
Search Strategies

A problem determines the graph and the goal but not which
path to select from the frontier. This is the job of a search
strategy.

A search strategy specifies which paths are selected from the
frontier.

Different strategies are obtained by modifying how the
selection of paths in the frontier is implemented.

Three uninformed search strategies that do not take into
account the location of the goal.

Intuitively, these algorithms ignore where they are going until
they find a goal and report success.
◮ Depth-First Search
◮ Breadth-First Search
◮ Lowest-Cost-First Search

Artificial Intelligence, Lecture 3.2, Page 1

Depth-first Search

Depth-first search treats the frontier as a stack.

It always selects one of the last elements added to the frontier.

If the list of paths on the frontier is [p1, p2, . . .]
◮ p1 is selected. Paths that extend p1 are added to the front of

the stack (in front of p2).
◮ p2 is only selected when all paths from p1 have been explored.

Artificial Intelligence, Lecture 3.2, Page 2

Illustrative Graph — Depth-first Search

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15 16

The shaded nodes are the nodes at the ends of the paths on the
frontier after the first sixteen steps.

Artificial Intelligence, Lecture 3.2, Page 3

iPad Pro 11 di Enrico

iPad Pro 11 di Enrico

Backtracking

Searching one path to its completion before trying an
alternative path: backtracking .

The algorithm selects a first alternative at each node, and it
backtracks to the next alternative when it has pursued all of
the paths from the first selection.

Some paths may be infinite when the graph has cycles or
infinitely many nodes, in which case a depth-first search may
never stop.

This algorithm does not specify the order in which the
neighbors are added to the stack that represents the frontier.
The efficiency of the algorithm is sensitive to this ordering.

Artificial Intelligence, Lecture 3.2, Page 4

Depth-first for the Delivery Robot

The robot wants to get from outside room 103 to the inside of
room 123.

VWDLUV U��� U��� U��� U��� U��� U���

U���

U���

U���

U���U���U���U���U���U���U���

R��� R��� R��� R��� R��� R���

R���

R���

R���

R���R���R���R���R���R���R���

E�

E� E�

E�

D�

D�

D�

G�

G� G�

F� F�

F�

WVPDLO

VWRUDJH

PDLQ
RIILFH

Artificial Intelligence, Lecture 3.2, Page 5

Depth-first for the Delivery Robot

16

8 12

4

6

4

4

4 9

7

7

4

3

6

8

6

4

3

7

mail ts o103

b3

b1

c2

c1

c3

b2

b4

o109

o119

o111

o123

r123

o125

storage

There are three paths from o103 to r123.

Artificial Intelligence, Lecture 3.2, Page 6

iPad Pro 11 di Enrico

iPad Pro 11 di Enrico

iPad Pro 11 di Enrico

Complexity of Depth-first Search

If there is a solution on the first branch searched, then the
time complexity is linear in the length of the path; it considers
only those elements on the path, along with their siblings.

If the graph is a finite tree, with the forward branching factor
bounded by b and depth n, the worst-case complexity is
O(bn).

The worst-case complexity is infinite. Depth-first search can
get trapped on infinite branches and never find a solution,
even if one exists, for infinite graphs or for graphs with loops.

Imagine the example of the robot in the case the robot can go
back.

An infinite path leads from ts to mail , back to ts, back to
mail , and so forth. As presented, depth-first search follows
this path forever, never considering alternative paths from b3
or o109.

Artificial Intelligence, Lecture 3.2, Page 7

iPad Pro 11 di Enrico

Plus and Minus

Depth-first search is appropriate when either

space is restricted;

many solutions exist, perhaps with long path lengths,
particularly for the case where nearly all paths lead to a
solution;

or the order of the neighbors of a node are added to the stack
can be tuned so that solutions are found on the first try.

It is a poor method when

it is possible to get caught in infinite paths; this occurs when
the graph is infinite or when there are cycles in the graph; or

solutions exist at shallow depth, because in this case the
search may look at many long paths before finding the short
solutions.

Artificial Intelligence, Lecture 3.2, Page 8

Breadth-first Search

Breadth-first search treats the frontier as a FIFO (first-in,
first-out) queue.

It always selects one of the earliest elements added to the
frontier.

If the list of paths on the frontier is [p1, p2, . . . , pr]:
◮ p1 is selected. Its neighbors are added to the end of the queue,

after pr .
◮ p2 is selected next.

This approach implies that the paths from the start node are
generated in order of the number of arcs in the path.

One of the paths with the fewest arcs is selected at each stage.

Artificial Intelligence, Lecture 3.2, Page 9

Illustrative Graph — Breadth-first Search

1

2 3

4 5 6 7

8 9 10 11 12 13 14

15 16

The shaded nodes are the nodes at the ends of the paths of the
frontier after the first sixteen steps.

Artificial Intelligence, Lecture 3.2, Page 10

Complexity of Breadth-first Search

If the branching factor for all nodes is finite, breadth-first
search is guaranteed to find a solution if one exists.
It is guaranteed to find the path with fewest arcs.

Time complexity is exponential in the path length:
bn, where b is branching factor, n is path length.

The space complexity is exponential in path length: bn.

Breadth-first search finds a solution with the fewest arcs first.

Artificial Intelligence, Lecture 3.2, Page 11

iPad Pro 11 di Enrico

Plus and Minus

Breadth-first search is useful when

space is not a problem;

you want to find the solution containing the fewest arcs;

few solutions may exist, and at least one has a short path
length; and

infinite paths may exist, because it explores all of the search
space, even with infinite paths.

It is a poor method when

all solutions have a long path length or

there is some heuristic knowledge available.

It is not used very often because of its space complexity.

Artificial Intelligence, Lecture 3.2, Page 12

Lowest-cost-first Search

Sometimes there are costs associated with arcs. The cost of
a path is the sum of the costs of its arcs.

cost(〈n0, . . . , nk〉) =
k!

i=1

|〈ni−1, ni 〉|

For example, for a delivery robot, costs may be distances and
we may want a solution that gives the minimum total
distance.

At each stage, lowest-cost-first search selects a path on the
frontier with lowest cost.

The frontier is a priority queue ordered by path cost.

It finds a least-cost path to a goal node.

When arc costs are equal =⇒ breadth-first search.

Artificial Intelligence, Lecture 3.2, Page 13

Cost for the Delivery Robot

16

8 12

4

6

4

4

4 9

7

7

4

3

6

8

6

4

3

7

mail ts o103

b3

b1

c2

c1

c3

b2

b4

o109

o119

o111

o123

r123

o125

storage

Artificial Intelligence, Lecture 3.2, Page 14

Features of Lowest-cost-first Search

If the costs of the arcs are bounded below by a positive
constant and the branching factor is finite, the
lowest-cost-first search is guaranteed to find an optimal
solution - a solution with lowest path cost - if a solution exists.

Moreover, the first path to a goal that is found is a path with
least cost.

Such a solution is optimal, because the algorithm generates
paths from the start in order of path cost.

If a better path existed than the first solution found, it would
have been selected from the frontier earlier.

Artificial Intelligence, Lecture 3.2, Page 15

Complexity of Lowest-cost-first Search

Like breadth-first search, lowest-cost-first search is typically
exponential in both space and time.

It generates all paths from the start that have a cost less than
the cost of the solution.

Artificial Intelligence, Lecture 3.2, Page 16

The bounded arc cost assumption

The bounded arc cost is used to guarantee the lowest-cost
search will find an optimal solution.

Without such a bound there can be infinite paths with a finite
cost.

For example, there could be nodes n0, n1, . . . with an arc
〈ni−1, ni 〉 for each i > 0 with cost (1/2)i . Infinitely many
paths of the form 〈n0, n1, · · · , nk〉 exist, all of which have a
cost of less than 1. If there is an arc from n0 to a goal node
with a cost greater than or equal to 1, it will never be
selected. This is the basis of Zeno’s paradoxes that Aristotle
wrote about more than 2,300 years ago.

Artificial Intelligence, Lecture 3.2, Page 17

