
Search Strategies

A problem determines the graph and the goal but not which path to
select from the frontier. This is the job of a search strategy.

A search strategy specifies which paths are selected from the frontier.

Different strategies are obtained by modifying how the selection of
paths in the frontier is implemented.

Three uninformed search strategies that do not take into account the
location of the goal.

Intuitively, these algorithms ignore where they are going until they
find a goal and report success.

Depth-First Search
Breadth-First Search
Lowest-Cost-First Search

Enrico Franconi, 2012 Intelligent Systems - 3.2 1/16

Depth-first Search

Depth-first search treats the frontier as a stack.

It always selects one of the last elements added to the frontier.

If the list of paths on the frontier is [p1, p2, . . .]

p1 is selected. Paths that extend p1 are added to the front of the stack
(in front of p2).
p2 is only selected when all paths from p1 have been explored.

Enrico Franconi, 2012 Intelligent Systems - 3.2 2/16

Illustrative Graph — Depth-first Search

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15 16

The shaded nodes are the nodes at the ends of the paths on the frontier
after the first sixteen steps.

Enrico Franconi, 2012 Intelligent Systems - 3.2 3/16

Backtracking

Searching one path to its completion before trying an alternative
path: backtracking .

The algorithm selects a first alternative at each node, and it
backtracks to the next alternative when it has pursued all of the
paths from the first selection.

Some paths may be infinite when the graph has cycles or infinitely
many nodes, in which case a depth-first search may never stop.

This algorithm does not specify the order in which the neighbors are
added to the stack that represents the frontier. The efficiency of the
algorithm is sensitive to this ordering.

Enrico Franconi, 2012 Intelligent Systems - 3.2 4/16

Depth-first for the Delivery Robot

The robot wants to get from outside room 103 to the inside of room 123.

stairs r101 r103 r105 r107 r109 r111

r113

r115

r117

r119r121r123r125r127r129r131

o101 o103 o105 o107 o109 o111

o113

o115

o117

o119o121o123o125o127o129o131

b1

b3 b4

b2

a2

a1

a3

d3

d1 d2

c2 c3

c1

tsmail

storage

main
office

Enrico Franconi, 2012 Intelligent Systems - 3.2 5/16

Depth-first for the Delivery Robot

16

8 12
4

6
4

4
4 9

7

7
4

3
6

8
6

4

3

7

mail ts o103

b3

b1

c2

c1

c3

b2

b4

o109

o119

o111

o123

r123

o125

storage

There are three paths from o103 to r123.

Enrico Franconi, 2012 Intelligent Systems - 3.2 6/16

Complexity of Depth-first Search

If there is a solution on the first branch searched, then the time
complexity is linear in the length of the path; it considers only those
elements on the path, along with their siblings.

If the graph is a finite tree, with the forward branching factor
bounded by b and depth n, the worst-case complexity is O(bn).

The worst-case complexity is infinite. Depth-first search can get
trapped on infinite branches and never find a solution, even if one
exists, for infinite graphs or for graphs with loops.

Imagine the example of the robot in the case the robot can go back.

An infinite path leads from ts to mail , back to ts, back to mail , and
so forth. As presented, depth-first search follows this path forever,
never considering alternative paths from b3 or o109.

Enrico Franconi, 2012 Intelligent Systems - 3.2 7/16

Plus and Minus

Depth-first search is appropriate when either

space is restricted;

many solutions exist, perhaps with long path lengths, particularly for
the case where nearly all paths lead to a solution;

or the order of the neighbors of a node are added to the stack can be
tuned so that solutions are found on the first try.

It is a poor method when

it is possible to get caught in infinite paths; this occurs when the
graph is infinite or when there are cycles in the graph; or

solutions exist at shallow depth, because in this case the search may
look at many long paths before finding the short solutions.

Enrico Franconi, 2012 Intelligent Systems - 3.2 8/16

Breadth-first Search

Breadth-first search treats the frontier as a FIFO (first-in, first-out)
queue.

It always selects one of the earliest elements added to the frontier.

If the list of paths on the frontier is [p1, p2, . . . , pr]:

p1 is selected. Its neighbors are added to the end of the queue, after pr .
p2 is selected next.

This approach implies that the paths from the start node are
generated in order of the number of arcs in the path.

One of the paths with the fewest arcs is selected at each stage.

Enrico Franconi, 2012 Intelligent Systems - 3.2 9/16

Illustrative Graph — Breadth-first Search

1

2 3

4 5 6 7

8 9 10 11 12 13 14

15 16

The shaded nodes are the nodes at the ends of the paths of the frontier
after the first sixteen steps.

Enrico Franconi, 2012 Intelligent Systems - 3.2 10/16

Complexity of Breadth-first Search

If the branching factor for all nodes is finite, breadth-first search is
guaranteed to find a solution if one exists.
It is guaranteed to find the path with fewest arcs.

Time complexity is exponential in the path length:
bn, where b is branching factor, n is path length.

The space complexity is exponential in path length: bn.

Breadth-first search finds a solution with the fewest arcs first.

Enrico Franconi, 2012 Intelligent Systems - 3.2 11/16

Plus and Minus

Breadth-first search is useful when

space is not a problem;

you want to find the solution containing the fewest arcs;

few solutions may exist, and at least one has a short path length; and

infinite paths may exist, because it explores all of the search space,
even with infinite paths.

It is a poor method when

all solutions have a long path length or

there is some heuristic knowledge available.

It is not used very often because of its space complexity.

Enrico Franconi, 2012 Intelligent Systems - 3.2 12/16

Lowest-cost-first Search

Sometimes there are costs associated with arcs. The cost of a path
is the sum of the costs of its arcs.

cost(〈n0, . . . , nk〉) =
k∑

i=1

|〈ni−1, ni 〉|

For example, for a delivery robot, costs may be distances and we may
want a solution that gives the minimum total distance.

At each stage, lowest-cost-first search selects a path on the frontier
with lowest cost.

The frontier is a priority queue ordered by path cost.

It finds a least-cost path to a goal node.

When arc costs are equal =⇒ breadth-first search.

Enrico Franconi, 2012 Intelligent Systems - 3.2 13/16

Features of Lowest-cost-first Search

If the costs of the arcs are bounded below by a positive constant and
the branching factor is finite, the lowest-cost-first search is guaranteed
to find an optimal solution - a solution with lowest path cost - if a
solution exists.

Moreover, the first path to a goal that is found is a path with least
cost.

Such a solution is optimal, because the algorithm generates paths
from the start in order of path cost.

If a better path existed than the first solution found, it would have
been selected from the frontier earlier.

Enrico Franconi, 2012 Intelligent Systems - 3.2 14/16

Complexity of Lowest-cost-first Search

Like breadth-first search, lowest-cost-first search is typically
exponential in both space and time.

It generates all paths from the start that have a cost less than the
cost of the solution.

Enrico Franconi, 2012 Intelligent Systems - 3.2 15/16

The bounded arc cost assumption

The bounded arc cost is used to guarantee the lowest-cost search will
find an optimal solution.

Without such a bound there can be infinite paths with a finite cost.

For example, there could be nodes n0, n1, . . . with an arc 〈ni−1, ni 〉 for
each i > 0 with cost (1/2)i . Infinitely many paths of the form
〈n0, n1, · · · , nk〉 exist, all of which have a cost of less than 1. If there
is an arc from n0 to a goal node with a cost greater than or equal to
1, it will never be selected. This is the basis of Zeno’s paradoxes that
Aristotle wrote about more than 2,300 years ago.

Enrico Franconi, 2012 Intelligent Systems - 3.2 16/16

