{1}\right)$. ok $\left(c b_{2}\right)$.
?light $\left(I_{1}\right) . \Longrightarrow$ yes
? light $(/ 6)$.

Axiomatizing the Electrical Environment

$\% \operatorname{light}(L)$ is true if L is a light
$\operatorname{light}\left(I_{1}\right)$. light $\left(I_{2}\right)$.
\% down(S) is true if switch S is down
down $\left(s_{1}\right)$. up $\left(s_{2}\right)$. up $\left(s_{3}\right)$.
\% ok(D) is true if D is not broken
ok $\left(I_{1}\right)$. ok $\left(I_{2}\right)$. ok $\left(c b_{1}\right)$. ok $\left(c b_{2}\right)$.
?light $\left(I_{1}\right) . \Longrightarrow$ yes
? light $\left(I_{6}\right) . \Longrightarrow$ no
? up (X).

Axiomatizing the Electrical Environment

$\% \operatorname{light}(L)$ is true if L is a light
$\operatorname{light}\left(I_{1}\right)$. light $\left(I_{2}\right)$.
\% down(S) is true if switch S is down
down $\left(s_{1}\right)$. up $\left(s_{2}\right)$. up $\left(s_{3}\right)$.
\% ok(D) is true if D is not broken
ok $\left(I_{1}\right)$. ok $\left(I_{2}\right)$. ok $\left(c b_{1}\right)$. ok $\left(c b_{2}\right)$.
?light $\left(I_{1}\right) . \Longrightarrow$ yes
?light $\left(I_{6}\right) . \Longrightarrow$ no
?up $(X) \quad \Longrightarrow \quad \operatorname{up}\left(s_{2}\right), u p\left(s_{3}\right)$
connected_to (X, Y) is true if component X is connected to Y

$$
\begin{aligned}
& \text { connected_to }\left(w_{0}, w_{1}\right) \leftarrow u p\left(s_{2}\right) . \\
& \text { connected_to }\left(w_{0}, w_{2}\right) \leftarrow d o w n\left(s_{2}\right) . \\
& \text { connected_to }\left(w_{1}, w_{3}\right) \leftarrow u p\left(s_{1}\right) . \\
& \text { connected_to }\left(w_{2}, w_{3}\right) \leftarrow d o w n\left(s_{1}\right) . \\
& \text { connected_to }\left(w_{4}, w_{3}\right) \leftarrow u p\left(s_{3}\right) . \\
& \text { connected_to }\left(p_{1}, w_{3}\right) .
\end{aligned}
$$

?connected_to $\left(w_{0}, W\right)$.
connected_to (X, Y) is true if component X is connected to Y

$$
\begin{aligned}
& \text { connected_to }\left(w_{0}, w_{1}\right) \leftarrow u p\left(s_{2}\right) . \\
& \text { connected_to }\left(w_{0}, w_{2}\right) \leftarrow d o w n\left(s_{2}\right) . \\
& \text { connected_to }\left(w_{1}, w_{3}\right) \leftarrow u p\left(s_{1}\right) . \\
& \text { connected_to }\left(w_{2}, w_{3}\right) \leftarrow d o w n\left(s_{1}\right) . \\
& \text { connected_to }\left(w_{4}, w_{3}\right) \leftarrow u p\left(s_{3}\right) . \\
& \text { connected_to }\left(p_{1}, w_{3}\right) .
\end{aligned}
$$

?connected_to $\left(w_{0}, W\right) . \quad \Longrightarrow \quad W=w_{1}$
?connected_to $\left(w_{1}, W\right) . \quad \Longrightarrow$
connected_to (X, Y) is true if component X is connected to Y

$$
\begin{aligned}
& \text { connected_to }\left(w_{0}, w_{1}\right) \leftarrow u p\left(s_{2}\right) . \\
& \text { connected_to }\left(w_{0}, w_{2}\right) \leftarrow d o w n\left(s_{2}\right) . \\
& \text { connected_to }\left(w_{1}, w_{3}\right) \leftarrow u p\left(s_{1}\right) . \\
& \text { connected_to }\left(w_{2}, w_{3}\right) \leftarrow d o w n\left(s_{1}\right) . \\
& \text { connected_to }\left(w_{4}, w_{3}\right) \leftarrow u p\left(s_{3}\right) . \\
& \text { connected_to }\left(p_{1}, w_{3}\right) .
\end{aligned}
$$

?connected_to $\left(w_{0}, W\right) . \quad \Longrightarrow \quad W=w_{1}$
?connected_to $\left(w_{1}, W\right) . \Longrightarrow$ no
?connected_to(Y, wh $)$.
connected_to (X, Y) is true if component X is connected to Y

$$
\begin{aligned}
& \text { connected_to }\left(w_{0}, w_{1}\right) \leftarrow u p\left(s_{2}\right) . \\
& \text { connected_to }\left(w_{0}, w_{2}\right) \leftarrow d o w n\left(s_{2}\right) . \\
& \text { connected_to }\left(w_{1}, w_{3}\right) \leftarrow u p\left(s_{1}\right) . \\
& \text { connected_to }\left(w_{2}, w_{3}\right) \leftarrow d o w n\left(s_{1}\right) . \\
& \text { connected_to }\left(w_{4}, w_{3}\right) \leftarrow u p\left(s_{3}\right) . \\
& \text { connected_to }\left(p_{1}, w_{3}\right) .
\end{aligned}
$$

?connected_to $\left(w_{0}, W\right) . \quad \Longrightarrow \quad W=w_{1}$
?connected_to $\left(w_{1}, W\right) \quad \Longrightarrow$ no
?connected_to $\left(Y, w_{3}\right) . \quad \Longrightarrow \quad Y=w_{2}, Y=w_{4}, Y=p_{1}$
?connected_to $(X, W) . \Longrightarrow$
connected_to (X, Y) is true if component X is connected to Y

$$
\begin{aligned}
& \text { connected_to }\left(w_{0}, w_{1}\right) \leftarrow u p\left(s_{2}\right) . \\
& \text { connected_to }\left(w_{0}, w_{2}\right) \leftarrow d o w n\left(s_{2}\right) . \\
& \text { connected_to }\left(w_{1}, w_{3}\right) \leftarrow u p\left(s_{1}\right) . \\
& \text { connected_to }\left(w_{2}, w_{3}\right) \leftarrow d o w n\left(s_{1}\right) . \\
& \text { connected_to }\left(w_{4}, w_{3}\right) \leftarrow u p\left(s_{3}\right) . \\
& \text { connected_to }\left(p_{1}, w_{3}\right) .
\end{aligned}
$$

?connected_to $\left(w_{0}, W\right) . \quad \Longrightarrow \quad W=w_{1}$
?connected_to $\left(w_{1}, W\right) \quad \Longrightarrow \quad$ no
?connected_to $\left(Y, w_{3}\right) . \quad \Longrightarrow \quad Y=w_{2}, Y=w_{4}, Y=p_{1}$
?connected_to $(X, W) \quad \Longrightarrow \quad X=w_{0}, W=w_{1}, \ldots$
\% lit (L) is true if the light L is lit

$$
\operatorname{lit}(L) \leftarrow \operatorname{light}(L) \wedge \operatorname{ok}(L) \wedge \operatorname{live}(L)
$$

\% live (C) is true if there is power coming into C

```
live(Y)}
        connected_to(Y,Z)^
        live(Z).
live(outside).
```

This is a recursive definition of live.

Recursion and Mathematical Induction

```
above( }X,Y)\leftarrowon(X,Y)
above(X,Y)\leftarrowon(X,Z)^above(Z,Y).
```

This can be seen as:

- Recursive definition of above: prove above in terms of a base case (on) or a simpler instance of itself; or
- Way to prove above by mathematical induction: the base case is when there are no blocks between X and Y, and if you can prove above when there are n blocks between them, you can prove it when there are $n+1$ blocks.

Limitations

Suppose you had a database using the relation:

$$
\text { enrolled }(S, C)
$$

which is true when student S is enrolled in course C.
You can't define the relation:

$$
\text { empty_course }(C)
$$

which is true when course C has no students enrolled in it.
This is because empty_course (C) doesn't logically follow from a set of enrolled relations. There are always models where someone is enrolled in a course!

