
Searching

Often we are not given an algorithm to solve a problem, but
only a specification of what is a solution — we have to search
for a solution.

A typical problem is when the agent is in one state, it has a
set of deterministic actions it can carry out, and wants to get
to a goal state.

Many AI problems can be abstracted into the problem of
finding a path in a directed graph.

Often there is more than one way to represent a problem as a
graph.

Artificial Intelligence, Lecture 3.1, Page 1

State-space Search

flat or modular or hierarchical

explicit states or features or individuals and relations

static or finite stage or indefinite stage or infinite stage

fully observable or partially observable

deterministic or stochastic dynamics

goals or complex preferences

single agent or multiple agents

knowledge is given or knowledge is learned

perfect rationality or bounded rationality

Artificial Intelligence, Lecture 3.1 1a

The idea of search is straightforward

The agent constructs a set of potential partial solutions to a
problem;

these partial solutions can be checked to see if they truly are
solutions or if they could lead to solutions;

search proceeds by repeatedly selecting a partial solution,
stopping if it is a path to a goal, and otherwise extending it by
one more arc in all possible ways.

Search underlies much of artificial intelligence:
◮ When an agent is given a problem, it is usually given only a

description that lets it recognize a solution, not an algorithm
to solve it.

◮ The agent has to search for a solution.

Artificial Intelligence, Lecture 3.1, Page 2

State Spaces

One general formulation of intelligent action is in terms of state
space.

A state contains all of the information necessary to predict the
effects of an action and to determine if it is a goal state.

State-space searching assumes that:
◮ the agent has perfect knowledge of the state space and can

observe what state it is in (i.e., there is full observability);
◮ the agent has a set of actions that have known deterministic

effects;
◮ some states are goal states, the agent wants to reach one of

these goal states, and the agent can recognize a goal state;
◮ a solution is a sequence of actions that will get the agent from

its current state to a goal state.

Artificial Intelligence, Lecture 3.1, Page 3

Example Problem for Delivery Robot

The robot wants to get from outside room 103 to the inside of
room 123.

VWDLUV U��� U��� U��� U��� U��� U���

U���

U���

U���

U���U���U���U���U���U���U���

R��� R��� R��� R��� R��� R���

R���

R���

R���

R���R���R���R���R���R���R���

E�

E� E�

E�

D�

D�

D�

G�

G� G�

F� F�

F�

WVPDLO

VWRUDJH

PDLQ
RIILFH

Artificial Intelligence, Lecture 3.1, Page 4

A State for the Robot

The state consists of the location of the robot.

The state consists of the location of the robot, the parcels the
robot is carrying, and the locations of the other parcels.

Artificial Intelligence, Lecture 3.1, Page 5

iPad Pro 11 di Enrico

A state-space problem

A state-space problem consists of:

a set of states;

a distinguished set of states called the start states;

a set of actions available to the agent in each state;

an action function that, given a state and an action, returns a
new state;

a set of goal states, often specified as a Boolean function,
goal(s), that is true when s is a goal state; and

a criterion that specifies the quality of an acceptable solution.
For example, any sequence of actions that gets the agent to
the goal state may be acceptable, or there may be costs
associated with actions and the agent may be required to find
a sequence that has minimal total cost. This is called an
optimal solution. Alternatively, it may be satisfied with any
solution that is within 10% of optimal.

Artificial Intelligence, Lecture 3.1, Page 6

Extensions of the state-space problem

This framework will be extended to include cases:

where an agent can exploit the internal features of the states,

where the state is not fully observable (e.g., the robot does
not know where the parcels are, or the teacher does not know
the aptitude of the student),

where the actions are stochastic (e.g., the robot may
overshoot, or the student perhaps does not learn a topic that
is taught), and

where complex preferences exist in terms of rewards and
punishments, not just goal states.

Artificial Intelligence, Lecture 3.1, Page 7

Graph Searching

We abstract the general mechanism of searching and present
it in terms of searching for paths in directed graphs.

To solve a problem, first define the underlying search space
and then apply a search algorithm to that search space.

Many problem-solving tasks can be transformed into the
problem of finding a path in a graph.

Searching in graphs provides an appropriate level of
abstraction within which to study simple problem solving
independent of a particular domain.

A (directed) graph consists of a set of nodes and a set of
directed arcs between nodes. The idea is to find a path along
these arcs from a start node to a goal node.

Artificial Intelligence, Lecture 3.1, Page 8

Directed Graphs

A graph consists of a set N of nodes and a set A of ordered
pairs of nodes, called arcs .

Node n2 is a neighbor of n1 if there is an arc from n1 to n2.
That is, if 〈n1, n2〉 ∈ A. Neighborhood is not symmetric.

A path is a sequence of nodes 〈n0, n1, . . . , nk〉 such that
〈ni−1, ni 〉 ∈ A.

A cycle is a nonempty path such that the end node is the
same as the start node – that is, a cycle is a path
〈n0, n1, ..., nk〉 such that n0 = nk and k ∕= 0.

A directed graph without any cycles is called a directed acyclic
graph (DAG).

A tree is a DAG where there is one node with no incoming
arcs and every other node has exactly one incoming arc. The
node with no incoming arcs is called the root of the tree and
nodes with no outgoing arcs are called leaves.

Artificial Intelligence, Lecture 3.1, Page 9

Directed Graphs for Searching

Arcs may be labeled, for example, with the action that will
take the agent from one state to another.

Given a set of start nodes and goal nodes, a solution is a
path from a start node to a goal node.

Often there is a cost associated with arcs and the cost of a
path is the sum of the costs of the arcs in the path.

An optimal solution is one of the least-cost solutions; that is,
it is a path p from a start node to a goal node such that there
is no path p′ from a start node to a goal node where
cost(p′) < cost(p).

Artificial Intelligence, Lecture 3.1, Page 10

Graph for the Delivery Robot

16

8 12

4

6

4

4

4 9

7

7

4

3

6

8

6

4

3

7

mail ts o103

b3

b1

c2

c1

c3

b2

b4

o109

o119

o111

o123

r123

o125

storage

There are three paths from o103 to r123.

Artificial Intelligence, Lecture 3.1, Page 11

iPad Pro 11 di Enrico

Branching

The forward branching factor of a node is the number of arcs
leaving the node.

The backward branching factor of a node is the number of
arcs entering the node.

These factors provide measures of the complexity of graphs.
When we discuss the time and space complexity of the search
algorithms, we assume that the branching factors are bounded
from above by a constant.

The branching factor is important because it is a key
component in the size of the graph. If the forward branching
factor for each node is b, and the graph is a tree, there are bn

nodes that are n arcs away from any node.

Artificial Intelligence, Lecture 3.1, Page 12

Partial Search Space for a Video Game

Grid game: collect coins C1, C2, C3, C4, don’t run out of fuel, and
end up at location (1, 1):

Fuel

Rob

C3

54

9

8

7

.

Artificial Intelligence, Lecture 3.1, Page 13

Partial Search Space for a Video Game

Grid game: collect coins C1, C2, C3, C4, don’t run out of fuel, and
end up at location (1, 1):

Fuel

Rob

C3

5

State:

〈X-pos,Y-pos,Fuel,C1,C2,C3,C4 〉

〈5,8,6,f,t,f,f 〉

〈5,9,5,f,t,f,f 〉 〈5,7,5,f,t,t,f 〉

〈4,9,20,f,t,f,f 〉
〈5,8,4,f,t,f,f 〉

〈5,8,4,f,t,t,f 〉

〈6,8,5,f,t,f,f 〉

〈5,9,19,f,t,f,f 〉

4

9

8

7

Goal:

〈1,1,?,t,t,t,t 〉

Artificial Intelligence, Lecture 3.1, Page 14

Robot Cleaner

2 rooms, one cleaning robot

rooms can be clean or dirty

robot actions:
suck: makes the room that the robot is in clean
move: move to other room

Goal: have both rooms clean

How many states are there? What are they?

14aArtificial Intelligence, Lecture 3.1

Graph Searching

Generic search algorithm: given a graph, start nodes, and goal
nodes, incrementally explore paths from the start nodes.

Maintain a frontier (or fringe) of paths from the start node
that have been explored.

Initially, the frontier contains trivial paths containing no arcs
from the start nodes.

As search proceeds, the frontier expands into the unexplored
nodes until a goal node is encountered.

To expand the frontier, the searcher selects and removes a
path from the frontier, extends the path with each arc leaving
the last node, and adds these new paths to the frontier.

The way in which the frontier is expanded defines the
search strategy.

Artificial Intelligence, Lecture 3.1, Page 15

Problem Solving by Graph Searching

HQGV�RI�
SDWKV�RQ�
IURQWLHU

H[SORUHG�QRGHV

XQH[SORUHG�QRGHV

VWDUW
QRGH

Artificial Intelligence, Lecture 3.1, Page 16

iPad Pro 11 di Enrico

Graph Search Algorithm

Input: a graph,
a set of start nodes,
Boolean procedure goal(n) that tests if n is a goal node.

frontier := {〈s〉 : s is a start node};
while frontier is not empty:

select and remove path 〈n0, . . . , nk〉 from frontier ;
if goal(nk)
return 〈n0, . . . , nk〉;

for every neighbor n of nk
add 〈n0, . . . , nk , n〉 to frontier ;

end while
return ⊥

Artificial Intelligence, Lecture 3.1, Page 17

Features of the algorithm

The neighbors define the graph.

goal defines what is a solution.

The selection of a path is non-deterministic.
◮ The choice of path that is selected can affect the efficiency.
◮ A particular search strategy will determine which path is

selected.

It is useful to think of the return of the goal path as a
temporary return; another path to a goal can be searched for
by continuing after the return.

If the procedure returns ⊥, no solutions exist (or there are no
remaining solutions if the proof has been retried).

Artificial Intelligence, Lecture 3.1, Page 18

Testing for goals

The algorithm only tests if a path ends in a goal node after
the path has been selected from the frontier, not when it is
added to the frontier.

There are two main reasons for this.
◮ Sometimes a very costly arc exists from a node on the frontier

to a goal node. The search should not always return the path
with this arc, because a lower-cost solution may exist. This is
crucial when the least-cost path is required.

◮ The second reason is that it may be expensive to determine
whether a node is a goal node.

If the path chosen does not end at a goal node and the node
at the end has no neighbors, extending the path means
removing the path. This outcome is reasonable because this
path could not be part of a path from a start node to a goal
node.

Artificial Intelligence, Lecture 3.1, Page 19

