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Abstract 

One way to think about a STRIPS operator is as a mapping from databases to databases, in the 
following sense: suppose we want to know what the world would be like if an action, represented 
by the STRIPS operator (Y, were done in some world, represented by the STRIPS database Do. 
To find out, simply perform the operator (Y on DO (by applying (Y’S elementary add and delete 

revision operators to DO). We describe this process as progressing the database 230 in response 
to the action (Y. 

In this paper, we consider the general problem of progressing an initial database in response 
to a given sequence of actions. We appeal to the situation calculus and an axiomatization of 
actions which addresses the frame problem (Reiter ( 1991) ). This setting is considerably more 
general than STRIPS. Our results concerning progression are mixed. The (surprising) bad news is 
that, in general, to characterize a progressed database we must appeal to second-order logic. The 
good news is that there are many useful special cases for which we can compute the progressed 
database in first-order logic; not only that, we can do so efficiently. 

Finally, we relate these results about progression to STRIPS-like systems by providing a se- 
mantics for such systems in terms of a purely declarative situation calculus axiomatization for 
actions and their effects. On our view, STRIPS operators provide a mechanism for computing the 
progression of an initial situation calculus database under the effects of an action. We illustrate 
this idea by describing two different STRIPS mechanisms, and proving their correctness with 
respect to their situation calculus specifications. @ 1997 Elsevier Science B.V. 
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1. Introduction 

One way to think about STRIPS operators is as a mapping from databases to databases, 
in the following sense: suppose we want to know what the world would be like if an 

action, represented by the STRIPS operator (Y, were done in some world, represented 

by the STRIPS database 2%~. To find out, simply perform the operator cx on Do (by 
applying LY’S elementary add and delete revision operators to Do). We describe this 

process as progressing the database Do in response to the action CY (cf. Rosenschein 

[ 251 and Pednault [ 161). The resulting database describes the effects of the action on 
the world represented by the initial database. 2 However, it may not always be convenient 
or even possible to describe the effects of actions as a simple process of progressing an 
initial world description. As we shall see in this paper, once we go beyond STRIPS-like 
systems, progression becomes surprisingly complicated. 

In this paper, we consider the general problem of progressing an initial database 
in response to a given sequence of actions. We appeal to the situation calculus and 
an axiomatization of actions which addresses the frame problem (Reiter [ 211, Lin 

and Reiter [ 131). This setting is considerably more general than STRIPS. Our results 
concerning progression are mixed. The (surprising) bad news is that, in general, to 
characterize a progressed database we must appeal to second-order logic. The good news 

is that there are many useful special cases for which we can compute the progressed 

database in first-order logic; not only that, we can do so efficiently. 

Finally, we relate these results about progression to STRIPS-like systems by provid- 
ing a semantics for such systems in terms of a purely declarative situation calculus 

axiomatization for actions and their effects. On our view, a STRIPS operator is a mech- 
anism for computing the progression of an initial situation calculus database under 

the effects of an action. We illustrate this idea by describing two different STRIPS 

mechanisms, and proving their correctness with respect to their situation calculus spec- 

ifications. 
The need to progress a database arises for us in a robotics setting. In our approach to 

controlling a robot [ 8, lo], we must address the so-called projection problem: answer the 
query Q( do( A, SO) ) , where do( A, So) denotes the situation resulting from performing 

the sequence of actions A beginning with the initial situation SO. This can be done using 

regression (cf. Waldinger [ 281, Pednault [ 171, and Reiter [ 211) to reduce the projection 
problem to one of entailment from the initial database, consisting of sentences about 

the initial situation SO. Unfortunately, regression suffers from a number of drawbacks in 

this application: 
1. After the robot has been functioning for a long period, the sequence A, con- 

sisting of all the actions it has performed since the initial situation, has become 
extremely long, and regressing over such a sequence becomes computationally 
expensive. 

2 This is also the way that database practitioners think about database updates (Abiteboul [ 11). In fact, 

the STRIPS action and the database update paradigms are essentially the same. Accordingly, this paper is 

as much about database updates as it is about STRIPS actions and their generalizations. For more on the 

database perspective, see Reiter [ 231. 
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2. Similarly, after a long while, the initial world state often becomes so rearranged 
that significantly many final steps of the regression become entirely unneces- 

SXY. 

3. Most significantly, for robotics, perceptual actions (Scherl and Levesque [ 261) 
lead to new facts being added to the database. But such facts are true in the current 

situation-the one immediately following the perceptual action-whereas the other 
(old) database facts are true in SO. Reasoning about databases containing mixed 

facts-facts about the current and initial situations-is very complicated, and we 

know of no satisfactory way to do this. 

Our way of addressing these problems with regression is to periodically progress the 

robot’s database. In particular, every perceptual action is accompanied by a progres- 

sion of the database, coupled with the addition of the perceived fact to the resulting 
database. We envisage that these database progression computations can be done off- 

line, during the time when the robot is busy performing physical actions, like moving 

about. 

2. Logical preliminaries 

The language L: of the situation calculus is first order, many sorted, with sorts situation 

for situations, action for actions, and object for everything else. It has the following 
domain independent predicates and functions: a constant SO of sort situation denoting 

the initial situation; a binary function do( a, s) denoting the situation resulting from 
performing the action a in the situation s; a binary predicate Poss( a, s) meaning that 
the action a is possible (executable) in situation s; and a binary predicate <: situationx 

situation. s < s’ means that s’ can be reached from s by a sequence of executable actions. 

We assume a finite number of situation independent predicates with arity object”, n > 0, 
a finite number of situation independent functions with arity object” --+ object, n 3 0, 

and a finite number ofpuents which are predicate symbols of arity object” x situation, 

n 2 0. We denote by .C2 the second-order extension of ,C. Our foundational axioms for 
the situation calculus will be in ,C2 (Lin and Reiter [ 13]), because we need induction 

on situations (Reiter [ 221) . 
Often, we must restrict the situation calculus to a particular situation. For example, 

the initial database is a finite set of sentences in C that do not mention any situation 

terms except SO, and do not mention Poss and <. For this purpose, for any situation 

term st, we define ,C,, to be the subset of L that does not mention any other situation 
terms except st, does not quantify over situation variables, and does not mention Poss 
or <. Formally, it is the smallest set satisfying: 

I. cp E L,Y, provided cp E C does not mention any situation term. 
2. F(t1,... , t,, st) E Lc,, provided F is a fluent of the right arity, and tl , . . , t, are 

terms of the right sort. 

3. If (o and C$ are in 13,,, so are 7Q9 40 v 40’9 9 A $0’7 cp 2 40’9 ‘p = q’, (V-x)$? 
(3x) P, (Va) q, and (3a) 9, where x and a are variables of sort object and action, 
respectively. 
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We remark here that according to this definition, (Vu) F( do( a, Se) ) will be in C~oCn,soj. 
This may seem odd when we want sentences in ,C,, to be propositions about situation st. 
Fortunately, we shall use C,, only when sf is either a ground term or a simple variable 

of sort situation. 
We shall use ,C$ to denote the second-order extension of ,C,, by predicate variables 

of arity object”, n > 0. So the second-order sentence (3~) (tlx).p(x) z F(x, So) 

is in CzO, but (3~) (V’x) (3s).p(x, s) z F(x, SO) is not, since the latter quantifies 

over a predicate variable of arity object x situation. Formally, ,Cz, is the smallest set 

satisfying: 
1. 
2. 

3. 

Every formula in C,, is also in Cz,. 

p(t1,... , t,,) E C$ provided p is a predicate variable of arity objecf, n 3 0, and 

t1,. . . , t, are terms of sort object. 

If (p and 9’ are in l:,, so are X+T, (o V p’, p A tp’, q 3 p’, p E q’, (VX)~, (3x)p, 
(V’a)p, (31) 9, (Vp)p, and (Zlp)cp, where x and a are variables of sort object and 
action, respectively, and p is a predicate variable of arity object”, n 3 0. 

3. Basic action theories 

We assume given a basic action theory D, having the following form (cf. Reiter 1231 

and Lin and Reiter [ 131) : 3 

where: 
l ,X, given below, is the set of the foundational axioms for situations. 
l Dss is a set of successor state axioms of the form: 4 

Poss(a,s) > [F(x,do(u,s)) ~@F(X,U,S)l, (1) 

where F is a fluent, and @F(x, a, s) is in L,T. Informally, a successor state axiom 
about F specifies the truth values of F in the successor situation do( a, s) in terms 

of properties of the current situation s. 

’ D‘,, is a set of action precondition axioms of the form: 

Poss(A(x),s) z PA(x,s), 

7 We emphasize that a basic action theory is monotonic; we are not presenting here any nonmonotonic 
approaches to solving the frame, ramification or qualification problems. An approach to such problems, 
using a nonmonotonic logic, is described in [ 131. This sometimes allows one to derive a (monotonic) 
basic action theory from state constraints, but it is important to note that the resulting theory does not 
contain the original state constraints; it does, however, include the same “information content” as was present 
in the original state constraints. Accordingly, the basic action theories of this paper do nor include state 
constraints. 

4 In the following, unless othenvise stated, all free variables in a formula are assumed to be prenex universally 
quantified. Variables will always begin with a lower case Roman character; constants will always begin with 
upper case. 
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where A is an action, and PA (x, s) is in L,. An action precondition axiom specifies 
necessary and sufficient conditions under which an action can be (physically) 

performed. 

l %,‘, is the set of unique names axioms for actions: for any two different actions 

A(x) and A’(y), we have 

A(x) =+ A’(Y), 

and for any action A(xl, . . . , x,~), we have 

A(x ,,..., x,) =A(y ,,..., yn) >xl =yl A...Ax,=yn. 

l Ds,,, the initial database, is a finite set of first-order sentences in Ls,. 
The following is an example of a basic action theory. Notice that 2, the foundational 

axioms for the situation calculus given below, will be independent of any domain, and 
ID~,,,~ can be automatically generated once the language has been specified, so to define 

a basic action theory, one need only specify the successor state, action precondition, and 

initial situation axioms. 

Example 3.1. An educational database (Reiter [ 231) . There are two i&tents: 
l enrolled( stu, course, s) : student stu is enrolled in course course in situation s. 

l grade(stu, course, grade, s): the grade of stu in course is grade in situation s. 

There are two situation independent predicates: 
l prereq(pre, course) : pre is a prerequisite course for course course. 
l better(grade1, grade2): grade grade1 is better than grade grade2. 

There are three database transactions: 
l register(stu, course): register the student stu in course course, with precondition 

that the student has satisfied all of the prerequisites for course by obtaining a grade 

better than 50 in each prerequisite. 
l change(stu, course, grade) : change the grade of the student stu in course course to 

grade. This action can always be performed. 
l drop(stu, course): drop the student stu from course course, with precondition that 

the student is currently enrolled in course. 
This setting can be axiomatized as follows. 

DD,,Y consists of the following successor state axioms: 

Poss( a, s) 3 [ enrolled( stu, c, do( a, s) ) E 

a = register( stu, c) V enrolled( stu, c, s) A a # drop( stu, c) ] , 

Poss(a,s) > [grade(stu,c,g,do(a,s)) f 

a = change(stu, c, g) V 

grade(stu,c,g,s) r\~(3g’)(g # g’Aa=change(stu,c,g’)]. 

VDop consists of the following action precondition axioms: 

Poss( register( stu, c) , s) - 

(Vpr) .prereq(pr, c) > (3g) (grade(stu,pr, g, s) A better(g, 50))) 
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Poss( change(stu, c, g) , s) E True, 

Poss( drop( stu, c) , s) = enrolled( stu, c, s) . 

DsO, the initial database, can be any finite set of axioms about the initial situation, or 
axioms which mention no situation, for example, the following:5 

John f Sue # Cl00 # C200, 

prereq( C 100, C200), 

enrolled( Sue, C 100, SO), 

enroZfed( John, C 100, SO) V enrolled( John, C200, SO). 

We shall now present our domain independent foundational axioms z’ which specify 

the structure of situations. Informally, 2 stipulates that the space of situations is a tree 

with SO at the root and with actions the only way of generating new nodes (situations). 
Formally, z‘ consists of the following axioms: 

SO Sdo(a,s), (2) 

do(al,sl) =do(a;?,sz) > (al =az~sl =sz.), (3) 

(\dP).P(So) A (Va,s>[P(s) > P(do(a,s))l 3 (Vs)P(s), (4) 

1s < So, (5) 

s < do( a, s’) = (Poss( a, s’) A s 6 s’). (6) 

Notice the similarity between 2 and Peano arithmetic. The first two axioms are 
unique names assumptions; they eliminate finite cycles, and merging. The third axiom 
is second-order induction; it amounts to a domain closure axiom which says that every 
situation must be obtained by repeatedly applying do to SO. 6 The last two axioms define 

< inductively. 
2 are the only axioms in a basic action theory about the structure of situations. It 

is often needed if we want to show, usually by induction, that a state constraint of the 

form (Vs) C ( s) is entailed by an action theory. For the purpose of temporal projection, 
in particular progression as we shall see, D has exactly the same effect as D - 2: for 

any formula p(s) in ~5,~, and any sequence A of ground action terms, 

D /== p(do(A So)) 

iff 

VS., u DL7p u %I” UR,, l= +$do(A,So)). 

51ngeneral,rl + 12 + # f,,standsforthen(n-I) inequalities:tl # t2A...Afl + tnA...Atn_l + tn. 

h For a discussion of the use of induction in the situation calculus, see Reiter [ 221. 
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This follows directly from the following proposition which will be used throughout this 

paper. 

Proposition 3.2. Given any model M- of D - .Y, there is a model M of D such that: 
1. M- and M have the same domains for sorts action and object, and interpret all 

situation independent predicates and functions the same; 
2. for any sequence A of ground action terms, anyJluent F, and any variable assign- 

ment v:’ 

M,v k F(x,do(A,So)) if M-,v j= F(x,do(A,So)). 

Proof. We begin with the observation that no sentence of 2) - 2 = VD,, UVap U ID,,, U IDS, 

mentions an equality atom whose arguments are of sort situation, and (2) and (3) are 
unique names axioms about situations. It follows from this that if M- is a model of 

2, - _Z, then there is a model M of V,Y, U DOp U D,,, U Ds,, U { (2)) (3)) such that the 
conditions of the proposition are satisfied. So without loss of generality, we can assume 

that M- isamodel ofD,~,U~~,,U~~,,U~s,U{(2),(3)}. 

In the following, we use [‘!” for the denotation of the symbol 5 in an interpretation 
M. Given M-, construct a structure M as follows. First, let M’s domains be the same as 

that of M- for sorts action and object. Next, let the domain dom$ for the sort situation 
be the smallest subset of the situation domain of M- such that: 

1. SF- E dam:,. 
2. If u E dornz! and if LY is an element of the action domain of M-, then doM- (a, V) 

E dom$ 
So, M has exactly the same domain of sorts action and object as does M-, and its 
situation domain is a subset of that of M-. 

To complete the specification of M, we describe how it interprets function and pred- 

icate symbols. 
1. M interprets all situation independent function and predicate symbols (including 

the equality predicate) exactly as does M-. 
2. M interprets the equality predicate over situation terms of dom$ exactly as does 

M-. 
3. M interprets do, Poss, and fluents over M’s domain exactly as does M- over this 

domain. 
4. Finally, we specify how M interprets the < relation on situations. <M is the 

smallest set with the properties: 
(a) If (T E domz and (cu, @) E Poss”, then (cr,do(cY,a)) E<~. 
(b) If u,(+‘d’ E domy! and (a,g’) E<~ and (u’,(+“) E<~, then (u,~“) EC”“. 

We prove that M is a model of D = Z U DD,, U D,, U Dun, U Ds,,, from which the 
proposition follows. 

1. To begin, consider any sentence of C of the form (V’s)+, where (p does not 

mention <, where C$ does not mention an equality atom with situation arguments, 
and where 4 does not quantify over situations. Then whenever M- is a model 

’ M, v b rp means that M satisfies p under the variable assignment v 
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of (Y/s)+, so is M. This is so because M and M- interpret do, POD, fluents and 
situation independent function and predicate symbols identically over the elements 

of M’s domain, and M’s domain for sort sittlation is a subset of that for M-. Since 

every sentence of V,,Y U DLlp U Duna U Ds, is of the form (‘v’~s)c,& or is situation 

independent, it follows that M is a model for V,, U Dop U I&,,,, U l&,, since M- is. 
2. It remains to prove that M is a model of X. 

(a) M satisfies the unique names axioms (2) and (3) for situations because M- 

does. 
(b) M satisfies the induction axiom (4), because this says that M’s situation 

domain is the smallest set containing Sf which is closed under the function 
do”, and this is true of M’s situation domain. 

(c) Finally, it is not hard to see that <M, as defined in 4 above, satisfies the 
axioms (5) and (6) of 2. 

The conditions of the proposition follow from the properties of M. Cl 

4. Formal foundations 

Let (Y be a ground simple action, e.g. enrolled(Sue, CIOO), and let S, denote the 

situation term do( CY, SO). A progression VS,, of V so in response to (Y should have the 
following properties: 

1. Vs, is a set of sentences about situation S, only, i.e., in Cs, or in Ci,. 
2. For all queries about the future of S,, V is equivalent (in a suitable formal sense) 

to 

In other words, Vs, acts like the new initial database with respect to all possible future 

evolutions of the theory following the “performance” of the action cy. 
Semantically, the models of Vs, should include those of 2). But since Vs,, is a set 

of sentences about S, only, any structure that is “isomorphic at S,” to a model of V 
should also be a model of Vs,, and these should be all the models of VsCr. Another way 

of thinking about progressing Vs, to Vs, is that we want 2) to “forget about” what is 
true of the initial situation and all those situations that are reachable from SO but not 
from S,. This means we are interested in those models of VsO and of 2) which “don’t 
care” about what is true in Vs,,. To make these intuitions precise, we first need to define 
what we mean by “isomorphic at S,“. To that end, we introduce an equivalence relation 

over structures. Let M and M’ be structures (for our language) with the same domains 
for sorts action and object. Define M’ -s,, M, (“M and M’ are isomorphic at S,“) iff 

the following two conditions hold: 
1. M’ and M interpret all predicate and function symbols which do not take any 

arguments of sort situation identically. 
. 2. M and M’ agree on all fluents at S,. for every predicate fluent F, and every 

variable assignment (T, 

M’,(T k F(x,do(a,So)) iff M,a k F(x,do(a,So)). 
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Clearly, -s, is an equivalence relation. If M’ ws, M, then M’ agrees with M on S, 
on fluents and situation independent predicates and functions, but is free to vary its 

interpretation of everything else on all other situations. In particular, they can interpret 
Poss and do differently. We have the following simple lemma. 

Lemma 4.1. If M ws, M’, then for any formula cp in Ls”, and any variable assignment 

(+, M,o+piifSM’,o+p. 

We can now make the following definition: 

Definition 4.2. A set of sentences V’S, in Lza is a progression of the initial database 

2)~~ to S, (with respect to V) iff for any structure M, M is a model of V, iff there is 
a model M’ of 2, such that M -s, M’. 

Notice that we define the new database only up to logical equivalence. We allow the 

new database to contain second-order sentences because, as we shall see later, first-order 
logic is not expressive enough for our purposes. 

Proposition 4.3. Let Vs, be a progression of the initial database to S,. Then every 

model of V is a model of 2 U V,,, U VL,p U VD,,,, U V,. 

Proposition 4.4. Let Vs, be a progression of the initial database to S,. Then for every 

model M of 

2 u V$S u V,, u VD,ll, lJ V’s, 3 

there exists a model M’ of V such that: 

1. M’ and M interpret all situation independent predicate and function symbols 

identically. 

2. For every variable assignment (+, and every predicate fluent E 

M’,abS,<sAF(x,s) iff M,o/=&<sAF(x,s). 

Proof. Let M be a model of 

2 u v.w u VD,,, u %,a u n”, . 

Since M is a model of Vs,, there is a model M’ of 

2 u ~s.7 u VU,> u %,, u Q” 

such that M’ -s,, M. It can be easily seen that M’ has the desired properties. 0 

From these two propositions, we conclude that V and 2 U V,,? U VL,rp U V,,,, U Vs, 
agree on all situations > S,. So Vs,” really does characterize the result of progressing 
the initial database in response to the action (Y. Furthermore, the following theorem says 
that the new database, when it exists, entails the same set of sentences in L”s as V: 
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Theorem 4.5. Let Vsm be a progression of the initial database to S,. For any sentence 
YEJ$~,V~, kviffVt=p. 

Proof. If 2, b 9, then by Lemma 4.1, we have VS,, + rp. If VD, + 4p, then 2) + 9 by 
Proposition 4.3. Cl 

This theorem informs us that Vs, is a strongest postcondition (cf. Pednault [ 161, 
Dijkstra and Scholten [3], and others) of the precondition VsO with respect to the 

action (Y. 
Pednault [ 161, by defining progression as the set of first-order sentences in Cs, that 

are entailed by 27, shows that his definition of progression cannot in general be a finite 
set of first-order sentences in )CS_. By Theorem 4.5, this result applies to our definition 
as well. In the next section, we shall extend this result, and show that VS, need not 

even be a set of first-order sentences in Cs,. 

4.1. Progression is not always Jirst-order definable 

At first glance, the fact that progression cannot always be expressed in first-order logic 
may seem obvious in light of Theorem 4.5, and the fact that V includes a second-order 
induction axiom. However, as we mentioned in Section 3, for the purpose of progression, 

V is equivalent to V - 2, which is a finite set of first-order sentences. 
We shall construct a basic action theory V and two structures Mt and M2 with the 

following properties: 

1. MI +V. 
2. Mr and I& satisfy exactly the same set of sentences in &. 

3. There is no model M’ of V such that M’ ws, M2. 
It will then follow from our definition that for V, the progression of the initial 

database to S, cannot be in Cs,. Suppose otherwise, then by property 1, Ml k V,; 
by property 2 and the assumption that Vs* is a set of sentences in Cs,, we have 
M2 k ‘Vs,, as well, but this contradicts property 3 and our definition of progres- 

sion. 
We now proceed to construct such a basic action theory, and the two associated 

structures. Consider the following theory V with a unary fluent Fl, and a binary fluent 

F2, one action constant symbol A, one constant symbol 0, and one unary function symbol 

succ: 

2) uno =0. 

vs, = {(Vx>.x # 0 3 (3y)x = succ(y)}. 

V,, = {(Ys).Poss(A,s) E True}. 

V,, consists of the following pair of axioms: 

Poss(a,s) > [F,(do(a,s)) s (3x)--F2(x,s)l, 
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Poss(a,s) 3 {F*(x,do(a,s)) - 

x=OAF2(O,s) v 
x # OAF2(x,s) - (3y)[x=succ(y) AF2(y,s)]}. 

For an intuitive reading of the successor state axioms, think of the constant symbol 

0 as the number 0, and the unary function succ as the successor function. Then for 
any x, Fz(~,do(a,s)) holds iff either x = 0 and Fz(O,s) holds, or F~(x,s) and 
F2 (predecessor( x) , s) have the same truth value. The purpose of F, is to keep track of 
the truth values of F2 in the previous situation. 

We now proceed to construct the two models Ml and M:! that satisfy the above- 

mentioned three properties. We first construct M2 which is a structure such that: 8 

1. M2 is a standard model of arithmetic with respect to sort object. Thus the domain 
for object in M2 is the set of nonnegative numbers, 0 is mapped to the number 0, 

and succ is mapped to the successor function. 

2. M2 + F~(do(A,So)l A Wx)F2(x,MA,So)). 

We claim that there cannot be a model M’ of 2, such that M2 -s,, M’. Suppose 

otherwise. Then M’ also satisfies properties 1 and 2 above. Since M’ k ID,,, and 
M’ /= F, (&(A, SO)), we have 

M’ t= (3x)+2(x,So). 

Similarly, since M’ /= (Vx) F~(x, do( A, SO)), by the successor state axiom for F2, we 
have M’ k F~(O,SO)AF~(SUCC(O),S~)A~~~. Thus M’ b (Vlx) F~(x, SO), a contradiction. 
Therefore there is no model M’ of D such that M2 -s,, M’. 

We now construct a model MI of 2, such that for any sentence q in CS,, Ml + p 

iff M:! + q. The construction of MI is in two steps. First, by using Skolem’s theorem 

for number theory, we construct a structure M* which satisfies exactly the same set of 
sentences in Cs, as M2. We then revise M” into a model of D in such a way that the 
above property continues to hold, thus obtaining the desired model Ml. 

By Skolem’s theorem (cf. Kleene [ 7, p. 3261)) there is a first-order structure M* 

such that for any sentence qo in Csa, M2 /= rp iff M* + p, and (M2,0,succ) and 
(M*, 0, succ) are not isomorphic, i.e., M2 and M* are not isomorphic on sort object. In 
particular, since 

M t= Fi(do(A>So)) A (vx)Fz(x,do(ASo)), 

and Fl(do(A,So)) A (Vx)F2(x,do(A,So)) is a sentence in Csn, we have 

s We thank one of the referees for suggesting the following picture that may help the reader better un- 

derstand the successor state axioms and the construction of Ma. Imagine an infinite row of lights labelled 

0, 1.2,. (like floor indicators in an elevator). The lights come on or go off according to the follow- 

ing rules: if the first light is on (off), it stays on (off) forever; any other light comes (stays) on if it 

and its predecessor were both on or both off together, and goes (stays) off otherwise. Then the only way 
that all the lights are on in the next step ((Vn) F2( X, do( A, SO)) holds) yet there was a light off initially 

((3x)~F2(~, So), i.e., Fi (&(A, So)) holds) would be that the initially off light be “somewhere else”-a 
nonstandard number! 
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Now revise M* into a structure Mr such that: 
1. MI and M* have the same domains for sorts action and object, and interpret 

situation independent predicates and functions the same. 

2. M] + (VJa,s)Poss(a,s). 

3. Ml t= 2 u ‘o,,,, u no. 

4. For the truth values of the fluents on So: Ml k Fl (So), and for the truth values 
of Fz(x, SO), we have that for any variable assignment u: 
(a) If a(x) is a standard number, i.e., there is an n 2 0 such that Mr, cr + x = 

succ”(O), then Ml,cr k Fz(x,So). 

(b) If a(x) is a nonstandard number, i.e., there is no n 2 0 such that Ml, a(x) + 
x = succ”(O), then Ml,a b 7F2(x,Su). Notice that since M* and M2 are 

not isomorphic on sort object with respect to Peano arithmetic, there must be 
a nonstandard number in the domain of M*, and thus in the domain of MI. 

5. For the truth values of the fluents on do( A, SO): for any fluent F, and any variable 

assignment (+, M],a k F(x,do(A,So)) iff M*,(T b F(x,do(A,So)). 

6. Inductively, for any variable assignment V, if 

MI ,U /= do(A, So) < s, 

then the truth values of the fluents on s will be determined according to the 
successor state axioms and the truth values of the fluents on do( A, SO); if 

M1,a + So < s A -do(A,So) < s, 

then the truth values of the fluents on s will be determined according to the 
successor state axioms and the truth values of the fluents on SO. This will define 

the truth values of the fluents on every situation because MI k (‘ds) .SO < s, which 

follows from the fact that Ml k (Vu, s)Poss( a, s). 

Clearly, MI -s,, M*. It follows that Ml and M2 satisfy the same set of sentences in 
Cs,. We now show that Ml satisfies the successor state axioms. By the construction of 
MI, we only need to prove that it satisfies the successor state axioms instantiated to SO 

and action A, i.e., 

MI +=oss(A,So) 3 [FI(MA,SO)) = (3~)+2(~,~0)1, 

and 

Ml + Poss(A, So) > 

(V’X){F~(X,~O(A,SO)) = 

x = 0 A F2(0, So) V 

x # OA F2(x,So) = (3y)[x=succ(y) A F2(y,So)l}. 

To show the first, we need to prove that MI + (3x)~F2( s, SO). This follows from our 
construction of MI and the existence of nonstandard numbers in the domain of MI. To 

show the second, we need to prove that 

Ml + (‘dx){x = 0 A F2(0,So) V 

x # Or\F2(x,So) -(3y)[x=succ(y)AF2(y,Sg)]}. 
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There are three cases: 
1. If x = 0, then F2 (0, Se) follows from our construction. 

2. If n = SUCC’~ (0) for some n > 0, then both F2 ( SUCC” (0)) SO) and F2 ( SUCC”-’ (0)) SO) 
hold. 

3. If x is a nonstandard number, then Fz(x, SO) does not hold. Furthermore, for any 
y such that x = succ( y), y is also a nonstandard number, so Fz(y, SO) does not 
hold either. Moreover, by the axiom in DsO, such a y exists. 

Therefore, A41 satisfies the successor state axioms instantiated to SO and A. So Ml k Z&. 

This means that Mi k D, and MI and M2 satisfy the same set of sentences in Cs,,. 
Therefore we have constructed two models Mi and M:! that satisfy the three conditions 
in the beginning of this subsection, so the progression to S, for D cannot be captured 

by a set of first-order sentences, 

4.2. Progression is always second-order dejinable 

We now show that, by appealing to second-order logic, progression always exists. We 
first introduce some notation. 

Given a finite set VD,, of successor state axioms, define the instantiation of D,, on an 
action term at and a situation term st, written D,ss [ at, st] , to be the sentence: 

A Poss(at,st) > (Vx).F(x,do(at,st)) E @F(x,at,st), 

F is a fluent 

where 

(Va,s).Poss(a,s) > (Vx)[F(x,do(a,s)) =@~(x,a,s)] 

is the successor state axiom for F in D$,. 

Given a formula q in C2, the lifting of qo on the situation st, written qo t st, is the 
result of replacing every fluent atom of the form F( t] , . . . , t,,, st) by a new predicate 
variable p( tl , . . , tn) of arity object”. For example, 

enrolled(John, C200, SO) A enrolled(John, ClOO, SO) t SO 

is P(John,C200) Ap(John,C100).9 

Lemma 4.6. The following are some simple properties of lifting: 

1. If p is a sentence that does not mention st, then 9 T st is p. 

2. If p is a sentence in LCg,, then 40 t st is a situation independent sentence. 
3. If p does not mention quant$ers over situations, then cp k (3~1,. . . ,pk)p T st, 

where pl , . . ,pk are the new predicate variables introduced during the lifting. 

With the above notation in hand, we can describe a procedure for computing the 
progression of the initial database VsO in response to the action LY: 

‘) Lifting as we have defined it does not generally preserve logical equivalence. For example, [ (Vs).F( s) 1 7 .So 
is (Vs).F(s), but the logically equivalent IF(&) A (V’s).F(s)j T.5’0 is p A (V.s).F(s). Fortunately, we shall 

only be lifting those sentences that do preserve logical equivalence. 
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1. Instantiate the successor state axioms with LY and SO to get VD,, [ a, SO]. This will 
be the only use made of the successor state axioms. 

2. Replace Poss( cr, SO) in the above instantiation by the corresponding conditions on 
the right hand side of the action precondition axiom for (Y. This will be the only 

use made of the action precondition axioms. 
3. The resulting formula and those in the initial database will generally mention SO, 

but the progression needs to be about S, only, so we need to somehow “forget” 
SO without losing any information. This is done by lifting SO from the formulas. 

This procedure is justified, and described more precisely, by the following, which is 

the main theorem of this section: 

Theorem 4.7. Let Vs,, be the union of VU,,, together with the sentence: 

(3PI*...,Pk) 

N ) 

// cp ~Pw[~~~ol(P4~a) tso, 
co~VD$ 1 

where 

1. Pl,..., pk are the new predicate variables introduced during the lifting. 

2. W, is a sentence in ,Cs,, such that 

Poss(a, So) E !P, 

is an instance of the axiom in Vap corresponding to the action a. 

2. VD,, [ CY, SO] ( Poss/?P~) is the result of replacing Poss( a, SO) by ?PU in V.YS [ a, SO]. 
Then Vs, is a progression of ‘Ds, to S, with respect to V. 

Proof. First, it is clear that the sentences in Vsn are in lge. 
Let M be a structure. We need to show that A4 k Vs, iff there is a model M’ of V 

such that M -s, M’. 
Suppose that there is a model M’ of V such that A4 us, M’. By Lemma 4.6, V k Vs,, 

thus M’ k Vs,. Therefore by Lemma 4.1, M k Vs, 
Now suppose that M k V,. Then there is a variable assignment CY such that 

M,ab 

( ) 

A P Avo,,[a,Sol(Poss/~~)t~o. 
PEDS” 

Now construct a structure M’ such that: 
1. M and M’ have the same universe, and interpret all situation independent function 

and predicate symbols identically. 
2. For every fluent F, if F(x, SO) is lifted in ‘VS, as p, then 

M’,(T b F(x,So) iff M,a bp(x). 

3. M’ + VD,, uVO,. 
4. If M’ + -pa, then for any fluent F, and any variable assignment u’, 

M’,cr’ k F(x,&) iff M,a’ k F(x,S,). 
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It is clear that such an M’ exists. We claim that it4 -s, M'. There are two cases: 
1. If M' /= l!Pa, then it follows from our construction that for any fluent F, and any 

variable assignment u’, 

M',a' +F(r,S,) iff M,u' k F(x,S,). 

2. If M' k Pa, then since M' k Vop, and VO,) b Poss( (Y, SO) E pa, therefore M' k 
Poss(a, SO). But M' f= V,y,. Thus for any fluent F, and any variable assignment 

I 
fl, 

M',d k F(x,S,) iff M',u' /=@~(x,a,So), (7) 

where @F is as in the successor state axiom (1) for F in VSS. Now since M' k P,, 
by our construction of M', we have that M, (T k Pa 1 SO. But 

M,(T + ~o,s[~,~ol(~~~~/~a) Tso. 

Therefore for any fluent F, and any variable assignment g’ such that c’(p) = a(p) 

for any predicate variable p, 

M,u'kF(x,S,) iff M',cr'~@~(x,a,So)fSo. (8) 

But for any variable assignment (+’ such that (T’(P) = a(p) for any predicate 

variable p, since @F(x, (Y, SO) is in CsO, by our construction of M', 

M,d ~@F(x,(Y,SO)~SO iff M',~'~@F(x,(Y,SO). 

Therefore from (7) and (8), we see that for any fluent F, and any variable 

assignment cr’, 

M',a'~F(x,S,) iff M,a'/=F(x,S,). 

It follows then that M us, M'. By the construction of M' and the fact that M k VU,,, 
we have that M' k V,, U VQ,) U V,,,,. Thus from Proposition 3.2, there is a model M" 
of V such that M' "so M". Then by the transitivity of ws,, we have that M -s,, M". 
This concludes the proof that V s, as defined is a progressed database. 0 

It is clear that the theorem still holds when the initial database VsO is a finite set 
of second-order sentences in L&. Therefore, at least in principle, the theorem can be 

repeatedly applied to progress the initial database in response to a sequence of actions. 
The new database 2)s” as defined in the theorem can be unwieldy. However, it can 

often be simplified by using the unique names axioms in VU,,, as we shall see in the 
following example. 

Example 4.8. Consider our educational database. The instantiation of the successor state 

axioms on drop( Sue, C 100) and SO, VD,,Y [ drop( Sue, C 100)) SO] is the conjunction of the 
following two sentences, where a = drop( Sue, ClOO) and S, = do( cy, SO): 

Poss( cy, SO) > [ enrolled(stu, c, S,) E 

cr = register( stu, c) V 

enrolZed( stu, c, SO) A cy # drop( stu, c) 1, 
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Poss(a,So) 3 [grude(stu,c,g,S,) z 

a = chnnge(stu, c, g) v 
grude(stu,c,g,S0) A-(3g’)(g f g’Aa=change(stu,c,g’))]. 

By unique names axioms, these two sentences can be simplified to 

Poss(cf, SO) 3 [enroZZed(stu, c, S,) z 

enroffed(stu,c,S0) A (Sue # stuVClO0 # c)], 

Poss(a,S~) 3 [grude(stu,c,g,S,) 5 grude(stu,c,g,So)]. 

Poss( a, SO) sz enrofled(Sue, ClOO, SO). 

Thus D,s,v [ a, SO J (Poss/?P,) is the conjunction of the following two sentences: 

enrolled(Sue, C 100, SO) > [ enrolled( stu, c, S,) z 

enrolZed(stu,c,So) A (Sue # stuVClO0 + c)], 

enroiled(Sue,ClOO, So) 3 [grude(stu,c,g, S,) = grade(stu,c,g, So)]. 

Thus ( ~PI 3 ~2 > 1 (A,,,, 40) ~~,,~~,~~l~~~~~/~~~l TS0 is 

(3p1,p2). John # Sue # Cl00 # C200 A 

[p1 (John, c 100) v pi (John,C200) ] A 

pl(Sue,ClOO) Aprereq(ClOO,C200) A 

pl(Sue,ClOO) > enrolled(stu,c,S,) s 

[PI (stu, c) A (Sue Z stu V Cl00 # c) ] A 

pl(Sue,ClOO) > grude(stu,c,g,S,) s pz(stu,c,g). 

This is equivalent to 

John # Sue # Cl00 # C200Aprereq(C100,C200) A 

(3pl,p2). [pl(John,ClOO) Vpl(John,C200)1 Apl(Sue,ClOO) A 

enroZZed(stu,c,S,) E [p~(stu,c) A (Sue # stu VClOO # c)] A 

grude(stu,c,g,S,) -p~(stu,c,g), 

which is equivalent to 

John Z Sue # Cl00 f C2OOAprereq(ClOO,C200) A 

(3~~). [p~(John,ClOO) Vpl(John,C200)] A 

p1 (Sue, Cl001 A 

enrolled(stu,c,S,) E [pl(stu,c) A (Sue # stuVClO0 + c)]. 
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Now, enrolled(stu, c, S,) E [pl (stu, c) A (Sue Z stu V Cl00 f c)] can be broken into 
two cases: 

Sue = stu A Cl00 = c 3 

enrolled( stu, c, S,) E [PI (stu, c) A (Sue # stu V C 100 # c)] A 

Sue f stu V Cl00 # c 3 

enrolled(stu, c, S,) E [pl (stu, c) A (Sue # stu V Cl00 # c) 1, 

that is, 

Sue = stu A Cl00 = c > Tenrolled(stu, c, S,) A 

Sue f stu V Cl00 # c > [ enrolled(stu, c, S,) E p1 (au, c) 1, 

so we can continue simplifying (3pi ,p2) [ ( l\coED,To qop) A DD,,y [ a, SO] (Pass/Pa) ] T SO 

into: 

John # Sue # Cl00 # C200Aprereq(ClOO,C200) A 

[ enrolled(John, C 100, S,) V enroEled(John, C200, S,) ] A 

Tenrolled( Sue, C 100, S, ) A 

($1). PI (Sue, ClOO) A 

Sue # stu V Cl00 # c > [ enrolled(stu, c, S,) E p1 (stu, c)]. 

Therefore we have a first-order representation for Ds,, which is DD,,,, together with the 

following sentences: 

John # Sue # Cl00 Z C200. 

prereq(ClOO,C200), 

enrolled(John, ClOO, S,) V enrolZed(John, C200, S,), 

Tenrolled(Sue, ClOO, S,). 

4.3. More on first-order progression 

Theorem 4.5 informs us that, in particular, the progression of VD, entails the same 

set of @St-order sentences about S, as does V. In view of this, one may wonder why 
we did not define progression to be the set of jirst-order sentences in Ls, entailed 
by 2). Indeed, this is basically what Pednault did [ 161, and will, by definition, side 
step our negative result that, in general, progression cannot be captured in first-order 
logic. There are several reasons why we did not do this. First, such a definition is 
purely syntactic, and hence has an arbitrary quality to it. What justifies the prior as- 
sumption that progression is first order definable, especially in view of the fact that 
many other notions, for example transitive closure, are not? Ideally, one should begin, 

as we did, with a purely semantic characterization of one’s intuitions about database 
progression, and see where that leads. Secondly, Peppas et al. [ 191 show that, for 



148 F: Lin, R. Reiter/Art@cial Intelligence 92 (1997) 13I-167 

quite general action theories, progression defined in terms of first-order entailments, 
may lose information, in the sense that a first-order sentence about a future situa- 
tion of S, may be a consequence of V but not of (V - V,S,, ) U V,. While this 

result by Peppas et al. is for more general action theories than ours, it does show 
that it is not a priori obvious that a first-order definition of progression is warranted. 

Unfortunately, we have not been able to find a result for basic theories of actions 
comparable to that of Peppas et al. Nevertheless, we are convinced of the follow- 

ing: 

Conjecture 4.9. For an arbitrary basic action theory V, and an arbitrary ground action 

a, let Fs, be the set offirst-order sentences in Ls, entailed by V. Then there is a basic 

action theory V, a ground action term LY and a jirst-order sentence c such that cr is 

entailed by (V - Vs”) U VS, but not by (2) - VsO) U Fs,. 

If true, this conjecture would establish that a definition of progression in terms of 

first-order entailments would be too weak. 
However, for an important class of first-order sentences, this “weaker” definition of 

progression is entirely adequate. Specifically, for addressing the projection problem, 
first-order progression is sufficient. 

Proposition 4.10. Suppose that 4(s) E L,7, and that A is a sequence of ground action 
terms. Then 

(V--s,) UVs,, t==s, <do(A,&) A&do(A,&)) (9) 

iff 

(V--s”) UPS,, I=& 6 do(A,&) A&do(A,&)). (10) 

Proof. We make use of the soundness and completeness of regression, as described in 

Reiter [ 241. Specifically, for sentences of the form S, < do( A, S,) A +(do( A, S,)), 

Reiter shows how, using the regression operator, to determine a first-order sentence 

CT E &, such that 

V - Vs,, + u= [So < do(A,&) A+(do(A,Sa))l. (11) 

Moreover, Reiter shows that ( 10) iff V,,,U.Fs, k CT iff (since Vu,, C .Fs, ) Fs,, k c iff 
(by the definition of .Fs~) 2, b CT iff (by the remarks following the proof of Proposition 

4.4) (V - Vs,) u V’s, F aiff (by (11)) (9). •1 

5. Progression with relatively complete initial databases 

In the previous section we showed that, in general, progression is definable only in 

second-order logic. However, there are some interesting and important special cases for 
which progression is first-order definable. In this section and the next, we consider two 
such cases. 
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We say 23~~ is relatively complete if it is a set of situation independent sentences 
combined with a set of sentences, one for each fluent F, of the form: 

Wx).Ftx,So) = OF, 

where UF(x) is a situation independent formula whose free variables are among x. 
When VD, is relatively complete, the truth value of each fluent F in the initial 

situation is completely determined by the truth value of the situation independent formula 

L~F(x). It does not follow that the initial database must be logically complete. It will 
be only when the initial situation uniquely determines the truth values of the situation 

independent predicates. Hence the terminology “relative completeness”. For example, in 
the blocks world, one may want to specify that initially all and only green blocks are 
on the table, without saying which blocks are green: 

ontable( x, SO) = green(x) . 

Theorem 5.1. Let V be an action theory with a relatively complete initial database 

Vs”, and let a be a ground action term such that V k Poss( a, SO). Then the following 

set: 

V,,,, u {cp 1 p E Vs,, is situation independent} U 

((Yx).F(x,do(o,SO)) = @r(x,a,So)[So] 1 F is ajuent} 

is a progression of VsO to S,, where 
1. @F is as in the successor state axiom ( 1) for F in V,Y,; 

2. @r(x, a, SO) [SO] is the result of replacing, in @F( x, a, So), every occurrence of 
F’( t, SO) by I7rf (t) , where nrf is as in the corresponding axiom for F’ in VD,, 

and this replacement is pelformed for every fluent F’ mentioned in @F( x, a, SO). 

Proof. Denote the set of the sentences of the theorem by S. Clearly, S is a set of 

first-order sentences in Cs,. It is easy to see that S b 23,. Conversely, it is clear that 
V b S. Thus by Theorem 4.5, VsO k S. 0 

Clearly, the progressed database at S, as given by the theorem is also relatively 

complete. Thus the theorem can be repeatedly applied to progress a relatively complete 
initial database in response to a sequence of executable actions. Notice that the new 
database will include VU,,, and the situation independent axioms in Vs,,; therefore we 
can use these axioms to simplify @F (x, LY, SO) [SO]. 

Example 5.2. Consider again our educational database example. Suppose now that the 

initial database 27s” consists of the following axioms: 

John f Sue # C 100 # C200, 

better( 70,50), 

prereq (C 100, C200), 
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enrolled(stu,c,&) = (stu=JohnAc=C100) V(stu=SueAc=C200), 

grade(stu, c, g, So) z stu = Sue A c = Cl00 A g = 70. 

Ds, is relatively complete, and D k Poss( (Y, So), where LY = drop(John, ClOO). From 
the axiom for enrolled in Vs,,, we see that IZenrollrd(~&, c) is the formula: 

(stu=JohnAc=C100)V(stu=SueAc=C200). 

Now from the successor state axiom for enrolled in Example 3.1, we see that 
Qrnrolled( stu, c, a, s) , the condition under which enrolled( stu, c, do( a, s) ) will be true, 
is the formula: 

a = register( stu, c) V (enrolled( stu, c, s) A a # drop( stu, c) ). 

Therefore Genrollpd( stu, c, cy, SO) [SO] is the formula: 

drop(John, C 100) = register( stu, c) V 

{[(stu=.fohnAc=ClOO)V(stu=SueAc=C200)] A 

drop(John, ClOO) # drop(stu, c)}. 

By the unique names axioms in V,,,, this can be simplified to 

[ (stu = John A c = C 100) V (stu = Sue A c = C200) ] A 

l(stu =.fohn AC = ClOO). 

By the unique names axioms in DsO, this can be further simplified to 

stu = Sue A c = C2OO. 

Therefore we obtain the following axiom about do( a, SO): 

enrolled( stu, c, do( a, SO) ) 3 stu = Sue A c = C200. 

Similarly, we have: 

grade(stu,c,g,do(cu,So)) = stu = Sue A c = ClOOAg = 70. 

Therefore a progression to do (drop( John, C 100)) SO) is V U,,u together with the following 

sentences: 

John # Sue # Cl00 # C200, 

better( 70,50), 

prereq(ClOO,C200), 

enrolled( stu, c, do( a, So) ) E stu = Sue A c = C200, 

grude( stu, c, g, do( a, SO) ) - stu = Sue A c = C 100 A g = 70. 
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6. Progression in the context free case 

In this section we consider progression with respect to context free action theories. A 
successor state axiom for F is context free iff it has the form: 

Poss(a,s) 1 [F(x,do(~s)) =$(x,4 V (F(x,s) A ~F(x>a))l, (12) 

where yf (x, a) and y; (x, a) are situation independent formulas whose free variables 
are among those in x, a. The successor state axioms in our educational database are all 

context free. So is the following successor state axiom: 

Poss( a, s) 3 [ broken( x, do( a, s) ) = a = drop(x) Afrugile( x) V 

broken( x, s) A a # repair(x) ] . 

The following successor state axiom is not context free: 

Puss(u,s) > [deud(x,do(u,s)) = 

(3~) (a = explode_bombat( y) A close( x, y, S) ) V deud( x, s) 1. 

Intuitively, a successor state axiom for fluent F is context free iff F’s truth value in 

the next situation &(a, S) depends on F’s truth value in the current situation S, but is 

independent of the truth values of any other fluents in S. 

Now assume that: 
I. Ds,, is a set of situation independent sentences, and sentences of the form 

E 1 ItF(x~,...,x,,So), (13) 

where F is a fluent and E is a situation independent formula. For example, 

ontuble( x, SO), 

x # A > wntuble(x, SO), 

frugile( x) 3 broken( x, SO) 

are all of this form. The following are not of this form: 

ontuble(x, SO) V orzJEoor( x, SO), 

(3x)ontuf7le(x, SO). 

2. ‘DD, is coherent in the sense that for every fluent F, whenever (Vx) .E1 > F(x, SO) 

and (b’x).Eg > ~F(x,&) are in D,, then 

{q~ / qo E DD, is situation independent} b (Vx) .-( El A E2) 

This means that D>sO cannot use axioms of the form (13) to encode situation 
independent sentences: for any situation independent sentence qb, Ds,, b 4 iff 
{q 1 40 E Vs,, is situation independent} + 4. 

3. D,, is a set of context free successor state axioms. 
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4. a is a ground action term, and is possible initially: V b POSS( (Y, SO). 

5. For each fluent F, the following consistency condition (Reiter [ 211) is satisfied: 

vl7p U %Kl != l(3 x,a,s).Poss(a,s) Q&a) AY;(X,a), (14) 

where F’s successor state axiom has the form (12). 

The consistency condition ( 14) deserves a brief explanation. Following Pednault [ 181 
and Schubert [ 271, Reiter [ 211 provides a solution to the frame problem in the absence 

of state constraints which syntactically transforms a pair of effect axioms for a given 
fluent F into a successor state axiom for F. The effect axioms are assumed to have the 
syntactic forms: ‘O 

Poss(u,s) ~y$(x,u,s) > F(x,do(u,s)), 

and 

Poss(a,s) Ay;(x,u,s) > ~F(x,do(u,s)). 

Reiter applies the explanation closure idea of Schubert [27] to obtain the following 

frame axioms for F: 

Poss(u,s) A ~F(x,s) A F(x,do(u,s)) > y;(x,u,s), 

Poss(u,s) A F(x,s) A ~F(x,do(u,s)) > y,(x,u,s). 

The successor state axiom 

Poss(u,s) > F(x,do(u,s)) = $(~,a) V (F(x,s) A ~y,(x,a)) 

is logically equivalent to the conjunction of the above four sentences, whenever the 

consistency condition holds. Notice that the consistency condition makes good sense: 

if it were violated, so that for some X, A, S we have Poss(A, S), yi(X, A, S), and 
y; (X, A, S), then we could derive an immediate inconsistency from the above two 

effect axioms. 
It is easy to verify that each fluent in our educational database satisfies the consistency 

condition. 
Under these assumptions, to compute Ds,, use Theorem 4.5 to construct a set S, 

initially empty, of sentences as follows: 
1. If 9 E Ds, is situation independent, then 40 E S. 

2. For any fluent F, add to S the sentences 

$(~,a) 1 F(x,do(a,So)), (15) 

y;(x,a> 3 +‘(x,do(a,So)). (16) 

3. For any fluent F, if (Vx).E > F(x,So) is in Ds,,, then add to S the sentence 

EA-yF(x,c~) > F(x,do(a,Sg)). (17) 

“’ In general, y: and y, may be situation dependent. 
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4. For any fluent F, if (Vx).E > lF(x,So) is in Vs,,, then add to S the sentence 

E A &(~,a) > ~F(x,do(cu,So)). (18) 

Theorem 6.1. Under the afore-mentioned assumptions, S U D,,, is a progression of 
V, to s,. 

Proof. We use Theorem 4.5. First we show that V b S U Vu,,. V f= V,,, trivially. 
Suppose (o E S, we show by cases that 2) b (D: 

1. c,o E Vs,, is situation independent. Trivial. 

2. (o is (15). By the successor state axiom ( 12) of F in V, we have 

Poss(a,So) A$(X,CY) > F(x,do(a,So)). 

From this and our assumption that V k Poss( LY, SO), we have 

y;(x+) 1 F(x,do(o,So)), 

that is, 4p. 
3. q~ is ( 16). Again by the successor state axiom ( 12) of F in V, we have 

Poss(a,So) 1 [Y;(x,(Y) A-$(X,“) 2 -F(x,do(a,So))l. 

Now by the consistency condition ( 14), we have 

Poss(a, So) > [r; (x, (Y) > TF(x,do(a, So)) I. 

So we have 

y;(x,a> 3 -Ftx,do(a,So)), 

that is, q. 
4. +Y is (17). By the successor state axiom (12) of F in V, we have 

Poss(cu,So) 1 [F(x,So) A~Y;(x,Q) 3 F(x,do(a,So))l. 

so 

F(x,So) A ly,(x,cu) 3 F(x,do(a,So)). 

But (Yx)(E > F(x,So)) is in VsO, so we have 

E A yy,(x,a) 1 F(x,do(cu,So)), 

that is, 9. 
5. 40 is (18). By the successor state axiom (12) of F in V, we have 

Poss(~~,So) > [lF(x,So) A~y~(x,cu) > -F(x,do(cr,So))l. 

so 

+(x, So) A 1$(x, a) 3 F(x,do(a, So) ). 
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But (V’x)(E > -JF(x,&,)) is in z)sO, so we have 

that is, 9. 

By our construction of S, this proves that D b S. But DD,,, U S is a set of sentences in 
Ls,. Therefore by Theorem 4.5, 27, k S U DunL,. 

To prove the converse, we show that for any model M of S U ‘Du,,, there is a model 

M’ of 2) such that A4 ws, M’. Suppose now that M is a model of SUD,,,. We construct 
M’ as follows: 

1. M’ and A4 have the same domains for sorts action and object, and interpret all 
situation independent predicates and functions the same. 

2. For each fluent F, M’ interprets F on SO as follows: 

(a) For every variable assignment g, if (V’x) .E > F (x, SO) is in Ds,,, and M, g k 

E (thus M’,m b E as well), then M’,u k F(x,So). 
(b) Similarly, for every variable assignment, if (V’x).E > ~F(x, SO) is in DsO, 

and M,g b E (thus M’,u k E as well), then M’,a k ~F(x,$). 
(c) For every variable assignment (T, if F(x, SO) has not been assigned a truth 

value by one of the above two steps, then M’, c k F(x, SO) iff M, u k 

F(x,Ma,So)). 
Notice that by our coherence assumption for Ds,,, our construction is well defined. 

3. M’ interprets Poss according to VOp, and interprets the truth values of the fluents 

on reachable situations according to D)ss. 
4. M’ + _Z. This can be done according to Proposition 3.2. 

Clearly M’ /= D. We show now that M ws,, M’. For any fluent F, suppose the successor 

state axiom for F is 

Poss(a,s) > F(x,do(a,s)) = y;(x,a) V (F(x,s) A’yF(x,a)). 

Given a variable assignment (T, suppose M’, CT k F(x, do(a, SO)). Since 27 k 

Poss( a, SO), by the above successor state axiom, there are two cases: 
1. M’,(T b yFf(x,a). This implies M,a k ys(x,a). Now since rFf(x,n) > 

F(x,do(a,So)) E S, and M is a model of S, thus M,cr b F(x,do(a,Sg)) 
as well. 

2. M’,cr k F(x,So) A ly;(x,a). Since M’,(T k F(x,&), by our construction, 

either M,a k F(x,do(a,S~)), or there is a sentence E > F(x,So) in V,s, such 
that M, CT k E. Suppose the latter. Then by our construction of S, it contains 

EA-y;(x,cr) 3 F(x,do(a,So)). Thus M,cr k F(x,do(a,&)) as well. 
Similarly, if M’,a + -F(x,do(a,Sg)), then M,a k ~F(x,do(a,&)) as well. There- 
fore M wS,, M’. 0 

Note the following: 
1. The new database S has the same syntactic form as Vs,,, so this process can be 

iterated. 
2. The computation of S is very efficient, and the size of S is bounded by the sum 

of the size of VsO and twice the number of fluents. 
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We emphasize that the results of this section depend on the fact that the initial database 
has a certain specific form. In fact, a result by Pednault [ 161 shows that for context free 
actions and arbitrary D,, progression is not always guaranteed to yield finite first-order 

theories. 

7. STRIPS 

Ever since STRIPS was first introduced (Fikes and Nilsson [6] ), its logical se- 

mantics has been problematic. There have been many proposals in the literature (e.g. 
Lifschitz [ 111, Erol, Nau and Subrahmanian [ 41, Bacchus and Yang [ 21). These all 

have in common a reliance on meta-theoretic operations on logical theories to cap- 
ture the add and delete lists of STRIPS operators, but it has never been clear ex- 
actly what these operations correspond to declaratively, especially when they are ap- 

plied to logically incomplete theories. In the sequel, we shall provide a semantics for 
STRIPS-like systems in terms of a purely declarative situation calculus axiomatiza- 

tion for actions and their effects. On our view, a STRIPS operator is a mechanism 

for computing the progression of an initial situation calculus database under the ef- 
fects of an action. We shall illustrate this idea by describing two different STRIPS 
mechanisms, and proving their correctness with respect to their situation calculus spec- 

ifications. 
Following Lifschitz [ 111, define an operator description to be a triple (8 D, A), 

where P is a sentence of a first-order language .Cp~lps and D (the delete list) and A 
(the add list) are sets of sentences of L: n~lps. A world description W is any set of 

sentences of Cn~fps. A STRIPS system consists of: 
I. a world description WO, called the initial world description, 
2. a binary relation DC 2LsrR/ps x Ln~~ps,” 

3. a set Op of symbols called operators, and 

4. a family of operator descriptions {(Pa, D,, Aa)}ruEop. 
With each operator LY is associated a world description W,, the successor world descrip- 

tion of Wo, defined by W, = ( WO - 0,) U A,. A successor world description W, is 

admissible iff WO D P,. 

Sometimes, but not always, D will be the standard entailment relation for the first- 

order language C.rr~~p.r. In this case, admissibility simply corresponds to the fact that 
the precondition Pa is entailed by the initial world description WO, in which case, on 
the standard view of STRIPS, the operator (Y is applicable. However, our intuitions 
about STRIPS are not standard, and we prefer to leave open the interpretation of the 
“entailment” relation D. 

Our semantics for STRIPS systems is indirect; we define certain classes of theories 
in the situation calculus and show how to associate suitable STRIPS systems with those 
theories. Only STRIPS systems associated with such situation calculus theories will, on 

our account of STRIPS, be assigned a semantics. This leaves many STRIPS systems 

‘I In his treatment of STRIPS, Lifschitz does not provide for the relation D 
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(namely those without an associated situation calculus theory) without a semantics; we 
are not very distressed by this, given that STRIPS systems, in their full generality, do 
not currently have coherent semantics anyway. 

8. Two versions of STRIPS 

The STFUPS systems we derive apply only to a restricted class of situation calculus 
action theories for which the successor state axioms have a particular syntactic form, 

which we now define. A successor state axiom is strongly context free iff it has the 

form: 

Poss(a,s) 3 [F(x,do(a,s)) = 

(3d’))a = A1(&')) V ... V (%‘““‘)a = A,,&“‘)) V 
(19) 

Here the A and B are function symbols of sort action, not necessarily distinct from 
one another. The 6 and q are sequences of distinct variables which include all of the 
variables of x; the remaining variables of the 6 and q are those being existentially 
quantified by the v and W, respectively. x could be the empty sequence. Notice that 

strongly context free successor state axioms are special cases of context free successor 
state axioms defined in Section 6. The successor state axioms of our running blocks 
world example given below are strongly context free. The following successor state 

axiom is context free but not strongly context free: 

Poss(u, s) > [ontuble(x,do(u, s)) E a =putontuble(x) V 

ontuble( x, s) A a f tiptuble A a # pickup(x) 1. 

This is because the action tiptuble does not have x as a parameter. 
The STRIPS systems which we shall characterize will be for languages L2 whose only 

function symbols of sort object are constants. Therefore, consider a ground action term 
(Y, and the strongly context free successor state axiom (19) for fluent F, relativized to the 

initial situation So. How does LY affect the truth value of fluent F in the successor situation 
do( a, So)? By the unique names axioms for actions, together with the assumption that 
the successor state axioms are strongly context free, this relativized axiom will be 

logically equivalent to a sentence of the form: 

Poss(a,So) > [F(x,do(a,So)) E 
x = x(I) v . . . v -& = _p’) i”/ 

F(x,So) Ax # Y”)A...Ax # Y(“)]. 

Here the X and Y are tuples of constants of C2 obtained from those mentioned by the 
ground action term cy. If we assume further that the action LY is possible in the initial 
situation, i.e., that D b Poss( CY, SO), this is equivalent to: 
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F(x,do(a,So)) = 

x = x”’ v . . . v x = x(n’) v F(x, So) A x # Y(l) A ‘. . Ax # YCfl). 
(20) 

Example 8.1. The following blocks world will provide a running example for the rest 

of this paper: 

Actions 
l move( x, y, z ) : move the block x from block y onto block z, provided both x and 

z are clear and block x is on top of block y. 

l movefromtable(x, y): move the block x from the table onto block y, provided x is 
clear and on the table, and block y is clear. 

l movetotuble( x, y) : move block x from block y onto the table, provided x is clear 
and x is on y. 

Flue&s 
l clear(x, s) : block x has no other blocks on top of it, in state S. 
l on(x, y, s): block x is on (touching) block y, in state S. 

l ontable(x, s): block x is on the table, in state s. 

This setting can be axiomatized as follows: 

Action precondition axioms 

Poss(move(x,y,z),s) = 

clear-(x, s) A clear( z, s) A on(x, y, s) A x # y A x # z A y # z, 

Poss(movefromtabZe( x, y) , s) E 

clear(x, s) A clear(y, s) A ontable(x, s) A x Z y, 

Poss( movetotable( x, y) , s) 5 clear-(x, s) A on( x, y, s) A x + y. 

Successor state axioms 

Poss(a,s) > [clear(x,do(a,s)) I 

(3y, z )a = move( y, x, z ) V (3y)a = movetotable( y, x) V 

clear(x,s) A7(3y,z)a=move(y,z,x) A 

7 (3~) a = movefromtable( y, x) ] , 

Poss(a,s) > [on(x,y,do(a,s)) = 

(32 ) a = move( x, z, y) V a = movefromtable( x, y) V 

on(x,y,s) Au $1 movetotable(x,y) A~(3z)a=move(x,y,z)], 

Poss( a, s) > [ ontable( x, do(a, s) ) E 

( 3y) a = movetotable( x, y) V 

ontable( x, s) A -( 3y)a = movefromtable( x, y) 1. 
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NOW consider the “generic” ground action move( X, I: 2). The corresponding instances 
of (20) for the fluents clear, on and ontable are logically equivalent to: 

clear(x,do(move(X,I:Z),So)) rx=YVclear(x,&)Ax # Z, 

on(x,y,do(move(X,I:Z),So)) = 

x=XAy=ZVon(x,y,S())A~[x=XAy=Y], 

ontable(x,do(move(X,Y,Z),So)) E ontable(x,So). 

For the generic ground actions movefromtable(X, Y) and movetotable(X, Y) we ob- 
tain: 

clear( x, do(movefromtable( X, Y) , So) > E clear( x, So) A x f E: 

on(x,y,do(movefromtable(X,Y),So)) -x=XAy=YVon(x,y,So), 

ontable( x, do( movefromtable( X, Y) , So) ) E ontable( x, SO) A x # X, 

clear( x, do( movetotable( X, Y) , SO) ) s x = Y V clear(x, SO), 

on(x,y,do(movetotable(X,Y),So)) =on(x,y,So) Al[x=XAy=Y], 

ontable( x, do(movetotable( X, Y) , SO) ) E x = X V ontable( x, SO). 

8.1. OCF-STRIPS: open world, context free STRIPS 

In this section we characterize an open world version of STRIPS-open world in 

the sense that its database is a set of ground literals (not atoms with a closed world 
assumption, as in most versions of STRIPS), and moreover, this database need not be 
logically complete. In other words, a certain degree of information incompleteness is 

permitted. Our point of departure is an action theory D = 2 U V,,y U V,,, U I&,,, U ‘Ds,,, 

with 
1. 

2. 

3. 

4. 

5. 
6. 

the following properties: 
The only function symbols of sort object that the second-order language L2 pos- 
sesses are constants. i2 
Each situation dependent sentence of DsO is a ground fluent literal, i.e., of the form 
F( C, SO) or -F( C, So) for fluent F and constants C of sort object. 

Ds,, contains unique names axioms for constants of sort object: for each pair of 

distinct constant names C and C’ of sort object, the axiom C + C’. 

DsO contains no pair of complementary literals (and hence is consistent). 

Each successor state axiom of V,,v is strongly context free. 
We are progressing with respect to a, a ground action term, and (Y is possible 

initially: 

D t= Poss(a,So). 

I2 Recall that L? is the language in which V is expressed. 
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7. For each fluent F, the consistency condition (14) is satisfied. It is easy (but 
tedious) to verify that each fluent of Example 8.1 satisfies this condition. 

In keeping with our intuition that STRIPS systems are mechanisms for progressing 
situation calculus databases, we want now to characterize the result of progressing DsO 

under the effects of the ground action a in the case of action theories of the above kind. 

Our basis for this will be Theorem 6.1. 
Let S be the following set of sentences: 
1. Initialize S to {‘p E Ds,, 1 p is situation independent}. 

2. For each fluent F do (with reference to the instance (20) of F’s successor state 

axiom) : 
(a) Add to S the sentence F(X”‘,do(a,&~)), i = 1,. . . ,m. 
(b) For each ground instance F( C, SO) E Vs,, add to S the sentence F( C, 

&(a, SO)), whenever C is a tuple of constants different from each Y(j), 

i= l,... , n. (Here, we invoke the unique names axioms for constants of sort 

object.) 
(c) Add to S the sentence lF( Yci), &I( a, SO)), i = 1,. . , n. 
(d) For each ground instance -F(C, SO) E VS,, add to S the sentence 

-F( C, du(cu, SO)), whenever C is a tuple of constants different from each 

x(i), i = 1,. . . ) m. (We again invoke the unique names axioms for constants 

of sort object.) 
By Theorem 6.1, the resulting set S enjoys the property that S U DD,,?, is a pro- 

gression of DD, under action LY. Moreover, the situation dependent sentences of S are 
all ground literals, and S contains no pair of complementary literals. It follows that S 
can serve as a new initial database for the purposes of iterating the above progression 

mechanism. 
Now we interpret the above construction of the set S as a STRIPS operator. Imag- 

ine suppressing the situation argument SO of all the ground literals of 2)~~. Now ask 

what sequence of deletions and additions of ground literals must be performed on 
the situation-suppressed version of Vs,, in order to obtain the situation-suppressed 
version of S (i.e. S with the situation argument &(LY, SO) suppressed in its sen- 

tences) . The deletions and additions necessary to achieve this situation-suppressed 
transformation of D)s,, to S will define the delete and add lists for the STRIPS op- 

erator cy. 
It is easy to see that the following deletions and additions, when applied to DO, the 

situation-suppressed version of Ds,,, yields the situation-suppressed version of S: 

For each fluent F do (with reference to the instance (20) of F’s successor state 
axiom) : 

1. Delete from Da the sentences 1 F( Xci) ) , i = 1, . , m. 
2. Delete from Da the sentences F(Y(“)), i = 1,. . . , n. 
3. Add to Da the sentences F(X(‘)), i = 1,. . , m. 
4. Add to Z& the sentences -F( Y(‘) ) , i = 1, . . . , II. 

It is now clear how to define a STRIPS system and its associated operator for LY: ” 

I3 See Section 7 for the relevant definitions 
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1. 
2. 

3. 

4. 

5. 

The language Ln~~ps is the situation-suppressed version of L2. I4 
The initial world description is Do. 

D is ordinary logical entailment; for a world description W and sentence c E 

Lflip~ps, W D g iff W b g. 
a’s precondition is the situation-suppressed version of the right hand side of the 
equivalence in (Y’S situation calculus action precondition axiom. 
For each fluent F, include in LY’S add and delete lists those literals specified above 

for obtaining the situation-suppressed version of S. 

To our knowledge, OCF-STRIPS is the only variant of STRIPS which specifically 
provides for an incomplete database of ground literals, and which is provably correct 
with respect to a logical specification. 

Example 8.2. Continuing with our blocks world example, we can “read off” the OCF- 

STRIPS operator schema for move from the instances of the successor state axioms 
given in Example 8.1: 

moue(X,I:Z) I5 

P: clear(X) A clear(Z) A on(X, Y) A X # Z A X # Y A Y # Z. 

D: ~clear(Y),cfear(Z),~on(X,Z),on(X,Y). 

A: clear(Y), -dear(Z), on( X, Z), ~on(X, Y). 

The operator description schemas for movefromtable and movetotable are obtained in 
the same way: 

movefromtable(X, Y) 

P: clear(X) A cfear( Y) A ontable( X) A X f I: 

D: ~on( X, Y) , ontable( X) , clear( Y) . 

A: on( X, Y) , lontable( X) , dear(Y). 

movetotable( X, Y) 

P: dear(X) Aon(X,Y) AX f P 

D: 4ear( Y) , on( X, Y) , lontuble( X) . 

A: clear(Y) , ~on( X, Y) , ontable( X). 

8.2. RCF-STRIPS: relational, context free STRIPS 

In this section, we characterize a relational version of STRIPS-relational in the sense 
that its database is a conventional relational database. This version of STRIPS derives 

from action theories D of the form 2) = E U V,, U Vop U V,,, U I&, , with the following 
properties: 

l4 We take it as self evident what is meant formally by the language obtained by suppressing objects of sort 

situation from the language L2. 
I5 Notice that these are schemas, standing for the family of operators obtained by instantiating the “variables” 

X, Y and 2 of the schema by constants of our situation calculus language. 
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1. The only function symbols of sort object that the second-order language L2 pos- 
sesses are constants. 

2. Vs,, contains one sentence of the following form, for each fluent F: 

F(x,&,) s x =C(l) V...Vx =@, (21) 

where the Cci) are tuples of constant symbols of sort object. These are the only 

situation dependent sentences of D so. Notice that initial databases of this form are 
special cases of the relatively complete databases defined in Section 5. The case 
12 = 0 is permitted, in which case this axiom is F(x, SO) 3 false. For example, if 

an agent’s hand is initially empty: 

holding( X, So) 3 false. 

If initially, block A is on B, D is on A, C is on E, and no other block is on a 

block: 

on(x,y,So) =x=AA~=BVX=DA~=AVX=CA~=E. 

3. 27s” contains unique names axioms for constants of sort object. 
4. Each successor state axiom of D,, is strongly context free. 

5. We are progressing with respect to LY, a ground action term, and LY is possible 
initially: 

27 k Poss(GJ,So). 

Notice that the single sentence (21) is logically equivalent to: 

F(C”‘,So),. . . , F(C(“),So), (22) 

x # C(‘)A...AX # 6’) > lF(x,So). (23) 

Notice also that, given all the positive instances (22) of F, we can trivially determine 

the sentence (23). So it is sufficient to represent a database of this form (say for 
computational purposes) by the set of all positive instances of F. This, we claim, is 
what some versions of STRIPS do (but suppressing the situation argument). This is 
also what relational databases do; in fact, the unique names assumption together with 
the condition (2 1) on Ds, are the defining properties for a relational database (Reiter 

[ 201). The relational tables are just the ground instances of the fluents F. (But bear 
in mind that logically, the database consists of the table for F, together with the axiom 

(23) and unique names axioms.) 

As we did in the previous section, we want now to characterize the result of progress- 
ing 27~~ under the effects of the ground action (Y in the case of action theories of the 

above kind. To do so, we appeal to the results in Section 5. Consider the context free 
successor state axiom (20) for fluent F which we relativized to the initial situation SO. 
By our assumption (21) on the syntactic form of Vs,, (20) is equivalent to: 

F(x,do(a,So)) E 

x = XC’) v . . . v -# = x(nr) v 

[x = C(I) v.. . v X = C(n)] Ax # Y(l) A.. . A 3 # y(n). 
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Let C(t),..., C”’ be all the C”’ that are different tuples than all of the Y(j). Then, by 
unique names axioms for constant symbols of sort object, the above sentence will be 

logically equivalent to 

F(x,du(a,So)) f 
x = $1) v . v x = X’“” v x = c(I) v . . . v x = C”‘. (24) 

Let S be the following set of sentences: 
1. Initialize S to (9 E DsO 1 p is situation independent}. 
2. For each fluent F do: add the sentence (24) to S. 

The resulting set S enjoys the property that SUl&,,, is a progression of D,s,, under action 
(Y (Theorem 5.1) . Moreover, S has the same syntactic form as DsO, and so can serve as 

a new initial database for the purposes of iterating the above progression mechanism. 
Now we interpret the above construction of the set S as a STRIPS operator. Imagine 

representing the situation dependent sentences 

F(x, So) E x = C(l) V . . . V x = C@) (25) 

by the situation-suppressed relational database of ground instances F( C”‘), . . . , 

F(C(“)). We emphasize that this representation is merely a shorthand for the sen- 

tence (25). Now ask what sequence of deletions and additions of ground literals must 
be performed on 270, the situation-suppressed relational database version of Vs,, in order 

to obtain the situation-suppressed relational version of S. The deletions and additions 

necessary to achieve this transformation of DO to the corresponding representation of S 

will define the delete and add lists for the STRIPS operator a. 
It is easy to see that the following deletions and additions, when applied to ‘Da, yield 

the situation-suppressed, relational database representation of S: 
For each fluent F do (with reference to (20) ) : 
1. Delete from De the sentences F(Y(‘)), i = 1,. . . , n. 

2. Add to De the sentences F( Xc’)), i = 1,. . . , m. 
It is now clear how to define a STRIPS system and its associated operator for (Y: l6 

1. The language L,~-RIPS is the situation-suppressed version of L2. 

2. The initial world description is Z&. 
3. For a sentence u E Lr~,ps, W D CT iff R( W) b u. Here, W is a world description 

in relational database form for all its fluents, i.e., the only sentences in W that 

mention a fluent are ground atoms of that fluent. R(W) is the translation of the 
relational database part of W to its full logical form as follows: R(W) consists of 
the sentences of W that do not mention a fluent, together with those sentences of 

the form 

F(x) E x = C(l) V . . . V x = Ccn) 

where F(C(‘)) . 
4. LY’S precondition 

. , F( C”“) are alE the ground instances of a fluent F in W. 

is the situation-suppressed version of the right hand side of the 
equivalence in a’s situation calculus action precondition axiom. 

I6 See Section 7 for the relevant definitions 
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5. For each fluent F, include in (Y’S add and delete lists those literals specified above 
for obtaining the situation-suppressed relational database representation of S. 

Example 8.3. Consider the same actions, fluents and axioms as in Example 8.1, except 

treat this setting now as an instance of an RCF-STRIPS situation calculus specification. 

In this case, as before, we can “read off” the RCF-STRIPS operator schema for move 
from the instances of the successor state axioms of Example 8.1: 

move( X, x Z) 

P:clear(X)Aclear(Z)Aon(X,Y)AX#ZAx#YYY#Z. 

D: clear(Z),on(X,Y). 

A: clear(Y),on(X,Z). 

The operator description schemas for movefromtable and movetotable are obtained in 

the same way: 

movefromtable( X, Y) 

P: clear(X) A clear(Y) A ontubZe( X) A X # I! 

D: clear(Y) , ontable( X). 

A: on(X,Y). 

movetotable( X, Y) 

P: clear(X) Aon(X,Y) AX # K 

D: on( X, Y) . 

A: cfear( Y) , ontuble( X). 

8.3. Pednault’s ADL 

The only prior literature similar to our progression semantics for STRIPS-like systems 
is by Pednault [ 16,181. Like us, Pednault relates a STRIPS database to the initial 
situation of a situation calculus axiomatization. But our interpretation of such a database, 
namely as a situation-suppressed situation calculus theory, distinguishes our approach 

from Pednault’s, in which these databases are first-order structures. So for Pednault, 
a STRIPS operator is a mapping from first-order structures to first-order structures, 

where this mapping is defined by the addition and deletion of tuples applied to the 

relations of the structure. ADL, Pednault’s generalization of STRIPS, is defined by just 
such a mapping between structures. For us, as for Lifschitz [ 111, a STRIPS operator 
is a mapping from first-order theories to (possibly second-order) theories, where this 
mapping is effected by add and delete lists of sentences applied to the theory. The 
problem with the ADL view on STRIPS is that it does not provide a feasible mechanism 
for applying a STRIPS operator in the case that the database is a logically incomplete 
theory (e.g. OCF-STRIPS of Section 8.1). For in such a case, every model of this 
theory must be mapped by an ADL operator into its transformed structure, and it is the 
set of all such transformed structures which represents the effect of the ADL operator. 
When there are infinitely many such models, or even when they are finite in number 
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but plentiful, ADL becomes an unattractive STRIPS mechanism. In contrast, our focus 
is on STRIPS operators that apply to logical theories, and hence operate on the single 
sentential representations of these many models. 

9. Summary and future problems 

Although progression is a widespread notion in the database and AI literatures, in 
its full generality it is a surprisingly complex idea. This paper has explored some of 

the properties of progression, and related them to STRIPS systems. Here we summarize 

what we take to be the main contributions of the paper. 

1. We have argued the need for progressing a database, both from the perspective of 
STRIPS, and for the purposes of cognitive robotics. 

2. We have semantically defined a notion of progression, and shown that in general, 
to capture it, second-order logic is required. Moreover, we have shown how to 

determine a second-order sentence for the progression of an arbitrary finite first- 
(or second-) order initial database. 

3. We have explored two special cases for which progression is first order definable, 
namely, the case of relatively complete initial databases with arbitrary successor 
state axioms, and the case of a limited form of open world initial database, with 

context free successor state axioms. In both cases, we gave efficient procedures for 

computing the progression. On the other hand, as Pednault has shown [ 161, even 
for context free successor state axioms, when the initial database is an arbitrary 
finite first-order theory, progression need not be finitely first-order axiomatizable. 

4. On our view a STRIPS operator is a mechanism for progressing a situation calcu- 

lus theory, and its semantics can best be understood with reference to a suitable 
situation calculus axiomatization of actions and their effects. Under this intuition, 

it becomes possible to formulate various STRIPS-like systems, and prove their cor- 
rectness with respect to our progression semantics. In this paper we have done just 
that for two different STRIPS systems (OCF- and RCF-STRIPS) . In this connec- 

tion OCF-STRIPS is of particular interest because it provides for a (limited) form 
of logical incompleteness of the database. To our knowledge, OCF-STRIPS is the 

only variant of STRIPS which specifically provides for an incomplete database of 
ground literals, and which is provably correct with respect to a logical specification. 

5. It is a completely mechanical process to obtain the OCF-STRIPS operators from 

the action precondition and successor state axioms of a situation calculus ax- 
iomatization of some domain. Similarly for RCF-STRIPS. In other words, these 
purely declarative situation calculus specifications can be compiled into appropriate 
STRIPS systems. Moreover, Reiter’s [ 211 solution to the frame problem provides 
an algorithm for computing the successor state axioms from the effect axioms 
specifying the causal laws of the domain being modeled. In other words, the ax- 
iomatizer can describe the action precondition axioms, and the domain’s causal 
laws, and have those axioms automatically transformed into suitable STRIPS oper- 

ators for that domain (assuming the successor state axioms and the initial situation 
have the right syntactic forms). 
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The results of this paper suggests a variety of topics for future research: 
1. There are other cases for which progression can be done in first-order logic. One 

such case concerns actions with finitary effects, namely, when for every fluent, the 
action changes the fluent’s truth value at only a finite number of instances. This 

and other special cases of progression need to be explored. 
In this connection, Etzioni et al. [5] have recently proposed an extension of 

STRIPS to accommodate sensing actions, i.e., actions that obtain (at plan execution 

time) information about the world. As Levesque [9] has observed, the resulting 

planner suffers from a number of limitations and drawbacks, stemming primarily 

from the lack of a declarative specification of their system. As it happens, a 
situation calculus account of sensing actions already exists (Scherl and Levesque 

[ 261). Accordingly, it should be possible to incorporate sensing actions into our 
notion of progression, and use this to generalize STRIPS to include such actions. 
It should then be possible to prove the correctness of this version of STRIPS with 
respect to its progression semantics, much as we did in this paper for RCF- and 

OCF-STRIPS. 
2. We have considered only systems that compute the full result of progression. 

Sometimes, for example for computational purposes, it may be better to compute 
only that part of the progression that is relevant to the goals of interest. For 
example, if our blocks world includes a fluent for the colors of blocks, then there 

is no need to progress this fluent if our goals have nothing to do with colors. It is 

still an open problem how such partial progressions can be specified and computed 
in a principled way. 

3. The connection of RCF-STRIPS to relational databases (Section 8.2) suggests a 
natural generalization of STRIPS operators to allow for arbitrary relational algebra 

operators (not just adds and deletes) in defining the operator’s effects. This can 

indeed be done, and an appropriate semantics is defined in terms of a situation 
calculus axiomatization that relaxes the context free restriction on successor state 
axioms of Section 8.2. In this connection, Pednault’s ADL [ 181 provides for just 
such a generalized relational STRIPS, but without the relational algebra. 

4. In a sense, progressing a database to 5, amounts to forgetting about the initial 
situation and all those situations that are reachable from SO but not from S,. This 

view of progression leads to an interesting notion of what it means for a knowledge 
base to forget about some of its contents that is investigated further in (Lin and 

Reiter [ 141). 
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