
ll
NORTH- HOLLAND

O N S P E C I F Y I N G D A T A B A S E U P D A T E S

R A Y M O N D REITER

D We address the problem of formalizing the evolution of a database un-
der the effect of an arbi trary sequence of update transactions. We do so
by appealing to a first-order representation language called the situation
calculus, which is a s tandard approach in artificial intelligence to the for-
malization of planning problems. We formalize database transactions in
exactly the same way as actions in the artificial intelligence planning do-
main. This leads to a database version of the frame problem in artificial
intelligence. We provide a solution to the frame problem for a special, but
substantial, class of update transactions. Using the axioms corresponding
to this solution, we provide procedures for determining whether a given
sequence of update transactions is legal, and for query evaluation in an
updated database. These procedures have the desirable property tha t they
appeal to theorem-proving only with respect to the initial database state.

We next address the problem of proving properties true in all s tates
of the database. I t turns out tha t mathematical induction is required
for this task, and we formulate a number of suitable induction princi-
ples. Among those properties of database states tha t we wish to prove
are the s tandard database notions of static and dynamic integrity con-
straints. In our setting, these emerge as inductive entailments of the
database.

Finally, we discuss various possible extensions of the approach of this
paper, including transaction logs and historical queries, the complexity of
query evaluation, actualized transactions, logic programming approaches
to updates, database views, and state constraints. <~

This paper consolidates and expands on a variety of results, some of which have been described
elsewhere (Reiter [44, 45, 46]).

Address correspondence to P~ymond Reiter, Department of Computer Science, University of
Toronto, Toronto, Canada M5S 1A4. E-maih reiter~ai.toronto.edu.

Received August 1992~ revised May 1994, February 1995; accepted February 1995.

THE JOURNAL OF LOGIC PROGRAMMING

Q Elsevier Science Inc., 1995
655 Avenue of the Americas, New York, NY 10010

0743-1066/95/$9.50
SSDI 0743-1066(95)00049-P

54 R. R E I T E R

1. I N T R O D U C T I O N

Our concern in this paper is with formalizing the evolution of a database under
arbitrary sequences of update transactions. A wide variety of proposals for this
exist in the literature (e.g., Abiteboul [1]; Grahne [13]; Katsuno and Mendelzon [20];
Winslett [48]; Fagin, Ullman, and Vardi [10]; Ginsberg and Smith [12]; Guessoum
and Lloyd [16, 17]; Manchanda and Warren [32]; Kowalski [22]; Bonner and Kifer
[6]). In this paper, we advance a substantially different approach.

To begin, we take seriously the fact that, during the course of its evolution,
a database will pass through different states; accordingly, we endow updatable
database relations with an explicit state argument that records the sequence of
update transactions that the database has undergone thus far. Second, in our ap-
proach, the transactions themselves are first-class citizens, so for example, if the
database admits a transaction for changing the grade g of a student st to a new
grade g~ for the course c, then the first-order term change(st, c,g,g~) will be an
individual in the database language. These two features--an explicit state argu-
ment for updatable relations, and first-order terms for t ransact ions--are the basic
ingredients of the situation calculus, one of the standard approaches in artificial
intelligence to the formalization of planning problems. The essence of our pro-
posal is to specify databases and their update transactions within the situation
calculus.

One difficulty that arises immediately is the so-called frame problem, well known
in the artificial intelligence planning literature. Briefly, this is the problem of how
to succinctly represent the invariants of the domain, namely, those relations whose
t ru th values are unaffected by a transaction. Section 2 describes the problem in
more detail, while Sections 3 and 4 describe our axiomatization of databases and
transactions, and how these address the frame problem.

With this axiomatization in hand, we are in a position to address query evalua-
tion for updated databases. This we do in Section 5, where we provide procedures
for determining whether a given sequence of update transactions is legal, and for
querying an updated database. These procedures have the desirable property that
they appeal to theorem-proving only with respect to the initial database state.

In Section 6, we address the problem of proving properties true in all states of the
database. It turns out that mathematical induction is required for this task, and
we formulate a number of suitable induction principles. Among those properties
of database states that we wish to prove are the standard database notions of
static and dynamic integrity constraints. In our setting, these emerge as inductive
entailments of the database.

Subsequently, in Section 7, we discuss various possible extensions of the approach
of this paper, including transaction logs and historical queries, the complexity of
query evaluation, actualized transactions, logic programming approaches to up-
dates, database views, and state constraints.

We close with Section 8, which provides a comparative discussion of various
approaches to a theory of database updates.

A pleasant consequence of our appeal to the situation calculus as a database rep-
resentation language is that, in almost all respects, the resulting theory of database
updates is isomorphic to the theory of planning in dynamic worlds as studied in
artificial intelligence. This formal identity provides a potentially fruitful synthesis
of problems and solutions from both disciplines.

ON SPECIFYING DATABASE UPDATES 55

. P R E L I M I N A R I E S : T H E S I T U A T I O N C A L C U L U S A N D T H E
F R A M E P R O B L E M

The situation calculus (McCarthy [33]) is a first-order language designed to repre-
sent dynamically changing worlds in which all such changes are the result of named
actions. The world is conceived as being in some state s, and this s tate can change
only in consequence of some agent (human, robot, nature) performing an action. If

is some such action, then the successor state to s resulting from the performance
of action a is denoted by do(m s). In general, actions may be parameterized. For
example, put(x, y) might stand for the action of putt ing object x on object y, in
which case do(put(A, B), s) denotes that s tate resulting from placing A on B when
the world is in state s. Notice that in this language, actions are denoted by func-
tion symbols. Those relations whose t ru th values may vary from state to s tate are
called fluents, and are denoted by predicate symbols taking a s tate te rm as one of
their arguments. For example, in a world in which it is possible to paint objects,
we would expect a fluent color(x, c, s), meaning tha t the color of object x is c when
the world is in state s.

Normally, actions will have preconditions, namely, sufficient conditions tha t the
current world state must satisfy before the action can be performed in this state.
For example, it is possible for a robot r to pick up an object x in the world
state s provided the robot is not holding any object, it is next to x, and x is
not heavy:

[(Vz)~holding(r, z, s)] A ~heavy(x) A nexto(r, x, s) D Poss(pickup(r, x), s).l

I t is possible for a robot to repair an object provided the object is broken, and
there is glue available:

hasglue(r, s) A broken(x, s) D Poss(repair(r, x), s).

The dynamics of a world are specified by effect axioms, which specify the effect
of a given action on the t ru th value of a given fluent. For example, the effect on
the fluent broken of a robot dropping an object can be specified by:

Poss(drop(r, x), s) A fragile(x) D broken(x, do(drop(r, x), s)).

A robot repairing an object causes it not to be broken:

Ross(repair(r, x), s) D ~roken(x, do(repair(r, x), s)).

As has been long recognized (McCarthy and Hayes [35]), axioms other than effect
axioms are required for formalizing dynamic worlds. These are called frame axioms,
and they specify the action invariants of the domain, i.e., those fluents unaffected
by the performance of an action. For example, dropping things does not affect an
object 's color:

Poss(drop(r, x), s) A color(y, e, s) D color(y, e, do(drop(r, x), s)).

1 In the sequel, lowercase roman le t te rs will deno te variables . All formulas are unde r s tood to be
impl i c i t ly un iversa l ly quant i f ied wi th respect to the i r free var iables whenever expl ic i t quant i f ie rs
are not indica ted . We also a s sume t h a t A takes precedence over V, so t h a t a A b V c A d means

(a A b) v (e ^ d).

56 R. R E I T E R

Not breaking things:

Poss(drop(r, x), s) A -~broken(y, s) A [y ~ x V -~fragile(y)]

-~broken(y, do(drop(r, x), s)).

The problem associated with the need for frame axioms is that normally there will
be a vast number of them. For example, an object 's color remains unchanged as
a result of picking things up, opening a door, turning on a light, electing a new
prime minister of Canada, and so on. Normally, only relatively few actions in any
repertoire of actions about a world will affect the t ru th value of a given fluent; all
other actions leave the fluent invariant, and will give rise to frame axioms, one for
each such action. This is the frame problem.

In this paper, we shall propose specifying databases and update transactions
within the situation calculus. Transactions will be treated exactly as actions are in
dynamic worlds, i.e., they will be functions. Thus, for example, the transaction of
changing a student's grade in an education database will be treated no differently
than the action of dropping an object in the physical world. This means that we
immediately confront the frame problem; we must find some convenient way of
stating, for example, that a student's grade is unaffected by registering another
student in a course, or by changing someone's address or telephone number or
student number, and so on.

The frame problem has been recognized in the setting of database transaction
processing, notably by Kowalski [22] and Borgida, Mylopoulos and Schmidt [7]. It
is also implicit in various semantic approaches to database updates (but without
appealing explicitly to transactions), such as the work of Grahne [13]; Katsuno
and Mendelzon [20]; Grahne, Mendelzon, and Revesz [14]; and Winslett [48]. Our
approach differs from these semantic accounts in two ways: it explicitly provides
for transactions, and it relies on an axiomatic treatment of the frame problem. The
next section provides an example of our axiomatic approach to specifying database
update transactions, and how it addresses the frame problem.

3. T H E B A S I C A P P R O A C H : A N E X A M P L E

We consider a toy education database to illustrate our approach to specifying up-
date transactions.

Relations. The database involves the following three relations:

1. enrolled(st, course, s): Student st is enrolled in course course when the data-
base is in state s.

2. grade(st, course, grade, s): The grade of student st in course course is grade
when the database is in state s.

3. prerequ(pre, course): pre is a prerequisite course for course course. Notice
that this relation is state independent, so is not expected to change during
the evolution of the database.

Initial Database State. We assume given some first-order specification of what is
true of the initial state So of the database. These will be arbitrary first-order
sentences, the only restriction being that those predicates that mention a state,

ON S PECIFYING DATABASE UPDATES 57

mention only the initial state So. Examples of information that might be true
in the initial state are:

(Vx).enrolled(x, e l 0 0 , So) D enrolled(x, 6200, So),

enroUed(Sue, C100, So) V enrolled(Sue, 6200, So),

(3c)enroUed(BiU, c, So),

(Vp).prerequ(p, P300) -= p = P100 V p = M100,

(Vp)-~pr er equ(p , 6100),

(Vc).enrolled(Bill, c, So) =- c = M100 V c = C100 V c = P200,

enrolled(Mary, C100, So), -~enrolled(John, M200, So) , . . .

grade(Sue, P300, 75, So), grade(Bill , M200, 70, So) , . . .

prerequ(M200, M100), -~prerequ(M l O0, ClO0), . . .

Database Transactions. Update transactions will be denoted by function symbols,
and will be treated in exactly the same way as actions are in the situation
calculus. For our example, there will be three transactions:

1. register(st , course): Register student st in course course.
2. change(st, course, grade): Change the current grade of student st in course

course to grade.
3. drop(st, course): Student st drops course course.

Transaction Preconditions. Normally, transactions have preconditions that must be
satisfied by the current database state before the transaction can be "executed."
In our example, we shall require that a student can register in a course iff she
has obtained a grade of at least 50 in all prerequisites for the course:

Poss(regis ter(st, c), s) - { (Vp).prerequ(p, c) D (3g).grade(st, p, g, s) A g > 50}.

It is possible to change a student's grade iff he has a grade that is different than
the new grade:

Poss(change(st , c, g), s) =- (3g').grade(st, c, g', s) A g' ~ g.

A student may drop a course iff the student is currently enrolled in that course:

Poss(drop(st, c), s) =- enrolled(st, c, s).

Update Specifications. These are the central axioms in our formalization of up-
date transactions. They specify the effects of all transactions on all updatable
database relations. As usual, all lowercase roman letters are variables that are
implicitly universally quantified. In particular, notice that these axioms quantify
over transactions.

Poss(a, s) D [enrolled(st, c, do(a, s)) =

a -= register(st, c) V enrolled(st, c, s) A a ~ drop(st, c)], (3.1)

Poss(a, s) D [grade(st, c, g, do(a, s)) -

a = change(st, c, g) V grade(st, c, g, s) A {(Vg').g' ~ g D a ~ change(st, c, g')}].

This last sentence is logically equivalent to the simpler:

Poss(a, s) D [grade(st, c, g, do(a, s)) -

a = change(st, c, g) V grade(st, c, g, s) A (Vg')a ~ change(st, c, g')].

58 R. REITER

It is the upda te specification axioms tha t "solve" the frame problem. To see
why, notice tha t (3.1) entails:

Poss(a, s) A a ~ register(st, c) A a ~ drop(st, c) D

{enrolled(st, c, do(a, s)) = enrolled(st, e, s)},

t ha t is, register(st, c) and drop(st, c) are the only t ransact ions tha t can possibly
affect the t ru th value of enrolled; all other transactions leave its truth value un-
changed (provided Poss(a, s) is true, of course). 2'3 But this ability to succinct ly
represent all of the. t ransact ions tha t leave a given fluent invariant is precisely the
kind of solution to the frame problem tha t we seek. A little reflection reveals those
properties of the axiom (3.1) tha t solve the problem for us:

1. quantification over transactions, and
2. the assumpt ion tha t relatively few transact ions (in this case register(st , e)

and drop(st, c)) affect the t ru th value of the fluent, so tha t the sentence (3.1)
is reasonably short. In other words, most t ransact ions leave a fluent 's t r u th
value unchanged, which of course is what originally led to too m a n y frame
axioms.

For a more detailed description of this approach to the frame problem, and a
procedure for automat ica l ly obta ining this solution from the effect axioms alone,
see Reiter [40]. For an independent ly mot ivated circumscriptive justification of this
solution to the frame problem, see Lin and Reiter [29].

3.1. Querying a Database

Notice tha t in the above account of database evolution, all updates are virtual;
the da tabase is never physically changed. To query the da tabase resulting from
some sequence of transactions, it is necessary to refer to this sequence in the query.
For example, to determine if John is enrolled in any courses after the t ransac t ion
sequence

drop(John, C100), regis ter(Mary, C100)

has been "executed," we must determine whether

Database

(3c).enrolled(John, c, do(register(Mary, C100), do(drop(John, C100), So))).

Querying an evolving da tabase is precisely wha t is called the temporal projection
problem in AI planning [18].

2Notice that to draw this conclusion we require unique names axioms for transactions, i.e.,

change(st, c, g) ~ drop(st, c),
drop(st, e) ~ register(st, c),

etc.
3Since for our example there are just three transactions, this might not seem to be much

of an achievement. To see that it is, simply imagine augmenting the set of transactions with
arbitrarily many new transactions, each of which is irrelevant to the truth of enrolled; say,
transactions for changing student's registration numbers, addresses, telephone numbers, fees, and
SO o n .

ON SPECIFYING DATABASE UPDATES 59

4. A N A X I O M A T I Z A T I O N OF U P D A T E T R A N S A C T I O N S

The example education domain illustrates the general principles behind our ap-
proach to the specification of database update transactions. In this section we
precisely characterize a class of databases and updates of which the above example
will be an instance. To begin, we must specify a second-order language on which
to base the axiomatization. 4 L e t / : be a sorted second-order language with equal-
ity, with two disjoint sorts for transactions and states, and suppose these sorts
are disjoint from any other sorts of the language. Assume £ has the following
vocabulary:

• Individual variables: Infinitely many of each sort.
• Predicate variables: Infinitely many of each arity, each of which takes argu-

ments, all of which are of sort state.
• Function symbols of sort state: There are just two of these- - the constant So,

and the binary function symbol do, which takes arguments of sort transaction
and state, respectively.

• Function symbols of sort transaction: Finitely many.
• Other function symbols: Infinitely many of sort other than transaction and

state for each arity, none of which take an argument of sort state.
• Predicate symbols:

1. A distinguished binary predicate symbol Poss taking arguments of sort
transaction and state, respectively.

2. A distinguished binary predicate symbol < taking arguments of sort state.
3. Finitely many predicate symbols, distinct from the predicate symbols

Poss, < and <, each of which takes, among its arguments, exactly one
of sort state; these are called fluents. Notice that the predicate symbols
Poss, < and _<, which do take arguments of sort state, are not fluents.

4. Infinitely many predicate symbols of each arity, none of which take argu-
ments of sort state.

• Logical constants and punctuation: As usual, including equality.

Notice t h a t / : does not allow state dependent functions like employer-of (x, s), or
Canadian-prime-minister(s) .

Unique Names Ax ioms for Transactions. For distinct transaction names T and
T ' ,

T(~) ~ T ' (y ~)

Identical transactions have identical arguments:

T (X l , . . . , x , ~) = T (y l , . . . , y n) ~ Xl = Yl A . . . A xn = yn,

for each function symbol T of £ of sort transaction.
Unique Names Axioms for States

(Va, s)So ~ do(a, s),

(Va, s, a', s').do(a, s) = do(a', s') D a = a' A s = s'.

4 T h e language m u s t be second order because we shall require a t rans i t ive order ing relat ion, <:,
on s ta tes , and th i s is not f irst-order definable (Section 5.1).

60 R. R E I T E R

Notice that the unique names axioms for states imply tha t two states are the
same iff they result from the same sequence of transactions applied to the ini-
tial state. Two states $1 and $2 may be different, yet assign the same t ru th
value to all fluents. So a state in the situation calculus must not be identified
with the set of fluents that hold in that state. A bet ter way to understand a
state is as a history of transactions; two states are equal iff they have identical
histories.

Definition: The Simple Formulas. The simple formulas of E are defined to be the
smallest set such that:

1. F(t , s) and F(t , S0) are simple whenever F is a fluent, the i ' a re terms, and s
is a variable of sort state. 5

2. Any equality atom is simple. Notice that equality atoms, unlike fluents, are
permit ted to mention the function symbol do.

3. Any other a tom with predicate symbol other than Poss or < is simple.
4. If $1 and $2 are simple, so are ~$1, $1 A $2, $1 V $2, S1 D $2, S1 -- $2.
5. If S is simple, so are (3x)S and (Vx)S whenever x is an individual variable

not of sort state.

In short, the simple formulas are those first-order formulas tha t do not mention
the predicate symbols Poss or <, whose fluents do not mention the function
symbol do, and tha t do not quantify over variables of sort state.

Definition: Transaction Precondition Axiom. A Transaction precondition axiom is
a sentence of the form

(VZ, s) . P o s s (T (x l , . . . , xn), s) =- HT,

where T is an n-ary function of sort transaction of 1:, and HT is a simple formula
of E whose free variables are among x l , . . . , x~, s.

Definition: Successor State Axiom. A successor state axiom for an (n + 1)-ary fluent
F of l: is a sentence o f / : of the form

(Va, s).Poss(a, s) D (Vx l , . . . , X n) . F (x , , . . . , xn, do(a, s)) - @F,

where, for notational convenience, we assume that F ' s last argument is of sort
state, and where (~F is a simple formula, all of whose free variables are among
a , s , x l , . . . ,Xn.

5. T R A N S A C T I O N L O G S A N D Q U E R Y E V A L U A T I O N

In many database applications, a log is maintained of the sequence of (virtual)
update transactions that has occurred against the database, and queries are pro-
cessed with respect to this log and the initial (static) database. We emphasize

5For notational convenience, we assume that the last argument of a fluent is always the (only)
argument of sort state.

O N S P E C I F Y I N G D A T A B A S E U P D A T E S 61

tha t these transactions are virtual; they are not actualized on the given initial
database. Our objective in this section is to present a sound and complete query
evaluator for this case. The general problem is this: given a query Q, and a se-
quence ~-1,... ,Tn of update transactions, is this sequence legal, and if so, what is
the answer to Q in tha t s tate of the database tha t would result from perform-
ing these transactions in the indicated sequence, beginning with the initial s tate
So of the database? This is exactly what is called the temporal projection prob-
lem in the AI planning literature [18]. For the class of databases of this paper,
Reiter [43] has provided a closed-form solution to this problem, which we now
describe.

5.1. Legal Transaction Sequences

In this section we provide necessary and sufficient conditions tha t a sequence
•1, • - •, Tn of update transactions be legal. Notice tha t not all t ransaction sequences
need be legal. For example, the sequence drop(Sue, C100), change(Bill, C100, 60)
would be illegal if the drop t ransaction was impossible in the initial database state,
i.e., if Poas(drop(Sue, C100), So) was false. Even if the drop t ransact ion were pos-
sible, the sequence would be illegal if the change t ransaction was impossible in tha t
s tate resulting from doing the drop transaction, i.e., if Poss(change(Bill, C100, 60),
do(drop(Sue, C100), So)) was false.

Intuitively, a t ransaction sequence is legal iff, beginning in state So, each trans-
action in the sequence is possible in tha t s tate resulting from performing all the
transactions preceding it in the sequence. To formalize this notion, we define an
ordering relation < on states. The intended interpretation of s < s t is tha t s tate
a t is reachable from state s by some sequence of transactions, each transact ion of
which is possible in tha t s tate resulting from executing the transactions preced-
ing it in the sequence. As in Reiter [42], we begin by postulating the following
axioms:

(Vs)~s < So. (5.1)

(Va, s, a').a < do(a, s t) ~ Poss(a, s t) A s < s t. (5.2)

Here, s < s t is an abbreviation for s < s t V s = s t.
In addition, we shall later need a (second-order) induction axiom over states, so

we include tha t here for future reference:

(VP).P(So) A (Va, s)[P(s) D P(do(a, s))] D (Vs)P(s). (5.3)

Compare this with the induction axiom for the natural numbers:

(VP).P(0) A (Vx)[P(x) D P(suec(x))] D (Vx)P(x).

Just as the induction axiom for the natural numbers restricts the domain of num-
bers to 0 and its successors, the effect of the induction axiom (5.3) is to restrict
the state domain of any of its models to be isomorphic to the smallest set S
satisfying:

1. S o E S .
2. If S c S, and A E A, then do(A, S) E S, where A is the domain of actions in

the model.

62 R. REITER

Notation (do(I l l , . . . , an], s)). Let a l , . . . , an be terms of sort transaction. Define

do([], s) = s,

do([al , . . . ,an],s) = do(an, do([al , . . . ,an- l ,S)) n = 1 , 2 , . . .

do([al , . . . , an], s) is a compact notation for the state te rm

do(an, do(an_l , . . . , dO(al, s) . ..))

which denotes tha t state resulting from performing the transaction a l , followed by
a2 , . . . , followed by an, beginning in state s.

Definition: The Legal Transaction Sequences. Suppose r l , . . . , Tn is a sequence of
ground terms (i.e., terms not mentioning any variables) of/2, where each Ti is
of SOrt transaction. Then this sequence is legal (with respect to some background
database axiomatization /)) iff

7) ~ So <_ do([T1,..., Tn], So).

Definition: Databases. In the sequel, a database 7) will always be a set of sentences
of Z: of the following form:

7) = ~ U/).,~.,~ u /) tp u/).~..~ u/)u,~t u /)so

where

• F~ is the set consisting of the above three axioms (5.1), (5.2), and (5.3).
• /)ss is a set of successor state axioms, one for each fluent of £:.
• /)tp is a set of transaction precondition axioms, one for each t ransact ion

function of / : .
• /)~ns is the set of unique names axioms for states.
• /)~nt is the set of unique names axioms for transactions.
• /)So is a set of first-order sentences with the proper ty tha t So is the only te rm

of sort state mentioned by the fluents of a sentence of/)So. Thus, no fluent
of a formula of/)So mentions a variable of sort state or the function symbol
do. 7)So will play the role of the initial database (i.e., the one we star t off
with, before any transactions have been "executed").

Notice tha t the induction axiom (5.3) is the only second-order sentence of 7); all
other sentences of 7) are first order.

Definition: A Regression Operator. We now introduce an operator corresponding to
the notion of goal regression as it, arises in artificial intelligence planning problems
(Waldinger [47]). I t is also a parallel version of the operation of unfolding in logic
programming. The purpose of the regression operator is to systematically reduce
the complexity of ground-state terms occurring in situation calculus formulas;
by repeatedly applying this operator, we eventually obtain a formula whose only
state te rm is So. As the following theorems show, this reduces theorem proving
for formulas with arbi trary ground-state terms to theorem proving for formulas
whose only state term is So.

O N S P E C I F Y I N G D A T A B A S E U P D A T E S 63

Assume given a database 7P, as defined above. The regression operator 7~ when
applied to a formula of/2 is determined relative to the database D and is defined
recursively as follows:

1. When A is a nonfluent atom, including equality atoms, and atoms with pred-
icate symbol Poss or <,

7~[A] = A.

2. When ¢ is a fluent a tom whose state argument is a variable,

~[¢] = ¢.

3. When F is a fluent whose successor state axiom in Dss is

(Va, s).Poss(a,s) D (Vxl , . . . ,Xn).F(xl, . . . ,xn,do(a,s)) =- ~ (5.4)

then

n[F(tl , . ,tn, do(a,o))] • x, x,~,a,s
• " : F t l ~ . . . , t n ~ o t ~ g r "

4. Whenever W is a formula,

n [~ W] = ~n[W] ,

T~[(vv)w] = (w ,)n [w] ,

n [(3 v) w] = (3v)~[w] .

5. Whenever W1 and W2 are formulas,

n[w1 A w2] = n[w1] A 7~[w2],

~[w~ v w~] = 7~[w~] v n [w 2] ,

7~[w1 ~ w2] = 7~[w~] ~ ~[w~],

n [w ~ - w~] = 7~[w1] - n[w2].

7~[G] is simply tha t formula obtained from G by substi tuting suitable instances of
~ F in F ' s successor state axiom for each occurrence in G of a fluent a tom of the
form F(t l , . . . , tn, do(a, 0)).

Example.

G = (Ya, s).P(A, do(a, do(a', s))) A s = do(B, So) D

(3x).P(x, s) A Ross(B, do(a, s)) A R(x) A Q(do(B, s)).

Here, P and Q are fluents; R is not a fluent. Suppose the successor-state axioms
for P and Q are

Ross(a, s) D [P(x, do(a, s)) =- ~p(X, a, s)],

Poss(a, s) D [Q(do(a, s)) =- OQ(a, s)].

Then

n[G] = (Va, s).¢p(A, a, do(a', s)) A s = do(B, So) D

(3x).P(x, s) A Poss(B, do(a, s)) A R(x) A q~q(B, s).

64 R. R E I T E R

The idea behind the regression operator 7~ is to reduce the depth of nest-
ing of the function symbol do in the fluents of G by substituting suitable in-
stances of ~F from (5.4) for each occurrence of a fluent atom of G of the form
F(tl , . . . , tn ,do(a, cr)). Since no fluent atom of ~)F mentions the function sym-
bol do, the effect of this substitution is to replace each such F by a formula
whose fluents mention only the state term a, and this reduces the depth of nesting
by one.

Definition ['Rn]. When G is a formula of £,

7a°[a] = a ,

For n = 1 ,2 , . . .

ra ~ [a I = n[ra ~- l[c]].

Suppose T is a ground transaction term, say T (g l , . . . , g k) , and suppose T's
transaction precondition axiom is:

(Vxl , . . . , xk, s).Poss(T(Xl,. . . , Xk), s) = FIT(X1,... , Xk, S).

Define precond(T,s) to be the formula YIT(gl,... ,gk, S). The formula precond
(T, s) specifies the conditions under which the ground transaction ~- is possible
in state s.

The following is proved in Reiter [43]:

Theorem 5.1. The sequence TI, . . . , T n o f ground terms of £ of sort transaction is
legal w.r.t. 7) iff

ft

Z)unt U Z)So ~ A ~i-l~rec°nd(Ti' do(IT1,..., Ti-1], So))].
i~-i

Notice that Theorem 5.1 reduces the test for the legality of a transaction se-
quence to a first-order theorem proving task in the initial database 7)8o, together
with unique names axioms for transactions. In particular, the second-order induc-
tion axiom is not required for the purpose of testing legality.

Example: Legality Testing. We compute the legality test for the transaction se-
quence

register(Bill, C100), drop(Bill, C100), drop(Bill, C100)

which intuitively should fail because the first drop leaves Bill unenrolled in C100,
so that the precondition for the second drop will be false. We must first com-
pute

0 7¢ [precond(register(Bill, C100), So)] A

T¢ 1 ~recond(drop(BiU, C100), do(register(Bill, C100), So))] A

TC2[precond(drop(Bill, e l00) , do(drop(Bill, C100), do(register(BiU, e l 0 0) , So)))],

O N S P E C I F Y I N G D A T A B A S E U P D A T E S 65

which is

T~°[(k/p).prerequ(p, C100) D (3g).grade(Bill,p, g, So) A g > 50] A

T~ 1 [enrolled(Bill, Cl00, do(register(Bill, C100), So))] A

7~2[enrolled(Bill, C100, do(drop(Bill, C100), do(register(Bill, C100), So)))].

This yields

{(Vp).prerequ(p, C100) D 3g).grade(BiU,p,g, So) A g > 50} A

true A

false

so the transaction sequence is indeed illegal.
Consider next the sequence

change(Bill, C100, 60), register(Sue, C200), drop(Bill, C100).

We first compute

T~°[preeond(change(Bill, C100, 60), So)] A

T~ 1 [precond(register(Sue, C200), do(change(Bill, C100, 60), So))] A

T~ 2 [pr econd(drop(B ill, C100), do(register(Sue, C200),

do(change(Bill, C100, 60), So)))],

which is

7~°[(3g')grade(Bill, C100, g', So) A g' ~ 60] A

T~ 1 [(Vp)prerequ(p, C200) D (3g)grade(Sue, p, g, do(change(Bill, el00, 60), So)) A

g > 50] A

n 2 [enrolled(Bill, el00, do(register(Sue, C200), do(change(Bill, C100, 60), So)))].

This simplifies to

((3g'), grade(Bill, el00, g', So) A g' ~ 60) A

((Vp).prerequ(p, C200) D Bill = Sue A p = C100 v (3g).grade(Sue, p, g, So) A

g > so} A

(Sue = Bill A C200 = C100 V enrolled(Bill, C100, So)}.

So the transaction sequence is legal iff this formula is entailed by the initial database.

5.2. Query Evaluation"

We now consider the evaluation of queries in a database state resulting from a given
sequence of update transactions. Specifically, we address the following problem:

66 R. R E I T E R

Given a sequence T1, . . . , Tn of ground terms of sort transaction, and a query Q(s)
whose only free variable is the state variable s, what is the answer to Q in tha t
s tate resulting from performing this transaction sequence, beginning with the initial
database state So? This can be formally defined as the problem of determining
whether

/) ~ Q(do([~'l, . . . , Tn], So)).

Our principal result is the following:

Theorem 5.2 (Reiter [43]). Suppose Q(s) E £ is simple, and that the state variable
s is the only free variable of Q(s). Suppose v l , . . . ,Tn is a sequence of ground
terms of ~ of sort transaction. Then if T1, . . . ,Tn is a legal transaction se-
quence,

if/

/) ~ Q(do([71,. . . , Tn], So))

/)~,u U I)So ~ n'~[Q(do([T1,..., T,~], So))].

Notice that , as in the case of verifying legality, query evaluation reduces to first-
order theorem proving in the initial database ~)So, together with unique names
axioms for transactions. Once again, the second-order induction axiom is not re-
quired.

Corollary 5.1. (Relative Consistency) 7P is satisfiable iff /)~nt U ~)so is.

PROOF. Take Q(s) = false in Theorem 5.2. []

Corollary 5.1 provides an important relative consistency result. I t guarantees
that we cannot introduce an inconsistency to a "base" theory /)un t U ~)so by aug-
menting it with the axioms for < and induction, together with successor s tate and
transaction precondition axioms and unique names axioms for states.

The legality condition in Theorem 5.2 is necessary, as the following example
shows:

Example. Suppose / : has just a 0-ary function symbol T of sort transaction and a
fluent F. Consider the successor state axiom

(Va, s).Poss(a, s) D {F(do(a, s)) = F(s)}

and the transaction precondition axiom

Then i f /)so = {F(So)},

but

Poss(T, s) - false.

/)s,, ~ n[F(do(T, So))],

D ~= F(do(T, So)).

ON SPECIFYING DATABASE UPDATES 67

Example: Query Evaluation. Consider again the transaction sequence

T = change(Bill, C100, 60), register(Sue, C200), drop(Bill, C100).

Suppose the query is

(3st).enrolled(st, C200, do(T, So)) A

~enrolled(st, Cl00, do(T, So)) A

(~g).grade(st, C200, g, do(T, So)) A g > 50.

We must compute T~ 3 of this query. After some simplification, assuming that
:Dso ~ C100 ~ C200, we obtain

(3st).[st = Sue V enrolled(st, C200, So)] A

[st = Bill V -~enrolled(st, C100, So)] A

[(3g).grade(st, C200, g, So) A g > 50].

Therefore, assuming that the transaction sequence T is legal, the answer to the
query is obtained by evaluating this last formula in Ds0.

6. P R O V I N G P R O P E R T I E S OF D A T A B A S E STATES

As indicated in Section 5.1, there is a close analogy between our approach to
database updates and the theory of the natural numbers; simply identify So with
the natural number 0, and do(Addl, s) with the successor of the natural number s.
In effect, a database is a theory in which each "natural number" s has arbitrarily
many successors. 6 Just as mathematical induction is necessary to prove anything
interesting about the natural numbers, so also is induction required to prove gen-
eral properties of database states. This section is devoted to formulating some
induction principles suitable for this task, and to providing an account of integrity
constraints in this setting. As we shall see, integrity constraints will emerge as
inductively derivable general properties of database states.

Let W be a unary predicate variable of £:. Using the axioms (6), (5.1), (5.2), and
(5.3), Reiter [42] derives the following second-order induction principle, suitable for
proving properties of states s when So <_ s:

(VW).W(So) A [(Va, s).Poss(a, s) A So <_ s A W(s) D W(do(a, s))]

O (Vs).S0 < ~ ~ W(s) .
(IPso<s)

Frequently, we shall want to prove sentences of the form

(vs, s ') .s0 < s A s <_ ~' ~ T(~, J) .

Toward that end, Reiter [42] derives the following induction principle, suitable for

aThere could even be infinitely many successors whenever a transaction function is parameter-
ized by a real number, as for example change-salary(p, $).

68 R. REITER

proving p roper t i e s of pai rs of s t a t e s s and s ~ when So _< s A s _< s~:

(VR).R(So, So) A

[(Ya, s, s').Poss(a, s') A So <_ s A s < s' A n(s, s') D n(s , do(a, s '))] A

[(Va, s, s').Poss(a, s) A So <_ s A n(s, s) D R(do(a, s), do(a, s))]

(Vs, s ') . s0 < s A s < s ' ~ R(s , s ') .

(IPs,,<s<s,)

6.1. Induction and the Verification of Integrity Constraints

In t he t heo ry of da tabases , an integrity constraint specifies w h a t counts as a legal
d a t a b a s e s ta te ; it is a p r o p e r t y t h a t every d a t a b a s e s t a t e mus t satisfy. The concept
of an in tegr i ty cons t ra in t is i n t ima t e ly connec ted wi th t h a t of d a t a b a s e evoluation;
no m a t t e r how the d a t a b a s e evolves, the cons t ra in t mus t be t rue in all d a t a b a s e
futures. Accordingly , it is n a t u r a l to represent these as sentences, un iversa l ly quan-
t if ied over s ta tes . For example , no one m a y have two different g rades for t he same
course in any d a t a b a s e s ta te :

(Vs)(Vst, c, g, g').So <<_ s A grade(st, c, g, s) A grade(st, c, g', s) D g = g'.

In a personnel da t abase , we might require t h a t salar ies mus t never decrease du r ing
the evolu t ion of the da tabase :

(Vs, s ')(Vp, $, $') .S0 _< s A s < s ' A sal(p, $, s) A sal(p, $', s') D $ <_ $,.7

The in tu i t ion t h a t cons t ra in ts are sentences t h a t mus t be t rue in all d a t a b a s e s t a tes
leads to the following:

Definition: Constraint Satisfaction. A d a t a b a s e D B satisfies an in tegr i ty cons t r a in t
I C iff the d a t a b a s e entai ls the cons t ra in t :

DB ~ IC. 8

Notice t he a s sumpt ion under ly ing the above not ion of an in tegr i ty cons t r a in t and
its sa t i s fac t ion by a da tabase : Cons t r a in t s are sentences quant i f ied over s ta tes , and
in t he s i tua t ion calculus, s ta tes change only by virtue of transaction "occurrences."
So when we speak of a cons t r a in t being t rue in all d a t a b a s e s ta tes , we mean t h a t
a r b i t r a r y t r a n s a c t i o n sequences preserve the t r u t h of t he cons t ra in t . In o the r words,
we are here imagin ing t h a t the only way a database evolves is through transactions.
Cons ider a d a t a b a s e t h a t in i t ia l ly has no in format ion a b o u t John ' s m a r i t a l s t a tus .
Af te r several t r ansac t ions , we discover t h a t he is marr ied . If the re is a t r a n s a c t i o n
for mar r i age events, and if John ' s mar r i age in the real world is the nex t event to

7The symbol < in $ < $~ is the usual ordering relation on the reals, and is not to be confused
with our ordering relation on states.

8This definition should be contrasted with those in Reiter [38, 41]. It seems that there is not
a unitary concept of integrity constraint in database theory, and that there are many subtleties
involved.

O N S P E C I F Y I N G D A T A B A S E U P D A T E S 69

be recorded in the database, then simply add this marriage transact ion to the cur-
rent sequence of transactions, and we are done. On the other hand, if there is no
database transact ion for marriage events, or if we do not know when he married,
then the best we can do is add an assertion to the database tha t John is married.
This change to the database is not the result of a transaction, and therefore can-
not be formalized within our transaction-centered approach to database evolution.
Our concept of" an integrity constraint and its satisfaction would not apply in this
setting. 9 There is obviously an intimate connection between this observation and
tha t of Katsuno and Mendelzon [20], who argue tha t there is a difference between
updat ing a database and revising it. To formally capture this distinction, they
propose a set of update postulates tha t differ from, but are in the same style as, the
AGM postulates for revision (Alchourrdn, G£rdenfors, and Makinson [3]). With
respect to the above example, recording a marriage transaction corresponds to an
update, while simply recording the fact that John is married corresponds to a re-
vision. For a further discussion of this distinction, see Section 7. In the remainder
of this paper, our perspective on integrity constraints and their satisfaction will
be exclusively transaction-centered; we do not consider databases evolving under
revision operations.

We return now to the problem of verifying constraints. Since this requires show-
ing tha t some sentence is true in all database states, it is not surprising tha t induc-
tion is required. The following result will provide a useful corollary for verifying
integrity constraints by induction.

Lemma 6.1 (Reiter [43]). Suppose G(~, s) E £, where G(I, s) is simple, s is a
state variable, and the free variables of G are among ~, s. Then

:Ds~ ~ (Va, s).Poss(a, s) D (V~).{G(~, do(a, s)) - ~[G(~ , do(a, s))]}.

Notation: IPso<s<_8,(H), IPso<s(G). When H(s, s') E £ is a formula with two free
variables s and # of sort state, IPso<<_~<~,(H) denotes the substi tution instances
of H for R in the induction principle (IPso<~<~,). When G(s) c £ is a formula
with one free variable of sort state, IPso<~ (G) denotes the substi tution instances
of G for W in the induction principle (IPso<j).

The following is an immediate consequence of Lemma 6.1. We will find it
useful for verifying integrity constraints by induction.

Corollary 6.1. Suppose G(s) c g and H(s, s') c £ are both simple, that the state
variable s is the only free variable of G, and that the state variables s and s ~ are
the only free variables of H. Then,

T)s~ ~ IPso<8(G) =

a(So) A

{(Va, s).Poss(a, s) A So <_ s A G(s) D T~[G(do(a, s))]}
D (Vs).S0 s s D a(s),

9I a m grateful to one of the referees for this example, and for pointing out that our ap-
proach to integrity constraints applies only to databases whose evolution is governed exclusively
by transactions.

70 R. R E I T E R

Dss

IPso<s<_s,(H) -

H(So, So) A

{(Va, s, s').PosS(a, s') A So <_ s A s < s' A H(s, s') D Ti[g(s, do(a, s'))]} A

{(Va, s).Poss(a, s) A So <_ s A H(s, s) D 7¢[g(do(a, s), do(a, s))]}

D (Ys, s').SO <_ s A s <_ s' D g (s , s').

6.2. Examples of Constraints and Their Verification

Proving a Functional Dependency. Consider again the example education database,
and the successor state axiom

Poss(a, s) D {grade(st, c, g, do(a, s)) -

a = change(st, c, g) V grade(st, c, g, s) A (Vg')a ~ change(st, c, g')}.

Normally, the relation grade(st, c, g, s) is functional in its third argument. Such
functional dependencies are examples of so-called static integrity constraints. Sup-
pose T)so contains the initial functional dependency

(Vst, c,g,g').grade(st, c,g, So) A grade(st, c,g', So) D g = g'. (6.1)

We prove that transaction sequences preserve this functional dependency, namely
that

(Vs).So _< s D {(Vst, c, g, g').grade(st, c, g, s) A grade(st, c, g', s) D g = g'}.

This we do by invoking the first result of Corollary 6.1 with

G(s) = (Vst, c, g,g').grade(st, c, g, s) A grade(st, c, g', s) D g = g'.

Therefore, we must prove the following two sentences: G(So), which is the initial
functional dependency (6.1).

(Ya, s).Poss(a, s) A So <_ s A

{(Vst, c, g, g').grade(st, c, g, s) A grade(st, c, g', s) D g = g'} D

[(Vst, c, g, g'){a = change(st, c, g) V

grade(st, c, g', s) A (Vg")a ~ change(st, c, g")} A

{a = change(st, c, g') V

grade(st, c, g', s) A (Vg')a ~ change(st, c, g")}

g = g'].

This has an easy proof using the unique names axioms for transactions. Notice that
the proof does not appeal to any transaction precondition axioms.

ON S PECIFYING DATABASE UPDATES 71

Proving a Dynamic Integrity Constraint. The classic example of a dynamic
integrity constraint is that a person's salary must not decrease:

(Vs, s', p, $, $').So <_ s A s < s ~ D sal(p, $, s) A sal(p, St, s t) D $ <_ S t. (6.2)

We shall require a transaction precondition axiom stating that the prerequisite for
changing a person's salary is that the new salary be greater than the old:

Poss(change-sal(p, $), s) =- (35 ~).sal(p, $', s) A $t < $. (6.3)

Initially, the relation sal is functional in its second argument:

(Vp, $, $').sal(p, $, So) A sal(p, $', So) 3 $ -: $'. (6.4)

Finally, we assume the following successor state axiom for sal:

Ross(a, s) D {sal(p, $, do(a, s)) - a = change-sal(p, $) V

sal(p, $, s) A a ~ fire(p) A (V$')a ~ change-sal(p, $')}.

Now, to prove (6.2) we appeal to the second result of Corollary 6.1 with

H(s, s') = (Vp, $, $').sal(p, $, s) A sal(p, $', s') D $ < $'.

Accordingly, we must prove the following three sentences:

1.

(Vp, $, $').sal(p, $, So) A sal(p, $', So) D $ <_ $'.

This follows from the initial functional dependency axiom (6.4).
2.

(Va, s, s').Ross(a, s') A So <_ s A s < s' A

[(Vp, $, $').sal(p, $, s) A sal(p, $', s') D $ <_ $']

D

[(Vp, $, $').sal(p, $, s) A {a = change-sal(p, $') V

sal(p, $', s') A a ~ fire(p) A (V$")a ~ change-sal(p, $")}
$ _< $'].

The straightforward proof requires the transaction precondition axiom (6.3).
3.

(Va, s).Poss(a, s) A So _< s A {(Vp, $, $').sal(p, $, s) A sal(p, $', s) D $ <: $'}

D

(Vp, $, $').{a ----- change-sal(p, $) V

sal(p, $, s) A a ~ fire(p) A (V$")a ~ change-sal(p, $")} A

{a ---- ehange*sal(p, $') V

sal(p, $, s) A a ~ fire(p) A (V$")a ~ change-sal(p, $")}

D$<_$' .

This has a simple proof using unique names axioms for transactions.

72 R. R E I T E R

6.2.1. AN EXAMPLE OF CASANOVA AND FURTADO [8]. Suppose no one who
has been fired can ever be rehired:

Poss(hire(p), s) =- -~trans(f ire(p), s)/~ -~emp(p, s). (6.5)

Intuitively, trans(a, s) means that the transaction a is part of the transaction se-
quence leading from So to s. Formally, we have the successor state axiom

Poss(a, s) D {trans(a' , do(a, s)) =- a = a' V trans(a' , s)}, (6.6)

together with the initial state axiom

~trans(a, So). (6.7)

Finally, assume the following successor state axiom for the relation emp:

Poss(a, s) D {emp(p, do(a, s)) - a = hire(p) V emp(p, s) A a • f ire(p)} .

We wish to prove that any employed person who subsequently becomes unem-
ployed will forever thereafter remain unemployed:

(Vp, s, s', s").S0 _< s A s < s' A s' _< s" A emp(p, s) A -~emp(p, s') D ~ernp(p, s").

This is easy to prove using transitivity of < (a fact tha t is easily proved by induction)
together with the following three sentences:

(Va, s, s').So <_ s A s <_ s' A trans(a, s) D trans(a, s'). (6.8)

(Vp, s).So <_ s A trans(f ire(p) , s) D -~emp(p, s). (6.9)

(Vp, s, s0.S0 _< s A s _< s' A e, p(p, ^ emp(p, tran (fire(p), s')i6.10)

Accordingly, we indicate how to prove these.

• Proof of (6.8): Use the second result of Corollary 6.1 and (6.7).
• Proof of (6.9): Use the first result of Corollary 6.1, (6.7), unique names

axioms for transactions, and the transaction precondition axiom (6.5).
• Proof of (6.10): Use the second result of Corollary 6.1.

7. E X T E N S I O N S O F T H I S A P P R O A C H

We have described a fairly general approach to specifying update transactions for
databases. Nevertheless, within this framework, there remain a number of out-
standing problems to be addressed. In order to demonstrate the generality of our
situation calculus-based approach to describing evolving databases, we describe
some of these research problems, and sketch possible solutions to them within our
framework. The proposed solutions are presented with varying degrees of detail,
and should be viewed as suggestions for approaching a variety of what, at the
moment, are open research problems.

7.1. Transaction Logs and Historical Queries

Using the relation < on states, as defined in Section 5, it is possible to pose historical
queries to a database. For example, if T is the transaction sequence leading to the

ON S PECIFYING DATABASE UPDATES 73

current database state (i.e., the current database state is do(T, So)), the following
asks whether Mary's salary was ever less than it is now:

(3s, $, $').So <<_ sAs < do(T, So)Asal(Mary, $, s)Asal(Mary, $', do(T, S0)) A$ < $'.

Was John ever simultaneously enrolled in both C100 and M100?

(3s).So <_ s A s <_ do(T, So) A enrolled(John, C100, s)A
(7.1)

enrolled(John, M100, s).

Has Sue always worked in Department 13?

(Vs).S0 <_ s A s _< do(T, So) D amp(Sue, 13, s). (7.2)

The rest of this section sketches an approach to answering historical queries of
this kind. The approach is of interest because it reduces the evaluation of such
queries to evaluations in the initial database state, together with conventional list
processing techniques on the transaction log consisting of the list of those transac-
tions that are assumed to have taken place.

Begin by defining an abbreviation, occurs-between(a, s, s'), whose intended in-
terpretation is that situation s I is accessible from situation s via some sequence of
executable transactions, and that transaction a is one of the transactions in this
sequence:

occurs-between(a, s, s') ~ (3s").s < do(a, s") < s'.

If we think of a state as a list of all the transactions leading from So to that state,
then provided state s' is legal (see Section 5.1), occurs-between(a, s, s') is true iff a
is a member of the "list difference" of s / and s, where state s is a "sublist" of #.
For example, if

do([register(John, C100), drop(Bill, C100), drop(Mary, C100),

is legal, then

is true, whereas

drop(John, M100)], So)

occurs-between(drop(Mary, C100),

do([register(John, C100)], So),

do([register(John, C100), drop(Bill, C100),

drop(Mary, C100), drop(John, M100)], So)),

occurs-between(register(Mary, C100),

do([register(John, C100)], So),

do([register(John, C100), drop(Bill, C100),

drop(Mary, el00) , drop(John, M100)], So)),

is false (assuming unique name axioms for transactions).

74 R. REITER

Example. We begin by showing how to answer query (7.2). Toward that end, we
first derive a suitable closed-form solution for fluent F. Assume that F ' s successor-
state axiom has the following syntactic form:

Poss(a,s) D [F(5, do(a,s)) - ~/+(5, a,s) V F(~7, s) A -~VF(5, a, s)]. (7.3)

Here, 7 + (5, a, s) and 7F (5, a, s) are arbitrary first-order formulas with free variables
among 5, a, and s. All of the successor-state axioms used in the examples of this
paper have this syntactic form. Using this and the induction principle (IPso <_s), it
is possible to prove:

(Vs').SO < s' D {[(Vs)(SO < s < s' D F(5, s))] -=

F(5, So) A -~(3a, #').do(a, s") < s' A VF (5, a, s")}.

Suppose that 7F (x, a, s) is independent of s, i.e., it nowhere mentions a state vari-
able s. To indicate this, we write it as 7F (5, a). Then, using the above sentence
for F and the abbreviation for occurs-between, it is easy to prove that:

(Vs').SO _< s' D {[(Vs)(SO < s < s' D F(5, s))] --
(7.4)

F(5, So) A ~(3a)oecurs-between(a, So, s') A ~'F (5, a)}.

Suppose, for the sake of the example, that the successor state axiom for emp is:

Poss(a, s) D emp(p, d, do(a, s)) -=

a = hire(p, d) V emp(p, d, s) A a ~ fire(p) A a ~ quit(p).

Using this successor state axiom, it is easy to show that the following follows from
(7.4):

(Vs').SO < s' D {[(Vs)(S0 < s < s' D emp(p, d, s))] =

emp(p, d, So) A -,occurs-between(fire(p), So, s')

A -~occurs-between(quit(p), So, s') }.

Using this, together with the assumption that the transaction sequence T is legal,
we get that the original query is equivalent to:

emp(Sue, 13, So) A

~occur s-between(f ire(Sue), So, do(T, So)) A

-~occurs-between(quit(Sue), So, do(T, So)).

This form of the original query reduces query evaluation to evaluation in the initial
database state, together with simple list processing on the database log T of those
transactions leading to the current database state. We can verify that Sue has
always been employed in Department 13 in the following way:

1. Verify that she was initially employed in Department 13, and
2. Show that neither fire(Sue) nor quit(Sue) are member of list T 3 °

l e T h e correc tness of th is s imple -minded list process ing procedure relies on some a s sumpt ions ,
notably, su i tab le un ique n a m e s axioms.

ON S PECIFYING DATABASE UPDATES 75

Example. We now consider evaluating the first query (7.1) in the same list pro-
cessing spirit. First, we introduce a new abbreviation last(a, s) meaning that a is
the last transaction of the sequence s:

last(s, a) a__ (3s')s = do(a, s').

For example,

last(do([drop(Mary, C100), register(John, C100)], So), register(John, e l00))

is true, while

last(do([drop(Mary, C100), drop(John, Cl00)], So), register(John, e l 0 0))

is false, assuming unique names axioms for transactions.

Next, using (7.3) and the induction principle (IPso<s), we can derive the follow-
ing closed-form solution for the fluent F:

s0 < s ~ {F(Z, s) -

F(Z, So) A -~(3a, s')[do(a, s') ~ s A ~/F(Z, a, s')] V

(3a', s')[do(a', s') <_ s A ~/+(Z, a', s') A

~(3a", s")[do(a', s') < do(a", s") <_ s A "rE(i, a", s")]]).

Suppose that ~/F (Z, a, s) and -7+(Z, a, s) are both independent of s, i.e., nowhere do
they mention a state variable s. To indicate this, we write them as ~F (Z, a) and
~+(Z, a), respectively. Then, using the above closed-form solution for F and the
abbreviations for last and occurs-between, it is easy to prove that:

so < s ~ {F(Z, s) - -

F(Z, So) A ~(3a)[occurs-between(a, So, s) A 7F (~, a)] V

(3a', s')[last(s' , a') ^ s' < s A ~r+(z, a ') A (7.s)

-~(3a") [occurs-between(a", s', s) A ~fF (Z, a")]] }.

Suppose the successor state axiom for enrolled is: o

P oss(a, s) D {enrolled(st, c, do(a, s)) -

a = register(st, c) Y enrolled(st, e, s) A a ~ drop(st, c)}.

Using this successor-state axiom, it is easy to show that the following closed-form
solution for enrolled follows from (7.5):

So ~_ s D [enroled(st, c, s)) --

{enrolled(st, c, So) A -~occur s-between(drop(st, c), So, s) V

(3s').s' < s A last(s', register(st, c)) A (7.6)

-~occur s-between(drop(st, c) , s ', s)}].

76 R. R E I T E R

Then, on the assumption that the transaction sequence T is legal, it is simple
to prove that the query (7.1) is equivalent to:

{ enrolled(John, ClOO, So) A }
enrolled(John, MIO0, So)

V

(3s).S0 < s <_ do(T, So) A
~occurs-between(drop(John, C100), So, s) A

last(s, register(John, M100))
V

enrolled(John, MlOO, So) A }
(3s).So < s < do(T, So) A

-~occurs-between(drop(John, MIO0), So, s) A

last(s, register(John, C100))
V

last(s', register(John, MIO0)) A

last(s, register(John, C100)) A

-,occurs-between(drop(John, MIO0), s', s)
V

(3S, s').So < s' < s <<_ do(T, So) A
last(s', register(John, C100)) A

last(s, register(John, M100)) A

-,occurs-between(drop(John, C100), s', s)

Despite its apparent complexity, this sentence also has a simple list processing
reading; we can verify that John is simultaneously enrolled in C100 and M100 in
some previous database state provided one of the following conditions holds:

1. John was initially enrolled in both C100 and M100.
2. John was initially enrolled in C100. Moreover, T has a sublist (loosely denoted

by s) whose last element is register(John, M100) and that does not contain
drop(John, M100).

3. John was initially enrolled in M100. Moreover, T has a sublist s whose last el-
ement is register(John, C100) and that does not contain drop(John, M100).

4. T has a sublist s, which in turn has a sublist s', s' ends with register(John,
M100), s ends with register(John, C100), and drop(John, M100) is not a
member of the list difference of s and s t.

5. T has a sublist s, which in turn has a sublist s', s I ends with register(John,
C100), s ends with register(John, MlO0), and drop(John, ClO0) is not a
member of the list difference of s and s'.

Historical queries need not reference only the past; meaningful queries can be
posed about the future, for example, given the current database state (which we

ON SPECIFYING DATABASE UPDATES 77

shall take to be So) is it possible for John to ever graduate?

(3s).So <_ s A graduate(John, s).

Answering queries of this form is precisely the problem of plan synthesis in AI
(Green [15]). Moreover, from a constructive proof of such a query, one can ob-
tain a sequence of transactions leading to a state in which the query is true. This
means that in the event that the query's answer is "yes," one can also provide
a sequence of steps that , if executed, is guaranteed to lead to the desired state.
Thus, for the example at hand, one would be able to compute answers of the
form "Yes, it is possible for John to graduate, provided he registers for C400 and
obtains a passing grade for it." For the class of databases of this paper, Re-
iter [43] shows how regression provides a sound and complete evaluator for such
queries.

7.2. Complexity of Query Evaluation

The results of the previous section on transaction logs and historical queries provide
a basis for a complexity analysis of query evaluation. As an indication of how such
an analysis might proceed, consider the problem of evaluating a query in a database
state resulting from a given legal sequence T of transactions, as in Section 5.2. For
simplicity, suppose the query is ground and atomic, say, pursuing Example 2 of
the previous section, enrolled(John, C100, do(T So)). It is easy to see that the
following is a consequence of (7.6) and the assumption that T is legal:

enrolled(st, c, do(T, So)) =

[enrolled(st, c, So) A ~occurs-between(drop(st, c), So, do(T, So)) V

(3s').s' < do(T, So) A last(s', register(st, c)) A

-~occur s-between(drop(st, c) , s', do(T, So))].

Therefore, the query enrolled(John, C100, do(T, So)) is logically equivalent to:

enrolled(John, C100, So) A ~occurs-between(drop(John, C100), So, do(T, So)) V

(~s').s' < do(T, So) A last(s', register(John, C100)) A

-~occur s-between (drop(John, C100), s ', do(T, So)).

As before, this has a simple list processing reading: John is enrolled in C100 iff

1. John was initially enrolled in C100 and drop(John, C100) is not a member of
the transaction log T, or

2. register(John, C100) is a member of the log T and drop(John, C100) does not
occur later than it in the log T.

Clearly, the complexity of this procedure is linear in the length of the log T, plus
whatever the complexity is of query evaluation in the initial state. Moreover, there
is nothing very special about this example, which is to say that under fairly general
conditions: 11

11Specifically, these general conditions are tha t the successor s tate axiom be what Lin and

Reiter [28] call context free.

78 R. R E I T E R

For queries that are ground literals, the complexity of query evaluation
using a transaction log adds complexity linear in the length of the log to
the complexity of query evaluation in the initial database.

When the initial database is complete, as would be the case when it is relational,
a ground query may be evaluated by first computing its atomic subqueries, as
indicated above, then combining those answers in the obvious way according to
the sentential structure of the original query. This provides a tolerable algorithmic
complexity for query evaluation. When :DSo is incomplete, then we do not have
this query decompositional structure, and it appears that we must resort to the full
generality of regression, as in Section 5.2. As it happens in this case, a complexity
analysis in the length of the log is still possible; moreover, the complexity turns out
to be tolerable for successor-state axioms having a suitable syntactic form. Since
these considerations take us too far from the main thrust of this paper, we do
not pursue these ideas any further here, except to observe that a rich complexity
theory for transaction processing appears to be possible within the framework of
the situation calculus.

7.3. Actualizing Transactions

Recall that within our approach to specifying transactions, all updates are virtual;
the database is never physically changed. Instead, the axiomatization characterizes
all possible database futures under all possible transaction sequences. Determining
whether a given formula Q(s) is true in that database state resulting from the trans-
action log T reduces to the question of whether the database entails Q(do(T, So))
(Section 5.2).

Transaction-intensive databases can lead to extremely long transaction logs, so
that regression-based query evaluation (Section 5), or the improved methods of Sec-
tion 7.1, can become computationally unfeasible, even when the database successor-
state axioms support linear complexity (in the length of the log) for atomic query
evaluation. In such cases, it may be profitable to view a transaction as a map-
ping from one static database to another, in the style of Abiteboul [1]. From
this perspective, a database transaction can be implemented as a physical modi-
fication of the current database to yield the updated database that actualizes the
transaction. In the case of relational databases, such transactions are normally
actualized by suitable insertions/deletions of tuples into/from the relational tables
of the database. Generally speaking, such static databases suppress all references
to the state argument of their corresponding situation calculus specification; they
are meant to represent those sentences that would be true in that situation calculus
state corresponding to the suppressed-state argument.

This idea that transactions are mappings from static databases to static data-
bases is intuitively very appealing; indeed, it informs many approaches to database
updates in the literature (e.g., Abiteboul [1]; Bonner and Kifer [6]; Fagin, Ullman,
and Vardi [10]; Ginsberg and Smith [12]; Guessoum and Lloyd [16, 17]; Kakas
and Mancarella [19]). Surprisingly, this idea is not as simple as it appears on the
surface. Lin and Reiter [28] show that even when the initial database is first order
(i.e., represents a finite set of first-order situation calculus sentences whose only
state argument is So), the successor database that actualizes the transaction need
not be first-order definable. It is, however, always second-order definable.

ON SPECIFYING DATABASE UPDATES 79

This negative result leads to the natural question: when does a situation calculus
specification admit a realization in terms of transaction mappings from first-order
static databases to first-order static databases? Reiter and Lin [27, 28] provide two
conditions under which this is possible, together with a systematic procedure for
computing the successor database from the initial one:

1. When the database is relational.
2. When the database consists of ground literals (but need not be complete),

and the successor-state axioms have a certain general syntactic form.

These considerations naturally lead one to address the problem of updates for
relational databases with null values of the kind denoting existing but unknown
individuals. A first-order axiomatization of this setting was provided by Reiter [39].
While we have not worked out the details, it is clear that the ideas of this paper
can be combined with those of Reiter [39] to provide a logical specification of the
correct t reatment of null values under updates for relational databases. With such
a specification in hand, it should be possible to characterize transaction mappings
from static databases to static databases, as discussed above, which are provably
correct with respect to this specification.

A final consideration concerns the trade-offs to be expected, in particular database
application settings, between the approach emphasized in this paper based on trans-
action logs, and the more conventional t reatment of transactions in database sys-
tems that involves actualizing each transaction as it is received. It is difficult to
provide a formal comparison between these two approaches; neither is uniformly
better than the other. Consider a database log of length n. In the case where query
evaluation has complexity n, one might think that for large n it would be more effi-
cient to adopt the transaction actualizing approach. But this requires n calculations
of the successor databases, and each of these calculations may be nontrivial, or even
impossible in first-order logic, when the initial database is not relational. Of course,
these n database actualizations will take place over the lifetime of the database, so
in many cases, there will be sufficient database idle time over its lifetime to make
this conventional approach computationally feasible. On the other hand, if the
database application is transaction intensive, with little need for query evaluation,
the approach based on transaction logs is more attractive. This is so especially
when the database is required to process transactions in real time, and there is not
enough idle time to perform the transaction actualizing computations. This is the
case for the applications to robotics that we are pursuing in the Cognitive Robotics
Project at the University of Toronto. Some of the theoretical and computational
foundations for this work are provided by the approach to database logs and query
evaluation described in this paper. We have found that an approach based ex-
clusively on actualizing transactions is not feasible in this setting, part ly because
of real t ime constraints, partly because in this application, transaction logs may
shr ink as well as expand because rollbacks in the log occur whenever the robot 's
projected behavior would lead to a dead end (or worse), in which case backtracking
is necessary to the last point in the log in which an alternative behavioral action
was possible. Accordingly, we have opted for a mixed strategy in which a database
log is maintained, and the robot 's "mental idle time" (corresponding to the time it
is performing physical activities) is used for the purpose of actualizing the current
log. For a description of this application, and the reasons for some of our design
decisions regarding logs versus actualizing transactions, see Lesp~rance et al. [24].

80 R. REITER

7.4. Updates in the Logic Programming Context

Our approach to database updates can be implemented in a straightforward way as a
logic program, thereby directly complementing the logic programming perspective
on databases (Minker [36]). For example, the axiomatization of the education
example of Section 3 has the following representation as clauses.

7.4.1. SUCCESSOR STATE AXIOM TRANSLATION

enrolled(st, c, do(register(st, c), s)) ~ Ross(register(st, c), s).

enrolled(st, c, do(a, s)) ~ a ~ drop(st, c), enrolled(st, c, s), Ross(a, s).

grade(st, c, g, do(change(st, c, g), s)) ~-- Ross(change(st, c, g), s).

grade(st, e, g, do(a, s)) ~-- not R(a, st, c), grade(st, e, g, s), Poss(a, s).

R(change(st, c, g'), st, c).12

7 . 4 . 2 . T R A N S A C T I O N P R E C O N D I T I O N AXIOM TRANSLATION

Ross(register(st, c), s) *-- not P(st, c, s).

P (st, c, s) ~-- prerequ(p, c), not Q (st,p, s).

Q(st,p, s) ,-- grade(st,p, g, s), g > 50.13

Ross(change(st, c, g), s) ~- grade(st, c, g', s), g ~ g'.

Ross(drop(st, c), s) enrolled(st, e, s).

With a suitable clausal form for/)so, it would then be possible to evaluate queries
against updated databases, for example,

~-- enrolled(John, C200, do(register(Mary, el00), do(drop(John, C'100), So))).

Presumably, all of this can be made to work under suitable conditions. The
remaining problem is to characterize what these conditions are, and to prove cor-
rectness of such an implementation with respect to the logical specification of this
paper. In this connection, notice that the equivalences in the successor-state and
transaction-precondition axioms are reminiscent of Clark's [9] completion semantics
for logic programs, and our unique names axioms for states and transactions provide
part of the equality theory required for Clark's semantics (Lloyd [31], pp. 79, 109).

7.5. Views

In our setting, a view is a fluent V(£, s) defined in terms of so-called base predicates:

(V~, s).V(~, s) = 13(~., s), (7.7)

12We have here invoked some o f the p rog ram t r ans fo rma t ion rules of (Lloyd [31], p. 113) to
conver t the nonclausa l formula

[(Vg')a ~ change(st, c, g')] A grade(st, c, g, s) A Ross(a, s) D grade(st, e, g, do(a, s))

to a Prolog executab le form. R is a new predica te symbol .
l aWe have here invoked some of t he p rog ram t r ans fo rma t ion rules of (Lloyd [31], p. 113) to

conver t the nonclausa l formula

{ (Vp).prerequ(p, c) D (3g).grade(st, c, g, s) A g > 50} D Ross(register(st, e), s)

to a Prolog executab le form. P and Q are new predica te symbols .

ON SPECIFYING DATABASE UPDATES 81

where B is a simple formula with free variables among ~ and s, and that mentions
only base predicates. 14 Unfortunately, sentences like (7.7) pose a problem for us
because they are precluded by their syntax from the databases considered in this
paper. However, we can accommodate nonrecursive views by representing them as
follows:

(v~).v(~, s0) = ~ (£ So), (7.8)

(Va, s).Poss(a, s) D (VZ).V(2, do(a, s)) - Ti[B(~., do(a, 8))]. 15 (7.9)

Sentence (7.8) is a perfectly good candidate for inclusion in /)So, while (7.9) has
the syntactic form of a successor-state axiom and hence may be included in/)ss .

This representation of views requires some formal justification, which the follow-
ing theorem provides:

Theorem 7.1. Suppose V(~, s) is a fluent of E, and that B(£, s) E /: is a simple
formula that does not mention V and whose free variables are among 3, s. Sup-
pose further that/)ss contains the successor-state axiom (7.9) for V, and that
~)So contains the initial-state axiom (7.8). Then,

/) u {(Zpso_(s)} ~ (Vs).S0 < s ~ (v£).v(£, s) -_- B(£, s).

PROOF. We use result 4 of Corollary 6.1 with G(s) as (VZ).V(Z, s) = B(Z, s). This
requires proving the following two antecedent conditions:

1. G(So), which is simply the axiom (7.8).
2. The second condition is the formula

(Va, s).Poss(a, s) A So _< s A {(V~?).V(3?, s) _-- B(Z, s)} D

7"¢[(VZ).V(Z, do(a, s)) - B(Z, do(a, s))].

By the properties of the regression operator 7~, this is the same as

(Va, s).Poss(a, s) A S0 <_ s A {(VZ).V(Z, s) --- B(Z, s)} D

(VZ).Ti[V(Z, do(a, s))] -= Ti[B(.~., do(a, s))].

Using the successor-state axiom (7.9) for V, this becomes

(Va, s).Poss(a, s) A So _< s A {(V~).V(~, s) - B(~, s)} D

(VZ).n[B(Z, do(a, s))] =- n[B(Z, do(a, s))],

which is identically true. []

Theorem 7.1 informs us that from the initial-state and successor-state axioms
(7.8) and (7.9) we can inductively derive the view definition

(Vs).So <_ ~ n (w) . v (~ , s) = B(~, s).

14We do not consider recursive views. Views may also be defined in terms of other views
already defined, but everything eventually "bottoms out" in base predicates, so we only consider
this case.

82 R. REITER

This is not quite the same as the view definition (7.7), with which we began this
discussion, but it is close enough. It guarantees that in any database state reachable
from the initial state So, the view definition (7.7) will be true. We take this as
sufficient justification for representing views within our framework by the axioms
(7.8) and (7.9).

7. 6. State Constraints and the Ramification and Qualification Problems

Recall that our definition of a database (Section 5.1) does not admit state-dependent
axioms, except those of T)So referring only to the initial state So. For example, we
are prevented from including in a database a statement requiring that any student
enrolled in C200 must also be enrolled in C100.

(Vs, st).So <_ s A enrolled(st, C200, s) D enrolled(st, C100, s). (7.10)

In a sense, such a state-dependent constraint should be redundant, since the
successor-state axioms, because they are equivalences, uniquely determine all fu-
ture evolutions of the database given the initial database state So. The information
conveyed in axioms like (7.10) must already be embodied in 7)So, together with the
successor-state and transaction-precondition axioms. We have already seen hints
of this observation. In Section 6 we showed how the functional dependency

(Vs).So _< s D {(Vst, c, g, g').grade(st, c, g, s) A grade(st, c, g', s) D g = g'}

is an inductive entailment of the example education database. Similarly, in Section
6, we argued that dynamic integrity constraints should be viewed as inductive
entailments of the database, and we gave several examples of such derivations.
Finally, Theorem 7.1 shows that the view definition

(Vs).S0 < s D (V~).V(~, s) = B(~, s).

is an inductive entailment of the database containing the initial-state axiom (7.8)
and the successor-state axiom (7.9).

These considerations suggest that a state constraint can be broadly conceived as
any sentence of the form

(V S l , . . . , 8n).Si ~_ Sj A SO ~_ Sk /k ' . . D W (S l , . • • , Sn), (7.11)

and that a database is said to satisfy this constraint if[the database inductively
entails i t3 5 This perspective on state constraints-- that they are inductive entail-
ments of the database provides a unifying view of the classical notions of static
and dynamic integrity constraints. In our setting, a static integrity constraint is
simply a sentence of the form (7.11) with n = 1, i.e., a sentence true in all states s
accessible from So, while a dynamic constraint relates two or more accessible states.
Aside from this syntactic difference, they have the same logical status in our theory,
namely, as sentences that must be entailed by the database.

The fact that state constraints like (7.10) must be inductive entailments of a
database does not of itself dispense with the problem of how to deal with such
constraints in defining the database. For in order that a state constraint be an
inductive entailment, the successor-state axioms must be so chosen as to guarantee

15This definition should be contrasted with tha t of Reiter [38].

ON SPECIFYING DATABASE UPDATES 83

this entailment. For example, the original successor-state axiom for enroll (Section
3) was:

Ross(a, s) D {enrolled(st , c, do(a, s)) -
a = regis ter(s t , c) V enrolled(st, c, s) A a # drop(st, c)}. (7.12)

As one would expect, this does not inductively entail (7.10). One way to accom-
modate the state constraint (7.10), is to change this successor-state axiom to:

Ross(a, s) D {enrolled(st , c, do(s, s)) -
a = regis ter(s t , c) V e = C100 A a = regis ter(s t , C200)V (7.13)
enrolled(st, c, s) A a ¢ drop(st, c) A [c = C200 D a ¢ drop(st, el00)]} .

It is now simple to prove that , provided :DSo contains the unique names axiom
C100 # C200 and the initial instance of (7.10),

enrolled(st, C200, So) D enrolled(st, C100, So), (7.14)

then (7.10) is an inductive entailment of the database.
This, however, is not the only way to accommodate the state constraint (7.10).

Another is to view (7.10) as implicitly imposing a further constraint on the precon-
ditions of the transaction register (st, C200), namely, that st be enrolled in C100.
Recall tha t the original transaction precondition axiom for register (with reference
to the example database of Section 3) was:

Ross(regis ter (s t , c), s) - { (Vp).prerequ(p, c) D (3g).grade(st, p, g, s) A g >_ 50}.

Now, to accommodate the state constraint (7.10), we can change this axiom to:

Ross(regis ter(s t , c), s) -

{(Vp)]prerequ(p, c) D (3g).grade(st,p, g, s) A g ~_ 50] A (7.15)

[c = C200 D enrolled(st, C100, s)]}.

As before, it is simple to prove that , provided DSo contains the unique names axiom
C100 ~ C200 and the initial instance (7.14) of (7.10), then the state constraint
(7.10) is an inductive entailment of the database.

The example illustrates the subtleties involved in getting the successor-state
and/or transaction-precondition axioms to reflect the intent of a state constraint.
These difficulties are a manifestation of the so-called ramification (Finger [11]) and
qualification (McCarthy [34]) problems in artificial intelligence planning domains.
Transactions might have ramifications, or indirect effects. For the example at hand,
the transaction of registering a student in C200 can be viewed as having the di-
rect effect of causing the student to be enrolled in C200, and the indirect effect of
causing her to be enrolled in C100 (if she is not already enrolled in C100). The
modification (7.13) of (7.12) was designed to capture this reading of the state con-
straint as an indirect effect. The alternative perspect ive-- that the state constraint
provides an implicit constraint on transaction-precondition axioms--characterizes
the qualification problem. For the current example, this is reflected in our choice
of the transaction-precondition axiom (7.15).

In our setting, the ramification problem is this: Given a static state constraint
like (7.10), how can the indirect effects implicit in the state constraint be embod-
ied in the successor-state axioms so as to guarantee that the constraint will be an
inductive entailment of the database? The qualification problem is this: Given a

84 R. REITER

static state constraint like (7.10), how can its implicit constraints on transaction
preconditions be embodied in the transaction-precondition axioms so as to guaran-
tee that the constraint will be an inductive entailment of the database? A variety
of circumscriptive proposals for addressing these problems (in conjunction with the
frame problem) have been proposed in the artificial intelligence literature, notably
by Baker [4], Baker and Ginsberg [5], Ginsberg and Smith [12], Lifschitz [26], and
Lin and Shoham [30]. Our formulation of the problem in terms of inductive en-
tailments of the database appears to be new. This perspective on constraints is
pursued by Lin and Reiter in [29], where techniques are presented for "compil-
ing" the information implicit in the state constraints into the successor-state and
transaction-precondition axioms.

8. C O M P A R I S O N W I T H O T H E R A P P R O A C H E S TO A T H E O R Y
O F U P D A T E S

Relying as it does on the situation calculus, our approach to specifying update
transactions differs substantially from other proposals in the literature. We here
present a brief comparison with representatives of what we take to be the principal
competing logical perspectives on formalizing database updates. We do not consider
procedurally oriented approaches (such as Abiteboul [1]).

8.1. Comparison

8 . 1 . 1 . LOGIC STATUS OF DATABASE STATES. In the situation calculus, states
are first-class citizens over which one can quantify. Quantification over states in
the situation calculus amounts to quantification over sequences of transactions. For
example, one can assert that, or ask whether, there exists a transaction sequence
leading to a database state in which such-and-such property is true. This makes
historical queries possible (Section 7.1), and provides for a theory of integrity con-
straints (Section 6.1). This is impossible or extremely awkward to do within the
logic for those approaches to updates formalized in modal logics (e.g., dynamic
logic, Manchanda and Warren [32], temporal logic, Casanova and Furtado [8]), or
in "path-based" logics (e.g., Bonner and Kifer), for which there is only an implicit
notion of state.

8 . 1 . 2 . LO GIC AL STATUS OF T R ANS AC T IONS. .A feature of the situation calculus
related to that of states as first-class citizens is that transactions and transaction
sequences are first-order terms, in contrast to the approaches of Manchanda and
Warren and of Bonner and Kifer, in which transactions are predicates. This pre-
cludes talking about transactions within the logic (e.g., that all transactions of a
certain kind must have such-and-such properties). It also precludes the ability to
analyze, within the logic, the features of a given transaction sequence, for exam-
ple, that a given transaction sequence mentions a register transaction. We made
extensive use of this property of the situation calculus in our analysis of historical
queries (Section 7.1).

8.1.3. T R A N S A C T I O N - C E N T E R E D VERSUS U P D A T E - C E N T E R E D THEORIES OF

UPDATES. Like the work of Abiteboul and Vianu [2], our approach to a the-
ory of updates is transaction-centered meaning that an update is possible only
when the database provides for a suitable prespecified transaction corresponding

O N S P E C I F Y I N G D A T A B A S E U P D A T E S 85

to the desired update. For our example education database, it is possible to alter
a student 's grade only because there is a prespecified grade-changing transaction
change(st, c, g) in the database together with an axiomatization of the intended ef-
fects of this transaction; without such a prespecified transaction, it would be impos-
sible to change a grade in this database. Thus, for transaction-centered databases,
updates with arbitrary sentences are not permitted. A wide variety of update pro-
posals in the literature are not transaction-centered; they provide for updates of a
database with arbitrary sentences (e.g., the model theoretic approaches of Grahne
[13]; Katsuno and Mendelzon [20]; Grahne, Mendelzon, and Revesz [14] or Winslett
[48]; the syntactic approaches of Fagin, Ullman, and Vardi [10] or Ginsberg and
Smith [12], and the abductive approaches of Guessoum and Lloyd [16, 17] or Kakas
and Mancarella [19]). In this respect, such proposals are more general than ours,
but this generality comes at a price. With the exception of [14], the model theoretic
approaches are based on propositional databases. Grahne, Mendelzon, and Reverz
[14] provide an account for first-order models based on the Winslett ordering. Their
account assumes that the set of all models of a first-order theory is in hand. In
this case, they provide a computationally tractable (in the sum of the sizes of these
models) update algorithm, but the assumption that these models are in hand, or
that their sizes are reasonable, is limiting. Similarly, the syntactic approaches are
first order, but provide no systematic update operator. The abductive proposals
are first order, but are limited to Prolog deductive databases.

There is also a very important conceptual issue related to the distinction between
transaction-centered theories of updates, and those that permit updates with ar-
bi trary sentences. Following Keller and Winslett [21], Katsuno and Mendelzon
observe [20] that there is a difference between updating a database and revising it.
To formally capture this distinction, they propose a set of update postulates that dif-
fer from, but are in the same style as, the AGM postulates for revision (Alchourr6n,
G~rdenfors, and Makinson [3]). For Keller-Winslett and Katsuno-Mendelzon up-
dates differ from revisions in that the former result from event occurrences that
change the state of the world, while the latter result from changes in our theory
of what a static world is really like. Notice that, conceptually, this perspective
on the nature of updates is transaction-centered; updates occur only in response
to events (read "transactions"). On this analysis, the above proposals are really
transaction-centered (or, at least, they should be viewed this way), but so far as
the database is concerned, these transactions are implicit; they exist in the mind of
the user, not of the database. Whenever a user requests an update with a sentence,
she has in mind some event of which that sentence is an effect; at least this must
be so whenever she is requesting an update, as opposed to a revision.

Now it can be argued that a user may not know the event underlying a proposed
update. Consider a user who, observing that the street is now wet, wishes to record
this fact in the database. She does not know what event in the world had street-is-
wet as its effect. Since it is transaction-centered, our approach cannot handle this
setting at all (but see below for a proposed approach). But neither, we shall ar-
gue, can the Katsuno-Mendelzon theory. Certainly, Katsuno-Mendelzon can, and
will, accept this update. One consequence of the resulting updated database will be
that if grass-is-dry were true of the previous database, it will be true of the updated
database. But this is clearly undesirable since the underlying event for street-is-wet
might have been rain, one of whose effects would be -~grass-is-dry. (Notice that
an equally plausible underlying event might have been sprinkler-truck, which would

86 R. R E I T E R

have no effect on the t ru th value of grass-is-dry.) So the Katsuno-Mendelzon theory
cannot guarantee an intuitively correct account of updates with a sentence whose
underlying event is unknown, the reason being that all and only the effects of this
event will also be unknown, not only to the database (which knows nothing about
events and their effects), but also to the user whose responsibility it is to provide
a suitable update sentence consisting of all and only those effects of the event in
question. In those cases where all possible underlying events and their effects are
known, it may be that the Katsuno-Mendelzon theory can be correctly applied,
but with some modification whenever there might be several such events tha t could
explain the observed effect. For example, both rain and sprinkler-truck explain the
observation street-is-wet, but neither grass-is-dry nor ~grass-is-dry should be conse-
quences of the updated (with street-is-wet) database whenever the original database
entails grass-is-dry. One way to achieve this within the Katsuno-Mendelzon frame-
work would be to create two databases, one resulting from updating the original
database with all the effects of rain (including, presumably, both street-is-wet and
-~grass-is-dry), and one resulting from updating the original with all the effects of
sprinkler-truck (including street-is-wet, but not -~grass-is-dry). So the picture that
emerges is roughly the following: Assume we have in hand a description of all possi-
ble events together with their effects. Given an observation that we wish to record
in a database, determine all events whose effects include the observation. For each
such event, perform the Katsuno-Mendelzon update of the database with all the
effects of tlae event. The resulting set of databases represents the update with the
original observation.

In general, our conclusion is that before a database can correctly record an up-
date, the database or the user must know what its underlying event is. This is
true for all the above update mechanisms, as well as for the transaction-centered
approach of this paper. The question remains: Given only the results of some
world observation, where the event underlying this observation is unknown, how
is an agent (human or database) to perform the update? The answer seems to
be: By inferring what the underlying event(s) might be. One possible mechanism
for this is abduction (Poole [37]), which has been applied in a wide variety of set-
tings (diagnosis, natural language, planning) for inferring events tha t might explain
an observation. 16 Combining abduction with a conventional approach to updates
would lead to a very rich theory of database evolution, but such considerations take
us well beyond the focus of this paper.

We summarize what we take to be the major limitation with all the above ap-
proaches. Since updates are responses to events occurring in the world, it becomes
the responsibility of the user, and not the database, to know all the effects on the
world of an event, and to request updates that include all and only these effects. In-
advertantly omitting one such effect, or proposing an inappropriate one, will leave
the database in an intuitively incorrect state with respect to the world being mod-
eled, even though, insofar as the" database update mechanism is concerned, every-
thing is fine. The source of the problem is clear: the database has no knowledge of
events and their effects. If it did, then a suitable theory of updates would simply pro-
vide the user with a way to key in the event she wishes to record, and the database
would do the rest. This, then, is the major distinction between our approach and

16This use of abduction for inferring event occurrences is quite different than the abductive
approaches to updates advocated by Guessoum and Lloyd [16, 17] and Kakas and Mancaxella [19].

O N S P E C I F Y I N G D A T A B A S E U P D A T E S 87

these others. We require that the database contain knowledge of events and their
effects, whereas these other approaches place the responsibility for knowing, and
correctly using this information on the individual issuing the update requests.

8.1.4. VIRTUAL VERSUS ACTUALIZED UPDATES. Many approaches to a theory
of updates (e.g., the model theoretic, syntactic, and abductive proposals mentioned
above) have in common that an update is a mapping which, for a given database (a
logical theory) and sentence, determines another database (another logical theory)
that is taken to be the result of the update with the sentence (Section 7.3). This
mapping is usually accomplished by the addition/deletion of sentences to/from the
current database, yielding a database that actualizes the update. In contrast, up-
dates for us are virtual; the database itself never changes. We accomplish this by
the choice of a suitable ontology in which states are first-class citizens and transac-
tions are first-order terms, and by an axiomatization that (implicitly) characterizes
all possible future evolutions of the database.

From the perspective of updates as mappings from databases to databases, the
very concept of an update is metatheoretic in character, even when the databases
themselves are theories in some logic. In other words, the effects of updates are not
described within the database axiomatization, as they are in our approach, but are
defined by mechanisms external to the database itself. Any such theory of updates
will lack certain desirable properties, for example, the ability to reason, within
the database itself, about transaction sequences and integrity constraints (as in
Section 6.1), or an object-level account of query evaluation for a database that has
undergone a sequence of update transactions (as in Section 5). Such capabilities
can only be realized metatheoretically in any approach that views updates in terms
of addition/deletion of sentences to/from some axiom set.

As loin and Relier [28] have shown, it is not always possible to actualize updates
within first-order logic, which is to say that there are certain limitations to such as
an approach to specifying updates.

8.1.5. PRIMITIVE VERSUS COMPLEX TRANSACTIONS. The ability to define com-
plex transactions in terms of primitive ones is extremely important for a theory of
updates. As currently developed, our proposal does not provide a mechanism for
defining complex transactions. In contrast, such proposals do exist, notably by
Manchanda and Warren [32], based on dynamic logic in the logic programming
context, and by Bonner and Kifer [6], based on a new logic specifically tailored to
transactions. The latter theory is especially interesting for its rich repertoire of
operators for defining new transactions in terms of old. These include sequence,
nondeterministic choice, conditionals, and iteration. The Bonner-Kifer paper fo-
cuses on the definition of complex transactions in terms of elementary updates.
On the assumption that these elementary updates successfully address the frame
problem, any complex update defined in terms of these elementary ones will inherit
a correct solution to the frame problem. Unfortunately, Bonner and Kifer do not
address the frame problem for these elementary updates; this task is left to the per-
son specifying the database. In this connection, our current proposal can be seen
as complementary to that of Bonner and Kifer in that our focus is on addressing
the frame problem only for elementary updates, while deferring consideration of
this problem for complex transactions. For an extension of the situation calculus to
provide for complex transactions along the lines of Bonner and Kifer, see Levesque,
Lin, and Reiter [25].

88 R. REITER

8.1.6. CLASSICAL VERSUS OTHER LOGICS. Unlike proposals based on modal
logics, e.g., dynamic logic (Manchanda and Warren [32]) or temporal logic (Casanova
and Furtado [8]), or specially tailored logics (e.g., Bonner and Safer [6]), ours is
based on first-order logic (with a second-order induction principle). This has the
advantage of an established, well-understood semantics and proof theory, and it
meshes well with the standard perspective of a (static) database as a special kind
of first-order theory. Moreover, it provides a sound and complete query evalu-
ation mechanism based on goal regression, and an account of database integrity
constraints in terms of inductive entailments of the database.

8.1.7. PROVING IaROPERTIES OF DATABASE STATES. In Section 6 we intro-
duced an induction principle suitable for proving properties true in all database
states. This feature is particularly important for the purposes of verifying integrity
constraints that, from our perspective, are inductive entailments of the database.
None of the other logical approaches to a theory of updates with which we are
familiar provides for inductive proofs of database states. Indeed, this would ap-
pear to be impossible in those approaches that treat transactions as predicates.
It is, of course, meaningless for those update theories that are not transaction-
centered.

8 . 1 . 8 . THE EVENT CALCULUS. The one proposal in the literature closest in
spirit to ours is Kowalski's theory of updates based on the event calculus [22].
His axiomatization is first order (with a Prolog semantics), transactions are first-
order terms (actually, constants), states (in his case, time) are first-class citizens,
updates are virtual, the approach is transaction-centered, and it addresses the frame
problem (using Prolog's negation-as-failure mechanism). Despite these similarities,
it is difficult to compare the two approaches, primarily because they appeal to
quite different logical foundations. Recently, nevertheless, Kowalski and Sadri [23]
compare the situation calculus axioms of this paper with an axiomatization of the
event calculus and reveal some interesting relationships between our successor-state
axioms and their analog within the event calculus.

9. C O N C L U S I O N S

The situation calculus is an extremely rich language for the purposes of specifying
databases and their evolution under update transactions. In this paper we have
presented one way of using the situation calculus for these objectives. Ours is a
transaction-centered approach, in which all transactions are treated as primitive.
States are first-class citizens, transactions are first-order terms, and the theory pro-
vides an object level account of the effects of updates. We observed that the frame
problem is a fundamental obstacle to an adequate formalization of database evolu-
tion, and we showed how to axiomatize the effects of elementary transactions in such
a way as to overcome this problem. For a certain class of database axiomatizations,
incorporating our proposed solution to the frame problem, we gave a sound and
complete query evaluation mechanism based on goal regression. We also provided
an induction principle, suitable for proving properties of database states under ar-
bitrary sequences of transactions, and for verifying integrity constraints. Finally,
we discussed possible extensions of the approach of this paper, including trans-
action logs and historical queries, the complexity of query evaluation, actualized

ON SPECIFYING DATABASE UPDATES 89

t r ansac t ions , logic p r o g r a m m i n g approaches to upda tes , d a t a b a s e views, and s t a t e
cons t ra in ts .

I had a lot of help on this one. Many thanks to Leo Bertossi, Tony Bonner, Alex Borgida, Craig
Boutilier, Charles Elkan, Michael Gelfond, GSsta Grahne, Russ Greiner, Joe Halpern, Michael
Kifer, Hector Levesque, Vladimir Lifschitz, Fangzhen Lin, Wiktor Maxek, John McCarthy, Alberto
Mendelzon, John Mylopoulos, Javier Pinto, Len Schubert, Yoav Schoham, and Marianne Winslett.
The referees' suggestions considerably 'improved an earlier version of this paper. Funding for this
work was provided by the National Science and Engineering Research Council of Canada, and
by the Institute for Robotics and Intelligent Systems. I am grateful to the Canadian Institute
for Advanced Research for granting me a Fellowship providing the release time during which this
work as done.

R E F E R E N C E S

1. Abiteboul, S., Updates, a new frontier, in: Second International Conference on
Database Theory, Springer, New York, 1988, pp. 1-18.

2. Abiteboul, S. and Vianu, V., A transaction-based approach to relational database
specification, Journal of the ACM 36:759-789 (1989).

3. Alchourr6n C. E., G~rdenfors, P., and Makinson, D., On the logic of theory change:
part ial meet contraction and revision functions, Journal of Symbolic Logic 50:510-
530 (1985).

4. Baker, A., A simple solution to the Yale shooting problem, in: R. Brachman, H. J.
Levesque, and R. Reiter (eds.), Proceedings of the First International Conference on
Principles of Knowledge Representation and Reasoning (KR'89), Morgan Kaufmann,
1989, pp. 11-20.

5. Baker, A. and Ginsberg, M., Temporal projection and explanation, in: Proceedings
of the Eleventh International Joint Conference on Artificial Intelligence, Detroit, MI,
1989, pp. 906-911.

6. Bonner, A. and Kifer, M., Transaction logic programming, Technical Report , De-
par tment of Computer Science, University of Toronto, 1992.

7. Borgida, A., Mylopoulos, J., and Schmidt, J., The TaxisDL software description
language, Technical Report, Department of Computer Science, University of Toronto,
1991.

8. Casanova, M. A. and Furtado, A. L., A family of temporal languages for the descrip-
tion of transit ion constraints, in: H. Gallaire, J. Minker, and J. M. Nicolas (eds.),
Advances in Database Theory, vol. 2, Plenum Press, New York, 1984, pp. 211-238.

9. Clark, K. L., Negation as failure, in: H. Gallaire and J. Minker (eds.), Logic and
Data Bases, Plenum Press, New York, 1978, pp. 292-322.

10. Fagin, R., Ullman, J. D., and Vardi, M. Y., Updating logical databases, in: Proceed-
ings of the ACM Symposium on Principles of Database Systems, Apr. 1983.

11. Finger, J., Exploiting Constraints in Design Synthesis, Ph.D. dissertation, Stanford
University, Stanford, CA, 1986.

12. Ginsberg, M. L. and Smith, D. E., Reasoning about actions I: A possible worlds
approach, Artificial Intelligence 35:165-195, 1988.

13. Grahne, G., Updates and counterfactuals, in: J. Allen, R. Fikes, and E. Sandewall
(eds.), Proceedings of the Second International Conference on Principles of Knowl-
edge Representation and Reasoning (KR'91), Los Altos, CA, Morgan Kaufmann,
1991, pp. 269-276.

14. Grahne, G., Mendelzon, A. O., and Revesz, P., Knowledgebase transformations, in:
Proceedings of the A CM SIGA CT-SIGMOD-SIGART Symposium on Principles of
Database Systems, San Diego, CA, June 2-4, 1992, pp. 246-260.

90 R. REITER

15. Green, C. C., Theorem proving by resolution as a basis for question-answering sys-
tems, in: B. Meltzer and D. Michie (eds.) Machine Intelligence 4, American Elsevier,
New York, 1969, pp. 183-205.

16. Guessoum, A. and Lloyd, J. W., Updating knowledge bases, New Generation Com-
puting 8(1):71-89, 1990.

17. Guessoum, A. and Lloyd J. W., Updating knowledge bases II, Technical Report,
University of Bristol, 1991, to appear.

18. Hanks, S. and McDermott, D., Default reasoning, nonmonotonic logics, and the
frame problem, in: Proceedings of the National Conference on Artificial Intelligence,
1986, pp. 328-333.

19. Kakas, A. C. and Mancarella, P., Database updates through abduction, in: Proceed-
ings VLDB-90, Brisbane, Australian, 1990.

20. Katsuno, H. and Mendelzon, A. O., On the difference between updating a knowledge
base and revising it, in: J . Allen, R. Fikes, and E. Sandewall (eds.), Proceedings of
the Second International Conference on Principles of Knowledge Representation and
Reasoning (KR'91) Morgan Kaufmann, Los Altos, CA, 1991, pp. 387-394.

21. Keller, A. M. and Winslett Wilkins, M., On the use of an extended relational model
to handle changing incomplete information, Trans. on Software Engineering SE-
11(7):620-633, July 1985.

22. Kowalski, R., Database updates in the event calculus, gournal of Logic Programming
12:121-146, 1992.

23. Kowalski, R. and Sadri, F., The situation calculus and event calculus compared,
Technical Report, Department of Computing, Imperial College, London, England,
1994.

24. Lesp~rance, Y., Levesque, H., Lin, F., Marcu, D., Reiter, R., and Scherl, R., A
logical approach to high-level robot programming--A progress report, in: Control
of the Physical World by Intelligent Systems, Working Notes of the 1994 AAAI Fall
Symposium, Nov. 1994, New Orleans, LA.

25. Levesque, H. L., Lin, F., and Reiter, R., Defining complex actions in the situation
calculus, Technical Report, Department of Computer Science, University of Toronto,
1995, in preparation.

26. Lifschitz, V., Toward a metatheory of action, in: J. Allen, R. Fikes, and E. Sandwall
(eds.), Proceedings of the Second International Conference on Principles of Knowl-
edge Representation and Reasoning (KR'gl), Morgan Kaumann, Los Altos, CA,
1991, pp. 376-386.

27. Lin, F. and Reiter, R., How to progress a database II: The STRIPS connection, To
appear in Proc. IJCAI'95, the International Joint Conference in Artificial Intelli-
gence, Montreal, Aug. 19-25, 1995.

28. Lin, F. and Reiter, R., How to progress a database (and why) I. Logical foundations,
in: J. Doyle, E. Sandewall, and P. Torasso (eds.), Proceedings KR'94, Fourth In-
ternational Conference on Principles of Knowledge Representation and Reasoning,
1994, pp. 425-436.

29. Lin, F. and Reiter, R., State constraints revisited, Journal of Logic and Computation,
Special Issue on Actions and Processes 4:655-678, 1994.

30. Lin, F. and Shoham, Y., Provably correct theories of action, in: Proceedings of the
National Conference on Artificial Intelligence, 1991.

31. Lloyd, J. W., Foundations of Logic Programming, Springer Verlag, second edition,
1987.

32. Manchanda, S. and Warren, D. S., A logic-based language for database updates,
in: J. Minker (ed.), Foundations of Deductive Databases and Logic Programming,
Morgan Kaufmann, Los Altos, CA, 1988, pp. 363-394.

33. McCarthy, J., Programs with common sense, in: M. Minsky (ed.), Semantic Infor-
mation Processing, MIT Press, Cambridge, MA, 1968, pp. 403-418.

ON SPECIFYING DATABASE UPDATES 91

34. McCarthy, J., Epistemological problems of artificial intelligence, in: Proceedings of
the Fifth International Joint Conference on Artificial Intelligence, Cambridge, MA,
1977, pp. 1038-1044.

35. McCarthy, J. and Hayes, P., Some philosophical problems from the standpoint of
artificial intelligence, in: B. Meltzer and D. Michie (eds.), Machine Intelligence 4,
Edinburgh University Press, Edinburgh, Scotland, 1969, pp. 463-502.

36. Minker, J. (ed.), Foundations of Deductive Databases and Logic Programming,
Morgan Kanfmann, Los Altos, CA, 1988.

37. Poole, D., Explanation and prediction: An architecture for default and abductive
reasoning, Computational Intelligence, 5:97-110, 1989.

38. Reiter, R., Towards a logical reconstruction of relational database theory, in: M. L.
Brodie, J. Mylopoulos, and J. W. Schmidt (eds.), On Conceptual Modelling: Perspec-
tive from Artificial Intelligence, Databases and Programming Languages, Springer,
New York, 1984, pp. 191-233.

39. Reiter, R., A sound and sometimes complete query evaluation algorithm for relational
databases with null values, Journal of the ACM 33(2):349-370, 1986.

40. Reiter, R., The frame problem in the situation calculus: A simple solution (some-
times) and a completeness result for goal regression, in: V. Lifschitz (ed.), Artificial
Intelligence and Mathematical Theory of Computation: Papers in Honor o/John
McCarthy, Academic Press, San Diego, CA, 1991, pp. 359-380.

41. Reiter, R., What should a database know? Journal of Logic Programming 14
(1-2):127-153, 1992.

42. Reiter, R., Proving properties of states in the situation calculus, Artificial Intelligence
64:337-351, 1993.

43. Reiter, R., A simple solution to the frame problem (sometimes), Technical Report,
Department of Computer Science, University of Toronto, in preparation.

44. Reiter, R. Formalizing database evolution in the situation calculus, in: Proceedings
Fifth Generation Computer Systems, Tokyo, June 1-5, 1992, pp. 600-609.

45. Reiter, R., The projection problem in the situation calculus: A soundness and com-
pleteness result, with an application to database updates, in: J. Hendler (ed.), Pro-
ceedings First International Conference on Artificial Intelligence Planning Systems,
College Park, MD, June 15-17, 1992, Morgan Kanfmann, Los Altos, CA, pp. 198-
203.

46. Reiter, R., On formalizing database updates: Preliminary report, in: Proceedings
3rd International Conference on Extending Database Technology, Vienna, Austria,
Mar. 23-27, 1992, pp. 10-20.

47. Waldinger, R., Achieving several goals simultaneously, in: E. Elcock and D. Michic
(eds.), Machine Intelligence 8, Ellis Horwood, Edinburgh, Scotland, 1977, pp. 94-
136.

48. Winslett, M., Reasoning about action using a possible models approach, in: Pro-
ceedings of the National Conference on Artificial Intelligence, 1988, pp. 89-93.

