Towards a Logical
Reconstruction of
Relational Database Theory

Raymond Reiter
University of British Columbia

ABSTRACT fnsofar as database theorvy can be said to owe ¢ debt 1o
fogic, the currency on loan s model theoretic in the sense thar u dara-
buse can be viewed as a particular kind of first order imterpretation, and
griery evaltiation is o process of wuth funciional evaluation of first order
Jormuldae with respect w0 this interpretation. It is this model theoretic
paradigin wiich leads, for example, 1o many valwed proposinonal logics
Jor databuses with null values,

fu this chaprer | argue thar o proof 1theorelic view of databases is
possible, and indeed mach more frifid, Specificallv, 1 show how rela-
tonal dutabases can be seen as special itheories of first order logie,
namely theones incorporating the following assiunptions:

1. The domain closure asstumption, The individuals occurring in the
database are all and onlv the existing individuals,

20 The uaigue name assumption. Indwviduals with distinet names are
distinet.

3. The closed world assumption. The only possibie instances of o rela-
won are those implicd by the database.

Joowidl folfow thar a proaf iheorete paradigm for relational databases
provides a correct treaiment of

I Query evaluation for databases that have incomplete mformation,
including noll vaiues.

2. lwtegriny constraines and itheir enforcement,

3. Conceprual modelling and the extension of the relational model to
meorporate wmore real world semantics,

1. Introduction

There is in our midst a small group of researchers whose devotion to
logic and databases' is viewed with some perplexity by the majority of
database theoreticians and practitioners. Their literature is peppered
with obscure logical notation and theorems. As befits logicians, they
claim privileged sovergignty over the Truth about databases. Can this
cabal possibly be saying anything of interest to the database
community?

Of course, everyone is at least dirmly conscious of some fogical debt
owed by database theory, if only because the relational calculus relies
on 4 first order language. What other outstanding logical loans are gen-
erally acknowledged? Well, a relational calculus query is a first order
formula that is evaluared with respect 10 a database of facts. Since logic
diclates that formulae have values {truth values) only with respect to
interpretations, a dalabase is commonly viewed as just that —a first order
interpretation in the standard Tarskian sense. The value of a relational
calculus query is determined by those instances of its free variables that
make the query true with respect 1o the interpretation specified by the
underlying database. This view of a database as a first order interpreta-
tion also neatly accommodates the concept of an integrity constraint.
Insofar as one can view an integrity constraint as a first order formula,
a database can be said to satisfy this constraint iff the constraint is true
with respect 1o the database as interpretation. That is, given a set of
integrity constraints, one cannol admit just any interpretation as a cor-
rect representation of one’s domain of application; the interpretation
must be a model (again, in the standard Tarskian sense) of the integrity
constraints,

I think it is fair to say that, as far as database theoreticians conceive
the field in logical terms, it is this model theoretic point of view that
prevails. A database is a model of some set of integrity consiraints, and
a query is some formula to be evaluated with respect to this model.
Now [invite you to survey the literature of the database logicians. You
will, for the most part, find litile mention of models and
interpretations. Poor Tarski gets short shift here. And the relational
algebra at best is granted footnote status. Instead, you wili find most
theoretical constructs couched in proof theoretic terms. A database is
viewed as a set of first order formulae, not as a model. Queries are
formulae to be proven, given the database as premises. Satisfaction of

integrily constraints is defined in terms of consistency.” Considerable

! See, for cxample, [GMT3].

21 shall provide a different definition in this chapter, but one which nevertheless is
proof theoretic,

K109], 988(BIB(] [BUOB[SY JO UOKONLSU0IY [80L30T © SPIBMOY, €'F'G

108

energy is invested in obtaining algorithms for efficiently finding proofs.
In short, the logicians adopt a proof theoretic view of database theory.

What, then, is the preferred formal perspective on database theory —
the model theoretic or the proof theoretic? Without a careful analysis,
of course, one cannot say. This chapter presumes 1o provide such an
analysis. My conclusion will be that both paradigms are reconcilable,
but that the proof theoretic view is richer and more fruitful. More pre-
cisely, I shall show how, when given a model theoretic database DB
withowr null values, one can transform DB into a suitable set of first
order axioms, such that the resulting first order theory provides a proof
theoretic characterization of query evaluation and integrity constrainis.
By itself this would not be a very exciting result, Curious perhaps, but
nol exciting. The idea bears fruit only in ils capacily for generalization.
For now that databases can be perceived as special kinds of first order
theories, one can generalize these theories in order o provide answers
10 a variety of outstanding questions about databases:

[. How can the relational mode! be extended in order to incorporate
more reat world knowiedge?

2. A number of null values have been proposed. Whal is their seman-
tics?

3. What really are databases that have incomplete information?

4. What is the correct notion of an answer (0 & query in the presence of
semantically rich datazbases such as those incorporating the features
mentioned in 1-3 above?

5. For such semantically rich databases, what is an appropriate notion of
an integrity constraint and what does it mean 1o satisfy a constraint?

My purpose in this chapter is to show how answers (o these questions
gmerge’in a very natural way from a proof theoretic characterization of
database theory.

2. Databases ‘and Logic: The Model Theoretic Perspective

This section outlines in some detail what I take to be the model
theoretic paradigm in relational database lheory.3 To that end we require
some formal preliminaries.

3 Many of the ideas of this section. in particular the concept of u databusc as a first or-
der model of a set of integrily constraints, derive from ING78]. In effect, Sections
2.1-2.3 below formalize this concepl.

2.1 First Order Languages

A first order language F is specified by a pair (24, 7¥) where =# is
an alphabet of symbols and v is a set of syatactically well formed
expressions called well formed formulae constructed using the symbols
of =4. The rules for constructing the formulae of v are the same for
all first order languages £, only the alphabel =4 may vary. =4 must
contain symbols of the following kind, and only such symbols;

Variables: x, y, =, X1, V1. 21 . ..
There must be infinitely many of these.

Constants: a, b, ¢, partl7, acme, ...,
There may be 0 or more of these, possibly infinitely many.

Predicates: P, Q. R. SUPPLIES, EMPLOYEE, ...,

There must be al least one of these, possibly infinitely many., With
each is associaled an integer »# 20, its arity, denoting the number of arg-
uments il takes.

Punctuation Signs: (.) .,

Logical Constants: = (implies), A {and), V (or), —~ (nov), = (iff).

Notice that function symbols arg not included in this alphabet. 1
omit them becdause their introduction leads to severe difficuliies for
dalabase theory. [REIT78al (pp. 173-173). Fortunately, they are not
required for a formal treatment of current ideas in databases.

With such an alphabet =4 in hand. we can construct a set of syntacti-
cally well formed expressions, culminating in a definition of the set
of well formed formulae, as follows:

Terms
A variable or a constant of =4 is a term,

Aromic Formulae

If P is an n-ary predicale of =4 and ¢r, are terms, then
Py1,) is an aromic formula. Plry, ..., f,) 18 a ground atomic
formula iff 7. 1, are all constants,

Well Formed Formulae
¥ is the smallest set such that:

(40

So1jUB WIS puB uorjsjussaidey]

1. An atomic formula is a well formed formula (wff).
2.If W, and W, are wifs, so also are (W, A Wi, (W, W),
(WD Wy, (W, = W), ~W,.

3. IF & is a variable and W is a wff, then (x) (W) and (Ex) (W) are
wifs. Here (x) is a universal quantifier and (Ex)} an existential quan-
tifier.

For the purposes of formally defining a relational database, we won't
require arbitrary first order languages; a suitable proper subset of these
will do. Accordingly, define 2 first order language F = (4. <0} 10 be a
relational language iff =4 has the following properties:

1. There are only finitely many constants in =%, but at least one.
2. There are only finitely many predicates in =4.

3. Among the predicates of =4 there is a distinguished binary predicate
= which will function for us as equality.

4. Among the predicates of =4 there is a distinguished subset, possibly
empty. of unary predicates. Such unary predicates are called simple
fvpes. Not all unary predicates of =4 need be simple types. Such
simple types, logether with boolean combinations of simple lypes,
will, in part, model the concept of the domain of a relation as it
arises in standard database theory.

Given a relational language R = (=f ¢} we can define the set of
wpes of R as the smallest set such that:

1. A simple type of =4 is a type.
2. If #) and 7, are types, s0 also are (7, A 7,), (=, V #5), ~7|.

For a relational language R = (4. <tv) it is convenient to define
appropriate syntactically sugared abéreviations for certain of the wffs of
qr, as follows:

If 7 is a type, then
(x/t)y (W) abbreviates (x) (v (x) D W)
(Ex/+) (W) abbreviates (£x) (= (x) AW)
where
LI ris (ry A 7)) then 7(x) is (=) {x) A r,(x)).
2.If7is (71 V 73) then 7(x) is (7,(x) W 75(x)).
3.1 7 is ~7 then 7{x) is ~r (x).

Here (x/7) (W) should be read as: “‘For all x which are +, W is the
case,” and (£x/r) (W) as: “thers is an x, which is a =, such that W is
the case.” Thus these rype restricted quantifiers are meant 1o restrict the

possible x’s to just those which belong to the cluss =, Notice that quan-
tifiers may be restricted only by types, not by arbitrary predicates.

Example 2.1
If MALE, EMPLOYEE, MANAGER, SUPPLIER, and PART are sim-
ple types, the following are type restricted quantified wffs:

(x/SUPPLIER) (Ey/PART}YSUPPLIES (x.y)
which abbreviates the ordinary wff
(x)[SUPPLIER (x}2 (Ey) (PART (v)ASUPPLIES (x.y))]
i.e.. “"Every supplier supplies al least one part.”
(x/MALE N EMPLOYEE N\ ~MANAGER }{DEPT (x, 13)
D PENSION=PLAN (x)]
which abbreviates the ordinary wff
(cHMALE (x) N EMPLOYEE (x) \ ~MANAGER (x)
DIDEPT (x,13) D PENSION—PLAN (x)]]

Le. “All male employees of department 13 who are not managers
belong to the pension plan.™

In this example I have omitted a lot of parentheses on the assump-
tion (correct, I hope) that you all know whal these formulae mean. 1
shall continue this practice whenever no ambiguity will result,

2.2 The Semantics of First Order Languages

The objective here is to assign a precise meaning 1o each of the sym-
bols of the alphabet =4 of a first order language £ = (4.) and, using
this assignment as a basis, 10 define the truth values of arbitrary wifs in
i gonstructed from these symbols. The required definitions are by
now standard (see, for exampie, [MEND64]),

An interpreiation [for the first order language F = (A4, ar} is a triple
(D.K.E) where

[. D is a non empty set, called the domain of I, over which the varia-
bles of =4 are meant to range.

2. K is mapping from the constants of of into D (i.e., for each constant
c, K{c) € D).

3. £ is 2 mapping from the predicales of =4 into sets of twuples of
elements of D (ie, for each nr-ary predicate symbol P,
E(P) € D"}. E(P) is called the extension of P in the interpreta-
tion f.

£109YJ, 988([8IB(] [BUOIIB[Y JO UOIONIISU0DY [BILIO B SPIBMOY, £'F'T

g0g

Example 2.2
Consider a relational language R = (A ‘) where the only predicates
and constants of =4 are the following:

Predicates: TEACHER (-}, COURSE (), STUDENT(-), TEACH (-,+),
ENROQLLED (-,-), =(-,).

Simple Types: TEACHER (), COURSE (+), STUDENT ().
Constans: 4, B. C, a. b, ¢, d, €5100, CS200, P100, P200.

Then the following defines an interpretation for &, with domain
(4, B. C, a, b ¢ d CS100, C5200, P100, P200j:

TEACHER COQURSE STUDENT TEACH ENROLLED =
A C8100 1 A CS100 a CS100 A A
B C5200 b A CS5200 aPlLOO B B
C P10Q c B P100 b C5100 Cc C
P200 d C P200 ¢ P10G a a
d C5200 b b
d P200 c c
d d

C8100 CS100
C8200 CS200
P100 P100
P200 P200

Here the tables define the extensions of the predicate symbols
TEACHER, COURSE, etc. Notice that, strictly speaking, the domain
elements A, B, C, erc., are nor the same as the constant symbols A, B,
C. etc., which are part of our aiphabet of symbols. In effect, 1 have
chosen to name the domain elements by the constant symbols. So
think of the domain elements in the tables as coioured red, and the
constant -symbols as coloured black. In subsequent examples I shall
freely name domain elements by constant symbols.

Now givan an interpretation / = (D,K,£) for a first order language £
= (4 W), let p be a mapping from the variables of o into D (ie., for
gach variable x € =4, p(x) € D). p is called an environment for the
variables of =4. For a given environment p, define a mapping:

I+, terms — D as follows:
lelP, = K (¢} for each constant symbol ¢ € .
lxIF, = p(x} for each variable x € 4.

Next define a relation |z by

—

LV S
formula P(ry, ... ,0,) € aw.

!—7—4) Wl/\ Wz iff 'Tp W] and }-7—:9 Wz.

}Tﬂ W1V Wz iff h?p W1 or lTp Wz.

b, ~ W iff not B, W

b, WD W, iff e ~ WV Wy

e, WE W) (W, 2 W) A (W,D W)

E, YWY for all & € D, [y W Where plx—d] denotes an

environment identical 10 p except that this new environment maps
the variable x to the Jomain element 4.

8. (EOW iff b, ~ ()~ W

e Pl o) T ey, oo lz,I¥,) € E(P) for each atomic

R

Finally, define F= wiff ;_ W for zll environments p, in which case W
is said to be rrue in the m!erprera!.'on [. W is false in the interpretation [
iff for no environment p is it the case that |= W. An interpretation f is
a model of the wif W iff W is true in /. 7 i5 a model of a set S of wifs
iff W is true in J for each W € §.

Example 2.2 (continucd)
The previous interpretation is a model for each of the following for-
mulae:

(x} W) [TEACH (x,y) D TEACHER (x) A COURSE(y)] (2.1
{x) () [ENROLLED (x,y) D STUDENT (x) A COURSE(y)] (2.2)
(x/COURSE)} (Ey{ TEACHERYTEACH (y.x) (2.3)

(x/ TEACHER) (Ey/ COURSE) TEACH (x,y) (2.4)

Notice that, on the view that types formalize the concept of “*domain
of a relation,” then (2.1) and (2.2} specify the domains of the relations
TEACH and ENROLLED.} Formulae (2.1)-(2.4) can be viewed as
integrity constraints that happen to be true in the given interpretation.

Notice also that the logician’s fancy definition of truth in an interpre-
wation, involving as it does the notion of an environment p for varia-
bles, is motivated by the requirement of maintaining the distinction
between the objects of the interpretation and the purely syntactic sym-
bols of the first order language. Of course, no one really thinks of

4 Notice that | have not yet defined the concept of a relation. It should be clear from
Example 2.2, however, that TEACH and ENROLLED will be examples of relations by
whatever definition 1 eventually come up with.

08

. §oIjuUBWAG puB uoyjrjussardey

interpretations in this way, al least not in the database setting. Rather,
ong thinks of the 1ables of an interpretation as defining a sel of
propositions. In Exampie 2.2, the true propositions are TEACHER (A4,
TEACHER(B) ENROLLED (d.P200), ={a.a) =(P200,
P200). Those propositions not included in this sel are treated as false.
For example, TEACHER (d), TEACH (B.CS100) and =(4.8) are false.
Then a wif (x) W (x) is true in an interpretation iff for every d in the
domain of the interpretation, W{(d) is true. (Ex) W (x) is true iff for
some d, W{d) is true. Of course the logical constants A, V, ~. >
and = are given their usuzl truth able definitions. Thus, in the case
of finite interpretations, determining the truth of an arbitrary wif
reduces to purely propositional truth table evaluations.

2.3 Relational Databases Defined

Recall thal a relational language R = (4. W) is 2 first order language
for which =4 conlains finitely many constants and finitely many predi-
cales, among which is a distinguished equality predicate and possibly
some distinguished unary predicates cailed simple types. Among all of
the possible interpretations for a relational language R, we can single
oul the class of relational interpretations as follows:

Let R = (4 ar) be a relational language. An interpretation / =
{D.K.E) for R is a relaiional interpretation for R iff

1. A: constants of =4 -i%}(%- D (so that D must be finite).
/

2 E(=) ={{dd) |d € D}.

The interpretation of Example 2.2 is a relational interpretation.
A relational darabase is a triple (R,1,1C) where:

1. R is a relfational language.
2. I is a refational interpretation for R.

3. IC is a set of wffs of R, calied integriy constraints. In particular, it is
required that for each n-ary predicate P distinct from = and the sim-
ple types, /C must contain a wit of the form

) oo e P, X)) D rxp AL AT, ()]

where the v, are types. 7|, ..., 1, are called the domains of P.

For each predicate P distinct from the simple types, the extension
E(P) is called a relation. When the context is clear, I shall often refer
10 a relation by the name of the corresponding predicate £. Thus I will
speak of “the relation P in referring to P’s exiension.

The integrity constraints /C of a relational database (R,/,/C) are said
to be sarisfied iff [is a model for /C. Wffs (2.1)-(2.4) of Example 2.2
(continued) might well be taken 1o define a set of iategrily constraints
in which case Example 2.2, together with its continuation, defines a
relational database. The wffs (2.1) and (2.2) then define the domains
of the predicates TEACH and ENROLLED. For this example, the rela-
tional database satisfies its integrity constraints.

A few remarks are in order.

1. Since the extension of the equality predicale is the set of all pairs
(d.d) of domain elements, =(d.d'} is false for all distinct domain
elements 4,4°. This is in keeping with the universally adopted
assumption in database theory that distinctly named individuals are
in fact distinct, From our model theoretic perspective, this means
that different domain elements denote different individuals, so that
in Example 2.2, the proposition =(P100,P200) is false, whereas
=(P100,P100) is true.

2. Relationai database theory generally incorporates a set of arithmetic
comparison operators like <, =, > e, as needed. [have chosen
only to represent the equality “operator,” primarily because it will
play a prominent role in the subsequent theory. It would be a simple
matter 10 modify my definition of a relational database to include the
binary predicates <, >, and indeed any set of desired binary “opera-
tors.” The basic difference between my approach and the conven-
tional one is that [treat these operators as predicales thal are exten-
sionally defined within the theory, whereas conventionally these
operators are viewed as procedures whose formal properties are
understood by everyone and therefore are not defined within the
theory. They are, so to speak, “external operators.™

3. The concept of an integrity constraint as defined above corresponds
to the so-called siaric inlegrity constraints or stare laws of [NY78].
Such constraints are meant o be satisfied by any state of the data-
base. In contrast there is also the concept of a drnamic integrity con-
straint or transition lgw [NYT8]. Satisfaction of a dynamic constraint
is a function of not just the current state of the database but also of
its successor state. [do not, in this chapter. address this latter class
of integrity constraints, excep! to point out their intimate connection
with the well known *“frame problem™ in Artificial Intelligence
{(RAPH71],

£r03Y, 9SEQRIB(T [RUOITBIBY JO UOIIONIISU0IDY [8O130T] B SPIBMO], £

q0g

2.4 A First Order Query Language

The query language 1 will appeal to is one first defined in [REIT77]
and used subsequenily in [REIT78a]l and [REIT80a]. It is obviously a
close relative of that used in the domain calculus of [ULLMS0] (pp.
116-117).

Queries are defined relative to a given relational language
R = (A4,7w). Specifically, a query for R is any expression of the form
<%/T | W(X) > where:

1. /7 denotes the sequence x/7y, . . .,X;/T,, and the x; are variables
of 4.

2. Each 7, is a type composed of simple types of =4.

3. W) €ear and the only free variables of W(¥) are among
¥ =x,....x,. Moreover, all of the quantifiers occurring in W (¥)
are type restricted quantifiers. '

If DB = (R,1JC) is a telational database then a query for R is said
10 be applicable to DB. The intention here is that information may be
reirieved from a relational database only by posing queries that are
applicable 10 that dalabase.

Intuitively, the query <%/7 | W(F)> is meant to denote the set of
afl tuples of constants T =¢, ..., ¢, such that each ¢ satisfies the
type T,, and such that the database satisfies W (€). A formal definition
will follow the next example.

Example 2.3
The following are sample queries applicable to the education database
of Example 2.2:

Who teaches P100?
<x/TEACHER | TEACH (x,P100)>

Who are all of 4’s students?

<x/STUDENT | (£y/COURSE)TEACH (A,y} N ENROLLED (x.y)>
What courses does @ lake, and who 1eaches them?

<x/COURSE, y/TEACHER | ENROLLED(a,x) \ TEACH (p.x)>
Who teaches all of the students?
<x/TEACHER | (v/STUDENT) (Ez/ COURSE}TEACH (x.z)
A ENROLLED (y,z)>

The following gueries are not applicable to this dalabase because they
involve constants or predicates that are not part of the alphabet of the
relational language for the database:

<x/TEACHER | TEACH (x, MATH 100)>
<x/SUPPLIER | (y/PART)SUPPLIES (x,y)>

Formally, let DB = (R.[IC) and let Q = <%/7 | W(X)}> be a query
applicable to DB. A tuple T of constants of R’s alphabet is an answer
1o Q with respect to DB iff

l.v,{¢)istruein [, i=1,....4.
2. W{T) istrue in /.

Notice that the concept of an answer is defined oniy for queries
applicable to DB. A query not applicable 1o D8 must involve predi-
cates nol contained in R’s alphabet and which therefore have no
extensions in /, or constants not contained in R’s aiphabetl and which
thus have no corresponding domain elements in /. In other words, DB
does not know about these predicates or constants, in which case the
query musl be viewed as meaningless.

Finally, notice that there is no correlate in my definition of a query 1o
the notion of a safe [ULLMS80] or definite [KUHN67] or range separable
[CODD72] query. Essentially these latter restriclions on queries are
deemed necessary in order 10 avoid ever computing the unrestricted
complermnent of a relation; this because such complements are seen as
either infinite or undefined. But notice that when a relational database
is a triple (R.//C). the compiement of a type or a relation is finite and
perfectly well defined since there are but finitely many individuals in
the domain of /. These are the only individuals the database knows
about; as far as it is concerned rhese are ail and only the existing individ-
uals. There is no need for the concept of a safe query.

The source of the safe query constraint in conventional database the-
ory can be traced to the concept of a domain for a relation as the total-
ity of all individuals of a certain kind. Thus, the totality of all parts
might be a domain for an inventory database, or the totality of all sup-
pliers. Domains might be infinite, as is the set of all integers,
Whether these domains are conceived as being finite or infinite, it is
the completed rorality of such individuals that is somehow seen to be part
of the database, despite the fact that in any state of the database only a
finite subset of this totality will be explicitly represented. Unrestricted
complements of relations are understood to be defined with respect to
the completed totality of database individuals, not with respect 1o the
finitely many explicitly present representatives of this totality. Hence
the requirement of safe queries.

90¢

soijuBweg pus uorpejussaLdayy

Now I must confess to a certain discomfort over this notion of com-
plementation with respect to completed totalities. For this totality is
never explicitly represented in the database: rather, it is a conceptualiza-
tion that we, as humans, entertain. There is no way that the database
can be said to know about, say, the set of ail integers, at least not with-
out some representation of Peano arithmetic. It knows only about
some finitely many integers, and precious litile abou: them. It seems
1o me that queries are about things the database Anows about {suppliers,
integers, erc., that it has explicit representations for). A query
<X/7T 1 W(E)> asks for all tuples ¥ known to the darabase, satisfying T
and W. In this view, complementation is perfectly respectable.
<X/INTEGER | ~P(x)> denotes the set of all integers known 10 the
database for which ~ P (x} is known 10 be true.

2.5 Some Problems with the Model Theoretic Perspective

The model theoretic paradigm has an elegance and simplicity 1hat
accounis, in large measure, for the overwhelming success of Codd’s
original proposul for a relational model of data [CODD70!. Yet it is not
without its difficulties, some of which (e.2.. null values) Codd had
foreseen, others of which have subsequently emerged. I shall here
focus on two such problems with the model theoretic world view,

2.3.1 Databases with Incomplete Information
A variety of phenomena fall under this rubric. I shall consider two
of these: disjunctive information and the need for nuill values.

2.3.10.1 Disjunciive Information

One encounters this problem whenever there is the need to represent
a fact of the kind P is the case, or Q is the case, or .. . " but it is
not known which of 2,0, actually is the case. [LIPS79] proposes 4
treatment of this situation under cerlain simplifying assumptions. For
the education database of Example 2.2, we face this problem in an
altempt to represeni the fact ' is enrolled in £200 or in C5200, but 1
don’t know which."” The obvious (and indeed only) approach within the
model theoretic framework is Lo split the given interpretation into three
interpretations /), /; and /3, each identical 1o the given one, except
that, in /i, the relation ENROLLED contains the additional tupie
(a,£200). In /; it contains (a,CS200), while in /; it contains both
(@,P200) and (a,CS$200). Then ¥ will be defined to be an answer lo
the query <X/7 | W(F)> iff v, (c;) and W (T) are all true in all three
interpretations /), /y and /3. This idea generalizes in the obvious way
lo the concept of a database involving many interpretations, and the
concept of query evaluation requiring truth in ali these interpretations.

Anyone familiar with the completeness theorem for first order logic will
immediately detect proof theory in this observation.

Notice that we cannot avoid the problem of multiple interpretations
by treating the formula ENROLLED (¢, P200)\ ENROLLED
(@,C5200) as an integrity constrainl. For to do so would require that at
least one of (4.P200) and (a.C$200) be included in the relation
ENROLLED in order for this constraint to be satisfied, and we don’t
know which of these tuples is the case.

2.5.1.2 Null Vaiues

This terminoiogy embraces a multitude of necessary evils in database
theory. 1 shall focus here on just one such null, namely “value at pre-
sent unknown.” In fact this null value has two distinc: manifestations:
“value at present unknown, but one of some finite set of known possi-
ble values,™ and *‘value at present unknown, vel jor necessarily one of
some finite set of known possible values.” As an example of the
former, suppose that in our education database we wish 10 represent the
facl that e is a student whe is enrolled in some course, but we don't
know which course that is. Suppose further that we know that the only
exisling courses are the ones mentioned in the database, so that a pri-
ori, whichever course that e is taking, it is one of CS100, 5200,
..., P200. Then our task is to represent the disjunctive fact:

ENROLLED (e.CS100) \V ENROLLED (,CS200)
V...V ENROLLED (e.P200)

which is just the problem of disjunctive information discussed above.

As an example of the latter “value unknown' null, consider the
ubiquitous “‘supplier and parts™ database which contains a relation
SUPPLIES (.,.) whose domains are specified by:

(X)) [SUPPLIES(x.y) D SUPPLIER (x) A PART ()]

Now suppose that p is a part with no known supplier, but we do
know that someone, perhaps one of the known suppliers, perhaps net,
does supply it. How shall we rtepresent this fact? The standard
approach (see, for example, [CODD79]) is 10 postulale z new unknown
but existing entity w, a mull value, then add the upie (w.p) to the SUP-
PLIES 1able, add w to the SUPPLIER 1able and p 1o the PART table.
Bul @ is an individual with quite a different character from the other
known individuals of the database, so it is deemed necessary (o aug-
ment the conventjonal truth values {true, false} with a third truth value
“unknown” in order to correctly evaluate queries over databases con-
taining such null values. The effect of this third truth value is then an
extension of the relational algebra so that, for example, equality and the
join operator suitably reflect the intended meaning of this null value.

A109Y, 95B([BIB([BUOIIB[OY JO UOIIONIISU0IDY [8O1F0T B SPABMOY, £'5°F

LOE

Notice that the multiple truth valued approach ro null values is a direct
and natural consequence of the model theoretic paradigm of relational data-
base theory. Models are concerned with truth. Since two truth values
suffice for the evaluation of wffs in an interpretation without nulls, it is
only natural to try inventing new truth values in order to evaluate que-
ries in an interpretation with nulls. Notice also that a correct treatment
of nulls is predicated on a prior notion of whai these null values mean.
Without a correct semantics, no correct exiended relational algebra is
possible. On this view, multi-valued logics provide one possible frame-
work within which a semantics for values may be defined. Alas, within
this framework it i$ by no means clear how to extend the relalional
model to correctly represent null values. Although several approaches
exist in the literature (e.g., [BISK81] [CODD79] [WALKS0] [VASS79]
[ZANI77)). there is no general agreement about which of these, if any,
provides a correct semantics for nulls. This difficulty is compounded in
the presence of additional kinds of null vaiues (e.g.. “no value permit-
ted™).

2.5.2 Extending the Relational Model 1o Incorporate More World
Kunowledee
Il is becoming increasingly evident that the relational mode! provides
limited expressive power, and that extensions to the formalism are
required in order to incorporaie more real world meaning [CODD79]
Bz81]. The following are typical examples of the kinds of real world
knowledge that an exiended relational model might accommodate:

1. General facts about the world such as “*The subpart relation is transi-
tive” and “All men are morlal.™

2. Events: Their sequencing and times of occurrence.

3. Generalization hierarchies (IS-A hierarchies) with property inheri-
tance.

It is tru€ that certain kinds of knowledge can be represented within
the model theoretic paradigm by treating this knowledge as an integrity
constraint. For example, the fact that the subpart relation is transitive

(x/PART) (y/ PART) (z/ PART)SUBPART (x.y) A\ SUBPART (y,z}
D SUBPART (x,z)]

could be an integrity constraint, thereby forcing the extension of
SUBPART 10 be closed under transitivity. But other kinds of
information, for example disjunctive information, cannot be treated as
integrity constraints, as observed in Section 2.5.1.1. Because of this,
and because there are settings in which various forms of inference seem
necessary (for example, property inheritance in hierarchies), other
approaches 10 the strict model theoretic have been proposed. 1 shall

return to these issues in Section 4.2 in the context of a proof theoretic
view of databases.

3. Databases and Logic: the Proof Theoretic Perspective

My objective in this section is to show how the model theoretic per-
speclive on databases can be reinterpreted in purely proof theoretic
terms. Specifically, 1 shall define a class of first order theories, called
relational theories, and prove an equivalence result relating relational
theories to relational interpretations. From this it will follow that a def-
inition of a relationa! database, equivalent to the one presented in Sec-
tion 2.3. is as a triple (R.T.JC) where T is a relational theory. Then,
all prior definitions, involving as they do truth in a relational interpreta-
lion, can be reformuiated in terms of provability in the theory T. The
point of this result, namely its capacity for generalization, will be taken
up in Section 4.

3.1 Relational Theories

Imagine given a database (R,[/C). [shall assume, as I have
assumed all along, that the domain elements of / are named using con-
stant symbols of R’s alphabet.5 In addition, instead of viewing the rela-
tional interpretation / as a set of tables, think of it as a set of ground
atomic formulae. Thus, in Example 2.2, think of the interpretation as
being specified by {he ground atomic formulae

(TEACHER (A), TEACHER(B), TEACHER(C). . . .,
ENROLLED (d,P100},ENROLLED (d.P200},
=(4,4),=(B.B)..... =(P200,P200)}.

1 now propose viewing this set as a first order theory (ie.. as a sel of
wffs of the underlying relational langs.wlge).6 Currently, these wffs are
simply ground atomic formulae, but 1 shall shortly have occasion to
modify this sel using other kinds of formulae.

5 See the comments of Example 2.2,

 In general if {7,) is u first order language, then any subset of < is called a first or-
der theory of the language.

80¢

gofjuewag pue uorjvjusseldey

Given such a relational interpretation, reinterpreted as a first order
theory T, there are various formulae that can be proven, given T as
premises. Thus, with reference to Example 2.2 we have the following:

Tl ENROLLED (¢.P100)’
T ENROLLED (a.P100) A TEACH (B,P100)
THA{E/COURSEYTEACH (A.v) A ENROLLED (a.v)

Notice that all of these provable formulae also happen 1o be true in the
original interpretation. However, there are formulae that are true in the
interpretation but that are not provable from the corresponding first
order theory. For example:

(WIITEACHER (x) V COURSE (x) V STUDENT (x))

is such a formula. This is not provable because the first order theory T
does not know that 4.8. ... ,P100.P200 are ail and only the existing
individuals. As far as 7 is concerned, there might be other existing
individuals in the world. So augment T with the following domain clo-
sure axiom:

(=AY =BV ...V =(xP100) V ={xP200)]

In general, if / is 4 relational interpretation with domain ¢, Cus
then the domain closure axiom for [[REIT80a] is

Wil=e Vel V.V =kg,)]

We can also simplify the representation of the equality relation by
replacing ali of its instances ={(4.4), =(B,8), ..., =(P200,P200) by
the single formula (v)={(x.x). Our transformed first order theory T
now consists of the following wffs:

(e d=(x.x)
=)V =(xB)V ... V=(PL00}V =(x,P200)]
TEACHER (4), TEACHER (B). ..., ENROLLED(d,CS$200),
ENROLLED (d,P200).

Unfortunately, there still remain wifs true in the original interpretation
{ but unprovable from 7, for example all of the inequalities
~=(A4,8), ~=(A4,C), etc. So for each pair of distinct constants ¢.¢’ of
the domain, augment 7 with the wnigue name axioms ~={c.c")
(REIT80a]. Since I am proposing to treat equality proof theoretically,
we shall also require the standard axioms specifying the intuitive

Tirw is a set of first order formulae and if w is a first order formula, then #iew
means that there is a first order proof of w frorm premises W,

properties that equality should have, namely commutativity, transitivity,

and substitution of one term for another term that is equal 10 it. These
axioms will be given below.

Our theory 7 now contains unigue name axioms, logether with
axioms for equality. The only remaining problem with 7 is that il fails
to treal negation properly. For example, the wff ~TEACHER (a),
while true in 7, is not provable from 7. The reason is clear enough; T
has models in which TE4ACHER (a) is true. To avoid this, we need a
first order wff which says that the only individuals TEACHER can be
predicated of are 4, B. and €. This can be done using the completion
of the predicate TEACHER :

(XV[TEACHER (x) D ={x.A}V =(x.B)V ={x.C)]

Similarly, the completion of the predicate TEACH for our education
database is

() WITEACH (xp) D =(x.4) A =(.CS100)
V =(_X.A IN=(.CS200) V =(x. B)A =(».P100)
Vo=, CY A =, P200)]

We can now augment the theory 7 for the education example with the
completions of each of the predicates of that database. The first order
theory that we finally end up with consists of the following formuiae:

I. Domain closure axiom:
C)l=0eA)V =(xB8)V ...V =(P100) V =(x,P200)]

2. Unique name axioms;
~=(4.8), ~=(B,C}, ~={d.a),....
3. Equality axioms specifying the reflexivity., commutativity and transi-
tivity of equality, and the principle of substitution of equal terms.
4. The ground atomic facts:
TEACHER(A), TEACHER (B), ENROLLED (d.P200).

5. Completion axioms for each predicate:
CTEACHER (x) D =(x.A)V =(.B) V =(x.C))
(x) (W) ENROLLED (xy} D =(xa) A =(».CS100} V ...V
={x.d} A\ =(y.P200)]

el

£103y], aseqete(] [RUOIIB[SY JO UCKONISU0IRY [8o1507] B SPIBMO], £'F'F

808

Notice that the only model of this theory is the original interpretation of
Example 2.2. Thus, whenever we had occasion o speak of truth in this
interpretation, we can instead speak of provability in the theory. All of
which motivates the foliowing definition:

Let R = (4,) be a relational language. A first order theory T € v
is a refational theory of R iff it satisfies the following properiies:

1.If ¢y,c, are all of the constants of =#, T contains the domain
closure axiom

Wl=xved V.. .V =ke)]
T contains the unigue name axioms

~=(c.;) L =1L . i<y

2. T conuzins each of the following equality axioms:

(i) Reflexivity
{x)=0xx)

(i) Commutativity
o) [={xy) D =(px)]
(ii}) Transitivity
()) @ =xy) A=(pz) D =xz)]

{iv) Leibnitz® principie of substitution of equal terms:

For each m-ary predicate symbol £ of =4,
(Xl) (x”,) (}Jl)-‘- (y,'u)[P(-xl'-"!er)/\
=(X1-})1)/\ Ce /\ =(x,,,.y,,,) 2 P(Yl- e ,yrn)]

3. For some sel A € < of ground atomic formulae, none of whose
predicates is the equalily predicate, A € T.
For each m-ary predicate P of =4 distinct from the equaiity predicate
define a set Cp of m-tuples of constants by

Cr= {7 | P(@) €Al

The set {P{7) | T € Cp!} is called the extension of P in 78

2 Not 1o be confused with the concept of the extension of a predicate P in an inlerpre-
tation.

Suppose Cp = (et .. e, el ol Then in
addition to the wffs of A, T contains the following completion axiom
for P:

(X]) P (X_,,,)[P(X[. PRI ,Xm) = =(X1.C1(”) /\ .. /\ #(xmvcnl::”)
V P V =(X1.(‘1‘”) /\ L /\ =(X',,,.C',;€”)]

If Cp=1{1, then P’s extension in 7 is empty, and T’s completion
axiom is

(x) ... Qo)—~Plxi. ... xy)

4. The only wffs of T are those sanctioned by conditions 1-3 above.

Notice thal in a reiationai theory 7T the extension of £ in T together
with P’s completion axiom is logically equivalent to the wff

(,\‘1) PN (X,”)[P(X} X,,,) = =(X1.C1(“) /\ B /\ =(,\’,,,.C,,(,“)
v [V =(X|.('1‘:r)) /\ v /\ =(xﬂ;ucn:1”)]

This is the “if and onaly if form™ of the predicate P as defined in
[CLAR78L. The idea of using a completion axiom in the above defini-
tion derives from Clark’s paper.

The following theorem establishes an equivalence between relational
theories and relational interpretations.
Theorem 3.1. Suppose R = (4. 4v) is a relational language. Theuw:

L. If T is a relational theorv of R, then T has a unigue niodel [which is a
refational interpretation for R.

2. I 1 is a relational interpretation for R then there is a relarional theory T
of R such that [is the only model of T.

Proaf.
. Let / = {(D.K.E) be the foliowing relational interpretation for R:

B D=le.....c.}wherecp. ¢, are all of the constants of
. :4‘ o

(i Klr=g¢.i=1,....n
(i) £(=)={(cc)le € D}
If P is a meary predicate of = whose completion axiom in T
has the form
(xid, ..)) ~Plx . oox,) 3.

(so thal P's extension in 7 is empty), £(P} = {}. Other-
wise P's completion axiom in T has the form

1€

sopjurweg pue uoyejussardsy

(X}) e (Xm)[-P(Xl' ree ’xm) D= (XI Cl“) /\ /\ m(X,”.C”(,”)

V . V =(X|.{'](”) /\ PR /\ =(X,,,.(,””)] (32)
where the ¢'' are all constants of =¢. In this case P’s
extension in 7 is [P(c{". ..., e P e
and £(PY = {(efV. e, i, e,

/ is clearly a model of T. To see that f is Ts only model
notice first that 7's domain ciosure and unique name axioms
force any model A7 of T (o have the same domain as / (up
lo renaming of /'s domain elements). Secondly, T's reflex-
ivity axiom forces the extension in A of the equality predi-
cate 1o be the same as in /. Finally, the extension and com-
pletion axiom, in 7, of a predicate P together with 7s
unique name axioms force P°s exiension in Af to be the
same ds its extension in /.

2. The proof here involves constructing, from /. a relational theory T
in lhe same fashion as in the educational database of Example 2.2.
So. given a relational interpretation / = (D,K.E) for R. define a firsi
order theory T C «Ir as follows:

) D ={c,..... ¢,1 then T contains the wifs
=(e) V..V =)
~=(e.0) =1, 1<)

i) T contains axioms for the reflexivily, commutativity and
transitivity of the equality predicate, together with axioms for
the principle of substitution of equal terms for each predicate
P oof =4,

(it)" For each m-ary predicate P of =4 distinct from the equality
predicate:

If £(P) =) then T contains the wit (3.1).

If E(P)={(c,‘“.... a,,,“) Al then T
contains the wff (1ogether with each of the wffs
Pl oo sy i=1,....r.

(iv) The only wffs in T are those sanctioned by (i)-(iii) above.

Then T is a relational theory of R and it is not hard 10 see. as in the
proof of 1 above, that / is 2 unique model of 7.
QED

Corollary 3.2. Suppose T is a relational theory of a relational tanguage R,
and ithat | is a model of T. Then for any wff w aof R, wis true in I iff
Thw.

Proof. The proof follows from the fact that / must be a unique model
of T and the completeness theorem for first order logic.

3.2 A Proof Theoretic Reconstruction of Relational Database
Theory

Theorem 3.1 and Corollary 3.2 form the basis for a proof theoretic
reconstruction of all the model theoretic concepts and definitions of
Section 2. For if (R.LJC) is a relational database, then we can con-
struct, as in the proof of 2. of Theorem 3.1, z relational theory T of R
for which / is 77s only model. By Corollary 3.2, the concepts of truth
in / and provability from 7 are equivalent. Conversely, by 1. of Theo-
rem 3.1, any relational theory T defines a unique relational interpreta-
tion [/, and again, by Corotlary 3.2, truth in / is equivalent to provabil-
ity from T.

Accordingly, we can equivalently define a relarional darabase 10 be 1
triple (R, T. /C} where R and /C are as before, and T is a relational
theory of R. The integrity constraints /C are said 10 be sarisfied iff for
each w € IC , T—w. If 0 = <X/FIWE)> isa query applicable to
this database, then an a-tuple € of constants of R’s alphabet is an
answer 10 Q with respect to this database iff

L Tr{c) i=1,....n and
2T W@

4. Generalizing the Proof Theoretic Perspective

In this section I shall show how the proof theoretic view of a rela-
tional database as a triple (R,7./C) admits a variety of generalizations,
through modification of the first order theory 7.

4.1 Databases That Contain Incomplete Information

Recall that in Section 2.5.1 | discussed two manifestations of the
problem of representing incomplete information within the model
theoretic paradigm of database theory, namely disjunctive information
and null values. Let us return to these problems and determine the

K109], 9sBqUIR(] [BUOHR[SY JO UOIPINIISU0IZY [8I1T0T] ¥ SPIBMO], £F'F

118

+. 4.1 LJ.'.)_,'HHLHN.’ !II:JUIIHHHUH

This was the problem of representing disjunctive facts of the form:
P is the case. or Q is., or ... , but | don't know which.” and of using
such incomplete information in deriving answers to database queries.

Exampie 4.1
Consider the following relational theory for a supplier and paris
world:

PART SUPPLIER SUPPLIES SUBPART

I Acme Acme py PPz
P Foo Foo p»
73

where for brevity I use tables Lo specify the predicate extensions in the
theory instead of the ground atomic formulae PART(py),
PART(pad. SUBPART(p\.p1).

Domain Closure Axiom:
() [=0ep) V =) V = (xps) V =(xAdome) V =(x.Foo)]
Unique Name Axioms:
~={(p,.pa), ~={(pa.p3), etc.

Equality Axioms: as usual

Completion Axioms:
1.) PART (x) D =lxp} V =(xp) V =xp3)]
2. (x) [SUPPLIER (x) D =(x.Acme) \ ={x.Foo)]

3. (x) (WYSUPPLIES (x.y) D =(x.Acme) A =(»n.py)
V =(x.Foo) A =(.pa)]

4. (x} () [SUBPART (x.y) D =(x.p) A =(p)]

Now suppose that we also wish 10 represent the disjunctive fact: “Foo
supplies p, or Foo supplies p; but I don’t know which.” This item of
information can be represented by the wit:

SUPPLIES (Foo,py) NV SUPPLIES (Foo,ps) 4.

Now one must resist the natural iemptation to simply add this wif 10
the above theory, thinking that one has thereby provided a correct rep-
resentation of this world. To see why, consider the contrapesitive of 3,
the completion axiom for SUPPLIES:

V — (b.02))

From 1NIs 4nd 1rom ine unique name axioms we can prove, taking
x = Foo and y = p,, the Wil —~SUPPLIES{Foo.p,). Similarly we can
prove ~SUPPLIES (Foo.ps). But these two facts are inconsistent with
the disjunclive wff (4.1}

The reason for this ~“anomaly™ is clear enough; the completion axiom
3 was designed 1o say that, of the original theory, the only possible
instances of SUPPLIES are (Acme.p,) and (Foo,ps). But the disjunctive
wif (4.1) says that rhere are other possible insiances of SUPPLIES,
namely (Foo.p;) and (Foo.p;). To accommodale these new possible
instances replace the completion axiom 3 by:

3% (x)) [SUPPLIES (xy) D =(xAcme) A =(y.p))
v =(x.Foo) A =(n.py) V = Foo) A =(.p1)
W o={x,Foo) A =0.p3}]

Notice that we can, with 3%, stiil prove ~SUPPLIES (Acme,py) as
before, but we can no longer, as we could before, prove
~SUPPLIES (Foo.p,) or ~SUPPLIES (Foo.p;}. This is precisely what
one’s intuition about disjunctive facts such as (4.1) would demand.

Now consider representing, in addition to (4.1), the fact

“If Acme does not supply p; then p; must
be a subpart of ps.”
This can also be represented as a disjunctive wif
SUPPLIES (Acme, py) N SUBPART (pa.p3) (4.2

Again we wanl 1o include this wif in the theory, bul the completion
axioms 3’ and 4 must both be modified to accommodate the new possi-
ble instances (Acme. pa) and (pa.ps) of SUPPLIES and SUBPART. So
replace 3" and 4 by

37, (x) () [SUPPLIES (x.v)} D ={x.Acme) A ={np))
\ = Foo) A =(.p) V =(x.Foo) A =(np)
Vo =(xFoo) A =(npy) V =(x.Acme) A =Qnp))]

4. (x) (" [SUBPART(xy) D =(xp) A=(.p) V =(xp2) A ={y.p3)]
All of which leads 1o a new theory consisting of:
1. The extensions defined by the tables.

2. The domain closure, unique name, and equality axioms.

(413

go1juBWAG pue uorejussardey

3. The completion axioms 1, 2. 3" and 4'.
4, The disjunctive wffs (4.1) and (4.2).

This theory provides an intuitively correct representation for this
incompletely specified world.

These considerations iead 1o a natural generalization of the concept
of a relational database to incorporate disjunctive information, as
follows.

Let R = (=4 av) be a relational theory. A wif of «v is called a posirive
ground clause of R iff it has the form 4,V ...V 4, where each 4, is a
ground atomic formula whose predicate is distinct from the equality
predicate. The case r = 1 is permitied, in which case the clause is sim-
ply a ground nonequality stomic formula. A first order theory T € ¢
is a generalized relational theory of T iff it satisfies the following proper-
ties:

LI ¢y ... ¢, are all of the constants of =4, T contains the domain
closure axiom

W= V.. .V =l
T coniains the unique name axioms
~=(e.¢) if=1,....n i<
2. T contains axioms for the reflexivity, commutativity and transitivity

of equality, together with an axiom for the substitution of equal
terms for each predicate £ of 4.

3. For some set A © ar of positive ground clauses of R. A € T. For
each wr-ary predicate P of =4 distinct from the equality predicate,
define a set Cp of m-tuples of constants by

Cp = (T | for some positive ground clause 4,V ...V 4, of A and
some i, 1€i<r . 4, is P(T))

Suppose Cp = {(c/". . ") L uled”, o o)), Then in
addition to the wifs of A, T contains the following completion axion
for P:

(X]) e (X,,,){P(le . .X,,,) - =(XI-CI(“) AL /\ ﬁ(J"mv‘:'n(:”)
VooV =) AL A =680
If Cp ={}, then T’s completion axiom is

Ce) oo Goyd~Pixy, LX),

4. The only wffs of T are those sanctioned by conditions 1-3 above.

Notice that the definition of a relational theory of Section 3.1 is a
special ¢ase of the above definition, in which A is a set of ground
nonequality atomic formulae. It is natural to define a generalized refa-
tional database 10 be z triple (R, 7./C) where T is a generalized rela-
tional theory, and R and /C are as before. Simiiarly, the definition of
IC being satisfied and the definition of an answer 10 a query are as in
Section 3.2.

Generalized relational heories are sufficiently complicated 1o cause
concern aboul their consistency. Not to worry.

Theorem 4.1. Every generalized relational theorv T is consistent,

Proofl This is proven by constructing a model of 7. Suppose
R =(x4.¥) and T € v is a generalized relational theory. Define an
interpretation / = (D.K,£) for R with domain D = [¢y,c,} where
these are all of the constants of =4. Define £(=) = {(c.c) Ic € D).
Then [/ satisfies the domain closure, unigue name. and equality axioms
of T. Finally, for each nonequality predicate P of =4 define
EP)={riTe Cp). Then [/ satisfies each wif of A as well as the
completion axioms for each nonequality predicate of =4. Hence / is a
model of T.

QED

4.1.2 The Semantics of Null Values

The concept of a relational database as developed in Sections 2 and 3
or as generalized in Section 4.1.1 did not accommodate null values,
Indeed, as | remarked in Section 2.5.1.2, it is by no means clear what
some of these null values even mean. My purpose now is 1o show in
some detail how one particular null {(namely “value at present
unknown, bul not necessarily one of some finite set of known possible
values™)’ may be defined within the proofl theoretic paradigm for data-
hase thf:ory.IO

To focus the discussion, consider the relational theory defined at the
beginning of Example 4.1. Suppose we wish to represent the fact:

s See the discussion of Section 2.5.1.2,

i The other most commen null value, namely “no value permitted,” ulso has a simple
first order representation. For example, suppose EMP(p.m.s} denoted that person p
whose muarilal status is s (Married or Single) has spouse s, Then if John-Doe is sin-
gle. no value for s is permitted. This can be represented by (W/PERSON) ~— EMP
fdohi-Doe.S.s). [shall not consider such nulls in this chupter.

A1081], 950qBIB([BUOHBIAY JO UOI}INIISU0ISY [BLH0] B SPIBMA], £'3'F

£1¢

“Some supplier supplies part p; but I don’t know who it is.
Moreover, this supplier may or may not be ong of the known
suppliers Acme and Foo.”

This fact may be represented by the first order wif
(Ex)SUPPLIER (x) N\ SUPPLIES(x.p3) (4.3)

which asseris the exisience of an individual x with the desired proper-
ies. Now we can choose to name ihis existing individual (call il @)
and instead of (4.3), ascribe these properties o « directly:

SUPPLIER (w) A SUPPLIES (w.p3) (4.4)

In database terminology. « is a nufl vaiue. 1t is called a Skolem constant
by logicians. Skolem constants, or more generally Skoler functions,
provide a technical device for the elimination of existential quantifiers
in proof theory {see. for cxample. [CL73]).

The problem at hand is how 10 correcily integrate the facis (4.4) into
our supplier and paris relational theory. Notice first that w is a new
constant, perhaps denoting the same individual as some known con-
stant, perhaps not. So the unique name axioms remain untouched.
The domain closure axiom. however, must be expanded to accommo-
date this new constant:

() =ep) Vo =lup) Vo =(ops) V =0 deme) V (4.5)
=i{x.Foo) V ={x.w)]

Moreover, the completion axioms for SUPPL/ER and SUPPLIES must
likewise be expanded:

(x)[SUPPLIER (x} D ={x.Acme) \V =(x.Foo) V =(x.w)] (4.6}
(x) () [SUPPLIES (x,y) D =(x.Acme) A =(v.py)
V ={x.Foo A =(ppy V =) A ={.p3)] 4.7

if now we add the facts SUPPLIER (@) and SUPPLIES {w.p3) 10 this
medified theory we end up with an intuilively correct representation.
Notice that in this resulting theory, the only thing that distinguishes ihe
Skolem constant w from the “ordinary” constants Acme, Foo, ew.. is the
absence of unigue napie axioms Jor w.

Notice also that in this theory we c¢an prove things like
~SUPPLIES (Acme.py), and ~SUPPLIES(Foo.p)), but nor
~SUPPLIES (Acme.p;) or ~SUPPLIES(Foo.pz). Intuitively, this is
precisely what we want, For we know SUPPLIES {w.p3). Moreover, we
don’t know whether w is the same as, or different than, Acme or Foo.'!

1 pemember that there are no unique name gxioms for .

joint sets of constanis C = {¢y. ¢, and @ = {w;. ...

So if we could prove, say ~SUPPLIES (Acme,ps), we could also prove
~=(w.Acme), contradicting our presumed ignorance about the identity
of w. What we really have here is a correct formalization of the closed
worid assumption [REIT78b] in the presence of null values. I shall
return to this issue in Section 4.2.4.

One last observation is in order. If we wanted, in addition, to repre-
sent the fact:

~Some supplier (possibly the same as Acme or Foo, possibly
not) supplies p» ”

(Ex)SUPPLIER (x) N SUPPLIES (x.p3)

we musl choose a name for this supplier, say w’, which must be distinct
from the name of the previous unknown supplier w. This is for obvi-
ous reasons. Moreover, the domair: closure axiom (4.5) and the com-
pletion axioms (4.6) and (4.7) must be expanded o lake @' into
account. In general, each time a new null value is introduced into the
theory, the nuli must be denoted by a fresh name, distinct from all
other names of the theory, and the domain closure and completion
axioms must be expanded.

These ideas now can be formalized as follows: Let R = (=4, ar) be a
relational theory, where the consianis of =4 are partitioned into two dis-
w,). Here
Q may be empty, but C may not be. Each w, is called a nudl value. As
hefore, a wil of v is called a positive ground clause of R iff it has the
form 4,V ...V A4, where each 4, is a nonequality ground atomic
formula. The case m = t is permitted. A firsl order theory T C < is
a generalized relational theory of R with null values iff it satisfies the
following properties:

1. T contzins the domain closure axiom:
OExe) V. V=we) V=We) V... V=(Waoll
Moreover, T contains the unique name axioms:
~={e.) i< Qi fe= 1

In addition, 7 may contain one or more inequalitites of the following
forms:

~u=(aw,,c;) for some 1</igr 1€/<m

~=(w,.w;) for some 1</ j<r i</

¥1g

$o1jUBUIAG puB uocljejussardeyy

2. T contains the usual equality axioms.

3. For some set A € «Iv of positive ground clauses of R, A € T. For
each m-ary predicate P of =¢ distinct from the equality predicate
define a set Kp of m-tuples of constants from ¢ U Q by

Kp = {?\7 | for some positive ground clause 4, V...V A4, ofA
and some /, 1<i<m, A, is P(K)].

Suppose Ap ={(k{".....) T (oL, E¥N). Then in
addition to the wifs of A, T contains the following completion axiom
for P:

b o e P L v D=k TYA LA =, k)
V PP V m(X]J'\'](”) /\ e /\ H_‘*(Xm'kﬂ(l“)}
If Kp ={ }. then 7’s completion axiom is

(.\'1) e (xm) o P(X}, e a-xm)
4. The only wifs of 7 are those sanctioned by conditions 1-3 above.

The definition of a generalized relational theary of Section 4.1.1 is a
special case of the above definition, in which Q = { |.

A generalized relarional database with null values is a triple (R.T./C)
where R and 7 are as above, and /C € <7 is a set of integrity con-
strainis. The definitions of an auswer 10 a query, and of sarisfaction of
the integrity consiraints remain the same as before.

Having formalized a class of first order theories that accommodate
null values, we can now observe that ihe only formal distincrion between a
null value w € Q and an “ordinary™ constant ¢ € C is that some of the
possible wnigue name axioms for w are absem from the theory. 1f in fact
all of the unique name axioms for w were present (the definition does
allow this), then w would be indistinguishable from an “ordinary™ con-
stant,

Notice also that generalized relational theories with null values pro-
vide for disjunctive information as well, and permit some quite subtle
distinctions o be represented. For example:

“Someone supplies p3 but I don™t know who, Whoever it is. it
is neither 4 nor B.”

(Ex/SUPPLIER)SUPPLIES (x,p3) N\ ~=(x,A) A\ ~=(x.B)
which, after elimination of the existential quantifier becomes
SUPPLIER (w) N\ SUPPLIES (w,p3) A ~=(w.4) A ~={0.8)

“Someone supplies p; and someone supplies py. i don’t know
who they are but I do know they are not the same suppliers.”

{(Ex/SUPPLIER)Y (Ey/SUPPLIER)SUPPLIES (x.p3)
N SUPPLIES (y.ps) N ~=(xy)
which becomes
SUPPLIER (@) N\ SUPPLIER (w3) N\ SUPPLIES (w.p3)
A SUPPLIES (wa.p3) A ~={(w.w3)

“Somecne supplies p; or p3 but 1 don™t know who. [do know
it is not A.”

(Ex/SUPPLIER) [SUPPLIES (x.p5) NV SUPPLIES (xp) I A ~=(x4)
which becomes
SUPPLIER (w) N\ [SUPPLIES (w.pa) N SUPPLIES (w.p3)] A ~=(w.4)

The following result is comforting.

Theorem 4.2. Every generalized relational theory T with null values is
CONSistent.

Prooft The proof is constructed by adding enough inegualities 1o T to
vield a generalized refational theory. By Theorem 4.1, this enlarged
theory wili be consisient in which case so will any subset of it, in partic-
ular T itself,

To suitably enlarge T add to it every inequality ~={(c,,w;) such that
neither this inequality nor the inequality ~=(w;.c;} is already present
in 7. Similarly, add to T every inequality ~=(w,.»;} for i 3% j such
that neither this nor the inequality ~={(w,.,) is aiready present in 7.
The resulting theory is a generalized relational theory,

QED

One final observation: any generalized relational theory with null
values is decidable, basically because the domain closure axiom restricts
the class of its models 10 those whose domains are no larger than the
finite set of constants of the theory. OF course testing a wff for
theoremhood by testing it for truth in all these models is hardly an
exemplary procedure. A theorem proving approach would certainly be
preferable. Better still would be a suitable generalization of the rela-
tional algebra, but whether this is even possible remains 1o be seen.

A1091,], 958([B)B(] [BUOIIB[IY JO UOIIONIISU0IN (801507 B SPIEMOT, £'F'F

q1¢

4.2 Conceptual Modelling: Incorporating More World
Knowledge

As | remarked in Section 2.5.2, there is a perceived need within the
database community to extend the relational model to accommedate
more real world knowledge, and many of the required extensions can-
not be accommodated by the model theoretic paradigm for relational
databases. A bewildering variety of proposals have been advanced in
response to this need. Representative examples include the
“Tasmanian™ relational model [CODD79], TAXIS, an object oriented
programming language [MBWS80], class oriented data models [HM78],
and semantic natworks [SOWA76]. Now there are two problems with
1his embarrassing number of proposals:

1. How can one begin 1o compare them? In what formal sense could
one claim that two such proposals have the same representational
“powers,” or that one is a generalization of another? Most such
proposals invelve different representation languages and different
(and in some cases underspecified) semantics, making mappings
between them virtually impossible.

2. Insofar as the concept of an answer to a query is defined at all, it is
defined operationally, for example by a generalization of the reia-
tional algebra, or by some set of retrieval routines which may or may
not perform inferences. Now these data models are complicated.
Therefore these operational definitions for answers to queries are
also complicated. Why should one believe that these definitions are
correct {i.e., that any answer returned will be intuitively appropriate)?
Why should one believe that these definitions are compiete (i.e., that
anything that intuitively should be an answer will be returned)?

My purpose in this section is 1o indicate how a logical framework can
alleviate these problems. Specifically, I shall argue that the kinds of
real world knowledge that these extended data models attempt to cap-
ture have natural representations as first order formulae. If you grant
me this claim for the momeni, it follows that such non logical data
models can be equivalently formalized by suitably restricted classes of
first order theories, much as Section 4.1.2 formalized the relational
modei with disjunctive information and nuli values as the class of gen-
eralized relational theories with null values. Provided this mapping
from a non logical data mode! 10 a logical one can be done, we would
enjoy a number of immediate benefits [REIT80b]:

1. The semantics of the non logical data model would be precisely
defined by its logical translation.

2. Two different non logical data models could be compared (say, with
respect 10 their representational “*power™), by comparing their trans-
lations.

-

3. The definition of an answer (o a query remains the same as in Sec-
tion 3.2. This is a central point; no matier how one extends one’s

data models 10 incorporate more real world meaning, the definition of

an quswer 10 G query remains the same, as long as this extension is first
order definable. This is not to say that one’s query evaluation algo-
rithms must resemble the logician’s proof procedures. The relational
algebra is such an algorithm, and it looks nothing like proof theory.
Nevertheless, logic is the final arbiter of the correctness of proposed
query evaluation mechanism for any first order definable data model.
Thus we can prove the correctness of proposed query evaluaiion algo-
rithms,

4. Similar remarks hold for integrity consiraints. The definition of
satisfaction of an integrity constraint remains as it was expressed in
Section 3.2 for any first order data model. Thus we can prove the cor-
rectiiess of proposed integrity maintenance algoritfims.

It remains for me to argue that the kinds of real world knowledge
that various semantic data models atlempt 1o capture are representable
within first order logic. Space limitations prevent an exhaustive or
detailed survey of the kinds of knowledge modelied in the database lit-
erature, so | shall focus instead on some of the more prominent seman-
lic requirements.

4.2.1 The Represenmtation of Events

First order event based representations have been used extensively in
Artificial Intelligence for modelling verbs and their associated case
frames for natural language undersianding systems [BRUCT75]. These
ideas translate very naturally into the database setting. The idea is w0
extend one’s ontology to include a new class of individuals of type
EVENT, and then to postulate various properties that these individuals
may possess. For example, in an inventory dalabase. one may want 10
represent the fact that an order has been received on June 12, 1981, to
be filled by Sept. 1, 1981, and which is 10 be shipped to Acme. The
order is for 12 pipewrenches, catalogue number 1376, and for 24 doors,
catalogue number 2001, colour brown. This has as its event-based first
order representation:

(Ex{ORDER—EVENTHDATE-RECEIVED (x. June 12 [981)
N DATE—TO~BE=FILLED (x, Sept | 1981) A SHIP—TO{x.Acme)
A GOODS—ORDERED {x.pipewrench)
N CATALOGUE—NO (x.pipewrench, 1376)

918

SoIjuUBWI9G puB uorjeIussaLde)

A QUANTITY (x,pipewrench, 12) A GOODS—ORDERED (x.door)
A CATALOGUE—NO (x,door, 2001) A QUANTITY (x.door, 24)
A COLOUR (x,door,brown }]

Associated with any individual of type ORDER—EVENT might be an
integrity constraint specifying that there must be someone to whom the
goods are to be shipped, that there are some goods on order, and that
the date the order is received must precede the date it is to be filled.

(x/ORDER—EVENT) (Ey/DATE) (E2/ DATE) (Eu/BUYER)
(Ew/INVENTORY—ITEM}|DATE—RECEIVED (x,v)
N DATE—TO—BE—FILLED (x,2) A y<:z
A SHIP=TO (x,u) A GOODS—ORDERED (x,w)}

4.2.2 Hierarchies and the Inheritance of Properties

The modelling task here is to provide a first order representation of
generalization (IS-A) hierarchies, the properties associated with
“classes™ in the hierarchy, and how these properties are inherited by
classes “lower down™ in the hierarchy. These features are common to
virtually every attempt in the literature to define data models with more
“meaning” (e.g., [CODD79] [HM78] (MBWS0] {8577b]).

For example, consider an educational domain with the hierarchy of
simple types (classes) of Figure 4.1. The semantics of this hierarchy
can be specified by the following first order wifs:

(x)[UNDERGRADUATE (x) D STUDENT (x}}
(xYIGRADUATE (x) D STUDENT (x)]
(x)[FRESHMAN (x) D UNDERGRADUATE (x)]
(x}[JUNIOR (x)D UNDERGRADUATE (x)]
erc.,

together with wffs specifying the disjointness of these types, namely:
()~ [UNDERGRADUATE (x) A\ GRADUATE (x)]
(x)~[FRESHMAN (x) A\ JUNIOR (x))
(x)~[FRESHMAN (x) N\ SOPHOMORE (x}]
elc.

In addition to this hierarchy, there might be properties that generally
hold for simple types “‘high up™ in the hierarchy and that are inherited
by any instances of simple types “lower down.” For example, it will
likely be the case that evéry student should have a student number:

(x/STUDENT) (Ey/INTEGER)STUDENT=NO (x,y)

This is an example of a property associated with the type STUDENT. In
general a property of the simple type 7 is a wif of the form
(x/7) (Ey/8)YP(x,y) where 8 is some type and P is a binary predicate.

STUDENT

UNDERGRADUATE GRADUATE

FRESHMAN JUNIOR SOPHOMORE SENIOR MsC PHD

Figure 4.1 A Hherarchy of Sunple Types

For the example at hand it is easy to see that the following wffs are
all deducible from the wifs defining the hierarchy, and the student num-
ber property:

(x/GRADUATE) (Ey/INTEGER)STUDENT—NO (x.»)
(x/ FRESHMAN) (Ey/ INTEGER)STUDENT—NO (x,y)
eic.
This is an example of the inheritance of properries applying to super-

classes down the hierarchy 1o subclasses. Properties only inherit
“downwards.” If every freshman must be enrolled in English 100

(x/ FRESHMAN)ENROLLED (x. £100)

it does not follow, either intuitively or logically from our represenia-
tion, that every undergraduate must be enrolled in English 100,

The transitivity of “IS-A™ is a simple consequence of the transitivity
of “implies.” Thus the following is provable:

(x)[MSC (x) D STUDENT(x)]

Finally, the concept of a token ¢ of a class C translates into the logi-
cal ground atomic formula C(r}. Thus John Doe as a token of the
class GRADUATE is represented by GRADUATE {John—Doe).

A10911], es€qBIB(] [BUOIJB[Y JO UOKIONIISU0IY [BOLF0T B SPIBMOL, £'9'F

LIg

4.2.3 Aggregations

This modelling notion was introduced in {HM78] and is aiso treated in
iCODD79] {MBWS0]. An aggregation is a set of some kind to which one
wishes 10 ascribe various properties. 1 shall indicate how to represent
aggregations in first order logic by modelling certain aspects of
professional societies. The simple wype SET takes setls as its argument.
To improve readability, | use upper case symbols for set variables and
constants.
Subset defined:
(X/SETY(Y/SET)[SUBSET(X.Y) = (=) IMEMBER (z.X) >

MEMBER (=, Y1}

A professional society is a set of people representing a field. Any
member of the society is interested in at least one subfield of this field.

(X}[PROF=SOC(X) D SET(X))

(X)[PROF=SOC(X) D (3)[MEMBER (3.X) D PERSON (1]
) [PROF—SOC (X) D (Ex/FIELD~TYPE)FIELD (X.x)

A () IMEMBER (v.X) > (Ez/ FIELD~TYPEYSUBFIELD (z.x)
A INTERESTS (.2)1]]

Notice that this is not a definition of a professional society. The wffs
merely define various properties that anything called a professional soci-
ety must possess.

ACM is a professional society of computer scientists.
PROF~50C(ACM)
FIELD—TYPE (es)
“FIELD (ACM.cs)

The executive board of a professional society is a subset of the mem-
bers of the society and always has a president, 4 secretary, a treasurer,
and members-at-large. Neither the president, treasurer nor secreiary
may be members-al-large.

(X) (Y/PROF—SOC)EX—~BOARD (X,Y) D SET(X) A SUBSET(X,Y)]
(X/SET) (Y/PROF=SOC)EX~BOARD(X.Y) =
[(Eu/PERSONYMEMBER (u,X) N\ PRESIDENT (u,Y)}
A [(Ev/PERSON)MEMBER (v,X) \ SECRETARY (v,Y)]
A [(Ew/PERSON)MEMBER (w,X) A TREASURER (w,Y)]]

(X/SET) (Y/PROF—SOCY EX—BOARD(X.Y) O
(EZ/SET)(SUBSET(Z.X) N MEMBERS—AT—LARGE(Z,Y)
A (x/PERSON)IMEMBER (x.Z) D ~PRESIDENT (x) A
~SECRETARY (x} \ ~TREASURER (x)11)
Lady Lovelace is a member of ACM’s executive board.
(EX) EXECUTIVE—BOARD (X, ACM) N\ MEMBER (Lady—Lovelace,X)

If one replaces the existentially quantified variable X by a Skolem
constant Q (ie., a null value} this latter wff becomes

EXECUTIVE—~BOARD(Q,ACM)} \ MEMBER (Lady—Lovelace, Q)

Using these wffs together with some of the earlier ones we can deduce,
among other things

PERSON (Lady— Lovelace)
MEMBER (Lady—Lovelace, ACM)

A special interest group of a professional society is a set of individuals
interested in some subfield of the society.

(X){Y/PROF-SOC)ISIG(X,Y} D SET(X)]
(X/SET) (Y/PROF—SOC) [SIG(X,Y) D
(z) [MEMBER (z.X) D PERSON (2)]]
(X/SET) (Y/PROF—SOC) (u/ FIELD—TYPE) (v/ FIELD—TYPE)
(SIG(X,Y) N FIELD(X.u) A FIELD(Y,v) D
SUBFIELD (u,v} A\ (z/ PERSON)IMEMBER (z.X) D
INTERESTS (z,u)}]]
Notice that one may be a member of a special interest group without
being 2 member of the professional society.
SIGART is a special interest group of ACM for Artificial Inzelligence.
SIG(SIGART,ACM)
FIELD (SIGART,ai)
Using the wffs on hand we can deduce:
SUBFIELD (ai,cs)
Suppose rr is a member of SIGART.
MEMBER (rr,SIGART)

81¢

sorjuBUIeg pue uorrjussaxdey

We can deduce:
PERSON (rr)
INTERESTS (rr.ai)

4.2.4 Discussion

I have indicated how a variety of dala modelling concepls can be nat-
urally represented as first order formulae. Now my earlier conclusions
(Section 4.1) were that various species of relational databases are all
formalizable by suitable triples (R.T./C). It is natural, then, to perse-
vere with this notien and 1o further generalize relational datzbases to
accommodate these new data medelling concepts. More precisely, inso-
far as a semantic data model admits first order formulae of a certain
kind (e.g.. formulae for aggregations), then some of these formulae
normally will be viewed as integrily constrainis. Put them in /C. The
remaining formulae then serve as general world knowledge for the
inferential retrieval of answers. Put them in 7.

Now this leaves us with the mildly uncomfortable view that, in order
to do arbitrary conceptual modelling, we must accept databases
(R.TIC) where T and JC are arbitrary first order theories of the rela-
tional ianguage R. While this is essentially true, there are certain con-
straints that one is likely to impose upon T

1. It should contain a domain closure axiom.

2. It should contain unigue name axioms for the known constants of R
(but not necessarily for its null valuas).

3. T should represent the closed world assumption.

This latter point requires amplification. In [REIT78b] I studied the
problem of representing negative information in first order databases
without nuli values. My point of departure was the observation that in
conventional relationat databases, a negative fact like
~SUPPLIES (s,p). is held to be true provided its positive part (ie.,
SUPPLIES (s.p}), is not in the database. In other words, a tuple
satisfies the negation of a relation iff the tuple is absent from the
relation’s table. In keeping with my proof theoretic bias, I generalized
this notion to first order theories T as follows:

Infer ~R (%) iff TH R{7),

This characterization of negation in database theory I termed the closed
world assumption. For a number of reasons, this particular version of
the closed world assumption is unsuitable;

1. It treats null values incorrectly.
2. In the presence of disjunctive information it leads to inconsistencies.

3. Since it is a rule of inference, and not a wif or set of wffs, it is not,
strictly speaking, first order representable. It is 2 meta-notion.

Now there is a different way of viewing the closed world assumption,
one which provides a strong clue for its first order representability. For
it agsumes that the given information about the world being modelied is
compiete in the sense that aff and only the relationships that can possi-
bly hold among the known individuals are those implied by the given
information, It is this point of view that led 10 the completion axioms
for generalized relational theories with null values (Section 4.1.2).
These axioms permit the derivation of negative facts from the theory,
but only such facts as do not conflict with the unknown individual
property of null values, and which do not lead to inconsistencies with
the disjunctive information. In this limited setting, the completion
axioms provide a correct first order representation of the ciosed world
assumption.

I do not know whether suitable completion axioms can be formulated
for more general first order settings, for example settings representing
hierarchies and/or aggregations. Whether this is possible or not, some
representation of the closed world assumption is necessary. Moreover,
this is not a problem peculiar to a logical view of database theory. Any
formalism for extended conceptual modelling must provide for the rep-
resentation of negative information and its use in query evaluation,
although this problem is rarely addressed in the literature.

It is of some interest to observe that variants of the closed world
assumption arise in contexts other than database theory, for example in
providing a semantics for negation in PROLOG and PLANNER-like pro-
gramming languages [CLAR78] [AV80l. and for Artificial Intelligence
applications [MCCAS80] IREIT80c]. In particular, Clark and McCarthy
provide different but extremely interesting first order approaches to the
closed world assumption, approaches well worth investigating for their
potential impact on database theory. In this connection [REIT82] shows
how, for certain classes of databases viewed as first order theories,
MeCarthy’s formalization of the closed world assumption is a general-
ization of Clark’s.

1je[ey JO UCIIMIISU0ISY [BI80T € SPIBMO], £'F'F

Kooy, 9seqBlE([BUO

618

5. Conclusions

[have, in some detail, carried out a logical reconstruction of various
aspects of conventional relational database theory. The value of this
logical embedding is, in my view, primarily semantic; a number of cen-
tral concepts in database theory have been given precise definitions.
Among these are: databases that have incomplete information, includ-
ing null values; integrity constraints and what it means for them 10 be
satisfied; queries and their answers; and conceptual modelling and whal
it might mean 10 represent more real world knowledge.

As I see it, the major conceprual advantage of this logical reconstruc-
tion is its uniformity:

1. Representational uniformity. Queries, integrity constrainis and facts
in the database are all represented in the same first order language.

2. Operational uniformity. First order proof theory is the sole mechan-
ism for query evaluation and the satisfaction of integrity constrainis.

This uniformity provides a number of practical advantages:

1. Nonlogical data models can be given precise semantics by lranslating
them into logical 1erms.

2. Different data models may be compared.

3. Non proof theoretic query evaluation algorithms may be proven cor-
rect with respect to the logical semantics of queries.

4. Integrity maintenance algorithms may be proven correct with respect
to the proof theoretic definition of constraint satisfaction.

A wide variety of questions have not been expiored in the chapter,
and they require further research.

1. Can the relational algebra be generalized 1o deal correctly with null
values? With disjunctive information?

2. What is an appropriate formalization of the closed world assumplion
for arbitrary first order theories?

3. Which first order theories admit efficient query evaluation proce-
dures? In this connection, notice that so-called Horn theories
accommodate efficient theorem proving techniques [KOWAT79] that
can be directly applied to guery evaluation.

4, What are some criteria for deciding whether a given wiT should be
treated as an integrity constraint or as knowledge to be used in deriv-
ing answers?

5. Suppose we restrict aitention to relational databases as defined in
Section 3.2. Determine natural classes of integrity constraints for
which efficient and provably correct integrity maintenance algorithms
can be found. Contrast this approach to correciness proofs with that
of [BBCS80I.

6. Discussion: Why Logic?

In this chapter | have made some arguments favouring a logical (spe-
cifically proof theoretic) perspective for relational database theory.
While this logical perspective was couched in the first order predicate
calculus, other logics are certainly possible, perhaps even desirable in
certain settings. (See, for example, Levesque’s chapter on incomplete
knowledge bases, or JACO82].} Exactly which logic as appropriate for
conceptual modelling can be a contentious issue, as the chapter by
Israel and Brachman indicates, and I do not wish here to tzke sides in
this dispute. But there is a prior issue which I do wish to address, and
that is whether logic, whatever ils species, is even a suitable formaiism
for conceptual modeiling.

The standard opposing view to the logical paradigm has it that data
models are definable by a choice of dala representation together with
suitable operations on the data representation (i.e.. by the database oper-
ations performed for retrieval, updates, deletions, erc.. [TL82]). It is the
total constellation of these operations that defines the “‘meaning™ of
one’s representation. But surely this confuses implementation with speci-

Jieation, for whatever else it might be, a database is a representation of
variocus things which are Anown (or betier, believed) about some aspect of

the real world. Logic provides an abstract specification language for
expressing this knowledge. The logical formulae which presume to
specify this knowledge are things which are either irug or false in the
real world. Of course, they are intended to be true. Nevertheless, they
are open for inspection by the sceptical as well as the curious. For
example, in Section #4.2.3, 1 proposed a collection of formuiae specify-
ing what I mean by a professional society. You. in turn, are free to
decide whether these formulae are true of the world, and whether there
are important features (for your application) of a professional society
which I failed to specify. If you agree with my formulae, well and good.
If not, then at least we have a solid basis for dispute. Either way. the
logical formulae are completely up front; they unambiguously specify
exactly what I mean by a professional society, no more, no less. In this
sense. logic provides a rigorous specification of meaning. Moreover, it
does so ai a very high ievel of abstiraction, in the sense that the

0Z¢g

go1juewIog pue uoryejussesdey

specification is entirely nonprocedural. It tells us whar knowledge is
being represenied. It tells us whar is meant, for example, by an answer
1o a query, namely, any tuple of constants which make the query true in
all models of the formulae. Similarly, a logic suitable for representing
state changes would tell us whar should be the result of a database
update. In no sense does a logical specification include procedures
detailing #fow to perform database operations; hence its nonprocedural
character.

Of course this emphasis on logic as a specification language ignores a
crucial aspect of conceptual modelling, the implementation problem,
How do we computationally realize the abstract logical specification? It
is at this implementation level that database operations assume their
proper rele. A wide variety of options are possible. One extreme is lit-
erally to encode the formulae as themselves, and define the dalzhase
operation for retrieval. say, to be a theorem prover. This approach is
advocaled by the PROLOG community whenever the formulae are Horn
clauses [VANETS]. Another possibility is to represent formulae by a
semantic network of some kind, and define the datzbase operation of
retrieval by some sort of network interpreter. Usually, such network
representations are strongly oriented lowards hierarchies and property
inheritance, and the associated network inlerpreter is designed to search
up hierarchies for inherited properties [MBWS80], (See Section 4.2.2 for
a skeich of a logical specification of such hierarchies. See also
[SCHU76al.) Conventional relational database theory encodes ground
atomic formulae as themselves (e, as a set of relational instances),
and the relational algebra supplies the operations for retrieval. What-
ever ong's choice of data model for realizing a logicat specification, this
choice will provide a lower level of abstraction, reflecting 2 concern for
implementing the specification, hence a preoccupation with database
operalions. While necessary, this emphasis on database operations has
unpleasant semantic consequences. The semantic effects of certain
formulae in the logical specifications are buried in the operations. For
example, the effects of the domain closure axiom in the logical specifi-
cation of a relational database (Section 3.1} are realized in the relational
data model by the division operator. The completion axioms are real-
ized by the operation of set difference. Swch axioms are not encoded as
part of the data representation, but as data model operarions. The more
complex data models become, the more we can expect such operational
encodings of specification axioms (not to mention the operational
encoding of logical deduction). Provided there is a logical specification
1o begin with, this makes for good compuier science; one can prove
that one’s data model is a correct realization of the specification,

But what if, as is current practice, a data model is served up without
benefit of an abstract specification of the assumptions made by that
data mode! about the world being modelled? Whatever these

assumptions might be, they are likely to be buried deeply within the
data model’s operations. When these are complex operations, how is
one o know what the assumptions are? Are they correctly and com-
pletely realized by the operations? For that matter, what can “correct”
and “complele” even mean in this setting? Without 2 specification of
the “knowledge content™ of the database, one which provides a direct
connection to the real world being modelled, there can be no concept
of the correciness and compleleness of a data model’s operations. A
mature theory of databases will provide for this distinction between a
logical specification and its realization by a procedurally oriented data
model, and it will require that the operations and data representations
of this data model be proven corract and complete with respect 10 a
given specification.

In summary, 1 have argued the following advantages of logically
defined data models for conceptual modelling:

1. Logic is precise and unambiguous. It has a well defined semantics
that provides the crucial connection between its formulae and the
real world being modelled,

2. Logical data models provide a very high level of abstraction because
there are no database operstions. They are entirely nonprocedurat.
They act as specifications of those aspecis of the real world being
modeilled, and of the assumplions one is making about that world.

3. A logical data model is transparent. All and oniy the knowledge
being represented is open for inspection, including assumptions that
might otherwise be buried in procedurally oriented data models.

4. Because they are specifications, logical data models can be realized in
a variely of ways by procedurally oriented data models. Such data
models can be proven correct and complete with respect to the logi-
cal specifications that they realize. Since a logical specification pro-
vides a connection with the world being modeiled (See 1. above),
this notion of correctness and completeness is probably the best that
one can hope for.

7. Acknowledgments

The bulk of this research was supported by the National Science and
Engineering Research Council of Canada under grant A7642. Addi-
tional support was provided by NSF Grant MCS-8203954.

A109Y], 988((BJR(] [BUOIIB[9Y JO UOIINIISU099)Y] [8I130] B SPIBMO], £'%'F

138

[am grateful 10 David Etherington. Herve Gallaire, Randy Goebel,
Jean Marie Nicolas, Moshe Vardi and K. Yazdanian, all of whom read
an earlier draft of this chapter and provided valuable comments and
corrections.,

8. References

[AVS0] [BRCE0) [BISK81] [BRUC75] [BZ81] [CL73] [CLAR7S8] [CODD70]
[CODDT2) [CODD79} [HM78] [JACOS82] (KOWATY [KUHNGT] [LIPST9)
[MBWS0] IMCCAS0] [MEND#4] [RAPHT1] [REIT77] [REIT784) [REIT78b)
(REIT80a) [REITE0H] [REIT80c] [REITS2] [SCHU76al [SOWAT6] [SS77h]
[TL82] [ULLMSO] [VANET78] [VASS79] [WALKS0] [ZANIT7]

Discussion

This chapter uses first order logic (FOL) 1o express popular DB con-
cepts such as events, hierarchies, and integrity constrainis to illustrate
the utility of FOL in dealing with issues surrounding the relational data
model (RDM}.

Current relational database theory is based on model theoretic (MT)
notions. The chapter attempls to show that the proof theoretic (PT)
approach is better. MT definitions are generalized to PT definitions to
provide a good basis for extending RDM theory and to talk precisely
aboul the semantics of extensions, such as those needed for incomplete
knowledge (disjunctive information and null values), integrity con-
straints, and conceptual modelling extensions {events, hierarchies,
inheritance, aggregation, and association). The resulting theories are all
decidable since the domain of a database (DB) is finite.

Domains

There are at least two different domain notions, one from MT and
the other from the RDM. The MT view is that a domain is a set of con-
stants. The DB approach presumes to enumerate all possible values of
a domain (like a type in programming language (PL) without the
related operations). For example, an address domain is the set of a/f
possible addresses. Some people attempt to embed as much semantics
as possible in the data type of an object {e.g.. address and its opera-
tions, salary and its operations). In that case, a type such as a string is
only a representation of the address object.

Reiter’s notion of domain does not make a distinction berween type
and variable, although such a distinction is generally useful for semantic
integrity checking. Reiter claims that such benefits can be gained
through axioms (e.g. manager is a sublype of employee). However,
the issue here may not be expressibility, but convenience.

Ray Reiter: *This comment implies a misunderstanding of the chap-
ter that addresses semaniic issues, nof convenience, efficiency, or imple-
mentation. It should be clear that knowledge representation (viewed as
an abstract formalism) and database representation (viewed as an imple-
mentation) are two different issues.™

(444

SOTJUBWAG PUB ucrjeiussordey

Extending the RDM Using PT

There are many problems for which the RDM must be extended (e.g.,
incomplete information, events, and hierarchies}. Many of the
approaches proposed for these extensions are ad hoc and pose new
problems. The RDM can be considerad, at a logical level, as a special
kind of theory of FOL. The MT approach, the most direct representa-
tion for the RDM, cannot deal adequately with the desired extensions.
When defining the RDM in the PT approach and one gets not only the
RDM but also all the other machinery of FOL with which 1o resolve
other RDM problems. The PT approach provides a proof theory for
databases. Using PT, integrity constrainis are satisfied if they can be
derived from the theory given by the axioms, and queries are answered
via proof theory. FOL also can be used to provide a clear semantics for
the RDM and its problems and a convenient framework within which to
atlack the problems.

Reiter proposes that the RDM be extended by using new axioms to
handle problems such as disjunctive information and nulls. An exam-
ple of disjunctive information is ““Foo supplies P1 or Foo supplies P3
but [don’t know which.” The RDM does not permit the information in
this statement to be stored or returned. Although there are other such
proposed extensions in the literature, their semantics often are not
clear. What is meant by the answer to a query in the presence of
incomplete information? To understand disjunctive information, you
should build a suitable first order theory (in your mind at least) and
then use proofs 10 determine the answer (o the guery on incomplete
information. Having so defined a correct semantics, implement effi-
cient mechanisms to support the semantics, and prove that the imple-
mentation corresponds to the given semantics, If one is unhappy with
the semantics, then define another. fr is not wise 10 add a new concept
without kinowing its semantics,

[t is extremely important thal precise specifications be given for any
new data model or model exiension. If the semantics are not clear, the
models or languages are hard to use. In the future, we should not
accept a new model or feature without a precise specification that is
complete, formal, and unambiguously communicable 10 its users.

When using a logical formalism to express new models, some things
come for free (e.g., means of answering or resolving queries}. Papers
proposing new models usually give complex ways of retrieving
information without demonstrating their correctness. If a data mode! is
specified using FOL. the correct notion of an answer is free. The logic
definition correctly characterizes an intuition of how the answer is to be
derived, and every answer for which there is an intuition can be
retrieved by the same mechanism.

Null Values

In the chapter, null values are special constants about which ques-
tions can be asked. There is a recognition problem involving different
nult values in the RDM literature. For example, if null-x supplies P1
and null-y supplies P3, are nuil-x and null-y the same? In the PT
approach, special constant symbols (W1, W2, ...) are iniroduced that
may or may not be equal to any existing DB constant. If two null
values are the same, one must explicitly state this fact. Contrary to
some DB proposals, null values are not an issue for three value logic.
The issue is what is provable and what is not. If we can neither prove
nor disapprove something it means that we have incompletely specified
knowledge. The literature is full of conditions of the form: T or not(T)
evaluates to unknown if T happens to be unknown, but T or nor(T} is a
tautology and so is always true,

State Versus State Transitions

The chapter considers database theory that has not addressed
dynamic aspects of databases. Data siructures have received consider-
able emphasis in DB. Now that many structural problems are solved,
there is a growing emphasis on behaviour, the semantics and represen-
tation of operations over databases. Being able to express the semantics
of events is very important-what actually happens when an event
takes place. The chapter avoids state changes because of the frame
problem, an open problem in AL The frame problem is that of stating
all the invariants for each state change. For example, if you change the
state of a4 room by opening a window, there are unbelievably many
invariants {e.g.. people in the room remain seated). A complementary
problem is to state all changes for an event. What is to be ignored and
what is to be emphasized? For a finite domain (e.g.. a DB) one can list
all the changes and invariants. But, even if one could state all the
invariants and changes there is an inference problem: 2 change can
have many side effects. Some of these issues can be addressed using
type hierarchies,

Hierarchies and Property Inheritance

In data models, there are higher-level (higher than 1st order) axioms
(or model inherent constraints) stating that all hierarchies of the same
type have the same properties. This saves writing the same axioms for
every application. The same effect can be achieved in FOL through
notational convention rather than resorting to a higher order logie.

K109y, o8B(BYB(] [BUOIJB[OY JO UOIJONLISU000Y [80L30T B SPABMO], £'F'F

14H

To deal adeguately with hierarchies in PT, completion axioms are
needed which allow you to ask questions about elements that are not
part of the hierarchy. These axioms are not well understood. Although
they may turn out to be simple, they currently appear to be very diffi-
cult.

Logical Modelling and Efficiency

Some first order theories permit more efficient query evaluation than
others, This fact is used in the PROLOG community {e.g., Horn clauses
provide efficient computation and a PROLOG program can be annotated
to improve efficiency). There are iwo issues here. First, there are
many ways 10 ask the same question. Second, is the efficiency of the
system measured by how well it performs on the most efficient repre-
sentation of a query? In this regard, input for efficient implementation
should not be sought at the logical description level but in meta-
knowledge (e.g.. query optimizers should look for hints in the dictio-
nary, not in the database). Efficiency in the RDM is a different prob-
lem. It is hard 1o define predicates that will help in evaluating optimal
search paths.

What is the relationship between FOL and implementation efficiency?
How does one theory relate to another on the basis of efficiency,
assuming that the theories have equivalent interpretations? There is no
known answer to these questions. If one happens to know how PRO-
LOG works, then annotations can be used to take advantage of it.
Annotation was used tong ago for FORTRAN Il but annotated programs
were found to be less efficient than the standard compiled programs.
The RDM is a subset of FOL that is reasonably efficient to process;
maybe other “‘theories™ are even more efficient,

Efficiency concerns representation and not logic. There are several
ways of improving reprasentations. One approach is to have the com-
piler eollect data from programs (1o be kept as a meta-knowledge) and
from users (in exceptional cases). Another approach would be to auto-
matically and incrementally map from one representation, say pure
PROLOG, 10 squivalent and more efficient representations.

Concluding Remarks

There are four main benefits of mapping nonlogical models to logical
models.

1. Precise definitions of nonlogical data models.

2. Possibility to compare the representational powers of nonlogical
models.

3. Defines precisely the concept of an answer to a query. Hence to
prove the correctness of proposed evaluation algorithms for a query.

4. Defines satisfiability of an integrity constraint. Hence, to prove the
correctness of proposed integrity maintenance algorithms.

The emphasis in using FOL should be on mental hygiene, rather than
on theorem proving. FOL should be used if there are doubts about the
clear semantics of new database concepts (e.g., Incomplete
information). When the semantics of a construct is clear, go back 10 a
level that is convenient for data modelling.

Reiter’s chapter, which draws examples from DB literature, makes
several questionable assumptions about databases, Examples used in
the DB literature do not reflect the size or complexity of real databases.
A database is a large collection of data, and database applications form
large systems. Toy examples do not illustrate the real problems of
designing large database applications. For example, census databases
are very complex and have several hundred record types, each with
several thousand attributes. Database design and definition become
extremely complex. The large number of axioms needed to handle the
complexity of database applications, coupled with the size of databases,
raises serious questions about the practicality of using FOL for real data-
base applications.

Ray Reiter: ““The above comment misses the point of the chapter,
which provides a framework for defining the semantics of data models.
Implementation issues are not addressed nor is the complexity of actual
applications except insofar as this complexity has to do with representa-
tional issues. If you are trying to capture complex semantic properties of
the real world in a data model then use FOL to define that data model.
That is ali the chapter says.”

The following characterization was proposed from the PL point of
view: The essence of database is captured by sets and set oriented oper-
ations, and the whole database problem is really just an efficiency prob-
lem. The response: The characterization ignores many important
aspects. Capturing structural properties by sets is a reasonable thing to
do. but much of the semantics cannot be captured by using sets. The
concept of transactions is ignored. DB has been in the set oriented
framework for a long time. Now more difficult problems are being
addressed {ie., many basic problems faced in PL embedded in data
intensive applications).

In conclusion, it is fair to say that some formal system is better than
no formal system. Model theory and proof theory have been discussed,
but other formal systems are also candidates.

€45

S0TJUBWSE PUB UoK¥juesatIdey

2.4.3 Towards a Logical Reconstruction of Relational Datshase Theory 326

References

[AV80] Apt, KR. and M.H. Van Emden, "Contributions to the Theory of Logic Programming,"
Research Report CS-80-12, Department of Computer Science, University of Waterloo,
Ontario, Canada, 1880,

[BBC80} Bernstein, P.A., B.T. Blaustein and E.M. Clarke, "Fast Maintenance of Integrity Assertions
Using Redundant Aggregate Data," Proc, 6th International Conference on Very Large Data-
bases, Montreal, Quebee, Canada, October 1980.

[BISK81] Biskup, J., "Null Values in Data Base Relations," in [GM78].

[BRUC75] Bruce, B., "Case Systems for Natural Language," Artificial Intelligence, Vol. 6, pp. 327-360,
1975,

{BZ81] Brodie, M.L. and S.N, Zilles (eds.}, Proc. Workshop on Data Abstraction, Databases, and Con-
ceptual Modelling, SIGART Newsletter, No. 74, January 1981; SIGMOD Record, Vol. 11, No.
2, February 1981; SIGPLAN Notices, Vol. 18, No. 1, January 1981,

{CL73] Chang, C.L. and R.C.T. Lee, Symbolic Logic and Mechanical Theorem Proving, Academic
Press, New York, 1973.

{CLAR78} Clark, K.L., "Negation as Failure," in [GM78].

[CODD70] Codd, E.F., "A Relational Model of Data for Large Shared Data Banks," Communications of
the ACM, Vol. 13, No. 6, pp. 377-387, June 1970,

[CODD72] Codd, E.F., "Relational Completeness of Database Sublanguages,” in R. Rustin (ed.), Daia
Base Systems, Prentice-Hall, Englewood Cliffs, NJ, 1972,

{CODD79]1 Codd, E.F.,, "Extending the Database Relational Model to Capture More Meaning,” ACM Tran-
sactions on Database Systems, Vol. 4, No. 4, December 1979, pp. 397-434; IBM Research
Report RJ2699, San Jose, CA, August 1979.

[GMT78] Gallaire, H. and J. Minker (eds.), Logic and Data Bases, Plenum Press, New York, 1978.

[HMT8] Hammer, M. and D. McLeod, "The Semantic Data Model: A Modelling Mechanism for Data-
base Applications," Proc. 1978 ACM SIGMOD International Conference on the Management of
Data, Austin, TX, May-June 1978,

[JACO82] Jacobs, B.E., "On Database Logic," Journal of the ACM, Vol. 29, No. 2, April 1982, pp. 310-
332,

[KOWAT9] Kowalski, R., Logic for Problem Solving, Elsevier North-Holland, New York, 1979.

[KUHN67] Kuhns, J.L., "Answering Questions by Computer—A Logical Study," Memorandum RM 2428
PR, Rand Corporation, Santa Monica, CA, December 1967,

[LIPS791 Lipski, W., Jr., "On Semantic Issues Connected with Incomplete Information Databases,"
ACM Transactions on Database Systems, Vol. 4, No. 3, September 1979, pp. 262-296.

{MBW801 Mylopoulos, J., P.A. Bernstein and H.K.T. Wong, "A Language Facility for Designing Interac-
tive Database-Intensive Applications,” ACM Transactions on Database Systems, Vol. 5, No. 2,
June 1980, pp. 27-39.

[MCCA80] McCarthy, J., "Circumscripton—A Form of Non-Monotonic Reasoning," Artificial Intelligence,
Vol. 13, Nos, 1 and 2, April 1980, pp. 27-39.

(MENDG64] Mendelson, E., Introduction to Mathematical Logic, Van Nostrand, Princeton, NdJ, 1964.

[RAPH71] Raphael, B., "The Frame Problem in Problem-Solving Systems,” in N.V. Findler and B.
Meltzer (eds.), Artificial Intelligence and Heuristic Programming, Edinburgh University
Press, Edinburgh, Scotland, 1971.

326 Representation and Semantics

[REIT77] Reiter, R., An Approach to Deductive Question-Answering, BBN Technical Report 3649, Bolt,
Beranek and Newman, Inc., Cambridge, MA, September 1977,

[REIT78a] Reiter, R., "Deductive Question-Answering on Relational Databases," in [GM78], pp. 149-177.

[REFT'78b] Reiter, R., "On Closed World Data Bases,” in [GM78], pp. 55-76.

[REIT80a]l Reiter, R., "Equality and Domain Closure in First Order Databases,” Journal of the ACM, Vol.
27, No. 2, 1989, pp. 235-248.

[REIT80b] Reiter, R., "Databases: A Logical Perspective,” in [BZ80], pp. 174-176.

[REIT80¢] Reiter, R., "A Logic for Default Reasoning," Artificial Intelligence, Vol. 13, 1980, pp. 81-132,

[SCHU76a] Schubert, L.K., "Extending the Expressive Power of Semantic Networks," Artificial Intelli-
gence, Vol 7, No. 2, Summer 1976, pp. 163-198.

[SOWA76] Sowa, J.F., "Conceptual Structures for a Database Interface," IBM Jornal of Research and
Development, Vol. 20, No. 4, July 1976, pp. 336-357.

[SS77b] Smith, JM. and D.C.P. Smith, "Database Abstractions: Aggregation and Generalization,”
ACM Transactions on Database Systems, Vol. 2, No. 2, June 1977, pp. 105-133.

[TL82] Tsichritzis, D. and F. Lochovsky, Data Models, Prentice-Hall, Englewood Cliffs, NJ, 1982.

[ULLMS80] Ullman, J.D., Principles of Database Systems, Computer Science Press, Potomac, MD, 1980.

[VASS79] Vassilioy, Y., "Null Values in Database Management: A Denotational Semantics Approach,”
Proc. 1979 ACM SIGMOD International Conference on Management of Data, Boston, MA,
May 1979, pp. 162-169.

[WALKS801 Walker, A., "Time and Space in a Lattice of Universal Relations with Blank Entries,” XPI
Workshop on Relational Database Theory, Stony Brook, NY, June-July 1980.

[ZANI77] Zaniolo, C., "Relational Views in a Database System; Support for Queries," Proc. IEEE Com-

puter Applications and Software Conference, Chicago, IL, November 1977, pp. 267-275.

