
1

Modelling and reasoning with business processes
and workflows

Verification of Workflow Nets

Jens Kohler, jkohler@hs-mannheim.de
Emanuele Storti, e.storti@univpm.it

Raffaele Dell’Aversana, r.dellaversana@gmail.com
Babak Bagheri Hariri, bagheri@inf.unibz.it

Emilio Sanfilippo, emiliosanfilippo@gmail.com

Mentor: Diego Calvanese

2

Outline of the Presentation
1.  Introduction

a.  Definition of Workflow Systems
b.  Research problem

2.  Approach
a.  Petri-Nets and their properties
b.  Workflow Nets
c.  Transformation Rules

3. Discussion

Reference: Wil M. P. van der Aalst: Verification of Workflow Nets.
ICATPN 1997

3

Workflow Management Systems: systems to
- define,
- create and
- manage the execution of workflows

(e.g., BPs in enterprises, Scientific Workflows in research projects)
Extensively used in organizations to process cases (e.g., claims, orders) by

linking procedures to resources:
•  procedure: a partially ordered set of tasks, routed through operators

(e.g., AND-split, OR-split, AND-join, OR-join)
•  resource: the organization unit or the role in charge to execute a task
•  data: information processed by the system

Introduction

4

Workflow (WF) example
BPMN 2.0: Object Management Group (OMG) standard
•  Widely adopted (77 compliant implementations)

5

Motivation:
Checking Correctness of WF

Efficient automated analysis of the properties of WFMSs required
Properties such as:
•  Deadlock and Livelock free
•  Boundedness
•  Liveness
•  Soundness

No theoretical foundation for the analysis of WFs, but for Petri Nets!
Solution:
Use Petri Nets for the representation, validation and verification of WFs

6

Example: BPMN Workflow - Deadlock

7

The Problem: Soundness of WFs

Check if the system can terminate properly in every state:

•  the procedure will terminate eventually;

•  After termination the system is in the appropriate final state!

8

Approach
Workflow procedures can be represented by Petri Nets:
•  expressive enough to represent workflows
•  well-known tools/techniques available for modeling, validation and

verification

Solution:
•  using Workflow Nets, a class of Petri Nets, suitable for:

o  representation, validation of workflow procedures
o  verification of soundness

•  definition of transformation rules to construct and modify procedures

9

Definition: Petri Net

10

Definition: Petri Net - Transitions

11

Example: BPMN Workflow - Deadlock

12

Example: Petri Net

13

Bounded Petri nets
A Petri net is bounded iff, for every reachable state and every place p the

number of tokens in p is bounded.

14

Unbounded Petri net!

15

Live Petri nets
A Petri net is live iff, for every reachable state M′ and every transition t there is a
state M′′ reachable from M′ which enables t.

16

Not live Petri net!

17

Definition: WF-net (static)
A workflow-net is a petri net that:

1.  has a special place i with no input transitions.
2.  has a special place o with no output transitions.
3.  If we add a transition t from o to i the resulting petri-net is strongly

connected.

18

Sound WF-nets (dynamic)
A WF-net is sound if and only if:

1.  from any reachable state it is possible to
reach a state with a token in the sink
place (option to complete)

2.  any reachable state having a token in the
sink place does not have a token in any
of the other places (proper completion)

3.  for any transition there is a reachable
state enabling it (absence of dead parts)

19

Coverability graph for soundness!
If the coverability graph of a petrinet has an ω edge, then it is not sound!
Otherwise, there is an easy algorithm to check the soundeness.

The complexity of construction of the coverability graph:
•  WF-nets: primitive recursive space hard!
•  Free choice Petri nets: EXPSPACE-hard.

However, in most of practical cases, the soundness can be checked in

polynomial time!

20

Checking soundness

Lemma 1. If a WF-net P′ is live and bounded, then P is sound!
Lemma 2. If a WF-net P is sound, then P′ bounded!
Lemma 3. If a WF-net P is sound, then P′ is live!

Theorem. A WF-net P is sound if and only if P′ is live and bounded.

21

Free Choice Petri nets
For every two places:
•  either they do not have any common outgoing transitions, or
•  they have the same set of outgoing transitions.

Example of non-free choice:

Free-choice WF-nets capture most of the models behind existing WFMSs.

Theorem. Checking soundness for free-choice WF-nets is in polynomial time.

22

Transformation Rules (TR)
Managing change:
•  Changes in organization practices lead to modifications to BPs
•  Model changing is error prone
•  Previous approach is useful to check the soundness of the new

procedure

An alternative approach is the usage of Transformation Rules:
•  correspond to basic routing constructs identified by WFMS
•  useful to modify a WF-net by preserving soundness

23

Transformation Rules (TR)
Eight basic TRs:
•  T1a-T1b: division/aggregation
•  T2a-T2b: specialization/generalization
•  T3a-T3b: parallelization
•  T4a-T4b: iteration

24

Transformation Rules (TR)
Transformation T1
•  T1a (division): Task t1 is replaced by

two consecutive tasks t2 and t3. A
complex task is divided into two tasks
which are less complicated

•  T1b (aggregation): Two consecutive
tasks t2 and t3 are replaced by one task
t1. Two tasks are combined into one
task.

25

Transformation Rules (TR)
Transformation T2
•  T2a (specialization): Task t1 is

replaced by two conditional tasks t2 and
t3. One generic task is replaced by two
more specialized tasks.

•  T2b (generalization): Two conditional
tasks t2 and t3 are replaced by one task
t1. Two rather specific tasks are
replaced by one more generic task.

26

Transformation Rules (TR)
Transformation T3
•  T3a (parallelization): Task t1 is

replaced by two parallel tasks t2 and t3
that achieve the same effect of the
execution of t1. The transitions c1 and
c2 represent control activities to fork
and join two parallel threads.

•  T3b: The opposite of transformation rule
T3a: two parallel tasks t2 and t3 are
replaced by one task t1.

27

Transformation Rules (TR)
Transformation T4
•  T4a (iteration): Task t1 is replaced by

an iteration of task t2. The transitions c1
and c2 represent control activities that
mark the begin and end of a sequence
of ‘t2-tasks’. Typical examples of
situations where iteration is required are
quality control and communication.

•  T4b: The opposite of transformation rule
T4a: the iteration of t2 is replaced by
task t1.

28

Transformation Rules (TR)
Theorem: The TRs preserve soundness, i.e. if a WF-net is sound,
then the WF-net transformed by one of these rules is also sound

29

Advantages
+ formal semantics
+ graphical language
+ enough expressive to represent most workflow procedure
+ widely studied from a theoretical perspective
+ many tools and techniques available
+ WF system independent

30

Extensions
•  Reasoning also about data, not only the control flow

o  The interconnection of data and process make the systems infinite-
state

o  Most of the known techniques for verification of finite-states systems
are not applicable!

•  Reasoning with semantics (ontologies)
•  Checking for properties related to domain knowledge

31

32

If a WF-net P′ is live and bounded, then P is sound!
Proper termination conditions:
P’ is live:
From any reachable state M, there is a reachable

state M’ = M” + O, in which t* is fireable.
i=>* M’
M’ => M” + i
P’ is bounded: M” should be finite.
i =>* o => i

No dead transition:
P’ is live: P has no dead transition!

33

Sound WF-nets (dynamic)
Proper termination conditions:

1.  For every state M reachable from state i,
there exists a firing sequence leading
from state M to state O.

2.  State O is the only state reachable from
state i with at least one token in place O.

No dead transition:

1.  There are no dead transitions in the petri-
net.

