Variables - Variables are universally quantified in the scope of a clause. - A variable assignment is a function from variables into the domain. - Given an interpretation and a variable assignment, each term denotes an individual and each clause is either true or false. - A clause containing variables is true in an interpretation if it is true for all variable assignments. ### Queries and Answers A query is a way to ask if a body is a logical consequence of the knowledge base: $$?b_1 \wedge \cdots \wedge b_m$$. An answer is either - an instance of the query that is a logical consequence of the knowledge base *KB*, or - no if no instance is a logical consequence of KB. ``` KB = \begin{cases} in(kim, r123). \\ part_of(r123, cs_building). \\ in(X, Y) \leftarrow part_of(Z, Y) \land in(X, Z). \end{cases} ``` Query Answer Query $?part_of(r123, B)$. ``` KB = \left\{ \begin{array}{l} \textit{in(kim, r123)}. \\ \textit{part_of(r123, cs_building)}. \\ \textit{in(X, Y)} \leftarrow \textit{part_of(Z, Y)} \land \textit{in(X, Z)}. \end{array} \right. ``` Query Answer ? $part_of(r123, B)$. $part_of(r123, cs_building)$? $part_of(r023, cs_building)$. ``` \mathit{KB} = \left\{ egin{array}{l} \mathit{in}(\mathit{kim}, \mathit{r}123). \\ \mathit{part_of}(\mathit{r}123, \mathit{cs_building}). \\ \mathit{in}(X,Y) \leftarrow \mathit{part_of}(Z,Y) \wedge \mathit{in}(X,Z). \end{array} \right. ``` Query Answer ?part_of(r123, B). part_of(r123, cs_building) ?part_of(r023, cs_building). no ?in(kim, r023). ``` KB = \begin{cases} in(kim, r123). \\ part_of(r123, cs_building). \\ in(X, Y) \leftarrow part_of(Z, Y) \land in(X, Z). \end{cases} \frac{Query}{Part_of(r123, B).} \frac{Part_of(r123, cs_building)}{Part_of(r023, cs_building)}. ?part_of(r023, cs_building). ?in(kim, r023). ?in(kim, B). ``` ``` KB = \begin{cases} in(kim, r123). \\ part_of(r123, cs_building). \\ in(X, Y) \leftarrow part_of(Z, Y) \land in(X, Z). \end{cases} \frac{\text{Query}}{\text{?part_of(r123, B).}} \frac{\text{Answer}}{\text{?part_of(r023, cs_building)}}. \quad no \text{?in(kim, r023).} \quad no \text{?in(kim, B).} \quad in(kim, r123) \\ in(kim, cs_building) ``` ### Logical Consequence Atom g is a logical consequence of KB if and only if: - g is a fact in KB, or - there is a rule $$g \leftarrow b_1 \wedge \ldots \wedge b_k$$ in KB such that each b_i is a logical consequence of KB. ### Debugging false conclusions To debug answer g that is false in the intended interpretation: - If g is a fact in KB, this fact is wrong. - Otherwise, suppose g was proved using the rule: $$g \leftarrow b_1 \wedge \ldots \wedge b_k$$ where each b_i is a logical consequence of KB. - If each b_i is true in the intended interpretation, this clause is false in the intended interpretation. - If some b_i is false in the intended interpretation, debug b_i . ### **Electrical Environment** ``` % light(L) is true if L is a light light(I_1). light(I_2). % down(S) is true if switch S is down down(s_1). up(s_2). up(s_3). % ok(D) is true if D is not broken ok(I_1). ok(I_2). ok(cb_1). ok(cb_2). ? light(I_1). ``` ``` % light(L) is true if L is a light light(l_1). light(l_2). % down(S) is true if switch S is down down(s_1). up(s_2). up(s_3). % ok(D) is true if D is not broken ok(l_1). ok(l_2). ok(cb_1). ok(cb_2). ? light(l_1). \Longrightarrow yes ? light(l_6). \Longrightarrow ``` ``` % light(L) is true if L is a light light(I_1). light(I_2). % down(S) is true if switch S is down down(s_1). up(s_2). up(s_3). % ok(D) is true if D is not broken ok(I_1). ok(I_2). ok(cb_1). ok(cb_2). ? light(I_1). \Longrightarrow yes ? light(I_6). \Longrightarrow no ? up(X). ``` ``` % light(L) is true if L is a light light(I_1). light(I_2). % down(S) is true if switch S is down down(s_1). up(s_2). up(s_3). % ok(D) is true if D is not broken ok(I_1). ok(I_2). ok(cb_1). ok(cb_2). ? light(I_1). \Longrightarrow yes ? light(I_6). \Longrightarrow no ? up(X). \Longrightarrow up(s_2), up(s_3) ``` $connected_to(w_0, w_1) \leftarrow up(s_2).$ $connected_to(w_0, w_2) \leftarrow down(s_2).$ $connected_to(w_1, w_3) \leftarrow up(s_1).$ $connected_to(w_2, w_3) \leftarrow down(s_1).$ $connected_to(w_4, w_3) \leftarrow up(s_3).$ $connected_to(p_1, w_3).$? $connected_to(w_0, W)$. \Longrightarrow $connected_to(w_0, w_1) \leftarrow up(s_2).$ $connected_to(w_0, w_2) \leftarrow down(s_2).$ $connected_to(w_1, w_3) \leftarrow up(s_1).$ $connected_to(w_2, w_3) \leftarrow down(s_1).$ $connected_to(w_4, w_3) \leftarrow up(s_3).$ $connected_to(p_1, w_3).$? $connected_to(w_0, W)$. \Longrightarrow $W = w_1$? $connected_to(w_1, W)$. \Longrightarrow ``` connected_to(w_0, w_1) \leftarrow up(s_2). connected_to(w_0, w_2) \leftarrow down(s_2). connected_to(w_1, w_3) \leftarrow up(s_1). connected_to(w_2, w_3) \leftarrow down(s_1). connected_to(w_4, w_3) \leftarrow up(s_3). ``` connected_to(p_1, w_3). ``` ?connected_to(w_0, W). \Longrightarrow W = w_1 ?connected_to(w_1, W). \Longrightarrow no ?connected_to(Y, w_3). \Longrightarrow ``` ``` connected_to(w_0, w_1) \leftarrow up(s_2). connected_to(w_0, w_2) \leftarrow down(s_2). connected_to(w_1, w_3) \leftarrow up(s_1). connected_to(w_2, w_3) \leftarrow down(s_1). connected_to(w_4, w_3) \leftarrow up(s_3). connected_to(p_1, w_3). ``` ``` ?connected_to(w_0, W). \Longrightarrow W = w_1 ?connected_to(w_1, W). \Longrightarrow no ?connected_to(Y, w_3). \Longrightarrow Y = w_2, Y = w_4, Y = p_1 ?connected_to(X, W). \Longrightarrow ``` ``` connected_to(w_0, w_1) \leftarrow up(s_2). connected_to(w_0, w_2) \leftarrow down(s_2). connected_to(w_1, w_3) \leftarrow up(s_1). connected_to(w_2, w_3) \leftarrow down(s_1). connected_to(w_4, w_3) \leftarrow up(s_3). connected_to(p_1, w_3). ``` ``` ?connected_to(w_0, W). \Longrightarrow W = w_1 ?connected_to(w_1, W). \Longrightarrow no ?connected_to(Y, w_3). \Longrightarrow Y = w_2, Y = w_4, Y = p_1 ?connected_to(X, W). \Longrightarrow X = w_0, W = w_1, ... ``` This is a recursive definition of *live*. ### Recursion and Mathematical Induction $$above(X, Y) \leftarrow on(X, Y).$$ $above(X, Y) \leftarrow on(X, Z) \land above(Z, Y).$ #### This can be seen as: - Recursive definition of above: prove above in terms of a base case (on) or a simpler instance of itself; or - Way to prove above by mathematical induction: the base case is when there are no blocks between X and Y, and if you can prove above when there are n blocks between them, you can prove it when there are n+1 blocks. ### Limitations Suppose you had a database using the relation: which is true when student S is enrolled in course C. You can't define the relation: $$empty_course(C)$$ which is true when course C has no students enrolled in it. This is because $empty_course(C)$ doesn't logically follow from a set of enrolled relations. There are always models where someone is enrolled in a course!