
On Specifying Database Updates
Survey Talk on the

JLP article by Ray Reiter [Rei95]

Jens Bürger1, Thomas Ruhroth1 and Emanuel Sallinger2

1TU Dortmund University, Dortmund, Germany

2Vienna University of Technology, Vienna, Austria

Research School FCCOD 2014, Bolzano, Italy

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 1 / 44



Overview

1 Situation Calculus

2 Database Transactions

3 Transaction Logs and Evaluation

4 Proving Properties of Database States

5 Extensions

6 Conclusion

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 2 / 44



Situation Calculus

Situation calculus is
a logical language to represent change
introduced by McCarthy [McC68]

A situation is
“the complete state of the universe at an instance of time”
(McCarthy and Hayes [MH69])
the same as its history, i.e., the sequence of actions that has been
performed since the initial situation (Reiter [Rei01])

For more background information, cf. Fangzhen Lin’s Handbook of KR article [Lin08]

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 3 / 44



Situation Calculus

Situation calculus is
a logical language to represent change
introduced by McCarthy [McC68]

A situation is
“the complete state of the universe at an instance of time”
(McCarthy and Hayes [MH69])
the same as its history, i.e., the sequence of actions that has been
performed since the initial situation (Reiter [Rei01])

For more background information, cf. Fangzhen Lin’s Handbook of KR article [Lin08]

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 3 / 44



Situation Calculus

Situation calculus is
a logical language to represent change
introduced by McCarthy [McC68]

A situation is
“the complete state of the universe at an instance of time”
(McCarthy and Hayes [MH69])
the same as its history, i.e., the sequence of actions that has been
performed since the initial situation (Reiter [Rei01])

For more background information, cf. Fangzhen Lin’s Handbook of KR article [Lin08]

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 3 / 44



Situation Calculus

A logical language over a vocabulary of

fluents: relation symbols like broken(x , s)
where the last argument always refers to the situation
actions: function symbols like repair(r , x)

atemporals: relation symbols like heavy(x)
that hold regardless of the situation

The vocabulary also includes the special symbols:

the predicate Poss(action, situation)
indicates that an action is possible in a certain situation
the function do(action, situation)
describes the resulting situation

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 4 / 44



Situation Calculus

A logical language over a vocabulary of

fluents: relation symbols like broken(x , s)
where the last argument always refers to the situation
actions: function symbols like repair(r , x)

atemporals: relation symbols like heavy(x)
that hold regardless of the situation

The vocabulary also includes the special symbols:

the predicate Poss(action, situation)
indicates that an action is possible in a certain situation
the function do(action, situation)
describes the resulting situation

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 4 / 44



Situation Calculus

A logical language over a vocabulary of

fluents: relation symbols like broken(x , s)
where the last argument always refers to the situation
actions: function symbols like repair(r , x)

atemporals: relation symbols like heavy(x)
that hold regardless of the situation

The vocabulary also includes the special symbols:

the predicate Poss(action, situation)
indicates that an action is possible in a certain situation
the function do(action, situation)
describes the resulting situation

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 4 / 44



Situation Calculus

A logical language over a vocabulary of

fluents: relation symbols like broken(x , s)
where the last argument always refers to the situation
actions: function symbols like repair(r , x)

atemporals: relation symbols like heavy(x)
that hold regardless of the situation

The vocabulary also includes the special symbols:

the predicate Poss(action, situation)
indicates that an action is possible in a certain situation
the function do(action, situation)
describes the resulting situation

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 4 / 44



Situation Calculus

A logical language over a vocabulary of

fluents: relation symbols like broken(x , s)
where the last argument always refers to the situation
actions: function symbols like repair(r , x)

atemporals: relation symbols like heavy(x)
that hold regardless of the situation

The vocabulary also includes the special symbols:

the predicate Poss(action, situation)
indicates that an action is possible in a certain situation
the function do(action, situation)
describes the resulting situation

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 4 / 44



Precondition axioms:

broken(x , s) ∧ hasGlue(r , s)→ Poss(repair(r , x), s)

[∀z ¬holding(r , z, s)] ∧ ¬heavy(x) ∧
nextTo(r , x , s)→ Poss(repair(r , x), s)

Effect axioms:

Poss(repair(r , x), s)→ ¬broken(x ,do(repair(r , x), s))

Poss(drop(r , x), s) ∧
fragile(x)→ broken(x ,do(drop(r , x), s))

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 5 / 44



Precondition axioms:

broken(x , s) ∧ hasGlue(r , s)→ Poss(repair(r , x), s)

[∀z ¬holding(r , z, s)] ∧ ¬heavy(x) ∧
nextTo(r , x , s)→ Poss(repair(r , x), s)

Effect axioms:

Poss(repair(r , x), s)→ ¬broken(x ,do(repair(r , x), s))

Poss(drop(r , x), s) ∧
fragile(x)→ broken(x ,do(drop(r , x), s))

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 5 / 44



Precondition axioms:

broken(x , s) ∧ hasGlue(r , s)→ Poss(repair(r , x), s)

[∀z ¬holding(r , z, s)] ∧ ¬heavy(x) ∧
nextTo(r , x , s)→ Poss(repair(r , x), s)

Effect axioms:

Poss(repair(r , x), s)→ ¬broken(x ,do(repair(r , x), s))

Poss(drop(r , x), s) ∧
fragile(x)→ broken(x ,do(drop(r , x), s))

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 5 / 44



Precondition axioms:

broken(x , s) ∧ hasGlue(r , s)→ Poss(repair(r , x), s)

[∀z ¬holding(r , z, s)] ∧ ¬heavy(x) ∧
nextTo(r , x , s)→ Poss(repair(r , x), s)

Effect axioms:

Poss(repair(r , x), s)→ ¬broken(x ,do(repair(r , x), s))

Poss(drop(r , x), s) ∧
fragile(x)→ broken(x ,do(drop(r , x), s))

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 5 / 44



The Frame Problem

The frame problem is
one of the most famous AI problems
“normally, only relatively few actions [...]
will affect the truth value of a given fluent”

Frame axioms:

Poss(drop(r , x), s) ∧
color(y , c, s)→ color(y , c,do(drop(r , x), s))

Poss(drop(r , x), s) ∧ ¬broken(y , s) ∧
[y 6= x ∨ ¬fragile(y)]→ ¬broken(y ,do(drop(r , x), s))

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 6 / 44



The Frame Problem

The frame problem is
one of the most famous AI problems
“normally, only relatively few actions [...]
will affect the truth value of a given fluent”

Frame axioms:

Poss(drop(r , x), s) ∧
color(y , c, s)→ color(y , c,do(drop(r , x), s))

Poss(drop(r , x), s) ∧ ¬broken(y , s) ∧
[y 6= x ∨ ¬fragile(y)]→ ¬broken(y ,do(drop(r , x), s))

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 6 / 44



The Frame Problem

The frame problem is
one of the most famous AI problems
“normally, only relatively few actions [...]
will affect the truth value of a given fluent”

Frame axioms:

Poss(drop(r , x), s) ∧
color(y , c, s)→ color(y , c,do(drop(r , x), s))

Poss(drop(r , x), s) ∧ ¬broken(y , s) ∧
[y 6= x ∨ ¬fragile(y)]→ ¬broken(y ,do(drop(r , x), s))

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 6 / 44



Modeling Databases

Some database relations are modeled as fluents:

enrolled(student , course, s)

grade(student , course,grade, s)

Some as atemporals:

prereq(prerequisite, course)

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 7 / 44



Modeling Databases

Some database relations are modeled as fluents:

enrolled(student , course, s)

grade(student , course,grade, s)

Some as atemporals:

prereq(prerequisite, course)

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 7 / 44



Modeling Transactions

Transactions (changes to the database) are modeled
as actions:

register(student , course)

change(student , course,grade)

drop(student , course)

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 8 / 44



Modeling Preconditions

Most transactions have particular preconditions:

Poss(drop(st , c), s)↔ enrolled(st , c, s)

Poss(register(st , c), s)↔
[∀p prereq(p, c)]→ [∃g grade(st ,p,g, s) ∧ g ≥ 50]

Poss(change(st , c,g), s)↔
[∃g′ grade(st , c,g′, s) ∧ g′ 6= g]

Observe the common syntactic form of these preconditions!

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 9 / 44



Modeling Preconditions

Most transactions have particular preconditions:

Poss(drop(st , c), s)↔ enrolled(st , c, s)

Poss(register(st , c), s)↔
[∀p prereq(p, c)]→ [∃g grade(st ,p,g, s) ∧ g ≥ 50]

Poss(change(st , c,g), s)↔
[∃g′ grade(st , c,g′, s) ∧ g′ 6= g]

Observe the common syntactic form of these preconditions!

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 9 / 44



Modeling Preconditions

Most transactions have particular preconditions:

Poss(drop(st , c), s)↔ enrolled(st , c, s)

Poss(register(st , c), s)↔
[∀p prereq(p, c)]→ [∃g grade(st ,p,g, s) ∧ g ≥ 50]

Poss(change(st , c,g), s)↔
[∃g′ grade(st , c,g′, s) ∧ g′ 6= g]

Observe the common syntactic form of these preconditions!

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 9 / 44



Modeling Effects

The most important and usually most complex parts are the effects of
transactions:

Poss(a, s)→ [enrolled(st , c,do(a, s))↔
a = register(st , c) ∨
(enrolled(st , c, s) ∧ a 6= drop(st , c))]

Poss(a, s)→ [grade(st , c,g,do(a, s))↔
a = change(st , c,g) ∨
(grade(st , c,g, s) ∧ [∀g′ g′ 6= g → a 6= change(st , c,g′)])]

Observe the syntactic form and in particular
the (implicit) universal quantification over transactions!

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 10 / 44



Modeling Effects

The most important and usually most complex parts are the effects of
transactions:

Poss(a, s)→ [enrolled(st , c,do(a, s))↔
a = register(st , c) ∨
(enrolled(st , c, s) ∧ a 6= drop(st , c))]

Poss(a, s)→ [grade(st , c,g,do(a, s))↔
a = change(st , c,g) ∨
(grade(st , c,g, s) ∧ [∀g′ g′ 6= g → a 6= change(st , c,g′)])]

Observe the syntactic form and in particular
the (implicit) universal quantification over transactions!

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 10 / 44



The Frame Problem Revisited

Poss(a, s)→ [enrolled(st , c,do(a, s))↔
a = register(st , c) ∨
(enrolled(st , c, s) ∧ a 6= drop(st , c))]

implies

Poss(a, s) ∧
a 6= register(st , c) ∧ a 6= drop(st , c))→
[enrolled(st , c,do(a, s))↔ enrolled(st , c, s)]

“The database relation enrolled can only be affected by transactions
register or drop.”

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 11 / 44



The Frame Problem Revisited

Poss(a, s)→ [enrolled(st , c,do(a, s))↔
a = register(st , c) ∨
(enrolled(st , c, s) ∧ a 6= drop(st , c))]

implies

Poss(a, s) ∧
a 6= register(st , c) ∧ a 6= drop(st , c))→
[enrolled(st , c,do(a, s))↔ enrolled(st , c, s)]

“The database relation enrolled can only be affected by transactions
register or drop.”

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 11 / 44



The Frame Problem Revisited

Poss(a, s)→ [enrolled(st , c,do(a, s))↔
a = register(st , c) ∨
(enrolled(st , c, s) ∧ a 6= drop(st , c))]

implies

Poss(a, s) ∧
a 6= register(st , c) ∧ a 6= drop(st , c))→
[enrolled(st , c,do(a, s))↔ enrolled(st , c, s)]

“The database relation enrolled can only be affected by transactions
register or drop.”

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 11 / 44



The Frame Problem Revisited

Poss(a, s)→ [enrolled(st , c,do(a, s))↔
a = register(st , c) ∨
(enrolled(st , c, s) ∧ a 6= drop(st , c))]

Succinct representation of the frame axioms is possible because:

quantification over all transactions
the assumption that “few” transactions affect a particular database
relation

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 12 / 44



Modeling Queries

What if we want to know

“Is John enrolled in any course after transaction sequence
drop(John,C100), register(Mary,C100)

from initial state S0?”

We need to evaluate over our database the formula

∃c enrolled(John, c,
do(register(Mary,C100),

do(drop(John,C100),S0)))

This is called the temporal projection problem.

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 13 / 44



Modeling Queries

What if we want to know

“Is John enrolled in any course after transaction sequence
drop(John,C100), register(Mary,C100)

from initial state S0?”

We need to evaluate over our database the formula

∃c enrolled(John, c,
do(register(Mary,C100),

do(drop(John,C100),S0)))

This is called the temporal projection problem.

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 13 / 44



Axiomatizing Transactions

The situation calculus used is
a first-order language
with equality and <
that is many-sorted (actions, situations)

But we later need one second-order feature, namely

quantification over situations

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 14 / 44



Axiomatizing Transactions

The situation calculus used is
a first-order language
with equality and <
that is many-sorted (actions, situations)

But we later need one second-order feature, namely

quantification over situations

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 14 / 44



Axiomatizing Transactions

Unique name assumption for

transactions (i.e. actions)
states (i.e. situations)

In particular, for transactions it is enforced that

t(x1, . . . , xn) = t ′(y1, . . . , yn)→ x1 = y1 ∧ . . . ∧ xn = yn

This actually means that

Two states are equal if they have the same history, it is not enough for
them to have equal values for all fluents.

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 15 / 44



Axiomatizing Transactions

Unique name assumption for

transactions (i.e. actions)
states (i.e. situations)

In particular, for transactions it is enforced that

t(x1, . . . , xn) = t ′(y1, . . . , yn)→ x1 = y1 ∧ . . . ∧ xn = yn

This actually means that

Two states are equal if they have the same history, it is not enough for
them to have equal values for all fluents.

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 15 / 44



Axiomatizing Transactions

Unique name assumption for

transactions (i.e. actions)
states (i.e. situations)

In particular, for transactions it is enforced that

t(x1, . . . , xn) = t ′(y1, . . . , yn)→ x1 = y1 ∧ . . . ∧ xn = yn

This actually means that

Two states are equal if they have the same history, it is not enough for
them to have equal values for all fluents.

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 15 / 44



Simple Formulas

Recall the example:

Poss(drop(st , c), s)↔ enrolled(st , c, s)

Poss(register(st , c), s)↔
[∀p prereq(p, c)]→ [∃g grade(st ,p,g, s) ∧ g ≥ 50]

Poss(change(st , c,g), s)↔
[∃g′ grade(st , c,g′, s) ∧ g′ 6= g]

A simple formula is a first-order formula that

does not contain Poss or do
does not quantify over states

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 16 / 44



Simple Formulas

Recall the example:

Poss(drop(st , c), s)↔ enrolled(st , c, s)

Poss(register(st , c), s)↔
[∀p prereq(p, c)]→ [∃g grade(st ,p,g, s) ∧ g ≥ 50]

Poss(change(st , c,g), s)↔
[∃g′ grade(st , c,g′, s) ∧ g′ 6= g]

A simple formula is a first-order formula that

does not contain Poss or do
does not quantify over states

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 16 / 44



Transaction Precondition Axioms

Recall the example:

Poss(drop(st , c), s)↔ enrolled(st , c, s)

Poss(register(st , c), s)↔
[∀p prereq(p, c)]→ [∃g grade(st ,p,g, s) ∧ g ≥ 50]

Poss(change(st , c,g), s)↔
[∃g′ grade(st , c,g′, s) ∧ g′ 6= g]

A transaction precondition axiom has the form

∀~x ∀s Poss(transaction(x1, . . . , xn), s)↔ Πtransaction

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 17 / 44



Transaction Precondition Axioms

Recall the example:

Poss(drop(st , c), s)↔ enrolled(st , c, s)

Poss(register(st , c), s)↔
[∀p prereq(p, c)]→ [∃g grade(st ,p,g, s) ∧ g ≥ 50]

Poss(change(st , c,g), s)↔
[∃g′ grade(st , c,g′, s) ∧ g′ 6= g]

A transaction precondition axiom has the form

∀~x ∀s Poss(transaction(x1, . . . , xn), s)↔ Πtransaction

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 17 / 44



Successor State Axioms

Recall the example:

Poss(a, s)→ [enrolled(st , c,do(a, s))↔
a = register(st , c) ∨
(enrolled(st , c, s) ∧ a 6= drop(st , c))]

Poss(a, s)→ [grade(st , c,g,do(a, s))↔
a = change(st , c,g) ∨
(grade(st , c,g, s) ∧ [∀g′ g′ 6= g → a 6= change(st , c,g′)])]

A successor state axiom has the form

∀a ∀s Poss(a, s)→ ∀~x fluent(x1, . . . , xn,do(a, s))↔ Φfluent

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 18 / 44



Successor State Axioms

Recall the example:

Poss(a, s)→ [enrolled(st , c,do(a, s))↔
a = register(st , c) ∨
(enrolled(st , c, s) ∧ a 6= drop(st , c))]

Poss(a, s)→ [grade(st , c,g,do(a, s))↔
a = change(st , c,g) ∨
(grade(st , c,g, s) ∧ [∀g′ g′ 6= g → a 6= change(st , c,g′)])]

A successor state axiom has the form

∀a ∀s Poss(a, s)→ ∀~x fluent(x1, . . . , xn,do(a, s))↔ Φfluent

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 18 / 44



The Frame Problem Solved

Key to Reiter’s solution to the Frame Problem are successor state
axioms like

Poss(a, s)→ [grade(st , c,g,do(a, s))↔
a = change(st , c,g) ∨
(grade(st , c,g, s) ∧ [∀g′ g′ 6= g → a 6= change(st , c,g′)])]

A tuple is contained in the database if and only if

it is added by a transaction
it was there and is not deleted by a transaction

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 19 / 44



The Frame Problem Solved

Key to Reiter’s solution to the Frame Problem are successor state
axioms like

Poss(a, s)→ [grade(st , c,g,do(a, s))↔
a = change(st , c,g) ∨
(grade(st , c,g, s) ∧ [∀g′ g′ 6= g → a 6= change(st , c,g′)])]

A tuple is contained in the database if and only if

it is added by a transaction
it was there and is not deleted by a transaction

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 19 / 44



Transaction Logs and Evaluation

In Database applications,
a log is a sequence of update transactions
queries are processed wrt. the log
transactions (esp. here) are virtual

Questions to be addressed
Given: Query Q, transaction sequence τ1, . . . , τn

Is τ1, . . . , τn a legal sequence?
What is the answer to Q, wrt. S0?

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 20 / 44



Transaction Logs and Evaluation

In Database applications,
a log is a sequence of update transactions
queries are processed wrt. the log
transactions (esp. here) are virtual

Questions to be addressed
Given: Query Q, transaction sequence τ1, . . . , τn

Is τ1, . . . , τn a legal sequence?
What is the answer to Q, wrt. S0?

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 20 / 44



Legal Transaction Sequences

Illegal transaction sequences fairly exist:

Example
drop(Sue,C100), change(Bill ,C100,60)

Is false, if e.g. Poss(drop(Sue,C100),S0)) is

Transaction sequence is legal iff:
beginning in state S0

each transaction in the sequence is possible and results from the
preceeding one

Ordering Relation < on states
(∀s)¬s < S0 (1)

(∀a, s, s′).s < do(a, s′)↔ Poss(a, s′) ∧ s ≤ s′ (2)

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 21 / 44



Legal Transaction Sequences

Illegal transaction sequences fairly exist:

Example
drop(Sue,C100), change(Bill ,C100,60)

Is false, if e.g. Poss(drop(Sue,C100),S0)) is

Transaction sequence is legal iff:
beginning in state S0

each transaction in the sequence is possible and results from the
preceeding one

Ordering Relation < on states
(∀s)¬s < S0 (1)

(∀a, s, s′).s < do(a, s′)↔ Poss(a, s′) ∧ s ≤ s′ (2)

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 21 / 44



Legal Transaction Sequences

Illegal transaction sequences fairly exist:

Example
drop(Sue,C100), change(Bill ,C100,60)

Is false, if e.g. Poss(drop(Sue,C100),S0)) is

Transaction sequence is legal iff:
beginning in state S0

each transaction in the sequence is possible and results from the
preceeding one

Ordering Relation < on states
(∀s)¬s < S0 (1)

(∀a, s, s′).s < do(a, s′)↔ Poss(a, s′) ∧ s ≤ s′ (2)

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 21 / 44



Legal Transaction Sequences
Induction Principle

Common induction principle to be used later on:

(∀P).P(S0) ∧ (∀a, s)[P(s)→ P(do(a, s))]→ (∀s)P(s). (3)

Compare with the induction axiom for natural numbers:

(∀P).P(0) ∧ (∀x)[P(x)→ P(succ(x))]→ (∀x)P(x).

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 22 / 44



Legal Transaction Sequences
Induction Principle

Common induction principle to be used later on:

(∀P).P(S0) ∧ (∀a, s)[P(s)→ P(do(a, s))]→ (∀s)P(s). (3)

Compare with the induction axiom for natural numbers:

(∀P).P(0) ∧ (∀x)[P(x)→ P(succ(x))]→ (∀x)P(x).

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 22 / 44



Legal Transaction Sequences
Definition of database

Given: sequence of transaction terms τ1, . . . , τn

The sequence is legal iff

D |= S0 ≤ do([τ1, . . . , τn])

while Database D is formalized as:

D = Σ ∪ Dss ∪ Dtp ∪ Duns ∪ Dunt ∪ DS0

Σ: set of the three state axioms
Dss: set of successor state axioms
Dtp: set of transaction precondition axioms
Duns: set of unique names axioms for states
Dunt : set of unique names axioms for transactions
DS0 : set of FO sentences with only S0 referenced
 initial database

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 23 / 44



Legal Transaction Sequences
Definition of database

Given: sequence of transaction terms τ1, . . . , τn

The sequence is legal iff

D |= S0 ≤ do([τ1, . . . , τn])

while Database D is formalized as:

D = Σ ∪ Dss ∪ Dtp ∪ Duns ∪ Dunt ∪ DS0

Σ: set of the three state axioms
Dss: set of successor state axioms
Dtp: set of transaction precondition axioms
Duns: set of unique names axioms for states
Dunt : set of unique names axioms for transactions
DS0 : set of FO sentences with only S0 referenced
 initial database

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 23 / 44



Legal Transaction Sequences
Regression Operator

Regression operator R
unfolding operation
reduce complexity of ground terms1

application may lead to formula with S0 as only state term
 reduced complexity in theorem proving

Usage:
defined recursively using formula substitution
recursively substitutes parts of a formular into their successor
state axioms
reduces depth of nesting function symbol do in formulae
Rn lets R be applied in a nested way:

For n=1,2,. . . :
Rn[G] = R[Rn−1[G]] aso.

1terms not mentioning any variable
Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 24 / 44



Legal Transaction Sequences
Regression Operator

Regression operator R
unfolding operation
reduce complexity of ground terms1

application may lead to formula with S0 as only state term
 reduced complexity in theorem proving

Usage:
defined recursively using formula substitution
recursively substitutes parts of a formular into their successor
state axioms
reduces depth of nesting function symbol do in formulae
Rn lets R be applied in a nested way:

For n=1,2,. . . :
Rn[G] = R[Rn−1[G]] aso.

1terms not mentioning any variable
Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 24 / 44



Legal Transaction Sequences
Legality wrt. D

Theorem [Rei95]:
The sequence τ1, . . . , τn [...] of sort transaction is legal wrt. D iff

Dunt ∪ DS0 |=
n∧

i=1

Ri−1[precond(τi ,do([τ1, . . . , τi−1],S0))].

precond(τ ,s) specifies circumstances under which ground transaction
τ is possible in state s.

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 25 / 44



Legal Transaction Sequences
Example: Legality Testing

Consider following transaction sequence:

Example
register(Bill ,C100),drop(Bill ,C100),drop(Bill ,C100)

R0[precond(register(Bill ,C100),S0)]∧
R1[precond(drop(Bill ,C100),do(register(Bill ,C100),S0))]∧

R2[precond(drop(Bill ,C100),

do(drop(Bill ,C100),do(register(Bill ,C100),S0)))]

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 26 / 44



Legal Transaction Sequences
Example: Legality Testing

Consider following transaction sequence:

Example
register(Bill ,C100),drop(Bill ,C100),drop(Bill ,C100)

R0[precond(register(Bill ,C100),S0)]∧
R1[precond(drop(Bill ,C100),do(register(Bill ,C100),S0))]∧

R2[precond(drop(Bill ,C100),

do(drop(Bill ,C100),do(register(Bill ,C100),S0)))]

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 26 / 44



Legal Transaction Sequences
Example: Legality Testing (cont’d)

which is

R0[(∀p).prerequ(p,C100)→ (∃g).grade(Bill ,p,g,S0) ∧ g ≥ 50]∧
R1[enrolled(Bill ,C100,do(register(Bill ,C100),S0))]∧

R2[enrolled(Bill ,C100),

do(drop(Bill ,C100),do(register(Bill ,C100),S0)))]

which leads to

{(∀p).prerequ(p,C100)→ (∃g).grade(Bill ,p,g,S0) ∧ g ≥ 50}∧
true∧
false

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 27 / 44



Legal Transaction Sequences
Example: Legality Testing (cont’d)

which is

R0[(∀p).prerequ(p,C100)→ (∃g).grade(Bill ,p,g,S0) ∧ g ≥ 50]∧
R1[enrolled(Bill ,C100,do(register(Bill ,C100),S0))]∧

R2[enrolled(Bill ,C100),

do(drop(Bill ,C100),do(register(Bill ,C100),S0)))]

which leads to

{(∀p).prerequ(p,C100)→ (∃g).grade(Bill ,p,g,S0) ∧ g ≥ 50}∧
true∧
false

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 27 / 44



Query Evaluation

Given: Sequence τ1, . . . , τn of transaction terms
Query Q(s)

What is the answer to Q in the state that results by
applying τ1, . . . , τi beginning with database in state S0?

Formally:
D |= Q(do([τ1, . . . , τn],S0))

Reiter’s result
Given a legal transaction sequence τ1, . . . , τn,

D |= Q(do([τ1, . . . , τn],S0))

iff
Dunt ∪ DS0 |= R

n[Q(do[τ1, . . . , τn],S0))]

.
Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 28 / 44



Query Evaluation

Given: Sequence τ1, . . . , τn of transaction terms
Query Q(s)

What is the answer to Q in the state that results by
applying τ1, . . . , τi beginning with database in state S0?

Formally:
D |= Q(do([τ1, . . . , τn],S0))

Reiter’s result
Given a legal transaction sequence τ1, . . . , τn,

D |= Q(do([τ1, . . . , τn],S0))

iff
Dunt ∪ DS0 |= R

n[Q(do[τ1, . . . , τn],S0))]

.
Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 28 / 44



Query Evaluation

Given: Sequence τ1, . . . , τn of transaction terms
Query Q(s)

What is the answer to Q in the state that results by
applying τ1, . . . , τi beginning with database in state S0?

Formally:
D |= Q(do([τ1, . . . , τn],S0))

Reiter’s result
Given a legal transaction sequence τ1, . . . , τn,

D |= Q(do([τ1, . . . , τn],S0))

iff
Dunt ∪ DS0 |= R

n[Q(do[τ1, . . . , τn],S0))]

.
Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 28 / 44



Query Evaluation
Example

Given:
T = change(Bill ,C100,60), register(Sue,C200),drop(Bill ,C100)

Query:

(∃st).enrolled(st ,C200,do(T,S0))∧
¬enrolled(st ,C100,do(T,S0))∧

(∃g).grade(st ,C200,g,do(T,S0)) ∧ g ≥ 50

 R3 needs to be computed.
Applying some simplifications (and assume DS0 |= C100 6= C200):

(∃st).[st = Sue ∨ enrolled(st ,C200,S0)]∧
[st = Bill ∨ ¬enrolled(st ,C100,S0)]∧

[(∃g).grade(st ,C200,g,S0) ∧ g ≥ 50]

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 29 / 44



Query Evaluation
Example

Given:
T = change(Bill ,C100,60), register(Sue,C200),drop(Bill ,C100)

Query:

(∃st).enrolled(st ,C200,do(T,S0))∧
¬enrolled(st ,C100,do(T,S0))∧

(∃g).grade(st ,C200,g,do(T,S0)) ∧ g ≥ 50

 R3 needs to be computed.
Applying some simplifications (and assume DS0 |= C100 6= C200):

(∃st).[st = Sue ∨ enrolled(st ,C200,S0)]∧
[st = Bill ∨ ¬enrolled(st ,C100,S0)]∧

[(∃g).grade(st ,C200,g,S0) ∧ g ≥ 50]

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 29 / 44



Proving Properties of Database States
Induction and the Verification of Integrity Constraints

Recall analogy between natural numbers and database updates:
let S0 be identified with 0 and do(Add1, s) as the successor of the
natural number s

Reiter introduces two induction principles:
IPS0≤s

(a property holds all the time)
IPS0≤s∧s≤s′

(a property holds between two states s, s′)
 Can be used to prove

functionial dependencies (when using grade, all the other grades
remain unchanged)
dynamic integrity constraints (dynamically checking if salary of an
employee ever decreases)

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 30 / 44



Proving Properties of Database States
Induction and the Verification of Integrity Constraints

Recall analogy between natural numbers and database updates:
let S0 be identified with 0 and do(Add1, s) as the successor of the
natural number s

Reiter introduces two induction principles:
IPS0≤s

(a property holds all the time)
IPS0≤s∧s≤s′

(a property holds between two states s, s′)
 Can be used to prove

functionial dependencies (when using grade, all the other grades
remain unchanged)
dynamic integrity constraints (dynamically checking if salary of an
employee ever decreases)

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 30 / 44



Extensions

Transaction Logs and Historical Queries
Complexity of Query Evaluation
Actualizing Transactions
Updates in the Logic Programming Context
Views
State Constraints and the Ramification and Qualification Problems

Focus

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 31 / 44



Extensions

Transaction Logs and Historical Queries
Complexity of Query Evaluation
Actualizing Transactions
Updates in the Logic Programming Context
Views
State Constraints and the Ramification and Qualification
Problems

Focus

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 31 / 44



Transaction Logs and Historical Queries

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 32 / 44



Problem of Historical Queries

Action Example: Has some action happened in the history?
Has Mary dropped the course C100?
drop(Mary ,C100)

Property Example: Has some action happened in the history?
Has Sue always worked in Department 13?
amp(Sue,13, s)

Action Example: Has some action happened in a part of the
history?
Has Mary dropped the course C100 between situation s and s′?
drop(Mary ,C100)

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 33 / 44



Formalization using < operator

Specific Point in History
(∃s).S0 ≤ s ∧ s ≤ s′ ∧ someprop(s)
(∃s).S0 ≤ s ∧ s ≤ do(T ,S0) ∧ someprop(s)

Whole History
(∀s).S0 ≤ s ∧ s ≤ s′ → someprop(s)
(∀s).S0 ≤ s ∧ s ≤ do(T ,S0)→ someprop(s)

Part of History

(occurs − between(a, s, s′)
4
= (∃s′′).s < do(a, s′′) < s′

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 34 / 44



Examples formalized

Has Mary dropped the course C100?
(∃s, s′).S0 ≤ s ∧ s ≤ do(T ,S0) ∧ s = do(drop(Mary ,C100), s′)

Has Sue always worked in Department 13?
(∀s).S0 ≤ s ∧ s ≤ do(T ,S0)→ emp(Sue,13, s)

Has Mary dropped the course C100 between two situation s and
s′?
(occurs − between(drop(Mary ,C100), s, s′)

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 35 / 44



Performing Queries - Idea

Transform into “Action-Form”
emp(Sue,13,S0)∧
¬occurs − between(fire(Sue),S0,do(T ,S0))∧
¬occurs − between(quit(Sue),S0,do(T ,S0))

Execution of query
Use induction and/or simple list processing

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 36 / 44



State Constraints and the Ramification and
Qualification Problems

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 37 / 44



A State Constraint

(∀s, st).S0 ≤ s ∧ enrolled(st ,C200, s)→ enrolled(st ,C100, s)

Solution 1: extend successor-state axioms
Enforce next action to be register in missing course

Solution 2: extend transaction-precondition axioms
Ensure that register in C200 is only possible if enrolled in C100

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 38 / 44



Solution 1: extend successor-state axioms

Original successor-state
Poss(a, s)→ {enrolled(st , c,do(a, s))↔
a = register(st , c) ∧ enrolled(st , c, s) ∧ a 6= drop(st , c)}

Extended successor-state
Poss(a, s)→ {enrolled(st , c,do(a, s))↔
a = register(st , c)
∨c = C100 ∧ a = register(st ,C200)
∨enrolled(st , c, s) ∧ a 6= drop(st , c) ∧ [c = C200→ a 6=
drop(st ,C100)]}

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 39 / 44



Solution 2: Extend transaction-precondition axioms

Original transaction-precondition
Poss(register(st , c), s)↔
{(∀p).prerequ(p, c)→ (∃g).grade(st ,p,g, s) ∧ g ≥ 50}

Extended transaction-precondition
Poss(register(st , c), s)↔
{(∀p)[prerequ(p, c)→ (∃g).grade(st ,p,g, s) ∧ g ≥ 50]
∧[c = C200→ enrolled(st ,C100, s)]}

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 40 / 44



Original Constraint

(∀s, st).S0 ≤ s ∧ enrolled(st ,C200, s)→ enrolled(st ,C100, s)
can be proofed (e.g., using Induction) to be fulfilled by the extended
axioms.

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 41 / 44



Extensions

Transaction Logs and Historical Queries
Complexity of Query Evaluation
Actualizing Transactions
Updates in the Logic Programming Context
Views
State Constraints and the Ramification and Qualification Problems

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 42 / 44



Conclusion

Database updates specified using situation calculus
1 Situation Calculus
2 Database Transactions
3 Transaction Logs and Evaluation
4 Proving Properties of Database States
5 Extensions
6 Conclusion

Questions?

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 43 / 44



References

Fangzhen Lin, Situation calculus, Handbook of Knowledge
Representation (Frank van Harmelen, Vladimir Lifschitz, and
Bruce Porter, eds.), Elsevier, 2008.

John McCarthy, Situations, actions and causal laws, Semantic
Information Processing (1968), 410–417.

John McCarthy and Patrick Hayes, Some philosophical problems
from the standpoint of artificial intelligence, Machine Intelligence
(1969), 463–502.

Raymond Reiter, On specifying database updates, J. Log.
Program. 25 (1995), no. 1, 53–91.

, Knowledge in action, MIT Press, 2001.

Bürger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD ’2014 44 / 44


