
Verification of
Data-Centric Dynamic Systems

with External Services

Diego Calvanese
Joint work with: B. Bagheri Hariri, G. De Giacomo, A. Deutsch, M. Montali

KRDB Research Centre for Knowledge and Data
Free University of Bozen-Bolzano, Italy

Foundations and Challenges of Change in Ontologies and Databases
29–39/1/2014 – Bolzano, Italy

unibz.itunibz.it

Motivations Artifacts DCDS Verification Incomplete Information in the Data Layer References

Outline

1 Motivations

2 Artifact-Centric Approach

3 Data-Centric Dynamic Systems

4 Verification of Data-Aware Processes

5 Incomplete Information in the Data Layer

6 References

Diego Calvanese (FUB) Verification of DCDSs FCCOD – 30/1/2014 (1/44)

unibz.itunibz.it

Motivations Artifacts DCDS Verification Incomplete Information in the Data Layer References

Outline

1 Motivations

2 Artifact-Centric Approach

3 Data-Centric Dynamic Systems

4 Verification of Data-Aware Processes

5 Incomplete Information in the Data Layer

6 References

Diego Calvanese (FUB) Verification of DCDSs FCCOD – 30/1/2014 (2/44)

unibz.itunibz.it

Motivations Artifacts DCDS Verification Incomplete Information in the Data Layer References

Why Formal Verification?

Errors in computerized systems can be costly.

Pentium chip (1994) Ariane 5 (1996) Toyota Prius (2010)
Bug found in FPU. Intel offers to

replace faulty chips. Estimated

loss: 475M US$

Esploded 37secs after launch.

Cause: uncaught overflow ex-

ception.

Software “glitch” found in anti-

lock braking system.

185,000 cars recalled.

Why verify?
“Testing can only show the presence of errors,
not their absence.” [Edgar Dijkstra]

Diego Calvanese (FUB) Verification of DCDSs FCCOD – 30/1/2014 (3/44)

unibz.itunibz.it

Motivations Artifacts DCDS Verification Incomplete Information in the Data Layer References

Model Checking Cycle

System Specification

Design/Develop

Finite State Model

Temporal Properties
¬EF fail

Model Checker
e.g., NuSMV, Spin Verified

The finite state requirement is severe and restrictive
Especially for settings that capture data and dynamics simultaneously
(e.g., Artifact-Centric Business Process Systems).

Diego Calvanese (FUB) Verification of DCDSs FCCOD – 30/1/2014 (4/44)

unibz.itunibz.it

Motivations Artifacts DCDS Verification Incomplete Information in the Data Layer References

Traditional Process Modeling

A “divide et impera” approach, to attack the complexity of the domain of
interest:

Structural modeling: conceptual models, domain ontologies, DB schemas
UML, ORM, ER, . . .

Behavioral modeling: activities, services, business processes
BPMN, UML, BPEL, SOA-related technologies, . . .

Drawback: lack of a coherent holistic view:

The two models are loosely connected.

The full combined behavior is never captured.

Diego Calvanese (FUB) Verification of DCDSs FCCOD – 30/1/2014 (5/44)

unibz.itunibz.it

Motivations Artifacts DCDS Verification Incomplete Information in the Data Layer References

Spaghetti Layer

Manage
Cancelation

ShipAssembleManage
Material POs

Decompose
Customer PO

Activities

Process

Data

Activities

Process

Data

Activities

Process

Data

Activities

Process

Data

Activities

Process

Data

Customers Suppliers&CataloguesCustomer POs Work Orders Material POs

Diego Calvanese (FUB) Verification of DCDSs FCCOD – 30/1/2014 (6/44)

unibz.itunibz.it

Motivations Artifacts DCDS Verification Incomplete Information in the Data Layer References

Outline

1 Motivations

2 Artifact-Centric Approach

3 Data-Centric Dynamic Systems

4 Verification of Data-Aware Processes

5 Incomplete Information in the Data Layer

6 References

Diego Calvanese (FUB) Verification of DCDSs FCCOD – 30/1/2014 (7/44)

unibz.itunibz.it

Motivations Artifacts DCDS Verification Incomplete Information in the Data Layer References

Business Artifacts to the Rescue

In early 2000, the artifact-centric approach emerged as a foundational
proposal for merging data and processes together.

The emphasis is on data, which are modeled taking into account that they
will be manipulated by processes.
Processes are modeled by considering how they manipulate data.

Initial proposals by IBM [Nigam and Caswell, 2003], followed by
[Bhattacharya et al., 2007; Deutsch et al., 2007], . . .

See also EU project ACSI (for Artifact-Centric Service Interoperation),
2010–2013.

a	
 i S C	

Diego Calvanese (FUB) Verification of DCDSs FCCOD – 30/1/2014 (8/44)

unibz.itunibz.it

Motivations Artifacts DCDS Verification Incomplete Information in the Data Layer References

What is an Artifact?

Definition

A key, business-relevant conceptual dynamic entity that is used in guiding the
operation of a business.

Consists of:

Information model - relevant data maintained by the artifact

Lifecycle model - (implicit) description of the evolutions of the
information model that are allowed through the execution of a process.

Information model Lifecycle Artifact

Goal: unified, end-to-end view of relevant entities and their possible evolutions.

Diego Calvanese (FUB) Verification of DCDSs FCCOD – 30/1/2014 (9/44)

unibz.itunibz.it

Motivations Artifacts DCDS Verification Incomplete Information in the Data Layer References

Concrete Models for Artifacts

Key questions:

How and where to store data maintained by their information models?

How to specify the lifecycle of such artifacts?

At which level of abstraction?

Some concrete information models:

Relational database (with nested records).

Knowledge base, e.g., expressed in a Description Logic.

Some concrete lifecycle models:
Finite-state machines. State = phase; events trigger transitions.

Implemented in the Siena prototype by IBM.

Guard-Stage-Milestone lifecycles, based on declarative
(event-condition-action)-like rules.

Implemented in the Barcelona prototype by IBM.

Proclets (interacting Petri nets).
Emphasise many-to-many relationships between artifacts.

Diego Calvanese (FUB) Verification of DCDSs FCCOD – 30/1/2014 (10/44)

unibz.itunibz.it

Motivations Artifacts DCDS Verification Incomplete Information in the Data Layer References

Reasoning about Artifacts as Dynamic Entities

We want to provide a formal foundation for artifact-centric systems, and
provide corresponding reasoning facilities for their trustworthy design.

In particular, we want to decide whether dynamic/temporal properties of
interest hold over the life of such systems.

Verification of temporal formulae.

Dominance/simulation/bisimulation/containment properties.

Automated composition of artifacts-based systems.

Automated process synthesis from dynamic/temporal specifications.

Currently (2010’s) the scientific community is quite good at each of these, but
only in a finite setting!
However, artifacts pose two challenging problems:

the presence of data makes them infinite-state systems;

properties need to accommodate temporal operators and queries over the
artifact information models → first-oder temporal formulae.

Diego Calvanese (FUB) Verification of DCDSs FCCOD – 30/1/2014 (11/44)

unibz.itunibz.it

Motivations Artifacts DCDS Verification Incomplete Information in the Data Layer References

Verification of Artifacts is Tough

What is a non-artifact example of a finite-state control process manipulating
possibly unbounded data? A Turing Machine

Halt
curState == qf

Transition done

...

status attributes curState cellscurCell

curCell = curCell.next;

Head moved

if curCell.next == null

newCell = createCell();
newCell.value = "_";
curCell.next = newCell;
newCell.prev = curCell;
newCell.next = null;

Tape extended

if curCell.next != null

curCell = createCell();
curCell.value = "_";
curState = q0;Initialized if curCell == null

MovedR

. . .

curCell.value = vR1';
curState = qR1';

if curState = qR1
&& curCell.value = vR1

R1 state updated

. . .

curCell.value = vRk';
curState = qRk';

if curState = qRk
&& curCell.value = vRk

Rk state updated

...

value prev next

Transition stage

State update stages

Init stage

Right shift stage

(left transitions) (Left shift stage)
.

Verification of the propositional CTL / LTL reachability property “eventually
milestone Halt achieved” is undecidable.

Diego Calvanese (FUB) Verification of DCDSs FCCOD – 30/1/2014 (12/44)

unibz.itunibz.it

Motivations Artifacts DCDS Verification Incomplete Information in the Data Layer References

Artifact Formal Foundations

Is there hope to find interesting decidable cases?

This requires to identify “classes of systems” that enjoy verifiability.

First step: devise a minimal, clean mathematical framework as the basis of
investigation.

Many approaches in the literature:

University California San Diego, University California Santa Barbara, IBM
Watson, Imperial College, Sapienza Università di Roma, Free University of
Bozen-Bolzano.
Starting from previous work, we have defined a rich but “pristine” formal
framework: Data-Centric Dynamic Systems.

Note: approaches based on many-dimensional modal logics (one dimension for data,
one dimension for process) are not suitable.

Undecidability holds for weak domain models, when rigid relations are allowed.

No hope to isolate an interesting class.

Diego Calvanese (FUB) Verification of DCDSs FCCOD – 30/1/2014 (13/44)

unibz.itunibz.it

Motivations Artifacts DCDS Verification Incomplete Information in the Data Layer References

Outline

1 Motivations

2 Artifact-Centric Approach

3 Data-Centric Dynamic Systems

4 Verification of Data-Aware Processes

5 Incomplete Information in the Data Layer

6 References

Diego Calvanese (FUB) Verification of DCDSs FCCOD – 30/1/2014 (14/44)

unibz.itunibz.it

Motivations Artifacts DCDS Verification Incomplete Information in the Data Layer References

Data-Centric Dynamic Systems (DCDSs)

An abstract, pristine framework to formally describe processes that manipulate
data.

Subsumes virtually all existing approaches for modeling data-centric
processes, such as the artifact-centric paradigm.

DCDS

Data Layer

Process Layer

external
service

external
service

external
service

UpdateRead

Data layer: models and maintains the data of interest.
Process layer: manages the system dynamics and how the execution of
actions impact on the data layer.

Calls external services to interact with the environment.
Diego Calvanese (FUB) Verification of DCDSs FCCOD – 30/1/2014 (15/44)

unibz.itunibz.it

Motivations Artifacts DCDS Verification Incomplete Information in the Data Layer References

Components of a Relational DCDS

Data Layer

Relational schema with constraints (domain-dependent FO formulas).

Initial DB (instance) conforming to the schema+constraints.

The initial DB is evolved by the process layer into new DBs conforming to
the schema+constraint.

Process Layer

Declarative description of the process with condition-action rules.

Condition: (domain-independent) FO query.
Each rule queries the current DB and determines the executability of the
corresponding action and its parameters.

Actions with parameters, specified in terms of effects that:
1 query the current DB (with UCQs + domain-independent FO filters);
2 transfer the answers into facts that become part of the new DB.

External services are called in the action effects to introduce fresh data in
the new DB - taken from a countably infinite domain.

Diego Calvanese (FUB) Verification of DCDSs FCCOD – 30/1/2014 (16/44)

unibz.itunibz.it

Motivations Artifacts DCDS Verification Incomplete Information in the Data Layer References

Deterministic vs. non-deterministic services

We distinguish between two different semantics for service-execution:

Deterministic services semantics

Along the same run, when the same service is invoked again with the same
arguments, it returns the same result as in the previous call.

Are used to model an environment whose behavior is completely determined by
the parameters.
Example: temperature, given the location and the date and time

Non-deterministic services semantics

Along the same run, when the same service is invoked again with the same
arguments, it may return a different value than in the previous call.

Are used to model:
an environment whose behavior is determined by parameters that are
outside the control of the system;
input of external users, whose choices depend on external factors.

Example: current temperature, given the location
Diego Calvanese (FUB) Verification of DCDSs FCCOD – 30/1/2014 (17/44)

unibz.itunibz.it

Motivations Artifacts DCDS Verification Incomplete Information in the Data Layer References

An Example: Hotels and Price Conversion

Data Layer: Info about hotels and room prices

Cur = 〈UserCurrency〉 CH = 〈Hotel ,Currency〉 PEntry = 〈Hotel ,Price,Date〉

Process Layer/1

User selection of a currency.

Process: true 7−→ ChooseCur()

Service call for currency selection: uInputCurr()

Models user input with non-deterministic behavior.

ChooseCur() :

 true Cur(uInputCurr())
CH(h, c) CH(h, c)

PEntry(h, p, d) PEntry(h, p, d)



Diego Calvanese (FUB) Verification of DCDSs FCCOD – 30/1/2014 (18/44)

unibz.itunibz.it

Motivations Artifacts DCDS Verification Incomplete Information in the Data Layer References

An Example: Hotels and Price Conversion

Data Layer: Info about hotels and room prices

Cur = 〈UserCurrency〉 CH = 〈Hotel ,Currency〉 PEntry = 〈Hotel ,Price,Date〉

Process Layer/2

Price conversion for a hotel.

Process: Cur(c) ∧ CurHotel(h, ch) ∧ ch 6= c 7−→ ApplyConv(h, c)

Service call for currency selection: conv(price, from, to, date)

Models historical conversion with deterministic behavior.

ApplyConv(h, c) :
PEntry(h, p, d) ∧ CH(h, cold) ∧ Cur(c) PEntry(h,conv(p, cold , c, d), d)

PEntry(h′, p, d) ∧ h′ 6= h PEntry(h′, p, d)
CH(h, cold) CH(h, c)

CH(h′, c′) ∧ h′ 6= h CH(h′, c′)
Cur(c) Cur(c)



Diego Calvanese (FUB) Verification of DCDSs FCCOD – 30/1/2014 (18/44)

unibz.itunibz.it

Motivations Artifacts DCDS Verification Incomplete Information in the Data Layer References

Run of the System

HC

h1 eur
h2 eur

PEntry

h1 95 apr-25
h1 80 sep-18
h2 80 sep-18

HC

h1 eur
h2 eur

PEntry

h1 95 apr-25
h1 80 sep-18
h2 80 sep-18

Cur

usd

HC

h1 usd
h2 eur

PEntry

h1 115 apr-25
h1 95 sep-18
h2 80 sep-18

Cur

usd

HC

h1 usd
h2 usd

PEntry

h1 115 apr-25
h1 95 sep-18
h2 95 sep-18

Cur

usd

ChooseCur(): uInputCurr() =

?

usd

ApplyConv(h1,usd):
conv(95,eur,usd,apr-25) = ?115
conv(80,eur,usd,sep-18) = ?95

ChooseCur()

ApplyConv(h2,usd)

ChooseCur()

ApplyConv(h2,usd)
conv(80,eur,usd,sep-18) = 95

Diego Calvanese (FUB) Verification of DCDSs FCCOD – 30/1/2014 (19/44)

unibz.itunibz.it

Motivations Artifacts DCDS Verification Incomplete Information in the Data Layer References

Execution Semantics

Transition system accounting for all possible runs for the DCDS:

States: each linked to a DB – instance of the data layer;

Transitions: legal application of action+params+service call evals.

Action+params: executable according to the process rules.
Deterministic services behave consistently with the previous results.

We obtain

from the initial DB,

by applying transitions in all possible ways,

a possibly infinite-state (relational) transition system.

Diego Calvanese (FUB) Verification of DCDSs FCCOD – 30/1/2014 (20/44)

unibz.itunibz.it

Motivations Artifacts DCDS Verification Incomplete Information in the Data Layer References

Sources of Unboundedness/Infinity

In general: service calls cause . . .

......

......

. . .

Infinite branching (due to all possible results of
service calls).

Infinite runs (usage of values obtained from
unboundedly many service calls).

Unbounded DBs
(accumulation of such values).

HC
h1 eur
h2 eur

PEntry
h1 95 apr-25
h1 80 sep-18
h2 80 sep-18

Cur
usd

· · ·

· · ·

· · ·

...

ApplyConv(h2,usd): exchange rate = 1.2

ApplyConv(h2,usd): exchange rate = 1.23

ApplyConv(h2,usd): exchange rate = 1.3

ApplyConv(h2,usd): exchange rate = · · ·

Diego Calvanese (FUB) Verification of DCDSs FCCOD – 30/1/2014 (21/44)

unibz.itunibz.it

Motivations Artifacts DCDS Verification Incomplete Information in the Data Layer References

Outline

1 Motivations

2 Artifact-Centric Approach

3 Data-Centric Dynamic Systems

4 Verification of Data-Aware Processes

5 Incomplete Information in the Data Layer

6 References

Diego Calvanese (FUB) Verification of DCDSs FCCOD – 30/1/2014 (22/44)

unibz.itunibz.it

Motivations Artifacts DCDS Verification Incomplete Information in the Data Layer References

Verification of DCDSs

Verification

Given a DCDS S (with transition system ΥS), and a temporal/dynamic
property Φ, check whether

ΥS |= Φ

Requirements for temporal/dynamic properties:

to capture data ; first-order queries;

to capture dynamics ; temporal modalities;

to capture evolution of data ; quantification across states.

Our goal

Investigate “robust” conditions on decidability of verification:

for sophisticated branching- and linear-time temporal properties;

exploiting conventional, finite-state model checking via construction of a
faithful (sound and complete) finite-state abstraction.

Diego Calvanese (FUB) Verification of DCDSs FCCOD – 30/1/2014 (23/44)

unibz.itunibz.it

Motivations Artifacts DCDS Verification Incomplete Information in the Data Layer References

Problem Design Space

We employ variants of first-order µ-calculus (µLFO):
Φ ::= Q | ¬Φ | Φ1 ∧ Φ2 | ∃x.Φ | 〈−〉Φ | Z | µZ.Φ

Employs fixpoint constructs to express sophisticated
properties defined via induction or co-induction.

Subsumes virtually all logics used in verification,
such as LTL, CTL, CTL*. PDLLTL CTL

µL

µLFO

Problem 1

Unrestricted first-order quantification: no hope of reducing verification to
finite-state model checking.
See: ∃x1, . . . , xn.

∧
i 6=j xi 6= xj ∧

∧
i∈{1,...,n}〈−〉Q(xi)

; We need to consider fragments of µLFO with controlled quantification.

Problem 2

Verification is undecidable for simple propositional CTL ∩ LTL properties.

; We need to pose restrictions on DCDSs.

Diego Calvanese (FUB) Verification of DCDSs FCCOD – 30/1/2014 (24/44)

unibz.itunibz.it

Motivations Artifacts DCDS Verification Incomplete Information in the Data Layer References

Towards decidability

We need to tame the two sources of
infinity in DCDSs:

infinite branching

infinite runs.
P(a) P(a)

P(b)

. . .

. . .

. . .

. . .

To prove decidability of model checking for a given restriction and verification
formalism:

We use bisimulation as a tool.

We show that restricted DCDSs have a finite-state bisimilar transition
system.

Diego Calvanese (FUB) Verification of DCDSs FCCOD – 30/1/2014 (25/44)

unibz.itunibz.it

Motivations Artifacts DCDS Verification Incomplete Information in the Data Layer References

Bisimulation between transition systems

States sA and sB of transition systems A and B are bisimilar if:
1 sA and sB are isomorphic;
2 If there exists a state sA1 of A such that sA ⇒A sA1 , then there exists a

state sB1 of B such that sB ⇒B sB1 , and sA1 and sB1 are bisimilar;
3 The other direction!

A and B are bisimilar, if their initial states are bisimilar.

A B

sA sB

sA1 sB1

sB2sA2

µL invariance property of bisimulation:

Bisimilar transition systems satisfy the same set of µL properties.

Diego Calvanese (FUB) Verification of DCDSs FCCOD – 30/1/2014 (26/44)

unibz.itunibz.it

Motivations Artifacts DCDS Verification Incomplete Information in the Data Layer References

History-Preserving µ-calculus (µLA)

Active-domain quantification: restricted to those
individuals present in the current database.

∃x.Φ ; ∃x.live(x) ∧ Φ

where live(x) states that x is present in the current active
domain.

PDLLTL CTL

µL

µLA

µLFO

Example

νX.(∀x.live(x) ∧ Stud(x)→
µY.(∃y.live(y) ∧ Grad(x, y) ∨ 〈−〉Y) ∧ [−]X)

Along every path, it is always true, for each student x, that there exists an
evolution eventually leading to a graduation of the student (with some final
mark y).

Diego Calvanese (FUB) Verification of DCDSs FCCOD – 30/1/2014 (27/44)

unibz.itunibz.it

Motivations Artifacts DCDS Verification Incomplete Information in the Data Layer References

Persistence-Preserving µ-calculus (µLP)

In some cases, objects maintain their identity only if they persist in the active
domain (cf. business artifacts and their IDs).

. . .

SId : 123

. . .

SId : 123

. . .graduate(123) newS()
SId() = 123

µLP restricts µLA to quantification over persisting
objects only, i.e., objects that continue to be live.

∃x.Φ ; ∃x.live(x) ∧ Φ
〈−〉Φ(~x) ; live(~x) ∧ 〈−〉Φ(~x)
[−]Φ(~x) ; live(~x) ∧ [−]Φ(~x) PDLLTL CTL

µL

µLP

µLA

µLFO

Example (“strong” persistence)

νX.(∀x.live(x) ∧ Stud(x)→
µY.(∃y.live(y) ∧Grad(x, y) ∨ (live(x) ∧ 〈−〉Y)) ∧ [−]X)

Along every path, it is always true, for each student x, that there exists an
evolution in which x persists in the database until she eventually graduates.

Diego Calvanese (FUB) Verification of DCDSs FCCOD – 30/1/2014 (28/44)

unibz.itunibz.it

Motivations Artifacts DCDS Verification Incomplete Information in the Data Layer References

Persistence-Preserving µ-calculus (µLP)

In some cases, objects maintain their identity only if they persist in the active
domain (cf. business artifacts and their IDs).

. . .

SId : 123

. . .

SId : 123

. . .graduate(123) newS()
SId() = 123

µLP restricts µLA to quantification over persisting
objects only, i.e., objects that continue to be live.

∃x.Φ ; ∃x.live(x) ∧ Φ
〈−〉Φ(~x) ; live(~x) ∧ 〈−〉Φ(~x)
[−]Φ(~x) ; live(~x) ∧ [−]Φ(~x) PDLLTL CTL

µL

µLP

µLA

µLFO

Example (“weak” persistence)

νX.(∀x.live(x) ∧ Stud(x)→
µY.(∃y.live(y) ∧Grad(x, y) ∨ (live(x)→ 〈−〉Y)) ∧ [−]X)

Along every path, it is always true, for each student x, that there exists an
evolution in which either x does not persist, or she eventually graduates.

Diego Calvanese (FUB) Verification of DCDSs FCCOD – 30/1/2014 (28/44)

unibz.itunibz.it

Motivations Artifacts DCDS Verification Incomplete Information in the Data Layer References

Bisimulations

We introduce two novel notions of bisimulation to account for µLA/µLP .

History-Preserving
Bisimulation Invariant Languages

Persistence-Preserving
Bisimulation Invariant Languages

Propositional Bisimulation
Invariant Languages

PDLLTL CTL

µL

µLP

µLA

µLFO

These bisimulation relations capture:
dynamics ; standard notion of bisimulation;
data ; DB isomorphism;
evolution of data ; compatibility of the bijections witnessing the
isomorphisms along a run.

Diego Calvanese (FUB) Verification of DCDSs FCCOD – 30/1/2014 (29/44)

unibz.itunibz.it

Motivations Artifacts DCDS Verification Incomplete Information in the Data Layer References

Bisimulations

History-preserving bisimulation requires each isomorphism to be witnessed by
a bijection that extends the bijection used in the previous step.

Theorem

If Υ1 and Υ2 are history-preserving bisimilar, then for every µLA closed formula
Φ, we have:

Υ1 |= Φ if and only if Υ2 |= Φ

Persistence-preserving bisimulation requires each isomorphism to be
witnessed by a bijection that extends the bijection used in the previous step,
restricted only to the persisting objects.

Theorem

If Υ1 and Υ2 are persistence-preserving bisimilar, then for every µLP closed
formula Φ, we have:

Υ1 |= Φ if and only if Υ2 |= Φ

Diego Calvanese (FUB) Verification of DCDSs FCCOD – 30/1/2014 (30/44)

unibz.itunibz.it

Motivations Artifacts DCDS Verification Incomplete Information in the Data Layer References

Conditions for DCDSs

We have devised two conditions over the transition system ΥS of a DCDS S.

Run boundedness

Each run of ΥS accumulate only a bounded number of objects.

No bound on the overall number of objects: ΥS is still infinite-state, due
to infinite branching induced by service calls.

Unboundedly many deterministic service calls can still be issued with a
bounded number of inputs.

Only boundedly many nondeterministic service calls can be issued.

State boundedness

Each state of ΥS contain only a bounded number of objects.

Relaxation of run-boundedness: unboundedly many objects can be
encountered along a run, provided that they are not accumulated in the
same state.

ΥS can contain infinite branches and infinite runs.

Diego Calvanese (FUB) Verification of DCDSs FCCOD – 30/1/2014 (31/44)

unibz.itunibz.it

Motivations Artifacts DCDS Verification Incomplete Information in the Data Layer References

Summary of Results on Verification for DCDSs

U
n

re
st

ri
ct

ed
D

C
D

S
s

(T
u

ri
n

g
co

m
p

le
te

)

S
ta

te
-b

o
u

n
d

ed
D

C
D

S
s

R
u

n
-b

o
u

n
d

ed
D

C
D

S
s

F
in

it
e-

st
a

te
D

C
D

S
s

GR+-acyclic DCDSs

GR-acyclic DCDSs

Weakly-acyclic DCDSs
for det. services

Finite-range DCDSs

Unrestricted State-bounded Run-bounded Finite-state

µLFO U U N D

µLA U U D D

µLP U D D D

µL U D D D

D: decidable; U: undecidable; N: no finite abstraction.

Diego Calvanese (FUB) Verification of DCDSs FCCOD – 30/1/2014 (32/44)

unibz.itunibz.it

Motivations Artifacts DCDS Verification Incomplete Information in the Data Layer References

Run-Bounded Systems: Decidability for µLA
Theorem

Verification of µLA over run-bounded DCDSs is decidable and can be reduced
to model checking of propositional µL over a finite TS.

Crux: construct a faithful abstraction ΘS for ΥS , collapsing infinite branching.

We use isomorphic types instead of actual service
call results.

...

...

...

...

. . .

≈

representatives for all
isomorphic types

Diego Calvanese (FUB) Verification of DCDSs FCCOD – 30/1/2014 (33/44)

unibz.itunibz.it

Motivations Artifacts DCDS Verification Incomplete Information in the Data Layer References

State-bounded Systems: Undecidability for µLA

Theorem

Verification of µLA over state-bounded DCDSs is undecidable.

Intuition: µLA can use quantification to store and compare the unboundedly
many values encountered along the runs.

Crux: reduction from satisfiability of LTL with freeze quantifiers.

µLA can express LTL with freeze quantifier by making registers explicit.

There is a state-bounded DCDS that simulates all the possible traces with
register assignments (i.e., data words).

Satisfiability via model checking.

Diego Calvanese (FUB) Verification of DCDSs FCCOD – 30/1/2014 (34/44)

unibz.itunibz.it

Motivations Artifacts DCDS Verification Incomplete Information in the Data Layer References

State-bounded Systems: Decidability for µLP
Theorem

Verification of µLP over state-bounded DCDSs is decidable and can be reduced
to model checking of propositional µ-calculus over a finite transition system.

Crux: construct a faithful abstraction ΘS for ΥS , collapsing infinite branching
and compacting infinite runs.

1 Prune infinite branching (isomorphic types).
2 Finite abstraction along the runs:

Recycle old, non-persisting objects instead of
inventing new ones.

......

......

......

......

...

...

...

. . .

∼

representatives for
isomorphic types

Diego Calvanese (FUB) Verification of DCDSs FCCOD – 30/1/2014 (35/44)

unibz.itunibz.it

Motivations Artifacts DCDS Verification Incomplete Information in the Data Layer References

Sufficient Syntactic Conditions

State- and run-boundedness are semantic conditions, which are undecidable to
check.

Hence, we introduce two sufficient syntactic conditions:

Weak acyclicity (cf. data exchange), to check whether a DCDS with
deterministic services is run-bounded.

Generate-recall acyclicity, to check whether a DCDS is state-bounded.

The two acyclicity conditions are incomparable.

Both conditions are checked against a dependency graph that abstracts the
data-flow of the DCDS process layer.

Diego Calvanese (FUB) Verification of DCDSs FCCOD – 30/1/2014 (36/44)

unibz.itunibz.it

Motivations Artifacts DCDS Verification Incomplete Information in the Data Layer References

Sufficient Syntactic Conditions - Example 1

Example

Consider a DCDS S with process {true 7−→ α()},

action α() :

P (x) P (x)
P (x) Q(f(x))
Q(x) Q(x)

 P,1 Q,1*

Consider nondeterministic service calls.

S is not state-bounded.

The problem comes from the interplay between:

a generate cycle that continuously feeds a path issuing service calls;

a recall cycle that accumulates the obtained results.

(+ the fact that both cycles are active at the same time)

GR-acycliclity detects exactly these undesired situations.

Diego Calvanese (FUB) Verification of DCDSs FCCOD – 30/1/2014 (37/44)

unibz.itunibz.it

Motivations Artifacts DCDS Verification Incomplete Information in the Data Layer References

Sufficient Syntactic Conditions - Example 2

Example

Consider a DCDS S with process {true 7−→ α(), true 7−→ β()},

actions
α() : {P (x) Q(f(x))}
β() : {Q(x) P (x)} P,1 Q,1

*

Consider deterministic service calls.

S is not run-bounded.

The problem comes from:

repeated calls to the same service. . .

every time using fresh values that are directly (or indirectly) obtained by
manipulating previous results produced by the same service.

Weak acycliclity detects these undesired situations.

Diego Calvanese (FUB) Verification of DCDSs FCCOD – 30/1/2014 (38/44)

unibz.itunibz.it

Motivations Artifacts DCDS Verification Incomplete Information in the Data Layer References

Outline

1 Motivations

2 Artifact-Centric Approach

3 Data-Centric Dynamic Systems

4 Verification of Data-Aware Processes

5 Incomplete Information in the Data Layer

6 References

Diego Calvanese (FUB) Verification of DCDSs FCCOD – 30/1/2014 (39/44)

unibz.itunibz.it

Motivations Artifacts DCDS Verification Incomplete Information in the Data Layer References

Knowledge and Action Bases (KAB)

Ontology

T

A

Process KAB

T

A

Using a knowledge base as information model, we can:

Better capture the semantics of the domain of interest at the conceptual level.

Take into account incomplete information.

Data Layer: Description logic KB

Data schema: TBox expressed in a light-weight Description Logic

Data instance: DL ABox

µLFO µLA µLP µL
unrestricted U ← U ← U ← U D: decidable

weak-acyclicity ? D → D → D U: undecidable

Diego Calvanese (FUB) Verification of DCDSs FCCOD – 30/1/2014 (40/44)

unibz.itunibz.it

Motivations Artifacts DCDS Verification Incomplete Information in the Data Layer References

Ongoing and Future Work

Study relaxation of syntactic restrictions for state-boundedness.

Develop further the KAB setting:

Deal with inconsistency w.r.t. the ontology.
Consider an Ontology-Based Data Access setting, where a data layer and a
conceptual layer co-exist and are mapped to each other.

Connection to other infinite-state formalisms.

Petri nets;
LTL with freeze quantifier;
Well-structured transition systems.

Investigate how to deal with the exponential explosion w.r.t. the data.

Investigate the fragments with lower complexities.

Implementation of the approach, using state-of-the-art finite-state model
checkers.

Consider other reasoning services, e.g., composition, adversarial synthesis.

Diego Calvanese (FUB) Verification of DCDSs FCCOD – 30/1/2014 (41/44)

unibz.itunibz.it

Motivations Artifacts DCDS Verification Incomplete Information in the Data Layer References

Thank you for your attention!

a	
 i S C	

Diego Calvanese (FUB) Verification of DCDSs FCCOD – 30/1/2014 (42/44)

unibz.itunibz.it

Motivations Artifacts DCDS Verification Incomplete Information in the Data Layer References

References I

[Bagheri Hariri et al., 2011] Babak Bagheri Hariri, Diego C., Giuseppe De Giacomo, Riccardo
De Masellis, and Paolo Felli.

Foundations of relational artifacts verification.

In Proc. of the 9th Int. Conference on Business Process Management (BPM 2011), volume
6896 of Lecture Notes in Computer Science, pages 379–395. Springer, 2011.

[Bagheri Hariri et al., 2012a] Babak Bagheri Hariri, Diego C., Giuseppe De Giacomo,
Riccardo De Masellis, Marco Montali, and Paolo Felli.

Verification of description logic Knowledge and Action Bases.

In Proc. of the 20th Eur. Conf. on Artificial Intelligence (ECAI 2012), pages 103–108, 2012.

[Bagheri Hariri et al., 2012b] Babak Bagheri Hariri, Diego C., Giuseppe De Giacomo, Alin
Deutsch, and Marco Montali.

Verification of relational data-centric dynamic systems with external services.

CoRR Technical Report arXiv:1203.0024, arXiv.org e-Print archive, 2012.

Available at http://arxiv.org/abs/1203.0024.

[Bagheri Hariri et al., 2013] Babak Bagheri Hariri, Diego C., Marco Montali, Giuseppe
De Giacomo, Riccardo De Masellis, and Paolo Felli.

Description logic Knowledge and Action Bases.

J. of Artificial Intelligence Research, 46:651–686, 2013.

Diego Calvanese (FUB) Verification of DCDSs FCCOD – 30/1/2014 (43/44)

http://arxiv.org/abs/1203.0024

unibz.itunibz.it

Motivations Artifacts DCDS Verification Incomplete Information in the Data Layer References

References II

[Bhattacharya et al., 2007] K. Bhattacharya, C. Gerede, R. Hull, R. Liu, and J. Su.

Towards formal analysis of artifact-centric business process models.

In Proc. of the 5th Int. Conference on Business Process Management (BPM 2007), volume
4714 of Lecture Notes in Computer Science, pages 288–234. Springer, 2007.

[Cangialosi et al., 2010] Piero Cangialosi, Giuseppe De Giacomo, Riccardo De Masellis, and
Riccardo Rosati.

Conjunctive artifact-centric services.

In Proc. of the 8th Int. Joint Conf. on Service Oriented Computing (ICSOC 2010), volume
6470 of Lecture Notes in Computer Science, pages 318–333. Springer, 2010.

[De Giacomo et al., 2012] Giuseppe De Giacomo, Riccardo De Masellis, and Riccardo Rosati.

Verification of conjunctive artifact-centric services.

Int. J. of Cooperative Information Systems, 21(2):111–139, 2012.

[Deutsch et al., 2007] Alin Deutsch, Liying Sui, and Victor Vianu.

Specification and verification of data-driven web applications.

J. of Computer and System Sciences, 73(3):442–474, 2007.

[Nigam and Caswell, 2003] A. Nigam and N. S. Caswell.

Business artifacts: An approach to operational specification.

IBM Systems J., 42(3):428–445, 2003.

Diego Calvanese (FUB) Verification of DCDSs FCCOD – 30/1/2014 (44/44)

	Motivations
	Artifact-Centric Approach
	Data-Centric Dynamic Systems
	Verification of Data-Aware Processes
	Incomplete Information in the Data Layer
	References

