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Abstract,  We consider the problem of integrating Reiter's default logic into terminological repre- 
sentation systems. It turns out that such an integration is less straightforward than we expected, 
considering the fact that the terminological language is a decidable sublanguage of first-order log- 
ic. Semantically, one has the unpleasant effect that the consequences of a terminological default 
theory may be rather unintuitive, and may even vary with the syntactic structure of equivalent 
concept expressions. This is due to the unsatisfactory treatment of open defaults via Skolemiza- 
tion in Reiter's semantics. On the algorithmic side, we show that this treatment may lead to an 
undecidable default consequence relation, even though our base language is decidable, and we 
have only finitely many (open) defaults. Because of these problems, we then consider a restricted 
semantics for open defaults in our terminological default theories: default rules are applied only 
to individuals that are explicitly present in the knowledge base. In this semantics it is possible 
to compute all extensions of a finite terminological default theory, which means that this type of 
default reasoning is decidable. We describe an algorithm for computing extensions and show how 
the inference procedures of terminological systems can be modified to give optimal support to this 
algorithm. 

Key words: knowledge representation, terminological reasoning, nonmonotonic reasoning, default 
logic. 

1. Introduction 

T e r m i n o l o g i c a l  r e p r e s e n t a t i o n  sy s t ems  are  u sed  to r ep re sen t  the t a x o n o m i c  and  

c o n c e p t u a l  k n o w l e d g e  o f  a p r o b l e m  d o m a i n  in a s t ruc tu red  and  w e l l - f o r m e d  

way.  To d e s c r i b e  this  k ind  o f  k n o w l e d g e ,  one  starts  wi th  a tomic  c o n c e p t s  (unary  

p r e d i c a t e s )  and  ro les  ( b ina ry  p r e d i c a t e s )  and  def ines  m o r e  c o m p l e x  c o n c e p t s  u s ing  

the o p e r a t i o n s  p r o v i d e d  by  the  c o n c e p t  l a n g u a g e  o f  the  pa r t i cu l a r  f o r m a l i s m .  In 

a d d i t i o n  to this  c o n c e p t  d e s c r i p t i o n  f o r m a l i s m ,  mos t  o f  these  s y s t e m s  a lso  h a v e  

* This is a revised and extended version of a paper presented at the 3rd International Conference 
on Principles of Knowledge Representation and Reasoning, October 1992, Cambridge, MA. 
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an assertional component. One can, for example, state that an individual is an 
instance of a concept or that two individuals are connected by a role. 

In terminological representation formalisms, the concept descriptions are inter- 
preted as universal statements, which means that, unlike frame languages, they 
do not allow for exceptions. As a consequence, the system can use descriptions to 
automatically insert concepts at the proper place in the taxonomy (classification), 
and it can use the facts stated about individuals to deduce to which concepts they 
must belong (realization). For example, one could define the concept Mammal 
as an Animal that feeds its young with Milk, where feeds-young-with is used 
as a role. If the concept Platypus 1 is defined as an Animal that lives-in the 
Water, feeds its young with Milk, and reproduces with Eggs, then the system 
will recognize that Platypus is a subconcept of Mammal. Since most terminolog- 
ical representation languages are sublanguages of first-order logic, classification 
and realization are specific automated reasoning tasks for a (usually decidable) 
subclass of first-order formulae. 

However, commonsense reasoning is often based on assumptions that may 
ultimately be shown to be false. In our example, one might wish to assume by 
default that Mammals reproduce Viviparously. Only if it is known that a specific 
mammal reproduces with eggs should this assumption be cancelled. If one wishes 
to use terminological systems for this kind of commonsense reasoning, one needs 
a formalism that can handle such default assumptions but does not destroy the 
definitional character of concept descriptions - because otherwise the advantage 
of automatic concept classification, etc. would be lost (see [6]). Besides the 
general arguments for the importance of reasoning with defaults, which can be 
found in the nonmonotonic reasoning literature, the need for embedding defaults 
into terminological representation formalisms is also substantiated by the fact that 
this is an important item on the wish list of users of terminological representation 
systems (see, e.g., [24]). 

Several existing terminological systems, such as BACK [22], CLASSIC [7], 
K-Rep [18], LOOM [21], or SB-ONE [16], have been or will be extended to 
provide the user with some kind of default reasoning facilities. However, as the 
designers of these systems themselves point out, these approaches usually have 
an ad hoc character and are not equipped with a formal semantics. For example, 
defaults in the FAME system, which is built using K-Rep, "will not be complete 
(or even consistent)" ([181, p. 11) unless the user is very careful when using 
them. In CLASSIC, "a limited form of defaults can be represented with the aid 
of rules and test functions." However, the user is warned to "use this trick with 
extreme caution" ([71, pp. 445, 446). 

Our arguments for the importance of default extensions for terminological 
representation languages so far were given from the viewpoint of the termino- 
logical systems community. However, these investigations may also be of inter- 
est for research in nonmonotonic reasoning itself. Most nonmonotonic reasoning 
formalisms (e.g., Reiter's default logic [27], Circumscription [19]) use full first- 
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order predicate logic as their base language. In this general form, the formalisms 
are usually highly undecidable (see, e.g., Theorem 4.9 in [27]). For this rea- 
son, work on decision procedures for decidable subcases was mostly restricted 
to propositional logic (see, e.g., [15, 11]), thus leaving the wide gap between 
propositional logic and full first-order logic almost unexplored. Since most ter- 
minological representation languages can be viewed as decidable subclasses of 
first-order logic - but are nevertheless much more expressive than proposition- 
al logic - they can serve as interesting test cases for nonmonotonic reasoning 
formalisms. We shall see that this applies not only for algorithmic, but also for 
semantic considerations. 

We shall here consider the problem of integrating Reiter's default logic into 
a terminological representation formalism. This treatment of defaults in termi- 
nological systems has already been proposed by Brachman and Schmolze [8], 
but to the best of our knowledge, this proposal was never followed up. Reiter's 
default rule approach seems to fit well into the philosophy of terminological 
systems because most of them already provide their users with a form of "mono- 
tonic" rules. These rules can be considered as special default rules where the 
justifications - which make the behavior of default rules nonmonotonic - are 
absent. 

At first sight, one might think that, from a semantic point of view, the proposed 
integration should be unproblematic. In fact, the terminological representation 
language we shall consider (see Section 2) is a sublanguage of first-order logic, 
and Reiter's semantics has been formulated for full first-order logic. However, on 
closer inspection it turns out that one runs into severe problems, because of the 
unsatisfactory treatment of open defaults by Skolemization (see Section 3). 

A similar problem arises when considering the integration from the algorith- 
mic point of view. In the abstract of their paper on how to compute extensions for 
default logic, Junker and Konolige [ 14] write that their method is applicable if the 
default theory "consists of a finite number of defaults and premises and classical 
derivability for the base language is decidable." A related formulation can be 
found in the abstract of Schwind and Risch's paper on the same topic [31]. Since 
our base language is decidable, and we certainly do not wish to have infinitely 
many default rules, these methods seem to apply in our case. However, a closer 
look at the papers reveals that by "a finite number of defaults" it is meant "a finite 
number of closed defaults." But the default rules we wish to consider are open 
defaults. In fact, as already pointed out by Reiter ([27], p. 115) "the genuinely 
interesting cases involve open defaults." In Section 4 we shall show that, with 
our (decidable) terminological language as base language, a finite set of premises 
and open defaults may lead to an undecidable default consequence problem, if 
the open defaults are treated as proposed by Reiter ([27], Section 7.1). 

Because of the semantic as well as algorithmic problems posed by Reiter's 
treatment of open defaults, we shall consider a restricted semantics for open 
defaults in our integration: default rules are only applied to individuals that are 
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explicitly present in the assertional part (ABox) of the knowledge base. Though 
one may thus lose some intuitive default inferences (see Section 2.4 below), 
this treatment of default rules is akin to the treatment of the monotonic rules in 
terminological systems such as CLASSIC. 

With this restricted semantics, a finite set of open defaults stands for a set 
of closed defaults that is finite as well. Thus the above-mentioned methods of 
Schwind and Risch and of Junker and Konolige can be applied to compute 
extensions (see Section 5). In Section 5.2 we describe a method for computing 
extensions that is based on a theorem by Schwind and Risch. In order to make 
these methods more efficient, one has to solve certain algorithmic problems for 
the terminological language. For Junker and Konolige's method one has to find 
minimal proofs for assertional facts - which can be seen as an abduction problem 
for ABoxes - and for the method described in Section 5.2 one must find maximal 
consistent sets of assertional facts. In Section 6 we shall show how the tableaux- 
based methods for assertional reasoning developed in our group ([12, 2]) can be 
modified to solve these automated reasoning tasks. 

2. The Representation Formalisms 

First we shall briefly review the terminological language ,A£C., ~ [13] and Reiter's 
default logic. Then terminological default logic will be defined as the special- 
ization of default logic to JtL;C) r .  Finally an example will illustrate why Reiter 
uses Skolemization in his semantics for open default theories. 

2.1. TI lE TERMINOLOGICAL LANGUAGE ~/2C,~" 

Terminological knowledge representation formalisms can be used to define the 
relevant concepts of a problem domain (terminological knowledge) and to describe 
objects of  this domain with respect to their relation to concepts and their interre- 
lation with each other (assertional knowledge). Depending on which constructs 
are allowed for building concept descriptions, we get different terminological lan- 
guages. In the present paper we restrict our attention to the language .A/~C.,%-. 2 

DEFIi"~ITION 2.1. The terminological part of the language ~4£C5 c consists of 
the following concept description formalism. The concept terms of this formalism 
are built from concept, role, and attribute names using the constructors conjunc- 
tion (C rq D), disjunction (C U D), negation (-~C), exists-restriction (3R. C), 
value-restriction (VR. C), and agreement ('~ -+- v). Here C, D stand for concept 
terms, R for a role or attribute name, and u, v for finite sequences of attribute 
names. 

The assertionaI part of our language allows us to assert facts concerning 
particular objects. These objects are referred to by individual names, and we 
can state that an object belongs to a concept (written C(a)),  or that two objects 
are related by a role or attribute (written R(a, b)). Here a, b stand for individual 
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names, G' for a concept term, and R for a role or attribute name. A finite set of 
such facts is called an ABox. 

The semantics of an ABox can either be given directly by defining interpretations 
and models, or by a translation into first-order logic. To make the fact explicit 
that we are dealing with a sublanguage of first-order logic, we choose the second 
option. 

Concept names are considered as symbols for unary predicates, and role and 
attribute names as symbols for binary predicates. Consequently, concept names 
A are translated into (atomic) formulae A(x) with one free variable, and role and 
attribute names R into (atomic) formulae R(x, g) with two free variables. The 
attributes have to be interpreted as partial functions, which can be expressed by 
a formula Vx, y, z: ( f(x ,  y) A f (x ,  z) --+ y = z) for each attribute name f .  

Concept terms are also translated into formulae with one free variable. The 
semantics of conjunction, disjunction, and negation are defined in the obvious 
way, namely, (C R D)(x) := C(x) A D(x), (C U D)(x) := C(x) V D(x), and 
(-~C)(x) := ~C(x).  For value-restrictions we define (VR. C)(x) := Vy: (R(x, 
y) --+ C(y)), and the semantics of exists-restrictions is given by (~R. C)(x) := 
By: (R(x ,y)  A C(y)). Let u = f I ' " f m ,  and v = 9 l ' " g n  be sequences 
of attributes. The agreement construct built from these sequences is translat- 
ed into the formula (u "-- v)(x) := 3 y l , . . .  ,ym, Zl , . . .  ,z,r~: (f l(x,  yl) A . . .  A 
. f~(Y~-l ,  Y~) A gl(x, Zl) A ' . - A g n ( z n - l , Z n )  A y ~  = Zn). 

The individual names of the ABox are considered as constant symbols. In 
terminological systems one usually has a unique name assumption, which can be 
expressed by the formula a ¢ b for all distinct individual names a, b. The formula 
corresponding to the assertional fact C(a) (resp. R(a, b)) is obtained by replacing 
the free variable(s) in the formula corresponding to C (resp. R) by a (resp. a, b). 
To sum up, an ABox is translated into a set of first-order formulae consisting 
of the translations of the ABox facts, the formulae expressing unique name 
assumption, and the formulae expressing that attributes are partial functions. 

The basic inference service for ABoxes is called instantiation. It answers the 
question of whether (the translation of) a given ABox fact C(a) is a (logical) 
consequence of (the translation of) a given ABox .4. If the answer is yes, we 
say that a is an instance of C with respect to ~A (fit ~ C(a)). Algorithms that 
solve this inference problem have, for example, been described in [12, 2]. 

2.2. REITER'S DEFAULT LOGIC 

Reiter [27] deals with the problem of how to formalize nonmonotonic reasoning 
by introducing nonstandard, nonmonotonic inference rules, which he calls default 
rules. A default rule is any expression of the form 

7 
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where OZ, f l l , . . .  ,fin,')' are first-order formulae and n >/ 1. Here c~ is called the 
prerequisite of the rule, i l l , . . . ,  fin are its justifications, and 3' is its consequent. 
We write 

-y 

to indicate that the justification is trivially true, i.e., the default has exactly one 
justification fl(x) with free variables x such that its universal closure Vx: fl(x) 
is valid. 

For a set of default rules D, we denote the sets of formulae occurring as pre- 
requisites, justifications, and consequents in D by Pre(D), Jus(D), and Con(D),  
respectively. 

A default rule is closed iff c~,fl l , . . .  , t im3'  do not contain free variables. A 
default theory is a pair (W, D), where 142 is a set of closed first-order formulae 
(the world description) and 7P is a set of default rules. A default theory is closed 
iff all its default rules are closed. 

Intuitively, a closed default rule can be applied (i.e., its consequent is added 
to the current set of beliefs) if its prerequisite is already believed and all its 
justifications are consistent with the set of beliefs. Formally, the consequences of 
a closed default theory are defined with reference to the notion of an extension, 
which is a set of deductively closed first-order formulae defined by a fixed point 
construction (see [27], p. 89). In general, a default theory may have more than 
one extension, or even no extension. Depending on whether one wishes to employ 
skeptical or credulous reasoning, a closed formula 6 is a consequence of a closed 
default theory iff it is in all extensions or if it is in at least one extension of the 
theory. In general, this consequence relation is not even recursively enumerable 
(see [27], Theorem 4.9). 

Reiter also gives an alternative characterization of an extension, which we 
shall use, in a slightly modified way, as the definition of extension. Here and in 
the following, Th( r )  stands for the deductive closure of a set of formulae P. 

DEFINITION 2.2. Let E be a set of closed formulae and (14;, D) be a closed 
default theory. We define Eo := W and for all i /> 0 

Ei+I := Ei  U {3' I o~:fil , . . . ,  fin/3" E D, e~ E Th(Ei),  

and ~ f l l , - . - ,  ~fln q~ Th(E)}.  

Then Th(E)  is an extension of (W, D) iff 

OO 

Th(E)  = U Th(Ei) .  
i=0 

Note that the extension Th(E)  to be constructed by this iteration process occurs 
in the definition of each iteration step. Since we are only adding consequents 
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of defaults during the iteration, any extension Th(E) of (W, 7)) is of the form 
Th(W U Con(7?')) for a subset 77' of 7?. Reiter shows ([27], Theorem 2.5) that 
the set 

= { c t : f l l ' ' "  " ' f in  E 7) lc t  E Th(E) and ~fll,...,~flr~ ¢ Th(E)}  /5 
"7 

always satisfies this property. For this reason it is called set of generating defaults 
for the extension Th(E).  Another easy consequence of Definition 2.2 is that 
(W, 7?) has an inconsistent extension iff 162 is inconsistent. 

Reiter defines extensions of arbitrary default theories (W, 7?) (i.e., default 
theories with open defaults) as follows. First, the formulae of W and the conse- 
quents of the defaults are Skolemized; that is, existentially quantified variables 
are replaced by Skolem functions whose arity is the number of universal quanti- 
tiers in whose scope the existential quantifier lies. For example, Skolemization of 
~z: Vy: 3z: P(z, y, z) yields Vy: P(c, y, f(y)), where c is a Skolem constant 
and f is a Skolem function of arity I (see [27], Section 7, for details). Second, a 
(possibly infinite) set 77P of closed default rules is generated by taking all ground 
instances (over the initial signature together with the newly introduced Skolem 
functions) of  the Skolemized versions of the defaults of 7?. Now E is an exten- 
sion of (W, 7?) iff E is an extension of the closed default theory (W', 77'), where 
W ~ is the Skolemized form of W. The reason for Skolemizing before building 
ground instances will be explained by an example in Section 2.4. 

2.3. TERMINOLOGICAL DEFAULT THEORIES 

A terminological default theory is a pair ("4, 79) where .4 is an ABox and 7? is a 
finite set of default rules whose prerequisites, justifications, and consequents are 
concept terms. Obviously, since ABoxes can be seen as sets of closed formulae, 
and since concept terms can be seen as formulae with one free variable, 3 ter- 
minological default theories are subsumed by Reiter's notion of an open default 
theory. 

However, as for ABox reasoning without defaults, we are not interested in 
arbitrary formulae as consequences of a terminological default theory (.4, 79), 
but only in assertional facts of the form C(a),  where a is an individual name 
occurring in the original ABox .4. 

As mentioned in the introduction, default rules of the form 

,7 

behave like the "monotonic" rules of terminological systems such as CLAS- 
SIC, that is, rules that apply as soon as their prerequisite is satisfied. Howev- 
er, one subtle difference should be noted. Obviously, starting from a consistent 
world description, application of monotonic rules can lead to an inconsistency. 
In this case, most systems give an error message and do not accept the input 
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that caused the inconsistency. For the corresponding default theory (where absent 
justifications are considered as trivially true justifications), one does not obtain 
an inconsistent extension. Instead, the theory has no extension. 

2.4. WHY IS SKOLEMIZATION NECESSARY? 

The following example shows that intuitively valid consequences would get lost 
if one did not Skolemize. Suppose that our ABox consists of the fact that Tom 
has some child who is a doctor, namely, ,,4 -= {(Echild.doctor)(Tom)}. By 
default we wish to conclude that doctors usually are rich persons, and usually 
have children who are doctors. Thus D consists of the default rules 

doctor: rich-person 
rich-person 

and 
doctor: ~child.doetor 

~child.doctor 

Skolemization of the world description A yields A ~ = {child(Tom, Bill), 
doctor(Bill)}, where Bill is a new Skolem constant, whereas Skolemization 
of the consequent of the second default yields a unary Skolem function, say 
child-@ It is easy to see that the corresponding closed default theory has exactly 
one extension, and that this extension contains the assertional facts that Tom has a 
rich child and a grandchild who is a doctor, namely, (3child.rich-person)(Tom), 
and (3ehild.~child.doctor)(Tom). Intuitively, this comes from the fact that the 
closed defaults obtained by instantiating our open defaults with the Skolem con- 
stant Bill are applicable. Without these ground instances, the above facts could 
not have been deduced by default. To deduce by default that the grandchild of 
Tom is not only a doctor, but also a rich one, the first default has to be instantiated 
by the term child-of(Bill). 

3. Problems Caused by Skolemization 

In addition to the problem that Skolemization usually destroy the nice composP 
tional character of  our concept formulae, it is also problematic for more severe 
reasons to be presented below. We shall give three examples that demonstrate 
that Reiter's treatment of open defaults is problematic, from an intuitive as well 
as a formal point of view. 

Our first example shows that the Skolemization of the world description may 
lead to counterintuitive consequences of the default theory. Consider the follow- 
ing concept term, which can be used to express that an adult man is married to 
a woman or is a bachelor 

(3spouse.Woman) u Bachelor. 
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We assume that our ABox asserts that the individual Tom belongs to this con- 
cept term, and that he is married to the woman Mary. In addition, we take the 
following default (without prerequisite) 

: -7 W o T n a T L  

~ W o m a n  ' 

which corresponds to a still-prevailing male chauvinism in linguistic usage. To 
know with what individuals this default has to be instantiated, we have to Skolem- 
ize our ABox facts. Translated into traditional first-order syntax, these facts yield 
the world description 

{(3y: spouse(Tom, y) A Woman(y)) V/3achelor(Tom), 
spouse(Tom, Mary), Woman(Mary)}. 

The Skolemized version of the first formula is 

(spouse(Tom, Gordy) /~ Woman(Gordy)) V/3acheIor(Tom), (*) 

where Gordy is introduced as a new Skolem constant. Because of the disjunction 
in this formula, our Skolemized world description does not imply Woman(Gordy). 
Thus the chauvinistic default can fire, and we get ~Woman(Gor@). Together 
with the formula ( ,)  this y ie lds /3achelor (Tom) as a consequence of our default 
theory, which is rather surprising since our ABox actually contains a female 
spouse of Tom. 

As already pointed out by Poole, the reason for this strange behavior comes 
from that fact that "we have lost the context of what the Skolem constants repre- 
sent" ([25], p. 907), in our case the context that Gordy was originally introduced 
to stand for a female spouse of Tom. Poole proposes to keep track of this context 
by using Hilbert's e-symbol. 

Although Poole's approach may avoid the problem in the above example, 
it is of no avail in our next examples. These examples demonstrate that, as a 
result of the problems caused by Skolemization, the consequences of a default 
theory depend on the syntactic form of the world description: in other words, for 
identical sets of open defaults, logically equivalent world descriptions may lead 
to different results. 

In our second example we consider concept terms C1 := 3R. (A f~/3) and 
C2 := 3R. A where R is a role name and A,/3 are concept names. Obviously, 
if we assert that an individual a is in the first term this implies that it is in the 
second one as well. For this reason, the ABoxes A1 := {Cl(a)} and ¢42 := 
{C1 (a), G'2 (a)} are logically equivalent. When Skolemizing the first ABox, we 
get a single new Skolem constant b which is /~-related to a and lies in A •/3, 
whereas when Skolemizing the second ABox, we get two Skolem constants c 
and d, both R-related to a, but where e lies in A R / 3  and d lies in A. Now 
consider the (open) default A:-~/3/-~/3. For the Skolemized version of AI,  this 
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default is instantiated with a, b, whereas for the Skolemized version of A 2 it 
is instantiated with a, c, d. Obviously, the default rule cannot fire for b and c, 
because their being in A r-1 B is inconsistent with its justification. On the other 
hand, this default rule can be applied to d, because being in A is consistent with 
being in ~B.  For this reason, d is put into -~B, which shows that the Skolemized 
version of A2 has (~R.-~B)(a) as a default consequence, whereas this fact 
cannot be deduced by default from the Skolemized version of ,4j. Technically, 
the reason for this behavior is the fact that, before the application of the default, 
the individuals c and d might be identical (which is the reason why the two 
ABoxes are logically equivalent) whereas this is no longer possible after the 
default has been applied. 

The third example is similar to the second. It is quite obvious that the concept 
terms 3R. (A t_l B) and (~R. A) U (3R. B) are equivalent. Let A1 be an ABox 
where a is asserted to be in the first concept term, and A2 one where a is asserted 
to be in the second concept term. When using a standard Skolemization method, 
the first ABox yields one new Skolem constant, and the second ABox yields 
two. Now it is easy to see that the corresponding instantiations of the default 
rule A U B:C/C can only fire for the Skolemized version of the first ABox. 
Consequently, we have a in ~R. C as a default consequence of the first ABox, 
but not of the second one, even though these two ABoxes are equivalent. 

Lifschitz [17] proposes a treatment of open defaults which avoids Skolem- 
ization by working with classes of models instead of sets of formulae in the 
definition of default extensions. Obviously, working with models means that log- 
ically equivalent formulae must yield the same results. This shows that Lifschitz's 
approach can overcome the problem pointed out in the previous two examples, 
even though it was not motivated by the problems connected with Skolemization 
(see footnote 1 in [17]: "Skolemization . . .  is irrelevant for this discussion.") 
Lifschitz's motivation was to make it possible to derive by default universally 
quantified formulae of the form Vx: C(x) ,  which is not possible with Reiter's 
approach, but which is not necessary in our context (because the terminological 
inference service is only meant to derive new ABox facts, i.e., formulae of the 
form C(a)).  From our point of view, the main problem of Lifschitz's approach 
is that working with models means that it becomes even harder to get algorithms 
for computing extensions. Another problem of his approach is that one gets rather 
unexpected consequences, since models of different cardinality are treated sepa- 
rately. For example, assume that one has formulae >/3 and ~< 2 expressing that 
a model has at least 3 and at most 2 elements, respectively, which would, for 
example, be available in concept languages allowing for number-restrictions and 
a universal role, i.e., a role U that satisfies Vx, y: U(x, y). The default theory 
consisting of an empty world description and the closed defaults 

~< 2: >~ 3: 
and 
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has C(a) as consequence, which means that this approach makes a case analysis 
with respect to the cardinality of models. But for other cases, Lifschitz's approach 
still does not make a case analysis. For example, the theory consisting of an empty 
world description and the closed defaults 

A(a): and ~ A ( a )  

does not have C(a) as consequence. 

4. An Undeeidability Result 

In addition to the semantic problems caused by Skolemization, we shall now 
show that, for our base language A £ C S ,  this treatment of open defaults also 
leads to an undecidable default consequence relation, even though A £ C 5  is 
decidable. This is achieved by reducing the word problem for semigroups to 
the consequence problem of a default theory. Let 2 be a finite alphabet, and let 
R = { (Ul ,V l ) , . . .  , ( u m v n ) }  be a finite set of pairs of words over ~. Such a set 
is usually called a Thue system. It induces a congruence relation ~R on ~* as 
follows: The relation ~R is the reflexive, transitive, and symmetric closure of 

--+•:= {(xuiy ,  xviy) [ 1 <~ i <~ n and x, y E 2*}. 

The word problem for the semigroup presented by R is the problem of determin- 
ing, for a given pair of words u, v, whether u ~R v holds or not. It is well-known 
that this problem is in general undecidable [2@ 

In the following we shall treat the elements of 2 as attribute names. The 
semigroup presentation is used to define a finite set of open defaults as follows. 
For any f E 2 and for any relation (ui, vi) E R we have defaults 

A: A: 
and 

Vf. A ui -" vi " 

If we wish to decide whether the words u, v are equivalent with respect to 
R, we take the ASox ,Au,v := {A(a ) , (u  - u)(a) , (v  - v)(a)} as our world 
description. 

PROPOSITION 4.1. With respect to the set o f  defaults induced by ~ and R, the 
ABox fact  (u -- v)(a) is a default consequence o f  ,du,v iff u and v are equivalent 
with respect to R (i.e., u ~ R  v holds). 

Intuitively, the world description puts a into A, and asserts sequences of attributes 
u, v starting from a. The implicit individuals lying on these sequences are made 
explicit by Skolemization. The first type of defaults puts all individuals reach- 
able from a by a sequence of attributes into A, and the second type identifies 
individuals which can be reached by the respective sequences ui and vi from an 
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individual in A, thus simulating application of relations from R. (It should be 
noted that the consequents of this second type of defaults are also responsible 
for the introduction of new implicit individuals.) 

Since a formal proof of the proposition is straightforward but rather tedious, 
we shall just illustrate it by an example. Consider the semigroup presentation 
R = {(fg, gf)} over the alphabet E = {f, 9}. This presentation is transformed 
into the default rules 

A: A: A: 
and 

V f . A '  Vg.A'  y g - g f  
Obviously, the words f99 and 99f are equivalent with respect to R. If we wish 
to obtain this equivalence as a consequence of applying the above default rules, 
we take the ABox .Aygg,ggf = {A(a), (fg9 - fg9)(a), (g9f - ggf)(a)} as our 
world description. 

Translated into first-order logic and then Skolemized, this ABox yields the 
world description 

{A(a), 

f(a, Dr) A g(bl, b2) A g(b2, bd), 

g(a, el) A g(Cl, e2) A f(c2, ¢3), 
Vx, y,z: ( f(x,y)  A f (x , z )  ~ y = z), 
w , v , z :  O(x,v) A g(x, z) v = z)}, 

where the last two formulae are expressing that f ,  9 are interpreted as partial 
functions, and b l , . . . ,  e3 are Skolem constants. Note that these formulae have 
already been used to simplify the rest of the ABox, and that redundant equalities 
have been removed. We wish to show that b3 = e3 is a consequence of the default 
theory. 

The translated and Skolemized form of the consequent fg - gf  of the third 
default is f (x,  hi (x))Ag(hL (x), h2 (x))Ag(x, kl (x))A f(kl  (x), k2 (x))Ah2(x) = 
k2(x), where hi, h2, kl, k2 are unary Skolem functions. 

Since A(a) is in our world description, the third default, instantiated by a, is 
applicable, and yields f(a, hl(a))Ag(hl(a),h2(a))Ag(a, kl(a))Af(kl(a),k2(a))A 
h2 (a) = k2(a). The formulae that express that f ,  9 are partial functions yield 
hi(a)  = b,, h2(a) = b2, and hi(a) = el. 

Applying the second default, instantiated by a, we get Vy: (g(a, y) --~ d(y)), 
which in turn yields A(cl ). Now we can apply the third default, instantiated by el, 
which yields f(Cl, hi (el)) Ag(hl (el), he(el)) Ag(Cl, kl (el)) A f(kl  (C1), k2(Cl ))/~ 
h2(el) = k2(Cl). Because of the formulae expressing that f ,  g are partial func- 
tions, we get c2 = kl (el), e3 = ha(el) and, using the additional fact kl(a) = el, 
also k2(a) = hi(el). 

To sum up, we have b2 = h2(a) = k2(a) = hi(el), c3 = k2(cl) = h2(cl), 
and g(b2, b3) as well as g(hl(cl), h2(cl)). This yields b3 = h2(cl) = c3, which 
is what we wished to show. 
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Since the word problem for semigroups is in general undecidable, the proposi- 
tion shows that our terminological default theories in general have an undecidable 
consequence problem. 

COROLLARY 4.2. The consequence problem for  an open default theory is in 
general undecidable, even if  one has a finite set o f  defaults and the base language 
is decidable. 

It should be noted that the default rules used in the reduction are monotonic 
(i.e., they do not have justifications). In addition, it is easy to see that the set 
of all consequents of defaults together with the world description is consistent. 
Consequently, the default theory has exactly one extension, which shows that the 
undecidability result is independent of whether one wants to employ skeptical 
or credulous reasoning. In addition, this shows that the consequences of rule 
applications in the CLASSIC system would become undecidable, if CLASSIC 
applied rules not only to individuals explicitly present in the ABox, but also to 
implicit individuals. This result for CLASSIC rules has already been mentioned 
by Nebel and Smolka [23], but without proof. In the next section we shall see that 
the restriction to explicit individuals leads to a decidable consequence relation 
even if one allows nonmonotonic default rules instead of CLASSIC's monotonic 
rules. 

5. Computing Extensions 

Because of the problems caused by Skolemization in Reiter's treatment of open 
defaults, we now propose a restricted semantics for  open default theories: default 
rules are only applied to individuals that are explicitly mentioned in the ABox. 

DEFINITION 5.1. In the restricted semantics for terminological default theories, 
an open default of a terminological default theory (A, 59) is interpreted as rep- 
resenting the closed defaults obtained by instantiating the free variable by all 
individual names occurring in ,A. 

Because the ABox A and the set of open defaults 59 are assumed to be finite, 
we end up with a finite set o f  closed defaults. Since our terminological language 
is decidable, the methods of Junker and Konolige, or of Schwind and Risch, can 
be applied to compute all extensions (according to our restricted semantics). 

In principle, both methods depend on the fact that any extension of a closed 
default theory (A, 59) is of the form Th(A U Con(73)) for a subset 77 of D. If 
59 is finite, there are only finitely many such subsets, and the only problem is 
to decide which of these generate an extension. In fact, if the base language is 
decidable, one could even use for this purpose the iteration process described 
in the definition of an extension. This is so because decidability of the base 
language makes each iteration step effective, and the iteration process terminates 
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because there are only finitely many consequents to be added. However, with 
this method one has to consider all the (exponentially many) subsets of 79. The 
two methods we shall describe below try to avoid considering all subsets, thus 
making the search for (the sets of generating defaults of) all extensions more 
efficient. 

In the worst case, computing all extensions needs exponential space, since 
there are (even propositional) default theories with exponentially many exten- 
sions. For propositional logic as base language, skeptical default reasoning is 
gI[ complete, and credulous default reasoning is ZP complete [11]. The reason 
is that, for example for credulous reasoning, one must find an extension such 
that a given formula is contained in the extension. Thus, one must guess a set 
77 of generating defaults for the extension (which can be done in NP), and one 
must check (1) whether this set is in fact a generating set of defaults for an 
extension, and (2) whether the given formula is a consequence of A U Con(7)) 
(which can both be done by calling polynomially many NP-oracles). For the 
terminological language Af ,  C.T, the instantiation problem is PSPACE-complete 
[13]. Thus, instead of calling NP-oractes, one must call PSPACE-oracles in the 
procedure for credulous reasoning sketched above. Obviously, this shows that 
credulous (and thus also skeptical) default reasoning is PSPACE-complete for 
terminological default theories with the base language ACCF.  

5.1. JUNKER AND KONOLtGE'S METHOD 

Junker and Konolige [14] translate a closed default theory (.A, 79) into a Truth 
Maintenance Network (TMN) ~ la Doyle [9]. The nodes of the TMN are the con- 
sequents C7), and the prerequisites and negated justifications/27) of the defaults. 
A default o~: gL , . . . , / 3n /7  of 79 is translated into a nonmonotonic justification 
{in(a), ou, t(-~[3L,..., -~[3n) --+ 7) of the TMN. In order to supply the truth main- 
tenance system with enough information about first-order derivability in the base 
language, each prerequisite and negated justification of a default gives rise to 
several monotonic justifications of the TMN. These justifications are of the form 
(in(Q) ~ q) where q E £9 ,  and Q is a minimal subset of CD such that A U Q 
entails q - i.e., A u Q ~ q but ,A U Qr ~= q for every proper subset Q~ of Q. 

Junker and Konolige show that there is a l-l-correspondence between admis- 
sible labelings of the TMN thus obtained and extensions of the default theory, and 
they describe an algorithm that computes all admissible labelings of a TMN. Giv- 
en such an admissible labeling, the set of generating defaults of the corresponding 
extension consists of the defaults whose consequents are labeled "in." 

In order to make the translation of terminological default theories into TMNs 
effective, one has to show how to compute the above mentioned monotonic jus- 
tifications of the TMN. First note that the elements of £7) U C7) are admissible 
assertional facts. This is obvious for the prerequisites and the consequents of our 
instantiated defaults, and for the negated justifications it follows from the fact 
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that the concept language has negation as an operator. For this reason, "4 U Q 
for a subset Q of Cz~ is an admissible ABox of our language, and the entailment 
problem ,,4 U Q ~ q for q E £7) is an ordinary instantiation problem. As men- 
tioned in Section 2, the instantiation problem is decidable for our language. A 
brute force algorithm could just compute all subsets Q of Cz~ such that "4 U Q 
entails q E £z~, and then, for each q, eliminate the ones which are not minimal. 
Of course, this simple algorithm is very inefficient, and thus not appropriate for 
actual implementations. 

Because .4 O Q entails an assertional fact C(a) iff A u Q u {~C(a)} is 
inconsistent, we need a solution of the following problem: Let .4, B be ABoxes. 
Find all minimal subsets Q of/3 such that .4 U Q is inconsistent. Since a similar 
algorithmic problem has to be solved for the method obtained from Schwind 
and Risch's characterization of an extension, we defer the description of a more 
efficient solution of this problem to a separate section. 

A characteristic feature of Junker and Konolige's method is that - after the 
computation of the minimal sets Q - it is completely abstracted from derivability 
in the base language. This may be advantageous from a conceptual point of view, 
but it can be problematic from the algorithmic point of view. In fact, one has to 
compute the corresponding minimal sets for all elements q in £7), even though 
this information may not contribute to the computation of an extension. 

5.2. A M E T H O D  B A S E D  ON A T H E O R E M  BY S C H W I N D  A N D  RISCH 

Schwind and Risch [31] give a theorem that characterizes those subsets 73 of 
7) that are sets of generating defaults of an extension of a closed default theory 
(W, 7)). They use this characterization for computing extensions of propositional 
default theories. In this subsection, we shall show how to apply the theorem to 
computing extensions of terminological default theories. 

Before we can formulate the theorem, we need one more piece of notation. 

DEFINITION 5.2. Let W be a set of closed formulae, and 7) be a set of closed 
defaults. We define 7)o = ~ and, for i/> 0, 

( 
7)~+1 = Di U {d = 

k ,,/ [ d E 7) and 142 U Con(7)i) ~ c~}. 

Then 7) is called grounded in W iff 7) = U,i~o Di. 

This definition of groundedness differs from the one given in [31], but it is easy 
to see that both formulations are equivalent. The advantage of our formulation 
is that it can directly be used as a procedure for deciding groundedness, if 7) 
is finite and the entailment problem in the base language is decidable. If 7) is 
not grounded in W, then U~=07)i is the largest subset of 7) that is grounded 
in W. 
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The iteration process described above corresponds to the iteration in the def- 
inition of extensions, with the main difference that it disregards the justifica- 
tions. The second condition given in the following theorem makes up for this 
neglect. 

THEOREM 5.3 (Schwind and Risch). Let (W,  73) be a closed default theory. A 
subset ~ of 79 is a set of  generating defaults of  an extension of (W,  50) iff the 
following two conditions hold: 

1. 50 is grounded in W.  
2. For all d E 73 with d = c~: i l l , . . . ,  finial we have d E ~ i f fWUCon(D) 
o~ and for all i, 1 <<. i <<. n, ]/V U Con(7)) ~= ~fli. 

If © is finite, and the entailment problem in the base languageis decidable, this 
theorem provides us with an effective test of whether a subset 50 of 50 is a set of 
generating defaults of an extension of (W, 73). We shall now describe a method, 
based on this theorem, that allows us to compute (the sets of generating defaults 
of) all extensions without having to consider all subsets of 50. 

If W is inconsistent, then there is only one extension, namely, the set of 
all formulae. In the following, we shall without loss of generality assume that 
W is consistent. Now, let 501,...,73m be all maximal subsets of 50 such that 
W U Con(73i) is consistent. Since W is assumed to be consistent, extensions are 
consistent as well, which means that a generating set of defaults of an extension 
is a subset of one of the Di. The idea underlying our method is to start with these 
maximal sets 50i, and successively eliminate defaults violating the first condition 
of the theorem, or the "only if" part of the second condition. If no more defaults 
can be eliminated, the "if" part of the second condition is tested. 

Figure 1 describes the procedure for computing all extensions of a closed 
default theory. In order to illustrate this procedure, let us consider two examples. 
The first one is concerned with a default theory consisting of an empty world 
description, and the defaults 

:A A:B  B:-~A 4 
dl = - ~ - ,  d 2 =  B ' and d 3 =  ~A 

Thus, suppose that Compute-All-Extensions is called with the world description 
W = {3 and the set of defaults D = {dl, d2, d3} as arguments. Since the world 
description is consistent, and WUCon(50) = {A,/3, ~A} is inconsistent, Remove- 
Defaults is invoked for each maximal consistent subset of {A, B,-~A}. Hence 
we have the following two calls: 

1. Remove-Defaults(O, 50, {dl, d2}), 
2. Remove-Defaults(O, 50, {d2, d3}). 

First, consider the call Remove-Defaults(O, 73, {dl, d2}). Obviously, the set {dl, d2} 
is grounded in W. Since the condition in line (2) is not satisfied, 5 it is checked 
whether default d3 (which is the only default in 73\{dl, d2}) satisfies the condition 
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Compute-All-Extensions(W, 79) 
begin 

(1) 
(2) 
(3) 

(4) 

end 

if 142 is inconsistent 

then print "Inconsistent world description" 

else for all maximal subsets D' of D such that 

142 U Con(D') is consistent 

do Remove-Defaults(W, D, D'); 

Remove-Defaults(W, D, 79') 
begin 

(1) 
(2) 
(3) 
(4) 
(5) 

(6) 

(7) 

(8) 

(9) 

end 

let Do be the largest subset of 7)' that is grounded in W; 

if 142 U Con(Do) ~ -~/~i for some justification/3i C Jus(D0) 

then let d = c~: /31,...,/3r~/3' be the corresponding default; 

Remove-Defaults(142, 79, Do \ {d}); 

for all maximal subsets 7)" of Do such that 

d E 7)" and 142 U Con(D") ~ -7/3/ 

do Remove-Defaults(W, D, 7?"); 

else if for each c< /31, . . . , /3~/7 E 72 \ 790 

either 142 U Con(D0) ~ c~ 

or 142 U Con(Do) ~ -~/3i for some i 

then add 7)0 to the list of sets of generating defaults; 

Fig. 1. Procedure for computing the sets of generating defaults of all extensions of the 
closed default theory 0,V, D). Proviso: 7) is finite, and entailment in the base language is 
decidable. 

in lines (7), (8). The negated justification of d3 is entailed by 142 U Con({di, d2}), 
which means that the set {dl,d2} is added to the list of sets of generating 
defaults. 

Second, suppose that Remove-Defaults is called with arguments (3, 7), {d2, d3 }. 
We note that the largest subset of {d2, d3} that is grounded in 142 is empty, i.e., 
7?o = 13. Again, the condition in line (2) is not satisfied, and thus the condition in 
lines (7), (8) is tested for each element of 7). Obviously, 142 U Con(D0) (which is 
the empty set) entails the empty prerequisite of default dl (empty prerequisites 
are assumed to be trivially true). In addition, the negated justification of dj is 
not entailed by the empty set. Thus, the set {d2, d3} is not added to the list of 
sets of generating defaults. 
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To sum up, the list of sets of generating defaults of the default theory 

( 13' A '  B ' -~A JJ 

that is computed by the algorithm is {dl, d2}, which yields the unique extension 
Th({A, B}). 

In the second example we consider a default theory that does not have an 
extension. Suppose that Compute-All-Extensions is called with the empty world 
description, i.e., W = 13, and with the set of defaults D = {d} where d = :A/-~A. 
Observe that W U Con(D) = {-~A}, which means that {-~A} itself is the only 
maximal consistent subset of {-~A}. Consequently, Remove-Defaults is called 
with arguments !3, {d}, {d}. Observe that D0 = {d} is grounded in W. Since the 
negated justification of d is a consequence of W U Con(D0), the condition in 
line (2) is satisfied. Thus Remove-Defaults is called recursively with arguments 
13, {d}, (3 (see line (4)). Now the condition in line (2) is not satisfied (because 590 
is empty). Thus it is checked whether or not each element in 50 \ go satisfies the 
condition in lines (7), (8). Since (1) d E D \ :Do, (2) the empty prerequisite of d 
is entailed by 142 U Con(D0), and (3) the negated justification of d is not entailed 
by WUCon(D0), 790 is not added to the list of sets of generating defaults. As no 
other set of defaults is put into this list, we can conclude that the default theory 
(W, D) we started with does not have an extension. 

In order to show soundness and completeness of the procedure (Theorem 5.7), 
we need three lemmas. 

LEMMA 5.4. Let (t/12, 79) be a closed default theory and let D ~ C 79 be such 
that W U Con(D') is consistent. Suppose the call Remove-Defaults(1AJ, 79, 79') 
returns the list £ of sets of de¢hults. If Do E £, then Do is a set of generating 
defaults for an extension of (W, 72)). 

Proof We prove this lemma by showing that a set Do of defaults contained 
in/2 satisfies Conditions 1 and 2 of Theorem 5.3. 

Suppose that Do is contained in/2. It is easy to see that g0 is a subset of D ~ 
that is grounded in W (because of line (1)), which shows that Condition 1 of 
Theorem 5.3 holds for Do. 

To see that Do satisfies the second condition of Theorem 5.3, first assume 
that d = ec f l l , . . . ,  fin/'7 E Do. Recall that go is grounded in 143, which implies 
that W U Con(Do) ~ ~. Furthermore, observe that, for all i, 1 <~ i ~< r h W U 
Con(g0) ~ -~fli (because the condition in line (2) does not hold for 90). Both 
facts together show that the "only if" part of Condition 2 holds. 

Now assume that d = ~:f l t , . . .  ,fl~/7 E D\Do.  Then either WUCon(D0) [¢: 
c~ or W U Con(D0) ~ -~fli for some i (because the condition in lines (7) and (8) 
holds for 7?o). This shows that the "if" part of Condition 2 is also satisfied. • 

LEMMA 5.5. Let go be a set of generating defi~ults for an extension of a closed 
default theoD, (I&,D), and let D ~ be a subset of D such that 790 C 731 and ~42 LI 
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Con(79') is consistent. I f  Remove-Defaults(l/v, 79,79 r) recursiveIy calls Remove- 
Defaults, then there is a call with arguments l/v, 79, 79", where 79o C_ 79" C 7) r. 

Proof Let 7)o C 79 r be sets of defaults satisfying the assumptions of the 
lemma. Suppose Remove-Defaults is called with arguments iW, 73, 79 r. Let 79~ be 
the largest subset of 79 ~ that is grounded in 1W. Then 7)o C 79~ because every set 
of generating defaults for an extension of (l/V, 79) is grounded in 1W. 

If the condition in line (2) does not hold for 79~, Remove-Defaults is obvi- 
ously not called recursively, and nothing has to be shown. Thus assume that 
the condition in line (2) holds for 79~. This means that there is a default d = 
c</31,. . . , /3n/7 E 79~ such that W U Con(79~) ~ -'/3i for some i, 1 ~< i ~< n. 

If d ¢ 79o, we have 79o _C 79~ \ {d} C 79~, and the call of Remove-Defaults 
with arguments iW, 79, 79~ \ {d}) (cf. line (4)) satisfies the required property. Now 
assume that d E 7)o. Since 79o is a set of generating defaults for an extension, 
we know that 1W U Con(790) ~ ~/3i. Thus there is a maximal subset 79" of 79~ 
with WUCon(©")  ~: -~/3~ that contains 7)o, and this means that the call Remove- 
Defaults(W, 79, 79") has the required property (cf. lines (5) and (6)). [] 

LEMMA 5.6. Let Do be a set of  generating defaults for an extension of a closed 
default theory (l/v, ~D), and let 7) r be a subset of 79 such that 79o C_ l) r and 
l/v U Con(79 t) is consistent. Suppose Remove-Defaults is called with arguments 
l/v, 79, 79'. Then 

• there is a recursive call of  Remove-Defaults, or 
• l)o is added to the list of  sets of  generating defaults. 

Proof Let 790 C_ 79 r be sets of defaults satisfying the assumptions of the 
lemma. Suppose the call Remove-Defaults(W, 79, 7) r) does not recursively call 
Remove-Defaults. This means that the condition in line (2) does not hold for 
D~, where 79~ is the largest subset of 79 r that is grounded in iW. We show that 
79~) = 790. 

Since 79o is grounded in W, we get 79o C_ 79~, and thus we only have to 
show 79~ C_ 790. Assume to the contrary that 79~ \ 790 # (3. First we show that 
1WUCon(79o) ~ c~ for some default c~:/3,,. . . , /3n/7 E 79~o\79o. To see this, recall 
that 79~ is grounded in iW. This means that there is a sequence d], d~, . . ,  of default 
in 79~ such that 1W U Con({d~ r r is the prerequisite , . . . , d k _ , }  ) ~ a~, where ak 
of the k-th default. Let I be the smallest number such that d I E 79~ \ Do. Thus 
d~ E 79o for all j, 1 ~< j < I, which shows that 1W U Con(790) ~ a I. 

Second, we have 1W U Con(79~) ~ -~/3/ for all justifications /3/ E Jus(79/~) 
because the condition in line (2) does not hold for 79~. Since 790 C_ ~D~ we 
especially know that iW U Con(D0) ~= ~/3i for all justifications/3i E Jus(790). 

Thus, we have shown that there is some default d E 79~ \ 790, d = a: /31, . . . ,  
/3n/'Y, such that iWUCon(790) ~ c~ and iWUCon(790) ~= -'/3.i for all i, 1 ~< i ~< r~. 
Because of Theorem 5.3 this is a contradiction with our assumption that 790 is 
a set of generating defaults. Therefore the assumption 79~ \ 7)o # ~ is falsified, 
and we can conclude that 79~ = 79o. 
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Since 50o is a set of generating defaults, the condition in lines (7), (8) holds 
for 50o (cf. Condition 2 of Theorem 5.3). Thus 7?o is added to the list of sets of 
generating defaults. [] 

Now we are ready to prove soundness and completeness of our algorithm. First 
we observe that ever)' set of defaults computed by the algorithm is in fact a set 
of generating defaults for an extension of a closed default theory (W, 50) (cf. 
Lemma 5.4). 

Now assume that 50o is a set of generating defaults for an extension of (W, 50). 
Recall that W U Con(500) is consistent. Thus there is a maximal subset 7)' of 
50 such that W tO Con(7) ~) is consistent and 50! contains 50o. This shows that 
Compute-All-Extensions(W, 50) generates a call Remove-Defaults with arguments 
W, 50, 7)' (cf. lines (3) mad (4) in the function Compute-All-Extensions) for some 
subset 50! of 50 with 50o C 50~. 

If the call Remove-Defaults(W, 50, 50~) returns the list/2 of sets of defaults then 
50o is contained in/2.  This result is an immediate consequence of the previous 
two lemmas. In fact, Lemma 5.5 shows that there is a sequence of calls of 
Remove-Defaults such that 142, 50,C.i are the arguments of the i-th call where 
Cl = 50r, Ci+l C Ci, and 500 C__ Ci for all i. Since 50 is assumed to be finite and the 
Ci's are decreasing, there is some m >/i  such that Remove-Defaults(W, 50, Cm) 
does not generate a recursive call of Remove-Defaults. In this case 50o is added 
to the list/2 of sets of defaults (Lemma 5.6). 

THEOREM 5.7. The call of the procedure Compute-All-Extensions with input 
(W, 73) computes sets of generating defaults for all extensions of the closed 
default theory (W, 7)). 

The functions Compute-AII-Extensions and Remove-Defaults use the following 
subprocedures which have not explicitly been described: 

• Decide whether W is consistent. 
• Compute all maximal subsets 50~ of 50 such that W U Con(50 ~) is consistent. 
• Compute the largest subset 50o of 50! that is grounded in W. 
• Compute all maximal subsets 50'! of 7)0 such that 142 U Con(50") ~= --~/3i. 

The first subprocedure is a direct application of the decision algorithm for entail- 
ment in the base language. The third subprocedure is simply obtained by imple- 
menting the definition of groundedness. 

The other two procedures depend on an algorithm for the following problem, 
which will be considered in the next section: Let .4, B be ABoxes. Compute all 
maximal subsets Q of /3  such that .4 U Q is consistent. 

In fact, the second subprocedure is a direct application of such an algorithm. 
For the fourth subprocedure, note that W U Con(50") ~= -~¢3i iff W U Con(50") tO 
{13i} is consistent. 
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6. Computing Minimal Inconsistent and Maximal Consistent ABoxes 

This section is concerned with the following algorithmic problem: Given two 
ABoxes ,4,/3, find all minimal (resp. maximal) subsets Q of/3 such that "4 U Q 
is inconsistent (resp. consistent). 

Since consistency of ABoxes in A £ C F  is decidable, there is the obvious 
"brute-force" solution that tests consistency of "4 U Q for all subsets Q of 13 and 
then takes the minimal inconsistent (maximal consistent) ones. In the following 
we shall describe a more efficient method of finding these minimal (maximal) 
sets. The method is an extension of the tableaux-based consistency algorithms for 
ABoxes described in [1, 12]. The idea of employing tableaux-based methods for 
such purposes was already used in [20, 31], but these papers restricted themselves 
to propositional logic, which is a much easier case. 

In order to decide whether an ABox .4 is consistent, the tableaux-based con- 
sistency algorithm tries to generate a finite model of .4. In principle, it starts 
with .4, and adds new assertional facts with the help of certain rules until the 
obtained ABox is "complete," that is, one can apply no more rules. Because of 
the presence of disjunction in our language, a given ABox must sometimes be 
transformed into two different new ABoxes, with the intended meaning that the 
original ABox is consistent iff one of the new ABoxes is consistent. Formally, 
this means that one is working with sets of ABoxes instead of a single ABox. 

For ease of presentation, we restrict ourselves in this formal description to the 
terminological language .4/2C where we do not have attributes and agreements. 
Later on, we shall point out how the algorithm can be extended to A £ C F .  

Figure 2 describes the transformation rules of the tableaux-based consistency 
algorithm for "4£C. Without loss of generality we assume that the concept terms 
occurring in .4o are in negation normal form, that is, negation occurs only directly 
in front of concept names. Negation normal forms can be generated using the fact 
that the following pairs of concept terms are equivalent: ~-~C and C, -~(C • D) 
and -~C U -~D, ~ (C U D) and --~C ~ -~D, -~(~R. C) and VR. ~C, as well as 
~(VR. C) and 3R. -~C. 

The following facts make clear why the rules of Figure 2 provide us with a 
decision procedure for consistency of ABoxes of.4Z;C (see [l 2, 1] for a proof). 

PROPOSITION 6.1. 1. I f  .41 is obtained from .4o by application of  the con- 
junction, exists-restriction, or value-restriction rule, then .40 is consistent iff 
.41 is consistent. 

2. If .41, .42 are obtained from .4o by application of  the disjunction rule, then 
.4o is consistent iff .41 or .42 is consistent. 

3. A complete ABox (i.e., an ABox to which no more rules apply) is consis- 
tent iff it does not contain an obvious contradiction, in other words, facts 
A(b),-~A(b) for  an individual name b and a concept name A. 

4. The transformation process always terminates. 
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Let 34 be a finite set of ABoxes, and let A0 be an element of 
34. The following rules replace ,,4o by an ABox Al or by two 
ABoxes AI and A2. 

The conjunction rule. Assume that (C ~ D)(a) is in A0, and that A0 
does not contain both assertions C(a) and D(a). The ABox AI 
is obtained from A0 by adding C(a) and D(a). 

The disjunction rule. Assume that (C t_3 D)(a) is in ~40, and that A0 
contains neither C(a) nor D(a). The ABox Al is obtained from 
A0 by adding C(a), and the ABox A2 is obtained from A0 by 
adding D(a). 

The exists-restriction rule. Assume that (3/~. C)(a) is in A0, and 
that A0 does not contain assertions R(a, c) and C(c) for some 
individual c. One generates a new individual name b, and obtains 
A1 from A0 by adding R(a, b) and C(b). 

The value-restriction rule. Assume that (VR. C)(a) and t~(a,b) are in 
A0, and that ,A0 does not contain the assertion C(b). The ABox 
A1 is obtained from A0 by adding C(b). 

Fig. 2. Transformation rules of the consistency algorithm for A£C.  

An obvious contradiction of the form A(b), ~A(b) will also be called "clash" 
in the following. 

To check whether a given ABox A is consistent, one thus starts with {A} 
and applies transformation rules (in arbitrary order) as long as possible. Eventu- 
ally, this yields a finite set .AA of complete ABoxes with the property that Jt is 
consistent iff one of the ABoxes in 3,4 is consistent. Since the elements of 34 
are complete, their consistency can simply be decided by looking for an obvious 
contradiction. 

Now assume that A,/3 are ABoxes, and we wish to find all minimal (resp. 
maximal) subsets Q of /3 such that ~4 U Q is inconsistent (resp. consistent). 
We start with applying the tableaux-based consistency algorithm to ,A tJ/3. Let 
,A1,. . . ,  Am be the complete ABoxes obtained this way. If one of these is not 
obviously contradictory, AUB is consistent, and there are no minimal inconsistent 
sets to compute (resp. B is the maximal consistent set). Otherwise, we wish to 
know which elements of/3 can be dispensed with without destroying the property 
that all complete ABoxes contain an obvious contradiction (resp. which elements 
of /3  have to be removed to get at least one complete ABox without obvious 
contradiction). 

For this reason, it is important to know which facts in /3 contribute to a 
particular obvious contradiction. To this purpose we introduce a propositional 
variable for each element of /3, and label assertional facts with "monotonic" 
Boolean formulae built from these variables, that is, propositional formulae built 
from the variables by using conjunction and disjunction only. In the original 
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ABox AU/3, the elements of ,A are labeled with "true," and the elements of B are 
labeled with the corresponding propositional variable, If, during the consistency 
test, n assertional facts with labels @I, . . . ,  qSn give rise to a new fact, the new 
one is labeled by @1 A . . .  A q5,¢. Since the same assertional fact may arise in 
more than one way, we also get disjunctions in labels. Again, we end up with 
complete ABoxes A l , . . . ,  A,~, but now all assertional facts occurring in these 
ABoxes have labels. 

More formally, we shall now describe a labeled consistency algorithm for 
ABoxes ,4 U B consisting of "hard" facts A and of "refutable" facts/3. Without 
loss of generality we assume that the concept terms occurring in Jl U/3 are in 
negation normal form. Initially, the elements of A CJ/3 are labeled with mono- 
tonic Boolean formulae as described above. We shall refer to the label of an 
assertional fact c~ by ind(c~). Starting with the singleton set {~4 U B}, we apply 
the transformation rules of Figure 3 as long as possible. 

As for the unlabeled consistency algorithm, there cannot be an infinite chain of 
rule applications. This can, for example, be shown by a straightforward adaptation 
to the labeled case of the termination ordering used in [1]. 

Thus, the labeled consistency algorithm also terminates with a finite set of 
complete ABoxes, namely, labeled ABoxes to which no rules apply. The labels 
occurring in these ABoxes can be used to describe which of the original facts in 
/S are responsible for the obvious contradictions. 

DEFINITION 6.2 (Clash formula). Let A t , . . . ,  An be the complete ABoxes ob- 
tained by applying the labeled consistency algorithm to A U/3. A particular 
clash A(a),-~A(a) E ~4~ is expressed by the propositional formula ind(A(a))/~ 
ind(~A(a)).  Now let ~P~,l,..-, tb~,k~ be the formulae expressing all the clashes in 
Ai. The clash formula associated with A U/3 is 

n ki 

A 
i=1  j = l  

We have used conjunction when expressing a single clash because both asser- 
tional facts are necessary for the contradiction. Now recall that we need at least 
one clash in each of the complete ABoxes to have inconsistency. This explains 
why disjunction is used to combine the formulae expressing the clashes of one 
complete ABox, and why the formulae corresponding to the different complete 
ABoxes are combined with the help of conjunction. 

PROPOSITION 6.3. Let ~b be the clash formula associated with A U 13, let 
Q C_ /3, and let ~ be the valuation which replaces the propositional variables 
corresponding to elements" o f  Q by "true" and the others by "false," Then ,AU Q 
is inconsistent iff @ evaluates to "true" under w. 

Before proving this proposition we point out how the clash formula can be used 
to find minimal (resp. maximal) subsets Q of/3 such that A u Q is inconsistent 
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Fig. 3. 

Let 3.4 be a finite set of labeled ABoxes, and let .4o be an element 
of JM. The following rules replace -40 by an ABox -4j or by two 
ABoxes A1 and -42. These new ABoxes either contain additional 
assertional facts, or the indices of existing assertional facts are 
changed. In order to avoid having to distinguish between these 
two cases in the formulation of the rules, we introduce a new 
notation. An ABox is extended by an assertional fact with index 
q~ means the following: If this fact is already present with index 
~, we just change its index to ~ V qS. Otherwise, it is added to 
the ABox and gets index q~. 

The conjunction rule. Assume that (C N D)(a) is in -40, and that A0 
does not contain assertions C(a) and D(a) whose indices are 
both implied by ind((C r~ D)(a)). The ABox -41 is obtained by 
extending Ao by C(a) with index ind((C R D)(a)) and by D(a) 
with index ind((C F1D)(a)). 

The disjunction rule. Assume that (C U D)(a) is in -40, and that 
Ao does not contain C(a) or D(a) whose index is implied by 
ind((C U D)(a)). The ABox -41 is obtained by extending -4o by 
C(a) with index ind((C U D)(a)), and the ABox -42 is obtained 
by extending -4o by D(a) with index ind((C U D)(a)). 

The exists-restriction rule. Assume that (3t~.C)(a) is in A0 and 
that -4o does not contain assertions /~(a,c) and C(e) whose 
indices are both implied by ind((~R. C)(a)). One generates a new 
individual name b, and obtains -41 from -4o by adding R(a, b) 
and C(b), both with index ind((3R.C)(a)). 

The value-restriction rule. Assume that (V/~. C)(a) and R(a, b) are in 
-4o and that -40 does not contain an assertion C(b) whose index 
is implied by ind((VR. C)(a))/~ ind(R(a, b)). The ABox -41 is 
obtained by extending -4o by C(b) with index ind((VR. C)(a))/~ 
ind(R(a, b)). 

Transformation rules of the labeled consistency algorithm for A£C. 

(resp. consistent). By Proposition 6.3, such minimal (resp. maximal) sets directly 
correspond to minimal (resp. maximal) valuations making the clash formula 
"true" (resp. "false"). Here "minimal" and "maximal" for valuations is meant with 
respect to the partial ordering wl ~< cod iff cJl (p.~) <~ co2(pi) for all propositional 
variables Pi, where we assume that "false" is smaller than "true." 

It is easy to see that the problem of finding maximal valuations making a 
monotonic Boolean formula "false" can be reduced to the problem of finding 
minimal valuations making a monotonic Boolean formula "true." In fact, for a 
given monotonic Boolean formula ~b and a valuation w, let ~b a denote the formula 
obtained from %b by replacing conjunction by disjunction and vice versa, and let 
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co d denote the valuation obtained from co by replacing "true" by "false" and vice 
versa. Then co is a maximal valuation making ~b "false" iff cod is a minimal 
valuation making ~b d "true." 

It should be noted that the problem of finding minimal valuations that make 
a monotonic Boolean formula ~b "true" is NP-complete. In fact, if ~b is in con- 
junctive normal form, this is just the well-known problem of finding minimal 
hitting sets [28, 10]. On the other hand, if ~ is in disjunctive normal form, the 
minimal valuations can be found in polynomial time. However, transforming a 
given monotonic Boolean formula into disjunctive normal form may cause an 
exponential blow-up. To optimize the search for minimal valuations, one can use 
the method described in [29]. 

The rules of the labeled consistency algorithm as described have the unpleas- 
ant property that deciding whether or not a rule is applicable is an NP-hard 
problem. In fact, the preconditions of the rules include an entailment test for 
monotonic Boolean formulae, which is NP-hard. However, one can weaken the 
precondition by testing a necessary condition for entailment (e.g., occurrence of 
the index in the top-level disjunction) without destroying termination and the 
property stated in Proposition 6.3. In this case, the rules will in general produce 
longer formulae occurring as indices, but the test whether a rule applies becomes 
tractable. 

The size of the clash formula associated with .,4 U/3 can be exponential in 
the size of ~4 U/3. For this reason, the labeled consistency algorithm will in 
general need exponential space, whereas the unlabeled consistency algorithm 
can be realized as a PSPACE-algorithm (see [30]). However, by computing the 
clash formula associated with A U/3, we avoid calling the unlabeled consistency 
algorithm exponentially many times (for AU Q for all subsets Q of/3). Using this 
method as subprocedure of the function Compute-All-Extensions has an additional 
advantage. In this function, the sets of defaults 790, for which maximal subsets 
satisfying the appropriate consistency condition must be found, become smaller 
and smaller. However, once the clash formula ~b for (142 U {~fli}) U Con(D0) is 
computed, the clash formula for (14; U {~/3i}) U Con(D~) (with 79D C_ 790) can 
simply be obtained by replacing the propositional variables corresponding to the 
elements of Con(790) \ Con(D~) by "false"; that is, the new clash formula can 
be obtained without running the labeled consistency algorithm again. 

6.1. PROOF OF PROPOSITION 6.3 

First we shall explain the connection between application of rules of the labeled 
consistency algorithm, starting with .,4 U/3, on the one hand, and application of 
rules of the unlabeled algorithm, starting with .A U Q for Q C/3 ,  on the other 
hand. 
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DEFINITION 6.4. Let Ao be a labeled ABox, and let ~ be a valuation. The 
cJ-projection of ,A0 (for short, cJ(.A0)) is obtained from A0 by removing all facts 
whose labels evaluate to "false." 

Let Q be a subset of/3.  In the following, the valuation w is assumed to be such 
that it replaces the variables corresponding to elements of Q by "true" and the 
others by "false." Obviously, this means that co(~A U/3) = A U Q. 

Now we shall show how application of a rule of the labeled consistency algo- 
rithm to a labeled ABox A0 corresponds to application of a rule of the unlabeled 
algorithm to co(~40). To get this correspondence, the conditions on applicability 
of the disjunction and the exists-restriction rules have to be weakened for the 
unlabeled algorithm: 

The modified disjunction rule. Assume that (C U D)(a) is in Ao, and that .Ao 
does not contain C(a) and D(a) .  The ABox A1 is obtained from ,4o by 
adding C(a), and the ABox A2 is obtained from Ao by adding D(a). 

The modified exists-restriction rule. Assume that (~R.. C)(a)  is in .Ao. One gen- 
erates a new individual name b, and obtains A1 from Ao by adding R(a, b) 
and C(b). 

Since the modified exists-restriction rule can be applied infinitely often to the 
same fact (~R. C)(a) the modified set of roles need no longer terminate. But 
it is easy to see that the first two properties stated in Proposition 6.1 still hold. 
This will be sufficient for our purposes. 

LEMMA 6.5. Let ~4o,.A1 be labeled ABoxes such that .Al is obtained from ,40 
by application of the conjunction ( resp. exists-restriction, value-restriction) rule. 
Then we either have ca(A1) = a~(~4o), or c~(A1) is obtained from c@Ao) by appli- 
cation of" the (unlabeled) conjunction (resp. modred exists-restriction, value- 
restriction) rule. 

Proof. (1) Assume that the conjunction rule is applied to the assertional fact 
(C F? D)(a) and that this fact has index q5 in ,Ao. 

First, consider the case where co(¢) = false. In this case, we have ~o(Al) --= 
w(A0). In fact, if C(a) (resp. D(a)) is not in Ao, then this fact has index ¢ in 
.Al. Since aJ(¢) = false, this means that C(a) (resp. D(a)) is not in co(A1). If 
C(a) (resp. D(a)) is an element of .A0 with index ~, then C(a) (resp. D(a)) has 
index ¢ V ¢ in .At. Since co(~b) = false, we have co(¢ V 4) = cJ(~b), which shows 
that C(a) (resp. D(a)) is an element of cJ(~41) iff it is an element of co(A0). 

Now assume that w(~b) = true. Thus (C 7t D)(a) is an element of co(A0). 
Since A1 is obtained by extending ~4o by C(a) and D(a), both with index q~, we 
also know that C(a) and D(a) are contained in aJ(Ctl). If both facts are already 
present in c~(Ao), we have co(Al) = w(A0). Otherwise, c~(A~) can be obtained 
from co(A0) by applying the conjunction rule to (C ~ D)(a). 
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(2) Assume that the value-restriction rule is applied to the assertional facts 
(g/g. C)(a)  and /~(a, b) and that these facts respectively have index 051 and 052 
in .4o. 

As for the conjunction rule, co(051 A 052) = .false implies aa(.41) = co(.4o). 
Thus assume that co(051 A052) = true. Then (g/~. C)(a) and JR(a, b) are contained 
in co(A0). Since .41 is obtained by extending .4o by C(b) with index 051A q52, we 
know that C(b) is an element of co(.41). If this assertional fact is already present 
in oa(A0) then c~("41) = co(.40). Otherwise, co(.4t) can be obtained from co(.40) 
by applying the value-restriction rule to (V/g. C)(a) and/~(a ,  b). 

(3) Assume that the exists-restriction rule is applied to the assertional fact 
(3/~. C)(a) ,  and that this fact has index 05 in .40. 

The case where co(05) = false is again trivial. Thus assume that cJ(05) = true. 
Then (3/~. C)(a) is an element of co(A0). The labeled ABox .41 is obtained from 
.4o by generating a new individual b, and adding C(b) and _/:g(a, b) to .4o, both 
with index 05. For this reason, C(b) and /~(a, b) are contained in co(.41). We 
can obtain co(.41) from cJ(.40) by applying the modified exists-restriction rule to 
(3R. C)(a)  (without loss of generality we may assume that the newly generated 
individual is called b). It should be noted that the (unmodified) exists-restriction 
rule need not be applicable since co(.40) may well contain an individual c and 
assertions C(c)and R(a,c) .  [] 

For the disjunction rule, we have a similar lemma. 

LEMMA 6.6. Let .40, .41, .42 be labeled ABoxes such that .At, "42 are obtained 
from .4o by application of the disjunction rule. Then we either have co(.41) = 
co(.4o) = co(A2), or co("41),co(.42) are obtained from co(.40) by application of 
the (unlabeled) modified disjunction rule. 

Proof Assume that the disjunction rule is applied to the assertional fact (CII  
D)(a) and that this fact has index 05 in .4o. 

If co(05) = false, then co(.41) = co(.40) = co(.42). This can be shown as in 
the corresponding cases in the proof of Lemma 6.5. 

Thus assume that a@5) = true. Then (C td D)(a) is an element of co(.40). 
In addition, we know that C(a) is contained in c~(Al) and that D(a) is con- 
tained in co(.42). If both C(a) and D(a) are already present in co(.40) then 
a~(.41) = w(.40) = co(.42). Otherwise, we can obtain co(.41), cJ(.42) from co(.40) 
by applying the modified disjunction rule to (C tJ D)(a) .  It should be noted that 
the (unmodified) disjunction rule need not be applicable, since co(.4o) may well 
contain one of C(a) and D(a), but not both. [] 

Now assume that we have obtained the complete ABoxes A1, • • •, An by starting 
with "4U/3, and applying the rules of the labeled consistency algorithm as long as 
possible. By Lemmas 6.5 and 6.6, and since the (modified) rules of the unlabeled 
consistency algorithm preserve solvability, we know that co(A to/3) = .4 tO Q is 
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consistent iff one of a~(,A1),... ,c@A~) is consistent. The next lemma implies 
that these projected ABoxes are also complete. 

LEMMA 6.7. Let A0 be a labeled ABox to which none of the rules of the labeled 
consistency algorithm applies. Then none of the (unmodified) rules of the unla- 
beled consistency algorithm applies to co(,Ao). 

Proof. We consider an assertional fact (C n D)(a)  in a;(,Ao) and show that 
the conjunction rule cannot be applied to this fact in a;(A0). (The other cases 
can be treated similarly.) 

Since (CRD)(a) is present in a~(,A0), its index q$ in ,,4o satisfies a;(0 ) = true. 
Completeness of `A0 implies that the (labeled) conjunction rule is not applicable 
to (C R D)(a)  in -4o. For this reason, ,A0 contains the assertional facts C(a) 
and D(a) ,  and their indices (say ~1,~2) are implied by q$. But then a~(~b) = 
true implies cO(~l) = true = a~(~2). Thus C(a) and D(a) are contained in 
a;(,A0), which shows that the conjunction rule is not applicable to (C R D)(a) 
in ~(,A0). • 

Since A l , . . . , , A n  are complete, we know that a;(,A1),... ,cv(,An) are complete 
as well. Now Proposition 6.1 implies that aJ(,Ai) is inconsistent iff it contains 
a clash. A particular clash A(a), =A(a) ¢ ,Ai is still present in a;(,Ai) iff co 
evaluates ind(A(a)) A ind(~A(a))  to "true." Now let @i,l , . .- ,  0i,k, be the for- 
mulae expressing all the clashes in ,Ai. Obviously, co(,Ai) contains a clash iff 

ki "true " evaluates Vj=l ~i,j to . For this reason, all the ABoxes aJ(,Al),.. ,  a~(,An) 
contain a clash iff co evaluates to "true" the clash formula 

n k~ 

A V* ,J 
i=1 j = l  

computed by the labeled consistency algorithm. This concludes the proof of 
Proposition 6.3. 

6.2 .  EXTENSION TO , A £ C . F  

In the remaining part of this section we shall sketch how the above described 
algorithm can be extended to handle the attributes and agreements of A£CY.  

Attributes in exists- and value-restrictions are treated like roles. Applying 
the exists-restriction rule to two assertional facts (3f.C)(a) and (3f.D)(a) 
introduces two different individual names c, d with the assertional facts f(a, c), 
f(a, d). If f is an attribute, this means that c and d have to be interpreted as 
the same individual. This shows that we can no longer have a unique name 
assumption for the individuals which are introduced by rules. For this reason, 
we shall now distinguish between "old" individuals, namely, individuals present 
in the original ABox .,4 U/3, and "new" individuals introduced by rule appli- 
cations. New individuals are not subjected to the unique name assumption. In 
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order to make the constraint that c, d have to be interpreted by the same indi- 
vidual explicit, the consistency algorithm for A £ C U  (see [13]) identifies these 
two individuals names, for example, by replacing every occurrence of c by d. 
In the labeled consistency algorithm, instead of making an actual replacement, 
we just introduce an equality fact c = d. Of course, this equality has to be 
equipped with an index, in the same way as other facts are. Here the fact c = d 
gets index ind( / (a ,  c))/~ ind(f(a ,  d)) if it is newly introduced; otherwise one 
takes the disjunction of its old index with ind(f(a ,  c))/X ind(f(a ,  d)). In case 
ind(f(a ,  c))/~ ind(f(a ,  d)) implies the old index, nothing has to be changed. 

With the help of the equality facts, it is easy to formulate an agreemen t  rule. 
In principle, the agreement rule applied to ( f ~ . . .  f ~  - 9 1 " "  g n ) ( a )  introduces 
the assertional facts f l (a, cl ), . . . , f ra (cm-L ,  Cra), 91 (a, dl ), . . . , gn(  d n - l  , dn)  and 
cm = d n ,  where cl , .  • •, dn are new individual names. Applicability of this rule, 
and the indices of the new facts (or new indices of existing facts) are defined 
analogously to the other rules. 

The equality facts define an equivalence relation on individual names, which 
has to be taken into account when firing rules or looking for clashes. Premises 
of rules have to be read modulo this equivalence. For example, this means that 
the value-restriction rule may be applicable to the facts (VR. C ) ( a )  and R(a ' ,  b), 
if there are equalities a = a0, a0 = a l , .  • •, a~ = a ~ in the ABox. Of course, the 
indices of these equalities have to contribute to the new index of C ( b )  as well. 
On the other hand, this rule need not be applied if there exists an assertional fact 
C(b ' )  and equalities b = b0, b0 = b l , . . . ,  b~ = b' such that ind((VR. C) (a ) ) /~  
ind(R(a' ,  b)) A ind(a = a0)/~ " '  A ind(an = a')  implies ind(C(b')) A ind(b = 
b0) A - . .  Aind(b~ = b'). 

Similarly, there is a clash if A ( a )  and -~A(a') is in the ABox, along with 
equalities a = a0, a0 = a l , . . . ,  a~ = a r. Because we still have unique name 
assumptions for the old individuals, the equalities may cause another kind of 
obvious contradiction. We have a clash if a, a ~ are old individuals and there are 
equalities a = a0, a0 = a l , . . . ,  an = a ~ in the ABox. The index associated with 
this clash is ind(a = a0) A . . . / ~  ind(an = a'). 

To sum up, we thus have a solution of the two algorithmic problems described 
at the beginning of this section. Together with the methods of Section 5 this 
gives us effective procedures to compute all extensions of terminological default 
theories. 

7. Conclusion 

We have investigated the integration of Reiter's default logic into a terminolog- 
ical representation formalism, and we have shown that the treatment of open 
defaults by Skolemization is problematic, both from a semantic and an algo- 
rithmic point of view. For this reason, we have considered a restricted semantics 
where default rules are only applied to individuals explicitly present in the knowl- 
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edge base. This treatment of default rules is similar to the treatment of monotonic 
rules in many terminological systems, which means that users of such systems 
are already familiar with the effects this restriction to explicit individuals has. 
However, because of the nonmonotonic character of default rules, this restric- 
tion may sometimes lead to more consequences than would have been obtained 
without it. 

With respect to the restricted semantics, terminological default reasoning can 
be automated. This is so because, for a finite terminological default theory, the 
methods of  Junker and Konolige and of Schwind and Risch for computing all 
extensions can be applied. We have shown how the algorithmic requirements 
for Junker and Konolige's method (i.e., the computation of minimal inconsistent 
sets of assertionat facts) and for an optimized algorithm based on a theorem of 
Schwind and Risch (i.e., the computation of maximal consistent sets of asser- 
tional facts) can be solved by an extension of the tableaux-based algorithm for 
assertional reasoning. 

As an alternative to the pragmatic solution described in the present paper, 
Baader and Schlechta [5] propose a new semantics for open defaults, in which 
defaults are also applied to implicit individuals. In order to make this possible 
without encountering the problems pointed out in Section 3, open defaults are 
not viewed as schemata for certain instantiated defaults. Instead, they are used 
to define a preference relation on models, which is then treated with a modified 
preferential approach. It is not yet clear, however, whether default reasoning with 
respect to this semantics can be automated. 

According to Reiter's semantics the specificity of prerequisites of rules has 
no influence on the order in which defaults rules are supposed to fire. In [4] 
we describe a modification of terminological default logic in which more spe- 
cific defaults are preferred, and we show that it is still possible to compute all 
extensions of a terminological default theory with specificity. 
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Notes 

1 We are taking this as our exceptional animal, in view of the fact that IJCAI-91 was in Australia, 
and not in the Antarctic. 

2 This abbreviation stands lor "Attributive concept Language with Complements and Features." 
Note, however, that in the present paper "features" are called "attributes." 

The concept terms occurring in one rule are assumed to have identical free variables. 
4 We assume that A and/3 are propositional variables, or unrelated ground atoms. 
5 Note that for normal default theories this condition can never be true. 



TERMINOLOGICAL KNOWLEDGE REPRESENTATION FORMALISMS | 79 

References 

I. Baader, E and Hanschke, R: A Scheme for Integrating Concrete Domains into Concept Lan- 
guages. Research Report RR-91-10, DFKI Kaiserslautern, 1991. 

2. Baader, E and Hanschke, E: A scheme for integrating concrete domains into concept languages, 
in Proc. 12th Internat. Joint Conf. on Artificial Intelligence, Sydney, Australia, 1991. 

3. Baader, E and Hollunder, B.: Embedding defaults into terminological knowledge representa- 
tion formalisms, in Proc. 3rd Internat. Conf. on Principles of Knowledge Representation and 
Reasoning, Cambridge, MA, 1992. 

4. Baader, F. and Hollunder, B.: How to prefer more specific defaults in terminological default 
logic, in Proc. 13th Internat. Joint Conf on Artificial Intelligence, Chambery, France, 1993. 

5. Baader, E and Schlechta, K.: A Semantics for Open Normal Defaults via a Modified Preferen- 
tial Approach. Research Report RR-93-13, DFKI Saarbrt~cken, 1993. Also in Proc. European 
Conf. on Symbolic and Quantitative Approaches to Reasoning under Uncertainty, Granada, 
Spain, 1993. 

6. Brachman, R. J.: 'I lied about the trees' or, defaults and definitions in knowledge representation, 
The A1 Magazine 6(3) (1985), 80-93. 

7. Brachman, R. J,, McGuinness, D. L., Patel-Schneider, E E, Resnick, L. A. and Borgida, A.: 
Living with CLASSIC: When and how to use a KL-ONE-like language, in J. Sowa (ed.), 
Principles of Semantic Networks, Morgan Kaufmann, San Mateo, CA, 1991, pp. 401-456. 

8. Brachman, R. J. and Schmolze, J. G.: An overview of the KL-ONE knowledge representation 
system, Cognitive Science 9(2) (1985), 171-216. 

9. Doyle, J.: A truth maintenance system, Artificial Intelligence 12 (1979), 231-272. 
10. Garey, M. and Johnson, D.: Computers and Intractability - A Guide to the Theory of NP- 

Completeness, Freeman, San Francisco, CA, 1979. 
11. Gottlob, G.: Complexity results for nonmonotonic logics, J. Logic and Computation 2(3) 

(1992), 397-425. 
12. Hollunder, B.: Hybrid inferences in KL-ONE-based knowledge representation systems, in 14th 

German Workshop on Artificial Intelligence, Ebingerfeld, Germany, Vol. 251 of Informatik- 
Fachberichte, Springer, 1990, pp. 38-47. 

13. Hollunder, B. and Nutt, W.: Subsumption Algorithms for Concept Languages. Research Report 
RR-90-04, DFKI Kaiserslautern, 1990. 

14. Junker, U. and Konolige, K.: Computing extensions of autoepistemic and default logics with a 
truth maintenance system, in Proc. 8th National Conf. on Artificial Intelligence, Boston, MA, 
1990. 

15. Kautz, H. A. and Selman, B.: Hard problems for simple defaults, in Proc. 1st lnternat. Conf. 
on Principles of Knowledge Representation and Reasoning, Toronto, Ont., 1989. 

16. Kobsa, A.: The SB-ONE knowledge representation workbench, in Preprints of the Workshop 
on Formal Aspects of Semantic Networks, Two Habours, CA, 1989. 

17. Lifschitz, V.: On open defaults, in Proc. Symp. on Computational Logics, Br~issel, Belgium, 
1990. 

18. Mays, E. and Dionne, B.: Making KR systems useful, in Terminological Logic Users Workshop 
- Proceedings, KIT-Report 95, TU Berlin, 1991, pp. 11-12. 

19. McCarthy, J.: Circumscription - a form of non-monotonic reasoning, Artificial Intelligence 13 
(1980), 27-39. 

20. McDermott, D. and Doyle, J.: Non-monotonic logic I, Artificial Intelligence 13 (1980), 41-72. 
21. McGregor, R.: Statement of interest, in K. yon Luck, B. Nebel, and C. Peltason (eds), Statement 

of Interest for the 2nd International Workshop on Terminological Logics, Document D-91 - 13, 
DFKI Kaiserslautern t991. 

22. #BACK, System presentation, in Terminological Logic Users Workshop - Proceedings, KIT- 
Report 95, TU Berlin, 1991, p. 186. 

23. Nebel, B. and Smolka, G.: Attributive description formalisms.. ,  and the rest of the world, in 
C. Rollinger and O. Herzog (eds), Text Understanding in L1LOG, LNAI 546. Springer-Verlag, 
Berlin, 1991. 

24. Peltason, C., Luck, K. von and Kindermann, C. (Org.): Terminological Logics Users Workshop 
- Proceedings. KIT Report 95, TU Berlin, 1991. 



180 FRANZ BAADER AND BERNHARD HOLLUNDER 

25. Poole, D. L.: Variables in hypothesis, in Proc. lOth lnternat. Joint Conf. on Artificial Intelli- 
gence, Milano, Italy, 1987. 

26. Post, E. L.: Recursive unsolvability of a problem of Thue, Journal of Symbolic Logic 12 
(1947), 1-10. 

27. Reiter, R.: A logic for default reasoning, Artificial Intelligence 13(1-2) (1980), 81-132. 
28. Reiter, R.: A theory of diagnosis from first principles, Artificial Intelligence 32 (1987), 57-95. 
29. Rymon, R.: Search through systematic set enumeration, in Proc. 3rd Internat. Conf. on Knowl- 

edge Representation and Reasoning, Cambridge, MA, 1992. 
30. Schmidt-Schaul3, M. and Smolka, G.: Attributive concept descriptions with complements, Arti- 

ficial Intelligence 48 (1991), 1-46. 
31. Schwind, C. and Risch, V.: A tableau-based characterisation for default logic, in Proc. Ist 

European Conf. on Symbolic and Quantitative Approaches for Uncertainty, Marseille, France, 
1991, 310-317. 


