
Heuristic Search

Idea: don’t ignore the goal when selecting paths.

Often there is extra knowledge that can be used to guide the
search: heuristics.

h(n) is an estimate of the cost of the shortest path from
node n to a goal node.

h(n) uses only readily obtainable information (that is easy to
compute) about a node.

h can be extended to paths: h(⟨n0, . . . , nk⟩) = h(nk).

h(n) is an underestimate if there is no path from n to a goal
that has path length less than h(n).

Artificial Intelligence, Lecture 3.3, Page 1



Example Heuristic Functions

If the nodes are points on a Euclidean plane and the cost is
the distance, we can use the straight-line distance from n to
the closest goal as the value of h(n).

If the nodes are locations and cost is time, we can use the
distance to a goal divided by the maximum speed.

If the goal is to collect all of the coins and not run out of fuel,
the cost is an estimate of how many steps it will take to
collect the rest of the coins, refuel when necessary, and return
to goal position.

Artificial Intelligence, Lecture 3.3, Page 2



Straight-line distance heuristics for the Delivery Robot

16

8 12

4

6
4

4

4 9

7

7

4

3
6

8

6
4

3

7

mail ts o103

b3

b1

c2

c1

c3

b2

b4

o109

o119

o111

o123

r123

o125

storage

26 23 21

27

1146

0

13 15

18

6

10 12

12

24

17

This heuristics is an underestimate because the its value is less than or
equal to the exact cost of a lowest-cost path from the node to a goal.

It is the exact cost for node o123.

It is very much an underestimate for node b1, which seems to be close,
but there is only a long route to the goal.

It is very misleading for c1, which also seems close to the goal, but no
path exists from that node to the goal.

Artificial Intelligence, Lecture 3.3, Page 3



Heuristic Depth-first Search

A simple use of a heuristic function is to
order the neighbors that are added to the stack
representing the frontier in depth-first search.

The neighbors can be added to the frontier so that the best
neighbor is selected first.

This search chooses the locally best path, but it explores all
paths from the selected path before it selects another path.

Although it is often used, it suffers from the problems of
depth-fist search.

Artificial Intelligence, Lecture 3.3, Page 4



Best-first Search

Idea: select the path whose end is closest to a goal according
to the heuristic function.

Best-first search selects a path on the frontier with minimal
h-value.

It treats the frontier as a priority queue ordered by h.

Artificial Intelligence, Lecture 3.3, Page 5



Illustrative Graph — Best-first Search

g

s

Artificial Intelligence, Lecture 3.3, Page 6



Complexity of Best-first Search

It uses space exponential in path length.

It isn’t guaranteed to find a solution, even if one exists.

It doesn’t always find the shortest path.

Artificial Intelligence, Lecture 3.3, Page 7



A∗ Search

A∗ search uses both path cost and heuristic values

cost(p) is the cost of path p.

h(p) estimates the cost from the end of p to a goal.

Let f (p) = cost(p) + h(p). f (p) estimates the total path cost
of going from a start node to a goal via p.

start
path p−→ n︸ ︷︷ ︸

cost(p)

estimate−→ goal︸ ︷︷ ︸
h(p)︸ ︷︷ ︸

f (p)

Artificial Intelligence, Lecture 3.3, Page 8



A∗ Search Algorithm

A∗ is a mix of lowest-cost-first and best-first search.

It treats the frontier as a priority queue ordered by f (p).

It always selects the node on the frontier with the lowest
estimated distance from the start to a goal node constrained
to go via that node.

Artificial Intelligence, Lecture 3.3, Page 9



Admissibility of A∗

Admissibility of A*
▶ A* always finds an optimal path, if one exists, and
▶ the first path found to a goal is optimal.

If a solution exists, even when the search space is infinite, a
solution will be found and the first one found will be a
lowest-cost solution.

Proposition (A* admissibility): If there is a solution, A∗ always
finds an optimal solution – the first path to a goal selected – if the
following holds:

the branching factor is finite,

arc costs are bounded above zero (there is some ϵ > 0 such
that all of the arc costs are greater than ϵ), and

h(n) is an underestimate of the cost of the cheapest path
from n to a goal node.

Artificial Intelligence, Lecture 3.3, Page 10



Admissibility of A∗

Proposition (A* admissibility): If there is a solution, A∗ always
finds an optimal solution – the first path to a goal selected – if the
following holds:

the branching factor is finite,

arc costs are bounded above zero (there is some ϵ > 0 such
that all of the arc costs are greater than ϵ), and

h(n) is an underestimate of the cost of the cheapest path
from n to a goal node.

A solution will be found.
If the arc costs are all greater than some ϵ > 0, eventually, for all
paths p in the frontier, cost(p) will exceed any finite number and,
thus, will exceed a solution cost if one exists (at depth in the
search tree no greater than m/ϵ, where m is the solution cost).
Because the branching factor is finite, only a finite number of
nodes must be expanded before the search tree could get to this
size, but the A* search would have found a solution by then.

Artificial Intelligence, Lecture 3.3, Page 11



Admissible A∗: the first found solution is optimal

If a path p to a goal is selected from the frontier, can there be
a lower cost path to a goal?

h(p) = 0

Suppose path p′ is on the frontier. Because p was chosen
before p′, and h(p) = 0:

cost(p) ≤ cost(p′) + h(p′).

Because h is an underestimate:

cost(p′) + h(p′) ≤ cost(p′′)

for any path p′′ to a goal that extends p′.

So cost(p) ≤ cost(p′′) for any other path p′′ to a goal.

Artificial Intelligence, Lecture 3.3, Page 12

EF

EF

EF



Why is A∗ admissible?

A∗ can always find a solution if there is one:

The frontier always contains the initial part of a path to a
goal, before that goal is selected.

A∗ halts, as the costs of the paths on the frontier keeps
increasing, and will eventually exceed any finite number.

Artificial Intelligence, Lecture 3.3, Page 13



The role of the heuristics

The admissibility of A∗ does not ensure that every
intermediate node selected from the frontier is on an optimal
path from the start node to a goal node.

How the heuristic function improves the efficiency of A∗:
▶ c is the cost of a shortest path from a start node to a goal

node.
▶ With an admissible heuristic, every path is expanded from a

start node in the set:

{p : cost(p) + h(p) ≤ c},

and some of the paths in the set:

{p : cost(p) + h(p) = c}.

▶ Improving h affects the efficiency of A∗ if it reduces the size of
the first of these sets.

Artificial Intelligence, Lecture 3.3, Page 14



Dominance

An admissable heuristic dominates another admissable
heuristic if, for all states (i.e., nodes), the former has a higher
value than the latter.

Observation: Given two admissable heuristics that don’t
dominate each other, we can always make a better heuristic
by combining them, i.e., by simply taking the max of the two
heuristic values.

Artificial Intelligence, Lecture 3.3, Page 15


