Logic and Databases Enrico Franconi (ILS-2014)

Queries

Since a query can be an arbitrary first-order formula, its answer may depend on the domain, which we do not know in advance or may vary from system to system. For example:

- the query $Q(x) = \neg Student(x)$ over the database Student(a), Student(b), with domain $\{a, b, c\}$ has the answer $\{x = c\}$,
- the same query with domain $\{a, b, c, d\}$ has the answer $\{x = c, x = d\}$.

Therefore, the notion of *domain independent* queries has been introduced in relational databases.

Domain Independence

A formula Q(X) is domain independent with respect to the integrity constraints \mathcal{IC}

if and only if for every two models \mathcal{I} and \mathcal{J} of \mathcal{IC} (i.e., $\mathcal{I} = \langle |\mathcal{I}|, \cdot^{\mathcal{I}} \rangle$ and $\mathcal{J} = \langle |\mathcal{J}|, \cdot^{\mathcal{J}} \rangle$) which agree on the interpretation of the predicates and constants (i.e. $\cdot^{\mathcal{I}} = \cdot^{\mathcal{J}}$), and for every assignment $v : \mathbb{X} \mapsto |\mathcal{I}| \cup |\mathcal{J}|$, we have:

$$rng(v) \subseteq |\mathcal{I}|$$
 and $\mathcal{I} \models \mathcal{Q}(\mathbb{X})[v]$
if and only if
 $rng(v) \subseteq |\mathcal{J}|$ and $\mathcal{J} \models \mathcal{Q}(\mathbb{X})[v].$

Examples

- $Q_1(x) = \neg A(x) \land B(x)$
- $Q_2(x) = \exists x.(A(x) \lor B(a))$
- $Q_3(x) = \neg A(x)$
- $Q_4(x) = \forall x. A(x)$

Check whether they are:

- domain independent,
- safe range.