
Searching

Often we are not given an algorithm to solve a problem, but only a
specification of what is a solution — we have to search for a solution.

A typical problem is when the agent is in one state, it has a set of
deterministic actions it can carry out, and wants to get to a goal
state.

Many AI problems can be abstracted into the problem of finding a
path in a directed graph.

Often there is more than one way to represent a problem as a graph.

Enrico Franconi, 2012 Intelligent Systems - 3.1 1/19

The idea of search is straightforward

The agent constructs a set of potential partial solutions to a problem;

these partial solutions can be checked to see if they truly are solutions
or if they could lead to solutions;

search proceeds by repeatedly selecting a partial solution, stopping if
it is a path to a goal, and otherwise extending it by one more arc in
all possible ways.

Search underlies much of artificial intelligence:

When an agent is given a problem, it is usually given only a description
that lets it recognize a solution, not an algorithm to solve it.
The agent has to search for a solution.

Enrico Franconi, 2012 Intelligent Systems - 3.1 2/19

State Spaces

One general formulation of intelligent action is in terms of state space.

A state contains all of the information necessary to predict the effects
of an action and to determine if it is a goal state.

State-space searching assumes that:

the agent has perfect knowledge of the state space and can observe
what state it is in (i.e., there is full observability);
the agent has a set of actions that have known deterministic effects;
some states are goal states, the agent wants to reach one of these goal
states, and the agent can recognize a goal state;
a solution is a sequence of actions that will get the agent from its
current state to a goal state.

Enrico Franconi, 2012 Intelligent Systems - 3.1 3/19

Example Problem for Delivery Robot

The robot wants to get from outside room 103 to the inside of room 123.

stairs r101 r103 r105 r107 r109 r111

r113

r115

r117

r119r121r123r125r127r129r131

o101 o103 o105 o107 o109 o111

o113

o115

o117

o119o121o123o125o127o129o131

b1

b3 b4

b2

a2

a1

a3

d3

d1 d2

c2 c3

c1

tsmail

storage

main
office

Enrico Franconi, 2012 Intelligent Systems - 3.1 4/19

A State for the Robot

The state consists of the location of the robot.

The state consists of the location of the robot, the parcels the robot
is carrying, and the locations of the other parcels.

Enrico Franconi, 2012 Intelligent Systems - 3.1 5/19

A state-space problem

A state-space problem consists of:

a set of states;

a distinguished set of states called the start states;

a set of actions available to the agent in each state;

an action function that, given a state and an action, returns a new
state;

a set of goal states, often specified as a Boolean function, goal(s),
that is true when s is a goal state; and

a criterion that specifies the quality of an acceptable solution. For
example, any sequence of actions that gets the agent to the goal
state may be acceptable, or there may be costs associated with
actions and the agent may be required to find a sequence that has
minimal total cost. This is called an optimal solution. Alternatively, it
may be satisfied with any solution that is within 10% of optimal.

Enrico Franconi, 2012 Intelligent Systems - 3.1 6/19

Extensions of the state-space problem

This framework will be extended to include cases:

where an agent can exploit the internal features of the states,

where the state is not fully observable (e.g., the robot does not know
where the parcels are, or the teacher does not know the aptitude of
the student),

where the actions are stochastic (e.g., the robot may overshoot, or
the student perhaps does not learn a topic that is taught), and

where complex preferences exist in terms of rewards and punishments,
not just goal states.

Enrico Franconi, 2012 Intelligent Systems - 3.1 7/19

Graph Searching

We abstract the general mechanism of searching and present it in
terms of searching for paths in directed graphs.

To solve a problem, first define the underlying search space and then
apply a search algorithm to that search space.

Many problem-solving tasks can be transformed into the problem of
finding a path in a graph.

Searching in graphs provides an appropriate level of abstraction within
which to study simple problem solving independent of a particular
domain.

A (directed) graph consists of a set of nodes and a set of directed
arcs between nodes. The idea is to find a path along these arcs from
a start node to a goal node.

Enrico Franconi, 2012 Intelligent Systems - 3.1 8/19

Directed Graphs

A graph consists of a set N of nodes and a set A of ordered pairs
of nodes, called arcs .

Node n2 is a neighbor of n1 if there is an arc from n1 to n2. That is,
if 〈n1, n2〉 ∈ A. Neighborhood is not symmetric.

A path is a sequence of nodes 〈n0, n1, . . . , nk〉 such that
〈ni−1, ni 〉 ∈ A.

A cycle is a nonempty path such that the end node is the same as
the start node – that is, a cycle is a path 〈n0, n1, ..., nk〉 such that
n0 = nk and k 6= 0.

A directed graph without any cycles is called a directed acyclic graph
(DAG).

A tree is a DAG where there is one node with no incoming arcs and
every other node has exactly one incoming arc. The node with no
incoming arcs is called the root of the tree and nodes with no
outgoing arcs are called leaves.

Enrico Franconi, 2012 Intelligent Systems - 3.1 9/19

Directed Graphs for Searching

Arcs may be labeled, for example, with the action that will take the
agent from one state to another.

Given a set of start nodes and goal nodes, a solution is a path
from a start node to a goal node.

Often there is a cost associated with arcs and the cost of a path is
the sum of the costs of the arcs in the path.

An optimal solution is one of the least-cost solutions; that is, it is a
path p from a start node to a goal node such that there is no path p′

from a start node to a goal node where cost(p′) < cost(p).

Enrico Franconi, 2012 Intelligent Systems - 3.1 10/19

Graph for the Delivery Robot

16

8 12
4

6
4

4
4 9

7

7
4

3
6

8
6

4

3

7

mail ts o103

b3

b1

c2

c1

c3

b2

b4

o109

o119

o111

o123

r123

o125

storage

There are three paths from o103 to r123.

Enrico Franconi, 2012 Intelligent Systems - 3.1 11/19

Branching

The forward branching factor of a node is the number of arcs leaving
the node.

The backward branching factor of a node is the number of arcs
entering the node.

These factors provide measures of the complexity of graphs. When we
discuss the time and space complexity of the search algorithms, we
assume that the branching factors are bounded from above by a
constant.

The branching factor is important because it is a key component in
the size of the graph. If the forward branching factor for each node is
b, and the graph is a tree, there are bn nodes that are n arcs away
from any node.

Enrico Franconi, 2012 Intelligent Systems - 3.1 12/19

Partial Search Space for a Video Game

Grid game: collect coins C1, C2, C3, C4, don’t run out of fuel, and end up
at location (1, 1):

Fuel
Rob
C3

54

9
8
7

.

Enrico Franconi, 2012 Intelligent Systems - 3.1 13/19

Partial Search Space for a Video Game

Grid game: collect coins C1, C2, C3, C4, don’t run out of fuel, and end up
at location (1, 1):

Fuel
Rob
C3

5

State:
〈X-pos,Y-pos,Fuel,C1,C2,C3,C4 〉

〈5,8,6,f,t,f,f 〉

〈5,9,5,f,t,f,f 〉 〈5,7,5,f,t,t,f 〉

〈4,9,20,f,t,f,f 〉
〈5,8,4,f,t,f,f 〉

〈5,8,4,f,t,t,f 〉

〈6,8,5,f,t,f,f 〉

〈5,9,19,f,t,f,f 〉

4

9
8
7

Goal:
〈1,1,?,t,t,t,t 〉

Enrico Franconi, 2012 Intelligent Systems - 3.1 14/19

Graph Searching

Generic search algorithm: given a graph, start nodes, and goal nodes,
incrementally explore paths from the start nodes.

Maintain a frontier (or fringe) of paths from the start node that
have been explored.

Initially, the frontier contains trivial paths containing no arcs from the
start nodes.

As search proceeds, the frontier expands into the unexplored nodes
until a goal node is encountered.

To expand the frontier, the searcher selects and removes a path from
the frontier, extends the path with each arc leaving the last node, and
adds these new paths to the frontier.

The way in which the frontier is expanded defines the
search strategy.

Enrico Franconi, 2012 Intelligent Systems - 3.1 15/19

Problem Solving by Graph Searching

ends of
paths on
frontier

explored nodes

unexplored nodes

start
node

Enrico Franconi, 2012 Intelligent Systems - 3.1 16/19

Graph Search Algorithm

Input: a graph,
a set of start nodes,
Boolean procedure goal(n) that tests if n is a goal node.

frontier := {〈s〉 : s is a start node};
while frontier is not empty:

select and remove path 〈n0, . . . , nk〉 from frontier ;
if goal(nk)
return 〈n0, . . . , nk〉;

for every neighbor n of nk
add 〈n0, . . . , nk , n〉 to frontier ;

end while
return ⊥

Enrico Franconi, 2012 Intelligent Systems - 3.1 17/19

Features of the algorithm

The neighbors define the graph.

goal defines what is a solution.

The selection of a path is non-deterministic.

The choice of path that is selected can affect the efficiency.
A particular search strategy will determine which path is selected.

It is useful to think of the return of the goal path as a temporary
return; another path to a goal can be searched for by continuing after
the return.

If the procedure returns ⊥, no solutions exist (or there are no
remaining solutions if the proof has been retried).

Enrico Franconi, 2012 Intelligent Systems - 3.1 18/19

Testing for goals

The algorithm only tests if a path ends in a goal node after the path
has been selected from the frontier, not when it is added to the
frontier.

There are two main reasons for this.

Sometimes a very costly arc exists from a node on the frontier to a
goal node. The search should not always return the path with this arc,
because a lower-cost solution may exist. This is crucial when the
least-cost path is required.
The second reason is that it may be expensive to determine whether a
node is a goal node.

If the path chosen does not end at a goal node and the node at the
end has no neighbors, extending the path means removing the path.
This outcome is reasonable because this path could not be part of a
path from a start node to a goal node.

Enrico Franconi, 2012 Intelligent Systems - 3.1 19/19

