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This paper addresses the issue of automatic service composition. We first develop a
framework in which the exported behavior of a service is described in terms of a so-
called execution tree, that is an abstraction for its possible executions. We then study
the case in which such exported behavior (i.e., the execution tree of the service) can
be represented by a finite state machine (i.e., finite state transition system). In this
specific setting, we devise sound, complete and terminating techniques both to check
for the existence of a composition, and to return a composition, if one exists. We also
analyze the computational complexity of the proposed algorithms. Finally, we present
an open source prototype tool, called ESC (E-Service Composer), that implements our
composition technique. To the best of our knowledge, our work is the first attempt to
provide a provably correct technique for the automatic synthesis of service composition,
in a framework where the behavior of services is explicitly specified.
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1. Introduction

Service Oriented Computing (SOC 48,2) aims at building agile networks of collab-
orating business applications, distributed within and across organizational bound-
aries. Services (or Web Services, or e-Services, as often referred to in the literature),
which are the basic building blocks of SOC, represent a new model in the utilization
of the network: they are self-contained, modular applications that can be described,

∗(contact author)
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published, located and dynamically invoked, in a programming language indepen-
dent way.

The commonly accepted and minimal framework for services, referred to as
Service Oriented Architecture (SOA), consists of the following basic roles: (i) the
service provider, which is the subject (e.g., an organization) providing services; (ii)
the service directory, which is the subject providing a repository/registry of service
descriptions, where providers publish their services and requestors find services; and,
(iii) the service requestor, also referred to as client, which is the subject looking for
and invoking the service in order to fulfill some goals. A requestor discovers a
suitable service in the directory, and then connects to the specific service provider
in order to invoke the service.

Research on services spans over many interesting issues. In this paper, we are
particularly interested in automatic service composition. Service composition ad-
dresses the situation when a client request cannot be satisfied by any available
service, but a composite service, obtained by combining “parts of” available com-
ponent services, might be used. The composite service can be regarded as a kind of
client wrt its components, since it (indirectly) looks for and invokes them. Service
composition leads to enhancements of the SOA (Extended SOA 48), by adding new
elements and roles, such as brokers and integration systems, which are able to sat-
isfy client needs by combining available services. Composition involves two different
issues. The first, sometimes called composition synthesis, or simply composition, is
concerned with synthesizing a new composite service, thus producing a specification
of how to coordinate the component services to obtain the required service. Such a
specification can be obtained either automatically, i.e., using a tool that implements
a composition algorithm, or manually by a human. The second issue, often referred
to as orchestration, is concerned with coordinating the various component services,
and monitoring control and data flow among them, in order to guarantee the correct
execution of the composite service, synthesized in the previous phase.

Our main focus in this paper is on automatic composition synthesis. In order
to address this issue in an effective and well-founded way, our first contribution is
a general formal framework for representing services and their behavior. Note that
several works published in the literature address service oriented computing from
different points of view (see the survey in Hull et al., 2003 37), but an agreed-upon
comprehension of what an service is, in an abstract and general fashion, is still
lacking. Often, in the literature, services are simply expressed in terms of an in-
put/output signature, and, possibly, preconditions and effects. Our approach based
on service behavioral descriptions allows the client to drive the overall execution of
a service, since at each point of the computation he∗ can choose the next action

∗In general, the client can either be a human or another service. In what follows, we refer to
the client with the “he” pronoun, in order to avoid confusion when referring to the services and
to its clients using the pronouns. However, the reader should remember that we could as well as
use the “it” pronoun for the client.
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to perform. Note, therefore, that in our framework the focus is on actions that a
service can execute; such actions can be seen as the abstractions of the effective
input/output messages and operations offered by the service. In addition to a clear
definition of what a service is, our framework provides a formal setting for a precise
characterization of the problem of automatic composition of services.

The second contribution of the paper is an effective technique for automatic
service composition. In particular, we specialize the general framework to the case
where services are specified by means of finite state machines (i.e., finite state
transition systems), and we present a technique that, given a specification of a
target service, i.e., specified by a client, and a set of available services, synthesizes
a composite service that uses only the available services, fully captures the target
one, and is still described as a finite state machine. Several papers in the literature
adopt finite state based formalisms as the basic models of exported behavior of
services 37,2,11. Indeed, this class of services is particularly interesting, since they
are able to carry on rather complex interactions with their clients, performing useful
tasks. On the other hand, finite state formalisms represent a simple, yet powerful
and widely used approach to specify the dynamic behavior of entities. We claim
that most part of services have a behavior which can be abstractly represented
as finite state machines. Our approach to automatic composition has two notable
features:

• The composition is based on the ability of executing the available component
services concurrently, and of controlling in a suitable way how such services
are interleaved to serve the client.

• The client request is not a specification of a (single) desired execution, but
a set of possibly non terminating executions organized in an execution tree,
whose nodes correspond to sequences of transitions executed so far and whose
successor nodes represent the choices available to the client to choose from
what to do next. In other words, the client specifies the so-called transition
system of the activities he is interested in doing. The ability of expressing
a client specification as a transition systems realizes the natural client re-
quirement that his decisions on which action to execute next depend on the
outcome of previously executed actions and of other information which he
cannot foresee at the time when he specifies his requests. If either the avail-
able services or the client specification are not expressed as transition systems,
the client would not have any influence over the sequence of actions executed
by the composite service; instead his choices would be made once and forall
before the composition is performed.

Both of these features are quite distinctive of our approach, and set the stage for
a quite advanced form of composition: to the best of our knowledge, here we present
the first algorithm for automatic composition of services in a framework where both
the available services and the client specification are characterized by a behavioral
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description expressed as finite state machine. Our technique is sound, complete and
terminating : if a composition of the available component services realizing the client
specification exists, then our composition algorithm terminates returning one such a
composition. Otherwise, it terminates reporting the non-existence of a composition.
We also study the computational complexity of our technique, and we show that
it runs in exponential time with respect to the size of the input state machines.
While it is still an open problem assessing that such a bound is tight, we conjecture
that the problem is indeed EXPTIME-hard. From a more practical point of view,
it is easy to come up with examples in which the composition is exponential in the
size of the component services and of the client specification, hence exponentiality
is inherent to the problem∗.

As third contribution of the paper, we present the prototype design and devel-
opment of an open source software tool implementing our composition technique,
namely ESC (e-service composer)†. Practical experimentation conducted over some
real cases with the prototype shows that the tool can effectively build a composite
service, despite the inherent exponential complexity of service composition, given
the complexity of the behavior of real services (whose state machines are usually not
too complex). We would like to remark that our automatic composition algorithm
has several practical applications. In particular, in the short term, we foresee that
it can constitute the core engine of semi-automatic CASE composition tools, that
assist the service designer in providing the skeleton of a composite service from a
set of available services. The prototype tool that we present in this paper shows
exactly the feasibility and effectiveness of our algorithm.

The rest of this paper is organized as follows. In Section 2 we define the gen-
eral formal framework for representing the (behavioral description of) services, the
service community, i.e., the set of available services, and the problem of service
composition. In Section 3 we exploit the general framework to study the case where
services can be characterized by a finite number of states. In Section 4 we present
a sound, complete and terminating technique for the automatic synthesis of com-
position. In Section 5 we present our prototype tool ESC. Finally, in Section 6 we
consider related research work and in Section 7 we draw conclusions by discussing
future work.

2. General Framework

A service is a software artifact (delivered over the Internet) that interacts with
its clients in order to perform a specified task. A client can be either a human
user, or another service. When executed, a service performs its task by directly

∗Obviously, this does not give us a tight lower bound result, since the problem could be, for
example, PSPACE-hard.

†cf. the paride (process-based framework for composition and orchestration of dynamic e-
services) Open Source Project: http://sourceforge.net/projects/paride/ that is the general
framework in which we intend to release the various prototypes produced by our research.
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executing certain actions, possibly interacting with other services to delegate to
them the execution of other actions. In order to address SOC from an abstract and
conceptual point of view, we start by identifying several facets, each one reflecting
a particular aspect of a service during its life time.

• The service schema specifies the features of a service, in terms of functional
and non-functional requirements. Functional requirements represent what a
service does. All other characteristics of services, such as those related to
quality, privacy, performance, etc. constitute the non-functional requirements.
In what follows, we do not deal with non-functional requirements, and hence
we use the term “service schema” to denote the specification of functional
requirements only.

• The service implementation and deployment indicate how a service is real-
ized, in terms of software applications corresponding to the service schema,
deployed on specific platforms. This aspect regards the technology underly-
ing the service implementation, and it goes beyond the scope of this paper.
Therefore, although implementation issues and other related characteristics
such as recovery mechanisms or exception handling, are important issues in
SOC, in what follows we abstract from these properties of services.

• A service instance is an occurrence of a service effectively running and inter-
acting with a client. In general, several running instances corresponding to
the same service schema may co-exist, each one executing independently from
the others.

In order to execute a service, the client needs to activate an instance of a deployed
service. In our abstract model, the client can then interact with the service instance
by repeatedly choosing an action and waiting for either the fulfillment of the specific
task, or the return of some information. On the basis of the returned information
the client chooses the next action to invoke. In turn, the activated service instance
executes (the computation associated to) the invoked action; after that, it is ready to
execute new actions. Under certain circumstances, i.e., when the client has reached
his goal, he may explicitly end (i.e., terminate) the service instance. However,
in principle, a given service instance may need to interact with a client for an
unbounded, or even infinite, number of steps, thus providing the client with a
continuous service. In this case, no operation for ending the service instance is ever
executed. The following example gives an intuition of our approach. More details
can be found in 16,13.

Example 1. A client wants to search and listen to mp3 files. Hence, he acti-

vates an instance of a deployed service that fulfills his needs. Once the service

instance is activated and all the necessary resources for its execution are allo-

cated, it presents the client with the set of actions that can be executed next,



6 D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini and M. Mecella

namely (i) search by author, for searching a song by specifying its author(s), (ii)
search by title, for searching a song by specifying its title, and (iii) end, for end-

ing the interactions. The client chooses the first action and the service executes it.

Again, the service presents the client with a new set of actions: let it be a single-

ton set, constituted by the action listen, for selecting and listening to a song∗.
Thus, the client chooses that action and the service executes it. At this point the

service offers again the client with the set of actions (i), (ii), and (iii) above. The

client makes his choice, for example search by title, and the interactions con-

tinue. When the client has reached his goal, he selects the action end, the service

instance de-allocates all the resources associated to it and its execution ends.

Note the difference between our approach, in which we model the interactions be-
tween services and their clients through actions, and the approach that can be found
in standard languages such as WSDL 23 where the focus is on exchanged messages.
For example, in WSDL, an interaction between the service and the client is modeled
by an operation, say search by author, with (i) a message that the client sends to
the service for requesting a search, say search by author request, and (ii) a mes-
sage that the service sends back to the client (and, in his turn, the client receives),
containing the results of the computation, say search by author response. Hence,
each WSDL operation roughly corresponds to an action in our framework.

2.1. Service Community

In general, when a client invokes an instance e, activated of a service with a schema
E, it may happen that e does not execute all of its actions on its own, but instead it
delegates some or all of them to other (instances of) services, according to its schema.
All this is transparent to the client. To precisely capture the situations when the
execution of certain actions can be delegated to (instances of) other services, we
introduce the notion of community of services:
Definition 1. (Service Community) A community of services is formally char-
acterized by:

• a finite common set of actions Σ, called the action alphabet, or simply the
alphabet of the community,

• a set of services specified in terms of the common set of actions.

In other words, all the services in a community share a common understanding
over the actions in the alphabet Σ. Hence, to join a community C, a service needs
to export its service(s) in terms of the alphabet of C. Also the clients interact with
services in C using Σ. From a more practical point of view, a community can be seen

∗We assume for simplicity that the list of songs returned by search by author and
search by title is non-empty.
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as the set of all services whose descriptions are stored in a repository. We assume
that all such service descriptions have been produced on the basis of a common
and agreed upon reference alphabet/semantics. This is not a restrictive hypothe-
sis, as many scenarios of cooperative information systems, e.g., e-Government8 or
tightly-coupled e-Business25 ones, consider preliminary agreements on underlying
ontologies, yet yielding a high degree of dynamism and flexibility.

The added value of a community is the fact that a service of the community
may delegate the execution of some or all of its actions to other services in the
community. We call such a service composite. If this is not the case, a service
is called simple. Simple services realize offered actions directly in the software
artifacts implementing them, whereas composite services, when receiving requests
from clients, can (activate and) invoke other services in order to fulfill the client’s
needs.

Notably, the community can be used to generate (virtual) services whose execu-
tion completely delegates actions to other members of the community. Among all
the possible virtual services, in what follows we focus on the target service, i.e., (the
specification of) the service the client would like to interact with, that he requests
for realization to the service community. In other words, the community can be
used to realize a target service requested by the client, not simply by selecting a
member (i.e., a schema from which to activate an instance) of the community to
which delegate the target service actions, but more generally by suitably “compos-
ing” parts of services in the community in order to obtain a virtual service which is
“coherent” with the target one. This function of composing existing services on the
basis of a target service is known as service composition, and is the main subject of
the research reported in this paper.

2.2. Service Schema

From the external point of view, i.e., that of a client, a service E, belonging to a
community C, exhibits a certain exported behavior represented as trees of atomic
actions of C with constraints on their invocation order. From the internal point
of view, i.e., that of an application deploying E and activating and running an
instance of it, it is also of interest how the actions that are part of the behavior of
E are effectively executed. Specifically, it is relevant to specify whether each action
is executed by E itself or whether its execution is delegated to another service
belonging to the community C, transparently to the client of E. To capture these
two points of view we introduce the notion of service schema, as constituted by two
different parts, called external schema and internal schema, respectively.

Accordingly, service instances are characterized by an external and an internal
view16.

2.2.1. External Schema
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The aim of the external schema is to specify the exported behavior of the service.
For now, in order to guarantee a general applicability of our framework, we do
not refer to any particular specification formalism, rather we only assume that,
whatever formalism is used, the external schema specifies the behavior in terms of a
tree of actions, called external execution tree. The external execution tree abstractly
represents all possible executions of a generic instance of a service. Therefore, when
activated, an instance of a service executes a path of such a tree. In this sense,
each node x of an external execution tree represents the history of the sequence
of actions of each service instance∗, that has executed the path to x. For every
action a belonging to the alphabet Σ of the community, and that can be executed
at the point represented by x, there is a (single) successor node x·a. The node
x·a represents the fact that, after performing the sequence of actions leading to x,
the client chooses to execute action a, among those possible, thus getting to x·a.
Therefore, each node represents a choice point at which the client makes a decision
on the next action the service should perform. We call the pair (x, x·a) edge of the
tree and we say that such an edge is labeled with action a. The root ε of the tree
represents the fact that the service has not yet executed any action. Some nodes of
the execution tree are final : when a node is final, and only then, the client can stop
the execution of the service. In other words, the execution of a service can legally
terminate only at these points†.

Notably, an execution tree does not represent the information returned to the
client by the service instance execution, since the purpose of such information is to
let the client choose the next action, and the rationale behind this choice depends
entirely on the client.

Given the external schema Eext of a service E, we denote with T (Eext) the
external execution tree specified by Eext .

Example 2. Figure 1 shows (a portion of) an (infinite) external execution tree

characterizing the behavior of service E0 (discussed in Example 1), that allows for

searching and listening to mp3 files‡. In particular, the client may choose whether

to search for a song by specifying either (i) its author(s) or (ii) its title (action

search by author and search by title, respectively), or (iii) to terminate the

service (action end, implicitely denoted by the fact that the node is final). If the

client has chosen action (i) or (ii), then he selects and listens to a song (action

listen). Finally, the client chooses again which action to perform next, among (i),
(ii), and (iii).

2.2.2. Internal Schema

∗In what follows, we omit the terms “schema” and “instance” when clear from the context.
†Typically, in a service, the root is final, to model that the computation of the service may

not be started at all by the client.
‡Final nodes are represented by two concentric circles.
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Figure 1: External execution tree of service E0

The internal schema specifies, besides the external behavior of the service, the
information on which service instances in the community execute each given action.
As before, for now we abstract from the specific formalism chosen for giving such
a specification, instead we concentrate on the notion of internal execution tree. An
internal execution tree is analogous to an external execution tree, except that each
edge is labeled by (a, I), where a is the executed action and I is a nonempty set
denoting the service instances executing a. Every element of I is a pair (E′, e′),
where E′ is a service and e′ is the identifier of an instance of E′. The identifier
e′ unambiguously identifies the instance of E′ within the service community, and,
therefore, within the internal execution tree. In general, in the internal execution
tree of a service E, some actions may be executed also by the running instance of
E itself. In this case we use the special instance identifier this. Note that, since I

is in general not a singleton, the execution of each action can be delegated to more
than one other service instance.

An internal execution tree induces an external execution tree: given an internal
execution tree Tint we call offered external execution tree the external execution tree
Text obtained from Tint by dropping the part of the labeling denoting the service
instances, and therefore keeping only the information on the actions. An internal
execution tree Tint conforms to an external execution tree Text if Text is equal to
the offered external execution tree of Tint .

Given a service E, the internal schema Eint of E is a specification that uniquely
represents an internal execution tree. We denote such an internal execution tree by
T (Eint).

Definition 2. (Well-formed Service) A service E with external schema Eext

and internal schema Eint is well-formed, if T (Eint) conforms to T (Eext), i.e., its
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internal execution tree conforms with its external execution tree.

We now formally define when a service of a community correctly delegates actions
to other services of the community. We need a preliminary definition: given the
internal execution tree Tint of a service E, and a path p in Tint starting from the
root, we call the projection of p on an instance e′ of a service E′ the path obtained
from p by removing each edge whose label (a, I) is such that I does not contain e′,
and collapsing start and end node of each removed edge. The notion of delegation
is captured by the notion of coherency.
Definition 3. (Coherency) The internal execution tree Tint of a service E is
coherent with a community C if:

• for each edge labeled with (a, I), the action a is in the alphabet of C, and for
each pair (E′, e′) in I, E′ is a member of the community C;

• for each path p in Tint from the root of Tint to a node x, and for each pair
(E′, e′) appearing in p, with e′ different from this, the projection of p on e′

is a path in the external execution tree T ′
ext of E′ from the root of T ′

ext to a
node y, and moreover, if x is final in Tint , then y is final in T ′

ext .

Observe that, if a service of a community C is simple, i.e., it does not delegate
actions to other service instances, then it is trivially coherent with C. Otherwise,
it is composite and hence delegates actions to other service instances. Intuitively,
in the latter case, as expressed by the second bullet above, the behavior that the
composite service “entails” on each component service instance must be “correct”
according to the external schema of the component service instance itself.
Definition 4. (Well-formed Community) A community of services is well-
formed if each service in the community is well-formed, and the internal execution
tree of each service in the community is coherent with the community.

Example 3. Figure 2 shows (a portion of) an (infinite) internal execution tree∗,
conforming to the external execution tree of service E0 shown in Figure 1, where

all the actions are delegated to services of the community. In particular, the execu-

tion of search by title action and its subsequent listen action are delegated to

instance e2 of service E2, and search by author action and its subsequent listen

action to instance e1 of service E1.

2.3. Composition Synthesis

When a user requests a certain service from a service community, there may be
no service in the community that can deliver it directly. However, it may still

∗In the figure, each action is delegated to exactly one instance of a service schema. Hence, for
simplicity, we have denoted a label (a, {(Ei, ei)}) simply by (a, Ei, ei), for i = 1, 2.
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Figure 2: Internal execution tree of service E0

be possible to synthesize a new composite service, which suitably delegates action
execution to the services of the community, and when suitably orchestrated, provides
the user with the service he requested.
Definition 5. (Composition) Let C be a well-formed service community and
let Eext be the external schema of a target service E expressed in terms of the
alphabet Σ of C. A composition of E wrt C is an internal schema Eint such that:

1. T (Eint) conforms to T (Eext),

2. T (Eint) delegates all actions to the services of C (i.e., this does not appear
in T (Eint)), and

3. T (Eint) is coherent with C.

Definition 6. (Composition Existence) Given C and Eext , as in Definition
5, the problem of composition existence is the problem of checking whether there
exists a composition of E wrt C.

Observe that, since for now we are not placing any restriction of the form of
Eint , the problem of composition existence corresponds to checking if there exists
an internal execution tree Tint for E such that (i) Tint conforms to T (Eext), (ii) Tint

delegates all actions to the services of C, and (iii) Tint is coherent with C.
Definition 7. (Composition Synthesis) Given C and Eext , as in Definition
5, the problem of composition synthesis is the problem of synthesizing an internal
schema Eint for E that is a composition of E wrt C.
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3. Services with Behavioral Description as Finite State Machines

Till now, we have not referred to any specific formalism for expressing service
schemas. In what follows, we consider services whose schema (both internal and
external) can be represented using only a finite number of states, i.e., using (deter-
ministic) Finite State Machines (FSMs).

As discussed in the introduction, several papers in the service literature adopt
FSMs as the basic model of exported behavior of services 20,17. Also, FSMs consti-
tute the core of statecharts, which are one of the main components of UML and are
becoming a widely used formalism for specifying the dynamic behavior of entities.

In the study we report here, we make the simplifying assumption that the num-
ber of instances of a service in the community that can be involved in the internal
execution tree of another service is bounded and fixed a priori. In fact, wlog we
assume that it is equal to one. If more instances correspond to the same external
schema, we simply duplicate the external schema for each instance. Considering
that the number of services in a community is finite, this implies that the overall
number of instances orchestrated in executing a service is finite and bounded by the
number of services belonging to the community. Within this setting, we show how
to solve the problem of composition existence, and how to synthesize a composition
that is a FSM. Instead, how to deal with an unbounded number of instances remains
open for future work.

The fact that external schemas can be represented with a finite number of states
means that we can factorize the sequence of actions executed up to a certain point
into a finite number of states, which are sufficient to determine the future behavior
of the service.

Definition 8. ((FSM) External Schema) Let E be a service. The external
schema of E is a FSM Aext

E = (Σ, SE , s0
E , δE , FE), where:

• Σ is the alphabet of the FSM, which is the alphabet of the community;

• SE is the set of states of the FSM, representing the finite set of states of the
service E;

• s0
E is the initial state of the FSM, representing the initial state of the service;

• δE : SE × Σ → SE is the (partial) transition function of the FSM, which is a
partial function that given a state s and an action a returns the state resulting
from executing a in s;

• FE ⊆ SE is the set of final states of the FSM, representing the set of states
that are final for the service E, i.e., the states where the interactions with E

can be legally terminated.
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(a) External schema A0 of the target service E0
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Figure 3: Composition of services

Example 4. Figure 3(a) shows the external schema of the target service E0 of

Examples 2 and 3, specified by the client as a FSM A0. Figures 3(b) and 3(c) show

the external schemas, represented as FSMs A1 and A2, respectively associated to

component services E1 and E2 of Example 3. In other words, A1 and A2 are the

external schemas of the services that should be composed in order to obtain a new

service that behaves like E0. In particular, E1 allows for searching for a song by

specifying its author(s) (action search by author) and for listening to the song

selected by the client (action listen). Then, it allows for executing these actions

again. E2 behaves like E1, but it allows for retrieving a song by specifying its title

(action search by title).

E1 and E2 belong to the same community of services C. For sake of simplicity, we

assume that C is composed by E1 and E2 only, and therefore, the (finite) alphabet

of actions of C is Σ = {search by author, search by title, listen}. According

to our setting, the client specifies the external schema A0 of his target service in

terms of Σ.

The FSM Aext
E is an external schema in the sense that it specifies an external

execution tree T (Aext
E ). Specifically, given Aext

E we define T (Aext
E ) inductively on the

level of nodes in the tree, by making use of an auxiliary function σ(·) that associates
to each node of the tree a state in the FSM. We proceed as follows:

• ε, as usual, is the root of T (Aext
E ) and σ(ε) = s0

E ;

• if x is a node of T (Aext
E ), and σ(x) = s, for some s ∈ SE , then for each a such

that s′ = δE(s, a) is defined, x · a is a node of T (Aext
E ) and σ(x · a) = s′;

• x is final iff σ(x) ∈ FE .
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Figure 4: External execution tree T (A0)

Example 5. Figure 4 shows (a portion of the) the external execution tree T (A0)
defined from A0 by a mapping σ (from nodes of T (A0) to states of A0): each node

of the tree is labeled with the state of A0 that σ associates to it. The mapping σ is

defined as follows.

σ(ε) = s0
0

σ(a) = σ(t) = s1
0

σ(a·l) = σ(t·l) = s0
0

σ(a·l·a) = σ(a·l·t) = σ(t·l·a) = σ(t·l·t) = s1
0

σ(a·l·a·l) = σ(a·l·t·l) = σ(t·l·a·l) = σ(t·l·t·l) = s0
0

. . .

σ maps over s1
0 the nodes of the tree that represent strings ending either by a or by

t; it maps over s0
0 the root and the nodes of the tree associated to strings ending

by l. Note that T (A0) coincides with the external execution tree Text of Figure 1.

That is, Text has a finite representation as a FSM.

The external execution trees T (A1) and T (A2) for the FSMs A1 and A2, respec-

tively, can be defined similarly. Finally, note that in general there may be several

(equivalent) FSMs that specify the same execution tree.

Since we have assumed that each service in the community can contribute to the
internal execution tree of another service with at most one instance, in specifying
internal execution trees we do not need to distinguish between services and service
instances. Hence, when the community C is formed by n services E1, . . . , En, it
suffices to label the internal execution tree of a service E by the action that caused
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(a, 1)

(t, 2)

(l, 2)

(l, 1)

t2

t1

t0

a = search by author

t = search by title

l = listen

Figure 5: Service internal specification as MFSM M0

the transition and a subset of [n] = {1, . . . , n} that identifies which services in the
community have contributed in executing the action. The empty set ∅ is used to
(implicitly) denote this.

We focus on internal schemas that have a finite number of states.

Definition 9. ((MFSM) Internal Schema) Given a service E,
we represent its internal schema as a Mealy FSM (MFSM) Aint

E =
(Σ, 2[n], Sint

E , s0
E

int
, δint

E , ωint
E , F int

E ), where:

• Σ, Sint
E , s0

E
int

, δint
E , F int

E , have the same meaning as for Aext
E ;

• 2[n] is the output alphabet of the MFSM, which is used to denote which
service(s) executes each action;

• ωint
E : Sint

E ×Σ → 2[n] is the output function of the MFSM, that, given a state
s and an action a, returns the subset of services that executes action a when
service E is in state s; if such a set is empty then this is implied; we assume
that the output function ωint

E is defined exactly when δint
E is so.

Example 6. Figure 5 shows a possible internal schema for the target service

E0. It is represented as a MFSM M0. The output function ωint is defined as follows:

ωint(s0
0, a) = {1}

ωint(s1
0, l) = {1}

ωint(s0
0, t) = {2}

ωint(s2
0, l) = {2}

The MFSM Aint
E is an internal schema in the sense that it specifies an internal

execution tree T (Aint
E ). Given Aint

E we, again, define the internal execution tree
T (Aint

E ) by induction on the level of the nodes, by making use of an auxiliary
function σint(·) that associates each node of the tree with a state in the MFSM, as
follows:

• ε is, as usual, the root of T (Aint
E ) and σint(ε) = s0

E
int ;
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Figure 6: Internal execution tree T (M0).

• if x is a node of T (Aint
E ), and σint(x) = s, for some s ∈ Sint

E , then for each a

such that s′ = δint
E (s, a) is defined, x·a is a node of T (Aint

E ) and σint(x·a) = s′;

• if x is a node of T (Aint
E ), and σint(x) = s, for some s ∈ Sint

E , then for each a

such that ωint
E (s, a) is defined (i.e., δint

E (s, a) is defined), the edge (x, x · a) of
the tree is labeled by ωint

E (s, a);

• x is final iff σint(x) ∈ F int
E .

Example 7. Figure 6 shows a portion of the internal execution tree T (M0) defined

from M0, shown in Figure 5. Each node of the tree is labeled with the state of M0

that σint associates to it. The mapping σint is defined as follows.

σint(ε) = s0
0

σint(a) = s1
0

σint(t) = s2
0

σint(a·l) = σint(t·l) = s0
0

σint(a·l·a) = σint(t·l·a) = s1
0

σint(a·l·t) = σint(t·l·t) = s2
0

σint(a·l·a·l) = σint(a·l·t·l) = σint(t·l·a·l) = σint(t·l·t·l) = s0
0

. . .

σint maps over s1
0 the nodes of the tree that represent strings ending by a, and over

s2
0 the nodes that represent strings ending by t; it maps over s0

0 the root and the

nodes of the tree associated to strings ending by l.
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Note that T (M0) is equal to the internal execution tree Tint of Figure 2 (up to

renaming the labels (Ei, ei) with i). That is, Tint has a finite representation as a

MFSM. Therefore, M0 is a specification of an internal execution tree that conforms

to the external execution tree specified by the FSM A0 of Figure 3(a). Finally, note

that in general, an external FSM and its corresponding internal MFSM may have

different forms.

Given a service E whose external schema is an FSM and whose internal schema
is an MFSM, checking whether E is well formed, i.e., whether the internal execution
tree conforms to the external execution tree, can be done using standard finite state
machine techniques. Similarly for coherency of E with a community of services
whose external schemas are FSMs. In this paper, we do not go into the details of
these problems, and instead we concentrate on composition.

4. Automatic Service Composition

We address the problem of checking the existence of a composite service in the
FSM-based framework introduced above. We show that if a composition exists
then there is one such that the internal schema is constituted by a MFSM, and we
show how to actually synthesize such a MFSM, when one exists. The basic idea of
our approach consists in reducing the problem of composition into satisfiability of
a suitable formula of Deterministic Propositional Dynamic Logic (DPDL), a well-
known logic of programs developed to verify properties of program schemas 39.

4.1. Deterministic Propositional Dynamic Logic

Propositional Dynamic Logics (PDLs) are a family of modal logics specifically de-
veloped for reasoning about computer programs 39. They capture the properties
of the interaction between programs and propositions that are independent of the
domain of computation. In this subsection, we provide a brief overview of a logic of
this family, namely Deterministic Propositional Dynamic Logic (DPDL), which we
will use in the rest of the section. More details can be found in Harel etal., 2000 35.

Syntactically, DPDL formulas are built by starting from a set P of atomic propo-
sitions and a set A of deterministic atomic actions as follows:

φ −→ true | false | P | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | 〈r〉φ | [r]φ
r −→ a | r1 ∪ r2 | r1; r2 | r∗ | φ?

where P is an atomic proposition in P, r is a regular expression over the set of actions
in A, and a is an atomic action in A. That is, DPDL formulas are composed from
atomic propositions by applying arbitrary propositional connectives, and modal
operators 〈r〉φ and [r]φ. The meaning of the latter two is, respectively, that there
exists an execution of r reaching a state where φ holds, and that all terminating
executions of r reach a state where φ holds. As far as compound programs, r1 ∪ r2

means “choose non deterministically between r1 and r2”; r1; r2 means “first execute



18 D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini and M. Mecella

r1 then execute r2”; r∗ means “execute r a non deterministically chosen number of
times (zero or more)”; φ? means “test φ: if it is true proceed else fail”.

The main difference between DPDL (and modal logics in general) and classical
logics relies on the use of modalities. A modality is a connective which takes a
formula (or a set of formulas) and produces a new formula with a new meaning.
Examples of modalities are 〈r〉 and [r]. The classical logic operator ¬, too, is a
connective, which takes a formula p and produces a new formula ¬p. The only
difference is that in classical logic, the truth value of ¬p is uniquely determined by
the value of p, instead modalities are not truth-functional. Because of modalities,
the semantics of DPDL formulas (and modal logics) is defined over a structure,
namely a Kripke structure.

The semantics of a DPDL formula is based on the notion of determinis-
tic Kripke structure. A deterministic Kripke structure is a triple of the form
I = (∆I , {aI}a∈A, {P I}P∈P), where ∆I denotes a non-empty set of states (also
called worlds); {aI}a∈A is a family of partial functions aI : ∆I → ∆I from ele-
ments of ∆I to elements of ∆I , each of which denotes the state transition caused
by the atomic program a; P I ⊆ ∆I denotes all the elements of ∆I were P is true.

The semantic relation “a formula φ holds at a state s of a structure I”, is written
I, s |= φ, and is defined by induction on the form of φ:

I, s |= true always
I, s |= false never
I, s |= P iff s ∈ P I

I, s |= ¬φ iff I, s 
|= φ
I, s |= φ1 ∧ φ2 iff I, s |= φ1 and I, s |= φ2

I, s |= φ1 ∨ φ2 iff I, s |= φ1 or I, s |= φ2

I, s |= 〈r〉φ iff there is s′ such that (s, s′) ∈ rI and I, s′ |= φ
I, s |= [r]φ iff for all s′, (s, s′) ∈ rI implies I, s′ |= φ

where the family {aI}a∈A is systematically extended so as to include, for every
program r, the corresponding function rI defined by induction on the form of r:

aI : ∆I → ∆I

(r1 ∪ r2)I = rI1 ∪ rI2
(r1; r2)I = rI1 ◦ rI2
(r∗)I = (rI)∗

(φ?)I = {(s, s) ∈ ∆I × ∆I | I, s |= φ}
It is important to understand, given a formula φ, which are the formulas that

play some role in establishing the truth-value of φ. In simpler modal logics, these
formulas are simply all the subformulas of φ, but due to the presence of reflexive-
transitive closure (on actions) this is not the case for DPDL. Such a set of formulas
is given by the Fischer-Ladner closure 28.

A structure I = (∆I , {aI}a∈A, {P I}P∈P) is called a model of a formula φ if
there exists a state s ∈ ∆I such that I, s |= φ. A formula φ is satisfiable if there
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exists a model of φ, otherwise the formula is unsatisfiable. A formula φ is valid in
structure I if for all s ∈ ∆I , I, s |= φ. We call axioms formulas that are used to
select the interpretations of interest. Formally, a structure I is a model of an axiom
φ, if φ is valid in I. A structure I is a model of a finite set of axioms Γ if I is
a model of all axioms in Γ. An axiom is satisfiable if it has a model and a finite
set of axioms is satisfiable if it has a model. We say that a finite set Γ of axioms
logically implies a formula φ, written Γ |= φ, if φ is valid in every model of Γ. It is
easy to see that satisfiability of a formula φ as well as satisfiability of a finite set
of axioms Γ can be reformulated by means of logical implication, as ∅ 
|= ¬φ and
Γ 
|= ⊥ respectively.

DPDL enjoys two properties that are of particular interest (and that we will ex-
ploit in our composition technique). The first is the tree model property, which says
that every model of a formula can be unwound to a (possibly infinite) tree-shaped
model (considering domain elements as nodes and partial functions interpreting
actions as edges). The second is the small model property, which says that every
satisfiable formula admits a finite model whose size (in particular the number of
domain elements) is at most exponential in the size of the formula itself.

Reasoning in DPDL (and, in general, in PDLs) has been thoroughly studied
from the computational point of view. In particular, the following theorem holds 9:
Theorem 1. Satisfiability in DPDL is EXPTIME-complete.

4.2. Checking Existence of a Composition

In this section we show how to solve the problem of composition existence.
Given the target service E0 whose external schema is an FSM A0 and a com-

munity of services formed by n component services E1, . . . , En whose external
schemas are FSM A1, . . . , An respectively, we build a DPDL formula Φ as fol-
lows. As set of atomic propositions P in Φ we have (i) one proposition sj for
each state sj of Aj , j = 0, . . . , n, denoting whether Aj is in state sj ; (ii) proposi-
tions Fj , j = 0, . . . , n, denoting whether Aj is in a final state; and (iii) propositions
moved j , j = 1, . . . , n, denoting whether (component) FSM Aj performed a transi-
tion. As set of atomic actions A in Φ we have the actions in Σ (i.e, A = Σ).

Example 8. As far our running example, the set P of atomic propositions is

defined as follows:

P = {s0
0, s

1
0, s

0
1, s

1
1, s

0
2, s

1
2, F0, F1, F2,moved1,moved2}

with the following meaning:

• si
j , for i = 0, 1 and j = 0, 1, 2: FSM Aj is in state si

j

• Fj for j = 0, 1, 2: FSM Aj is in a final state

• movedj for j = 1, 2: (component) FSM Aj performed a transition.
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The set A of deterministic atomic actions, which by construction coincides with the

alphabet of the community, is defined as follows:

A = Σ = {a, t, l}
where:

• a denotes action search by author

• t denotes action search by title

• l denotes action listen.

In order to state universal assertions, we introduce the master modality [u]. The
formula Φ is built as a conjunction of the following formulas.

• Formulas representing A0 = (Σ, S0, s
0
0, δ0, F0):

– [u](s → ¬s′) for all pairs of states s ∈ S0 and s′ ∈ S0, with s 
= s′; these
say that propositions representing different states are disjoint (cannot be
true simultaneously).

– [u](s → 〈a〉true ∧ [a]s′) for each a such that s′ = δ0(s, a); these encode
the transitions of A0.

– [u](s → [a]false) for each a such that δ(s, a) is not defined; these say
when a transition is not defined.

– [u](F0 ↔ ∨
s∈F0

s); this highlights final states of A0.

Example 9. In our running example, we set

u = (a ∪ t ∪ l)∗

i.e., as the reflexive and transitive closure of the union of all atomic actions

in A. In other words, u represents the iteration of a non deterministic choice

among all the possible atomic actions. Indeed, we recall that [u]φ, where φ is

a proposition, asserts that φ holds after any regular expression involving a, t,

l.

Formulas capturing the external schema A0 of our running example are as

follows.

[u](s0
0 → ¬s1

0)

This formula states that FSM A0 can never be simultaneously in the two

states s0
0 and s1

0. Note that it is equivalent to state [u](s1
0 → ¬s0

0).

[u](s0
0 → 〈a〉true ∧ [a]s1

0)
[u](s0

0 → 〈t〉true ∧ [t]s1
0)

[u](s1
0 → 〈l〉true ∧ [l]s0

0)
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These formulas encode the transitions that A0 can perform. For example,

the first formula asserts that, for all possible sequence of actions, if A0 is

in state s0
0, the FSM allows for searching an mp3 file by author, i.e., it can

execute action a, and it necessarily moves to state s1
0. Analogously for the

other formulas.
[u](s0

0 → [l]false)
[u](s1

0 → [a]false)
[u](s1

0 → [t]false)

These formulas encode the transitions that are not defined on A0. For exam-

ple, the first formula asserts that, for all possible sequences of actions, it is

never possible to execute action listen when the FSM is in state s0
0.

[u](F0 ↔ s0
0)

Finally, this formula asserts that s0
0 is a final state for A0.

• Formulas encoding each component FSM Ai = (Σ, Si, s
0
i , δi, Fi):

– [u](s → ¬s′) for all pairs of states s ∈ Si and s′ ∈ Si, with s 
= s′; these
again say that propositions representing different states are disjoint.

– [u](s → [a](moved i ∧ s′ ∨¬moved i ∧ s)) for each a such that s′ = δi(s, a);
these encode the transitions of Ai, conditioned to the fact that the com-
ponent Ai is actually required to make a transition a in the composition.

– [u](s → [a](¬moved i ∧ s)) for each a such that δi(s, a) is not defined;
these say that when a transition is not defined, Ai cannot be asked to
execute it in the composition, and therefore Ai does not change state.

– [u](Fi ↔
∨

s∈Fi
s); this highlights final states of Ai.

Example 10. Formulas capturing the external schema A1 of our running

example.

[u](s0
1 → ¬s1

1)

This formula has an analogous meaning as that relative to A0.

[u](s0
1 → [a](moved1 ∧ s1

1 ∨ ¬moved1 ∧ s0
1))

[u](s1
1 → [l](moved1 ∧ s0

1 ∨ ¬moved1 ∧ s1
1))

These formulas encode the transitions of A1, conditioned to the fact that

component A1 is actually required to make a transition in the composition. As

an example, the first formula asserts that for all possible sequences of actions,

if the FSM A1 is in s0
1, then after action a has been executed, necessarily

one of the following conditions must hold: either it is A1 that performed

the transition and therefore it moved to state s1
1, or the transition has been
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performed by another FSM, hence A1 did not move and remained in the

current state s0
1.

[u](s0
1 → [l](¬moved1 ∧ s0

1))
[u](s0

1 → [t](¬moved1 ∧ s0
1))

[u](s1
1 → [a](¬moved1 ∧ s1

1))
[u](s1

1 → [t](¬moved1 ∧ s1
1))

These formulas encode the situation when a transition is not defined. For

example, the first formula states that if the FSM is in state s0
1 and it receives

actions l in input, it does not move, and therefore it remains in state s0
1; this

holds for all possible (previous) sequences of actions. Note that the situation

when the FSM does not move is different from the situation when it loops

on a state: indeed, in the latter case the transition is defined whereas in the

former it does not.

Finally, the formula

[u](F1 ↔ s0
1)

asserts that state s0
1 is final for FSM A1.

Formulas capturing the external schema A2 of our running example.

Such formulas are analogous to the previous ones, therefore, we will just report

them, without further comments.

[u](s0
2 → ¬s1

2)
[u](s0

2 → [t](moved2 ∧ s1
2 ∨ ¬moved2 ∧ s0

2))
[u](s1

2 → [l](moved2 ∧ s0
2 ∨ ¬moved2 ∧ s1

2))
[u](s0

2 → [l](¬moved2 ∧ s0
2))

[u](s0
2 → [a](¬moved2 ∧ s0

2))
[u](s1

2 → [t](¬moved2 ∧ s1
2))

[u](s1
2 → [a](¬moved2 ∧ s1

2))
[u](F2 ↔ s0

2)

• Finally, formulas encoding domain independent conditions:

– s0
0 ∧ ∧

i=1,...,n s0
i ; this says that initially all services are in their initial

state; note that this formula is not prefixed by [u](·).
– [u](〈a〉true → [a]

∨
i=1,...,n moved i), for each a ∈ Σ; these say that at

each step at least one of the component FSM has moved.

– [u](F0 → ∧
i=1,...,n Fi); this says that when the target service is in a final

state also all component services must be in a final state.
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Example 11. The following formulas must hold for the overall composition

of our running example.

s0
0 ∧ s0

1 ∧ s0
2

It asserts that all services start from their initial states.

[u](〈a〉true → [a](moved1 ∨ moved2))
[u](〈t〉true → [t](moved1 ∨ moved2))
[u](〈l〉true → [l](moved1 ∨ moved2))

Each formula expresses that at each step at least one FSM moves. For exam-

ple, the first one asserts that for all possible execution sequences, if execution

of a terminates, then necessarily a is executed by at least one component

service, either E1 or E2.

Finally,

[u](F0 → F1 ∧ F2)

states that if the composite service is in a final state, both component services

must be in a final state: the composite service may legally terminate only if

also all the component services can.

Lemma 1. If there exists a composition of E0 wrt E1, . . . , En, then the DPDL
formula Φ, constructed as above, is satisfiable.
Proof. Suppose that there exists some internal schema (without restriction on its
form) E0

int which is a composition of E0 wrt E1, . . . , En. Let Tint = T (E0
int) be

the internal execution tree defined by E0
int .

Then for the target service E0 and each component service Ei, i = 1, . . . n, we
can define mappings σ and σi from nodes in Tint to states of A0 and Ai, respectively,
by induction on the level of the nodes in Tint as follows.

• base case: σ(ε) = s0
0 and σi(ε) = s0

i .

• inductive case: let σ(x) = s and σi(x) = si, and let the node x · a be in Tint

with the edge (x, x · a) labeled by (a, I), where I ⊆ [n] and I 
= ∅ (notice that
this may not occur since Tint is specified by a composition). Then we define

σ(x · a) = s′ = δ0(s, a)

and

σi(x · a) =

{
si

′ = δi(si, a) if i ∈ I

si if i 
∈ I

Once we have σ and σi in place we can define an interpretation I =
(∆I , {aI}a∈Σ, {P I}P∈P) for Φ as follows:

• ∆I = {x | x ∈ Tint};
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• aI = {(x, x · a) | x, x · a ∈ Tint}, for each a ∈ Σ;

• sI = {x ∈ Tint | σ(x) = s}, for all propositions s corresponding to states of
A0;

• sIi = {x ∈ Tint | σi(x) = si}, for all propositions si corresponding to states of
Ai;

• movedI
i = {x · a | (x, x · a) is labeled by I with i ∈ I}, for i = 1, . . . , n;

• F I
0 = {x ∈ Tint | σ(x) = s with s ∈ F0};

• F I
i = {x ∈ Tint | σi(x) = si with si ∈ Fi}, for i = 1, . . . , n.

Since Tint is a composition of E0 wrt E1, . . . , En, it is easy to check that the
interpretation I built as above, is a model for Φ and that, therefore, Φ is satisfiable.

Lemma 2. Any model of the DPDL formula Φ, constructed as above, denotes a
composition of E0 wrt E1, . . . , En.

Proof. Suppose Φ is satisfiable. For the tree model property, there exists a tree-like
model for Φ: let I = (∆I , {aI}a∈Σ, {P I}P∈P) be such a model. From I we can
build an internal execution tree Tint for E0 as follows.

• the nodes of the tree are the elements of ∆I ; actually, since I is tree-like we
can denote the elements in ∆I as nodes of a tree, using the same notation
that we used for internal/external execution tree;

• nodes x such that x ∈ F I
0 are the final nodes;

• if (x, x·a) ∈ aI and for all i ∈ I, x·a ∈ movedIi and for all j 
∈ I, x·a 
∈ movedIj ,
then (x, x · a) is labeled by (a, I).

It is straightforward to show that: (i) Tint conforms to T (A0), (ii) Tint delegates
all actions to the services of E1, . . . , En, and (iii) Tint is coherent with E1, . . . , En.
Since we are not placing any restriction on the kind of specification allowed for
internal schemas, it follows that there exists an internal schema Eint that is a
composition of E0 wrt E1, . . . , En.

Theorem 2. The DPDL formula Φ, constructed as above, is satisfiable if and only
if there exists a composition of E0 wrt E1, . . . , En.

Proof. Straightforward, from Lemma 1 and 2.
Observe that the size of Φ is polynomially related to A0 and A1, . . . , An. Hence,

from the EXPTIME-completeness of satisfiability in DPDL and from Theorem 2
we get the following complexity result.

Theorem 3. Checking the existence of a service composition can be done in EX-
PTIME.
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4.3. Synthesizing a Composition

In the previous section we have shown that we are able to check the existence of
a composition by checking satisfiability of a DPDL formula Φ encoding the target
service, the services in the community and a number of domain independent condi-
tions. In this section we extend our technique to actually synthesize a composition
which is an FSM. Specifically, we present an algorithm that returns a composition, if
one exists, and returns a special symbol (nil), denoting that no composition exists,
otherwise.

Intuitively, by Theorem 2, if Φ is satisfiable then it admits a model, which is
exactly the internal schema, i.e., the composition we want to synthesize. Conversely,
if Φ is not satisfiable, no model exists, therefore, the component FSM A1, . . . , An

cannot be composed in order to achieve the target FSM A0. Note that Theorem 2
says nothing about compositions which are finite state machines. However, because
of the small model property, from the DPDL formula Φ one can always obtain a
model which is at most exponential in the size of Φ. From such a model one can
extract an internal schema for E0 that is a composition of E0 wrt E1, . . . , En, and
which has the form of a MFSM.

Definition 10. (Mealy Composition) Given a finite model If =
(∆If , {aIf }a∈Σ, {P If }P∈P), we define Mealy composition an MFSM Ac =
(Σ, 2[n], Sc, s

0
c , δc, ωc, Fc, ), built as follows:

• Sc = ∆If ;

• s0
c = d0 where d0 ∈ (s0

0 ∧
∧

i=1,...,n s0
i )

If ;

• s′ = δc(s, a) iff (s, s′) ∈ aIf ;

• I = ωc(s, a) iff (s, s′) ∈ aIf and for all i ∈ I, s′ ∈ moved
If

i and for all j 
∈ I,
s′ 
∈ moved

If

j ;

• Fc = F
If

0 .

As a consequence of this, we get the following results.

Theorem 4. If there exists a composition of E0 wrt E1, . . . , E0, then there exists
a Mealy composition whose size is at most exponential in the size of the external
schemas A0, A1, . . . , An of E0, E1, . . . , En respectively.

Proof. By Theorem 2, if A0 can be obtained by composing A1, . . . , An, then the
DPDL formula Φ constructed as above is satisfiable. In turn, if Φ is satisfiable,
for the small-model property of DPDL there exists a model If of size at most
exponential in Φ, and hence in A0 and A1, . . . , An. From If we can construct a
MFSM Ac as above. The internal execution tree T (Ac) defined by Ac satisfies all
the conditions required for Ac to be a composition, namely: (i) T (Ac) conforms to
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AUTOMATIC SERVICE COMPOSITION
1 INPUT: A0 /* FSM external schema of target service */
2 A1 . . . An /* FSM external schema of services in the community */
3

4 OUTPUT: if (a composition of A0 wrt A1 . . . An exists)
5 then return a Mealy composition of A0 wrt A1 . . . An

6 else return nil
7

8 begin
9 Φ := FSM2DPDL(A0, A1, . . . An);
10 If := DPDLTableau(Φ);
11 if (If == nil)
12 then return nil
13 else Ac := Extract MFSM(If);

14 Cmin := Minimize(Ac);

15 return Cmin;
16 end

Figure 7: The Algorithm for Synthesizing Mealy Composition

T (A0), (ii) T (Ac) delegates all actions to the services of E1, . . . , En, and (iii) T (Ac)
is coherent with E1, . . . , En.
Theorem 5. Any finite model of the DPDL formula Φ denotes a Mealy composi-
tion of E0 wrt E1, . . . , En.
Proof. By construction, observing that the construction of the Mealy composition
from a finite model is semantic-preserving.

Figure 7 shows our algorithm, which consists of the following steps. First (line
9), the DPDL formula Φ is built, exploiting the FSM2DPDL function, as a conjunction
of formulas encoding: (i) the target service requested by the client, (ii) the (avail-
able) services of the community, and (iii) domain independent conditions. In other
words, it encodes all (real and virtual) services participating in the composition. Es-
sentially, such an encoding aims at characterizing which service in the community
“moves” in correspondence with each transition of the target service, so that general
domain independent conditions are satisfied. The novelty and peculiarity of our ap-
proach to service composition is exactly this: we delegate to one or more services in
the community the execution of each action present in the client specification, since
only in a second moment it is known which actions will be chosen by the client for
execution (and the composite service should be able to execute any action chosen
by the client). Satisfiability of Φ is then checked (line 10, function DPDLTableau)
exploiting tableau algorithms 26,6 that return a (finite) model, if one exists. If Φ
is not satisfiable, no model exists, and our algorithm returns nil (line 12). Oth-
erwise, from a finite model a Mealy composition is built, (function Extract MFSM,
line 13), according to Definition 10. Intuitively, the transformation from a finite
model If to a Mealy Machine Ac consists in discarding from each state of If the
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(l, 1)
(a, 1) (t, 2)

(t, 2)

(t, 2)

(a, 1)

(a, 1)

(l, 2)

moved1, F2

F0, F1, F2 F0, F1, F2

F0, F1, F2

s0
0, s0

1, s0
2

t0

t1

t2

t3

t4

s1
0, s1

1, s0
2

s0
0, s0

1, s0
2, moved1

s1
0, s0

1, s1
2

s0
0, s0

1, s0
2, moved2

moved2, F1

Figure 8: Finite model If for Φ.

information about the current state of each component service, therefore keeping
in Ac only the information about which service is in a final state and which one
“moves”. Note that, in general, after this transformation, some states of Ac can be
redundant, since they contain the same information: in other words, a final step
minimizing Ac can be performed (line 14, function Minimize), and the minimal
Mealy composition Cmin is returned (line 15). As we will show in Section 5, our
prototype tool implements exactly such steps.

Example 12. Let Φ be the DPDL formula encoding A0, A1, A2 and the domain

independent conditions, built as in Section 4.2. Let If be the finite model (i.e.,

the Kripke Stricture) obtained using a tableau technique for DPDL. If is defined

as If = (∆If , {aIf }a∈Σ, {P If }P∈P), where:

∆If = {t0, t1, t2, t3, t4}
aIf = {(t0, t1), (t2, t1), (t4, t1)}
tIf = {(t0, t3), (t2, t3), (t4, t3)}
lIf = {(t1, t2), (t3, t4)}
(s0

0)
If = {t0, t2, t4}

(s1
0)

If = {t1, t3}
(s0

1)
If = {t0, t2, t3, t4}

(s1
1)

If = {t1}

(s0
2)

If = {t0, t1, t2, t4}
(s1

2)
If = {t3}

movedIf

1 = {t1, t2}
movedIf

2 = {t3, t4}
F

If

0 = {t0, t2, t4}
F

If

1 = {t0, t2, t3, t4}
F

If

2 = {t0, t1, t2, t4}
Each state ti of the model is associated with the atomic propositions in P that

hold in that state, according to If . For example, consider state t0 (which is initial

for the model): If imposes that s0
0 ∧ s0

1 ∧ s0
2 ∧ F0 ∧ F1 ∧ F2 holds in t0. For sake

of readability, in the figure we have associated to each state of If simply the list

of atomic propositions that are true. Additionally, note that the DPDL encoding

does not pose any constraint on the value of moved i predicates in the initial state

of the model: their value has been arbitrarily chosen to be false.∗

∗Note also the model for the DPDL formula Φ is deterministic, as it should be. Non determin-
ism could have been introduced by the operator 〈〉. However, we are guaranteed that no atomic
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(a, 1)

(t, 2)

(l, 2)

(l, 1)

t2

t1

t0

a = search by author

t = search by title

l = listen

Figure 9: Minimal MFSM Cmin associated to If .

Given If = (∆If , {aIf }a∈Σ, {P If }P∈P) of Φ, we define a Mealy Machine Ac =
(Σ, 2[n], Sc, s

0
c , δc, ωc, Fc, ) representing the internal schema of the target service, as

follows:

• Sc = {t0, t1, t2, t3, t4};

• s0
c = t0, where t0 ∈ (s0

0 ∧ s0
1 ∧ s0

2)
If ; note that we could have as well as chosen

either t2 or t4 as initial state.

• δc is defined as:

δc(t0, a) = t1
δc(t0, t) = t3
δc(t1, l) = t2
δc(t3, l) = t4

δc(t2, a) = t1
δc(t2, t) = t3
δc(t4, a) = t1
δc(t4, t) = t3

• ωc is defined as:

ωc(t0, a) = {1}
ωc(t0, t) = {2}
ωc(t1, l) = {1}
ωc(t3, l) = {2}

ωc(t2, a) = {1}
ωc(t2, t) = {2}
ωc(t4, a) = {1}
ωc(t4, t) = {2}

• Fc = {t0, t2, t4}.

This example shows also that the finite state machine associated to the finite

model of Φ is in general not minimal. Indeed, the minimal MFSM Cmin is shown

in Figure 9. Note that Cmin coincides with the MFSM shown in Figure 5 which, as

shown in Example 7, is an internal schema for the target service E0 of our running

example.

action a connects state s1 with two different target states s2 and s3, because 〈〉 appears only in
front of the atomic proposition true. Indeed, if a related s1 with s2 and s3, such target states
would actually be the same, since s2 and s3 associated with the same atomic proposition true.
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descriptions of client

services in the 
community

MFSM of
composition

Abstraction

Module

FSM minimizer)

(DPDL SAT +

Synthesis Engine

Realization

Module

BPEL4WS spec
of composite service
to be enacted by an
orchestration engine

service FSMs

WSDL + behavioral 

desired service

WSDL + behavioral 
descriptions of

Figure 10: The Service Composition Architecture

Finally, note that our composition algorithm can be easily extended to produce
compositions satisfying additional constraints expressed in DPDL, for instance, we
may require that once a certain state of the composite service is reached, it is never
reached again. The algorithm in Figure 7 can be extended as follows. It takes in
input also a DPDL formula ΦProp encoding the additional constraints that the com-
position should satisfy. Line 10 is replaced with If := DPDLTableau(Φ ∧ ΦProp);,
satisfiability of the conjunct Φ ∧ ΦProp is checked, and a model If is returned if
one exists. It is easy to see that any model If is a composition of the available
services, that realizes the target services and that satisfies the required constraints.
The inclusion of additional constraints in our encoding goes beyond the scope of
this paper and will not be further addressed.

5. The Service Composition Tool ESC
In this section we discuss the prototype tool ESC that we developed to compute
automatic service composition in our framework.

Figure 10 shows the high level architecture for ESC. Each service is represented
in terms of both its static interface, through a WSDL document, and its behavioral
description∗, which can be expressed in any language that allows to express a finite
state machine (e.g., Web Service Conversation Language 32, Web Service Transition
Language 17, BPEL4WS 3, etc.). We recall that in our framework the focus is on
actions that a service can execute; such actions can be seen as the abstractions
of the effective input/output messages and operations offered by the service. As
an example, Figure 11 shows the WSDL interface of service E0 whose behavior is
represented in Figure 3(a).

∗Note that such behavioral description of services specifies the external schema.
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<definitions ...
xmlns:y="http://new.thiswebservice.namespace"
targetNamespace="http://new.thiswebservice.namespace">

<!-- Types -->
<types>

<element name="ListOfSong_Type">
<complexType>

<sequence>
<element minOccurs="1"

maxOccurs="unbound"
name="SongTitle"
type="xs:string"/>

</sequence>
</complexType>

</element>
</types>

<!-- Messages -->
<message name="search_by_title_request">

<part name="containedInTitle" type="xs:string"/>
</message>
<message name="search_by_title_response">

<part name="matchingSongs" xsi:type="ListOfSong_Type"/>
</message>
<message name="search_by_author_request">

<part name="authorName" type="xs:string"/>
</message>
<message name="search_by_author_response">

<part name="matchingSongs" xsi:type="ListOfSong_Type"/>
</message>
<message name="listen_request">

<part name="selectedSong" type="xs:string"/>
</message>
<message name="listen_response">

<part name="MP3fileURL" type="xs:string"/>
</message>

<!-- Service and Operations -->
<portType name="MP3CompositeServiceType">

<operation name="search_by_title">
<input message="y:search_by_title_request"/>
<output message="y:search_by_title_response"/>

</operation>
<operation name="search_by_author">

<input message="y:search_by_author_request"/>
<output message="y:search_by_author_response"/>

</operation>
<operation name="listen">

<input message="y:listen_request"/>
<output message="y:listen_response"/>

</operation>
</portType>

</definitions>

Figure 11: WSDL specification of service E0 whose external schema A0 is repre-
sented in Figure 3(a).
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We start from a repository of services, which implements the community of ser-
vices, and which can be seen, therefore, as an advanced version of UDDI55. The
client specifies his target service in terms of a WSDL document and of its behavioral
description, again expressed using one of the language mentioned before∗. Both the
services in the repository and the target service are then abstracted into the corre-
sponding FSM (Abstraction Module). The Synthesis Engine is the core module
of ESC. It takes in input such FSMs, produces the DPDL formula Φ, (possibly)
builds a model and produces in output the MFSM of the composite service, where
each action is annotated with (the identifier of) the component service(s) that ex-
ecutes it. Finally, such abstract version of the composite service is realized into a
BPEL4WS specification† (Realization Module), that can be executed by an or-
chestration engine, i.e., a software module that suitably coordinates the execution
of the component services participating to the composition 2.

We tested our tool on several examples, involving communities containing up
to 10 services, each one having roughly 10-20 states: ESC performs quite nicely,
considering that the current release does not implement any relevant optimization.

The implementation of the Abstraction Module depends on which language is
used to represent the behavioral description of services. In our prototype we use
Web Service Transition Language, which is translated into FSMs 17.

In the next subsections we will provide some details on the Synthesis Engine

and the Realization Module.

5.1. Implementation of the Synthesis Engine Module

From a practical point of view, in order to actually synthesize a Mealy composition,
we resort to Description Logics (DLs 6), exploiting the well known correspondence
between DPDL formulas and DL knowledge bases‡. Tableaux algorithms for DLs
have been widely studied in the literature, therefore, one can use current highly
optimized DL-based systems 36,33 to check the existence of service compositions.
However, such systems cannot be used to synthesize a Mealy composition because
they do not return a model. Therefore, we implemented from scratch a tableau
algorithm for DL that builds a model§ (of the DL knowledge base that encodes the
specific composition problem) which is a Mealy composition. For our purpose the
well-known ALC 6, equipped with the ability of expressing axioms, suffices14.

The various functionalities of the Synthesis Engine are implemented into three
Java sub-modules.

• The FSM2ALC Translator module takes in input the FSMs produced by the
∗The behavioral description of both the client specification and the services in the repository

are expressed in the same language.
†It represents the internal schema for the target service.
‡In fact, current Description Logics systems cannot handle Kleene star. However, since in our

DPDL formula Φ, ∗ is only used to mimic universal assertions, and such systems have the ability
of handling universal assertions, they can indeed check satisfiability of Φ.

§If one exists.
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Abstraction Module, and translates them into an ALC knowledge base (de-
tails of the encoding are presented in 14).

• The ALC Tableau Algorithm module implements the standard tableau al-
gorithm for ALC (cf., Buchheit et al., 1993 19). It takes in input the ALC
knowledge base and checks its satisfiability, or, equivalently, it verifies if a
composition exists. If this is the case, it returns a model of the knowledge
base, which is a finite state machine. Otherwise, it returns the information
about unsatisfiability of the knowledge base, i.e., the non-existence of a com-
position.

• The FSM Minimizer module minimizes the model, since it may contain states
which are unreachable or unnecessary. Classical, standard minimization tech-
niques can be used, in particular, we implemented the Implication Chart

Method 51. The minimized FSM is then converted into a Mealy FSM, where
each action is annotated with the service in the repository that executes it.

Since these three modules are in fact independent, they are wrapped into an ad-
ditional module, the Composer Module, which also provides the external interface.

5.2. Implementation of the Realization Module

The Realization Module, whose development is currently ongoing, is in charge of
producing an executable BPEL4WS file starting from the automatically synthesized
MFSM. In the following, we outline the intuitions that are driving our design and
development (based on results in 7,15):

• Transitions are mapped first, thus deriving transition skeletons, then states
are mapped, thus deriving state skeletons, and finally the BPEL4WS file is
obtained, by connecting state skeletons on the basis of the MFSM; in such
a way the obtained BPEL4WS specification has a structure similar to the
one shown in Figure 12, i.e., with a <flow> operation wrapping all the state
skeletons, connected among them by <link>s.

• Each transition corresponds to a BPEL4WS pattern (i.e., transition skeleton)
consisting of (i) an <onMessage> operation (in order to wait for the input
from the client of the composite service), (ii) followed by the invocation to
the appropriate component service, and then (iii) a final operation for re-
turning the result to the client. Of course both before the component service
invocation and before returning the result, messages should be copied forth
and back in appropriate variables.

• All the transitions originating from the same state are collected in a <pick>

operation, having as many <onMessage> clauses as transitions originating
from the state; this is the state skeleton.
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<process name = “…”>

</process>

<partnerLinks>
…

</partnerLinks>

<flow>
<links>

…
</links>
<!-- state skel. -->
…
<!-- state skel. -->

</flow>

<variables>
…

</variables>

<process name = “…”>

</process>

<partnerLinks>
…

</partnerLinks>

<flow>
<links>

…
</links>
<!-- state skel. -->
…
<!-- state skel. -->

</flow>

<variables>
…

</variables>

Transition
Skeletons

State
Skeletons

BPEL4WS
Specification

Skeleton

MSFM

Mapping transitions

Mapping states

Connecting state 
skeletons on the 
basis of the graph

Figure 12: Methods for deriving the BPEL4WS file and its structure, as inspired
by 7

• The above steps for transition and state skeletons work for request/reply in-
teractions; simple modifications are needed for notification/response, one-way
and notification-only interactions, that can imply a proactive behaviour of the
composite service, possibly guarded by <onAlarm> blocks. Figure 13 shows
the structure of the skeletons.

• Finally, the BPEL4WS file is built visiting the MFSM in depth, starting from
the initial state and applying the previous rules. Specifically, all the <pick>

blocks are enclosed in a surrounding <flow>; the dependencies are modeled as
<link>s: <link>s are controlled by specific variables Si-to-Sj that are set
to TRUE iff the transition Si → Sj is executed; each state skeleton has many
outgoing <link>s as states connected in output, each going to the appropriate
<pick> block.

• The previous step works for acyclic state machines. In the case of a state
machine with cycles, the following intuition can be applied: (i) identify all the
cycles; (ii) for each cycle enclose the involved state skeletons inside a <while>

block controlled by a condition !exit, where exit is a variable defined ad
hoc and it is set to FALSE by any transition that “goes out” of the cycle;
(iii) connect the overall <while> block to other state skeletons by appropriate
<link>s.

There are some interesting special cases: (i) a state S with self-transitions can
be represented as a <pick> block enclosed in a <while> block controlled by a
condition (Vs) (the variable Vs is set to FALSE by other non self-transitions);
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<onMessage ... >
<sequence>

<assign>
<copy>

<from variable="input" ... />
<to variable="transitionData" ... />

</copy>
</assign>
< !-- invocation of the component service -->
<assign>

<copy>
<from variable="transitionData" ... />
<to variable="output" ... />

</copy>
</assign>
<reply ... />
</sequence>

</onMessage>

(a) Transition skeleton

<!-- N transition from state Si -->
<pick name = "Si">

<!-- transition #1 -->
<onMessage ...>
<!-- transition skeleton -->
</onMessage>
...
<!-- transition #N -->
<onMessage ...>
<!-- transition skeleton -->
</onMessage>

</pick>

(b) State skeleton

Figure 13: BPEL4WS code skeletons for transitions and states

(ii) cycles starting from the initial state should not be considered, as they can
be represented as the start of a new instance of the BPEL4WS process.

By remarking the fact that the Realization Module is still in the development
phase, we present in Figure 14 the BPEL4WS pseudo code for the MFSM of the
running example.
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6. Related Work

Service Oriented Computing promises to give rise to new opportunities in developing
and deploying distributed software applications, by suitably assembling services
offered by different organizations. This is facilitated by the use of open (XML-based)
standard languages (e.g., WSDL 23, WSCL 32, WSCI 5, BPEL4WS 3, WS-CDL 38)
and protocols (such as SOAP and XML Protocol 57), which provide a basic substrate
for wiring together the different services constituting the distributed application.

However, such standards lack a clear formal semantics, and therefore, they are
not suitable for service oriented computing at a conceptual level.

Indeed, service oriented computing should be based on a conceptual representa-
tion of services from an external point of view, thus abstracting from internal (i.e.,
implementation) details; such an external point of view is the one to be consid-
ered when composing and orchestrating services. In this paper we have proposed a
conceptual way of representing service behavior as finite state machines, in terms
of both the internal and the external view, which constitutes an abstraction over
current standards and technologies. On the basis of such a description we have
developed a novel technique for automatic service composition.

Supported by such a technological layer, research on service oriented computing
has mainly concentrated on (i) service description and modeling (i.e., what prop-
erties of a service should be described, and at which abstraction level)), (ii) service
discovery (i.e., how to efficiently query against service descriptions), (iii) service
composition (i.e., how to specify goals and constraints of a composition, how to
build a composition, how to analyze a composition), and (iv) orchestration (i.e.,
invocation, enactment and monitoring of both simple and composite services).

Service Description and Modeling. The OWL-S (formerly DAML-S) Coali-
tion 4 defines a specific ontology and a related language for services. A service
presents a Service Profile (i.e., what it does, in terms of inputs and outputs, pre-
conditions and effects), it is described by a Service Process Model (i.e., how it works,
in terms of the abstract internal process), and it supports a Service Grounding (i.e.,
how to access the service, in terms of communication protocol, marshalling and seri-
alization, etc.). Services, whose process is characterized by a FSM-based conceptual
model and is described in OWL-S, can be easily composed using our technique.

In Bultan etal., 2003 20, a service is modeled as a Mealy machine, with input
and output messages, and a (bounded) queue is used to buffer messages that are
received but not yet processed. In our paper, we model services as finite state
machines, but we do not consider communication delays and therefore any concept
of message queuing is not taken into account. However, it is possible to show that
the two models have the same expressive power. Moreover, from the survey of Hull
etal., 2003 37, it stems that most practical and currently adopted approaches for
modeling and describing services, which are targeted to composition, are based on
finite automata/state machines.
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Service Discovery. In van den Heuvel etal., 2001 56, services are considered
as constituted by sub-services, thus modelled as a hierarchy of parts (expressing
capabilities of services), based on a common ontology. On the assumption that all
descriptions of available services are stored in a common repository, an algorithm
that selects the service that best fits a given description (i.e., the request for specific
capabilities) is presented, based on similarity notions. Such a selection is currently
carried out only on the basis of static features similarity, whereas we argue that
selection should also be based on behavioral descriptions.

Other works on service discovery propose information retrieval techniques 58,
peer-to-peer scenarios 52 and graph-based techniques in the context of OWL-S ser-
vices 12.

Although our work is orthogonal to service discovery issues, we would like to
remark that all such approaches take into account only “static” service signatures,
whereas considering behavioral descriptions could improve the quality of the discov-
ery process. In our work we assume that the service community has already been
assembled. Therefore, service discovery techniques play an important role in such
a community construction phase.

Service Composition. In Yang and Papazoglou, 2004 59 a methodological frame-
work for service composition and life-cycle management is proposed, in which com-
posite services are created by re-using, specializing and extending existing ones.

In McIlraith and Son, 2002 45 and in McIlraith etal., 2001 46, a Situation Calcu-
lus based framework for services is proposed, where a service is described from the
client point of view, as an atomic action, thus presenting an input/output behavior;
a situation tree (i.e., a kind of process flow in the theory of Situation Calculus) is
associated with such an atomic action. Services are specified as ConGolog proce-
dures and a tool for automatic composition is presented: a user presents his goal
to the system, expressed as a kind of generic (i.e., skeleton) procedure with user
constraints and preferences. Such a user specification cannot be executed “as is”:
it should be made executable by an agent that, exploiting a OWL-S ontology of
services, automatically instantiates the user specification with services contained
in such an ontology, by possibly pruning the situation tree corresponding to the
generic procedure in order to take user preferences and constraints into account.
Such an instantiated user specification is a sequence of atomic actions (i.e., ser-
vices) which are then executed by a ConGolog interpreter. The main difference
with our technique is that services are seen as atomic, therefore the client can not
specify the interleaved execution of “pieces of” services (i.e., parts of atomic ac-
tions/procedures). Another difference is that in McIlraith and Son, 2002 45 and
in McIlraith etal., 2001 46 the client specifies his goal once and forall before the
composition and during the execution of the composite services he has no control
on the executed sequences of actions. Conversely, in our work the client has such
control, since at each step of the execution he chooses the next action to perform.
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Finally, in McIlraith etal., 2001 46 the outcome of the composition is not a service,
in the sense that it cannot be re-used by another client, whereas in our work the
composition produces a reusable specification.

In Bultan etal., 2003 20, a framework for modeling and analyzing the global
behavior of service compositions is presented. Services exchange messages accord-
ing to a predefined communication topology, expressed as a set of channels among
services: a sequence of exchanged messages (as seen by an external virtual watcher)
is referred to as conversation. In this framework properties of conversations are
studied, in order to characterize the behavior of services, modeled as Mealy ma-
chines. In such a framework, the synthesis problem takes in input (i) a desired
global behavior (i.e., the set of all possible desired conversations) specified as a
Linear Temporal Logic (LTL) formula, and (ii) a composition infrastructure, that
is a set of channels, a set of (name of) services and a set of messages. The output
of the synthesis is the specification of the Mealy machines of the services such that
their conversations are compliant with the LTL specification. The main difference
with our technique is that their approach to the synthesis is “top-down”: a desired
global behavior is specified, and it is assumed that services can be designed during
the synthesis phase without constraints. Conversely, our technique is “bottom/up”:
the behavior of the services is also given, and the synthesis phase tries to assemble
such behaviors in order to provide the desired behavior. Another difference consists
in the conceptual model underlying the desired composition specification: in Bultan
etal., 2003 20 a linear setting is taken, since composition focuses on linear sequences
(i.e., paths) of actions; conversely, in our approah the client specification is based
on a branching model: composition focuses on a tree-based structure, where each
node denotes a choice point on what to do next. The expressive power of linear and
branching temporal formulas is not comparable.

In Aiello etal., 2002 1, Lazovik etal., 2003 42, Pistore etal. 2004 49, Traverso and
Pistore, 2004 54 a way of composing services is presented, based on planning under
uncertainty, model checking and constraint satisfaction techniques, and a request
language, to be used for specifying client goals, is proposed. Specifically, Lazovik
etal., 2003 42 present an approach to service composition of atomic services based
on interleaving of planning, monitoring and execution: in this way, the authors are
able to adapt at runtime the composite service generated during the planning phase,
to cope with possible changes in the service environment. Pistore etal. 2004 49,
Traverso and Pistore, 2004 54 present a composition algorithm, that takes in input a
set of partially specified services, modeled as non-deterministic finite state machines,
and the client∗ goals expressed as a branching temporal formula, and returns a plan
that specifies how to coordinate the execution of concurrent services in order to
realize the client goal. The plan can then be encoded in standard coordination
languages and executed by orchestration engines. Note that, differently from our

∗We want to recall that throughout the paper we use the term “client” to denote in the abstract
the entity which is interested in having a composite service.
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approach, once the plan is synthesized, the client has no further control on the
execution of the service, in order to choose what to do next. The plan is also able
to monitor the composition, thus guaranteeing that the interactions among available
services satisfy given properties. Such proposals have some similarities with ours:
indeed, in both cases the client goal essentially specifies temporal properties that
the (behavior of the) overall composition should satisfy.

The results in this paper show that two specific features form the base of our
proposal. The first one is that the composition involves the concurrent executions
of several services. Only few proposals in the literature follow a similar idea. In
particular, the most related ones are 20,45,46,49,54: they have in common with our
proposal the fact that the service execution can be interleaved if needed. The
composition deals with suitably controlling such an interleaving so as to realize the
client request. Note that, most work on composition involves reaching a situation
where some desired properties hold, and it is based on the idea of sequentially
composing the available services, which are considered as black boxes, and hence
atomically executed, as in 4,40,44,60,1,42. Such an approach to composition is tightly
related to Classical Planning in AI 30. The second basic feature is that the client
request is a specification of the transition system that the client wants to be able
to execute. This feature is, to the best of our knowledge, unique to our proposal.
Indeed even 20,45,46 actually focus on realizing a single execution fulfilling the client
request. Notice that such an execution may depend on conditions to be verified at
run time, but not on further choices made by the client. Only the proposal in 49,54

has some similarities with ours: indeed, there, the client goal is expressed in a
specific branching-time logic, that allows to specify alternative paths of execution,
which are, however, not under the control of the client, as it is in our case. However,
their goals are still essentially based on having a main execution to follow, plus some
side paths that are typically used to resolve exceptional circumstances.

Another point we want to discuss here regards the distinction between data
and process that often shows up in the service literature. Indeed we have two
extremes in dealing with data and process. One end of the spectrum is well explored
by the literature on data integration that fully takes into account the data, but
not the process 34,43. Interestingly, there are some proposals that base service
composition for data intensive services on such a literature, avoiding to talk about
the process as much as possible 31. The other end of the spectrum is much less
studied. Our proposal, together with those in 20,45,46,49,54, tries to explore such an
end of the spectrum. Observe that, introducing data in a naive way in our setting
is in fact possible, but would make composition exponential in the data. This is to
be considered unacceptable, since the amount of data is typically huge (wrt the size
of the services) and hence one wants to keep the computations polynomial in the
data. More generally, both ends of this spectrum (only data and only process) deal
with problems that are quite difficult. Finding a good way to integrate the two,
without multiplying the complexities, is probably going to become one of the key
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problems in service composition in the future.
Finally, related to service composition is the analysis and verification of com-

posite services, motivated by the dynamic flavor of composition, the consequent
difficulties in testing and immaturity of service oriented development environments
and methods. Preliminary results can be found in Fu etal., 2004 29, where verifica-
tion of BPEL4WS specifications is carried out exploiting model checking techniques,
in Narayanan and McIlraith, 2002 47, where OWL-S services are analyzed exploiting
Petri Nets, and in Deutsch etal., 2004 27, which focuses on verifying properties of
data-driven services. Finally, we want to remark that analysis and verification are
more effective when composite services are manually synthesized; our technique au-
tomatically synthesize a composite service that is correct by construction according
to Section 4.

Orchestration. Orchestration requires that the composite service is completely
specified, in terms of both the specification of how various component services are
linked, and the internal process flow of the composite one. In Hull etal., 2003 37,
different technologies, standards and approaches for specification of composite ser-
vices are considered, including BPEL4WS, BPML, AZTEC, etc. In particular, Hull
etal., 2003 37 identifies two main kinds of composition: (i) the mediated approach,
based on a hub-and-spoke topology, in which one service is given the role of pro-
cess mediator/delegator, and all the interactions pass through such a service, and
(ii) the peer-to-peer approach, in which the services directly interact among them,
without any centralized control. With respect to such a classification, the approach
proposed in this paper belongs to the mediated one.

Many orchestration platforms have been designed and proposed in the literature
(e.g., e-Flow 21, AZTEC 24, WISE41, MENTOR-lite 53, e-ADOME 22): they
can be be classified into the mediated approach to composition. An interesting case
is Self-Serv 10, in which the enactment of a composite service (to be manually
designed) is carried out in a decentralized way, through peer-to-peer interactions.

Finally, we would like to remark that our results are orthogonal to service or-
chestration; once the Mealy composition, obtained with our technique, is translated
into a specific orchestration language (in the paper we have discussed the case of
BPEL4WS), the obtained specification can be orchestrated by any orchestration
platform, thus obtaining all system-level guarantees needed in complex distributed
applications.

7. Final Remarks and Future Work

The main contribution of this paper wrt research on service oriented computing is
in tackling simultaneously the following issues: (i) presenting a formal framework
where services are characterized in terms of their behavioral descriptions and the
problem of service composition is precisely defined; (ii) providing techniques for
computing service composition in the case where the behavioral description of ser-
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vices is expressed as finite state machine, and providing a computational complexity
characterization of the algorithm for automatic composition; (iii) presenting ESC,
an open source prototype tool that implements our technique for automatically
synthesizing a composition.

In 18 we have extended our framework by allowing some advanced forms of non-
determinism in the client request, which can be loosely specified, and we devised
automatic composition techniques in this enhanced framework. In the future, we
plan to produce a new version of our prototype tool that takes such extensions into
account.

Currently, we are investigating how to add data in our framework in a “smart”
way, by taking into account the considerations made in Section 6, so that the
combination of data and process allows us to devise algorithms for automatic service
composition with reasonable computational complexity.

Also, we aim at establishing a lower bound characterization for the problem of
service composition.

Finally, far-reaching future work may be identified along several directions. For
example, it could be interesting to study the situation when the available services
export a partial description of their behavior, i.e., they are represented by non
deterministic FSMs. This means that a large (possibly infinite) number of complete
description for services in the community exists that are coherent with each partial
description. Note that the internal schema to be synthesized should be coherent
with all such possible complete descriptions. Therefore, computing composition in
such a framework is intuitively much more difficult than in the framework presented
here.
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