
Actions representation and reasoning in ontology
languages

Integrating Description Logics and Action Formalities: First
Results.

Franz Baader, Carsten Lutz, Maja Milicic, Ulrike Sattler, Frank
Wolter

Group 10 - Asan Agibetov (asan.agibetov@ge.imati.cnr.it), Imon Banerjee
(imon@ge.imati.cnr.it), Fahad Khan (fahad.khan@ilc.cnr.it)

January 30, 2014

1 / 14

Overview of the problem

Descriptive action formalism based on Situation Calculus
(SitCalc) to support reasoning.

Motive of this action formalism is to analysis that how the
choice of DL influence the reasoning task.

Executability problem: determine whether a given
sequence of ground actions is possible to be executed
starting from the initial situation.
Projection problem: determine whether a given goal G
is satisfiable after executing a sequence of ground actions
starting from the initial situation.

2 / 14

Situation Calculus (SitCalc) [1]

Situation calculus is designed for representing and reasoning
about dynamic domains.

Basic elements:
Action that can be perform in the world

Move(x,y) : robot is moving from position x to y

Fluents that describe the world
is carrying(ball,S0)=false
is carrying(ball, do(pick up(ball, S0))) = true

Situation represent history of action occurrences
do(move(2,3), S0) : denotes a new situation after
performing action move(2,3) in initial situation S0

[1] Reiter, R., “Knowledge in Action”, MIT Press, 2001.

3 / 14

Insufficiency in SitCalc

Reasoning for action in general is undecidable under “Open
world assumption (OWA)”

Frame problem: How it can be decidable that after picking
up an object, the robot stays in the same location?

It requires frame axioms like this,

Poss(pickup(o), s) ∪ location(s) = (x, y)→
location(do(pickup(o), s)) = (x, y)
problem: too many of such axioms, difficult to specify all

4 / 14

Well established solution: frame problem[2]

• Successor state axioms: Specify all the ways the value of a
particular fluent can be changed

Poss(a, s) ∨ γ+F (x , a, s)→ F (x , do(a, s))
Poss(a, s) ∨ γ−F (x , a, s)→ ¬F (x , do(a, s))

γ+F describes the conditions under which action a in situation s

makes the fluent F become true in the successor situation do(a,s).

γ−F describes the conditions under which action a in situation s

makes the fluent F become false in the successor situation.

• For each action A, a single action precondition axioms of the
form:

∏
A(s) ⊃ Poss(A, s)

• Unique names axioms for the actions and for states

Reiter, R., “The frame problem in the situation calculus: A simple solution (sometimes) and a completeness
result for goal regression”, in AI and Mathematical Theory of Computation, Academic Press, 359–380, 1991.

5 / 14

Proposed work

Design an initial framework for integrating DLs and action
formalisms into a decidable hybrid based on DL ALCQIO [3] and a
number of it sub languages.

6 / 14

Modeling framework

i. Acyclic Tbox
A terminology (or TBox) is a set of definitions and specializations.
Woman ≡ Person u Female
A terminology T is Acyclic if it does not contain a concept which
uses itself.

Father ≡ Male u hasChild

hasChild ≡ Father tMother

Not an Acyclic TBox

7 / 14

Modeling framework (Continued)

ii. ABox assertions
In an ABox one introduces individuals, by giving them names, and
one asserts properties about them
Assertion with concept C in the form: C(a), C(b) . . .
example: Woman(Shelly), Male(John), . . . Assertion with role
name s in the form: s(a,b), s(b,c), or ¬s(a,b) example: Father
(John, haschild)

8 / 14

Modeling framework (Definition 1)

Let T = Acyclic Tbox
Atomic action α = (pre, occ, post)

• a finite set pre of ABox assertions, the pre-conditions;

• a finite set occ of occlusions of the form A(a) or s(a, b)

• a finite set post of conditional post-conditions of the form
ϑ/ψ, where ϑ is an ABox asertion and ψ is a primitive literal
for T

9 / 14

Example of action definition

α1 Opening a bank account in Italy

Ok, can you deposit 1000 euro? Do

you have proof of address

pre1
{Eligible bank(a),∃holds.Proof address(a)}
post1
{T (a)/holds(a, b),
∃holds.letter(a)/B acc credit(b),
¬∃holds.letter(a)/B acc no credit(b)}

10 / 14

Apply for child benefit in Italy

Ok, do you have child? Do you

have a bank account?

pre2
{parents of (a, c),∃hold .Bacc(a)}
post2
{T (a)/receives c benefit for(a, c)}

TBox
Eligible bank ≡ ∃can deposit.1000,
Proof address ≡
Passport ∪ Carta identita,
B acc ≡
B acc credit ∪ B acc no credit

11 / 14

Semantics of actions

Where each primitive concept name: A, role name s:s(a,b),
Interpretation : I

A+ : = {bI | ϕ/A(b) ∈ post and I |= ϕ}
A− : = {bI | ϕ/− A(b) ∈ post and I |= ϕ}
IA : =

(
∆I\{bI | A(b) ∈ occ }

)
∪
(
A+ ∪ A−

)

s+ : = {
(
aI, bI

)
|ϕ/s(a, b) ∈ post and I |= ϕ}

s− : = {
(
aI, bI

)
|ϕ/− s(a, b) ∈ post and I |= ϕ}

Is : =
((

∆I ×∆I
)
\
(
(aI), bI

)
|s(a, b) ∈ occ

)
∪
(
s+ ∪ s−

)

12 / 14

Modeling framework (Definition 2)

Action α may transform I to I’ iff, for each primitive concept A
and role name s,

A+ ∩ A− = s+ ∩ s− = ∅, AI′ ∩ IA =
((

AI ∪ A+
)
\ A−

)
∩ IA

sI
′ ∩ Is =

((
sI ∪ s+

)
\ s−

)
∩ Is

The composite action α1 . . . αk may transform I to I’ iff there
exist models
I0, . . . , Ik of I with T = I0, I’ = Ik and Ii−1 =⇒ T

αi
Ii

13 / 14

Note for definition 1 and 2

Due to the acyclic TBox, action with empty occlusions there can
not exist more than one I’ such that

I =⇒ T
αI
′

Thus, actions are deterministic.

if ϑ1/ψ , ϑ2/¬ψ ∈ post

such that both ϑ1 and ϑ2 are satisfied in I, then there is no
successor model I’. So action is inconsistent with I.

14 / 14

Reasoning Problems

Describe two main reasoning problems for actions.
Given an acyclic TBox T , a composite action α = α1, .., αk and an
ABox A we want to know

Executability: are all the preconditions of α satisfied in worlds
considered possible?

Projection: does a given assertion hold after applying α?

Consistency

Recall:
An ABox A is consistent with respect to a TBox T if there exists
an interpretation I that is a model of both A and T .

Reasoning Problems - Executability

Definition (Executability)
Given an acyclic TBox T , a composite action α = α1, .., αk where
αi = (prei , occi , posti) and an ABox A we say that α is executable
in A with respect to T if for any model I of A and T :

I |= pre1

For all i in 1 ≤ i < k, and all interpretations such that
I ⇒T

α I ′ we have I ′ |= prei+1. (Recall that because we are
dealing with acyclic ABoxes there is only one such
interpretation I ′.)

Reasoning Problems - Executability

Definition (Executability)
Given an acyclic TBox T , a composite action α = α1, .., αk where
αi = (prei , occi , posti) and an ABox A we say that α is executable
in A with respect to T if for any model I of A and T :

I |= pre1

For all i in 1 ≤ i < k, and all interpretations such that
I ⇒T

α I ′ we have I ′ |= prei+1. (Recall that because we are
dealing with acyclic ABoxes there is only one such
interpretation I ′.)

Reasoning Problems - Projection

Definition (Projection)
Given an acyclic TBox T , a composite action α = α1, .., αk where
αi = (prei , occi , posti), an ABox A, we say that φ is a consequence
of applying α in A with respect to T if for any model I of A and
T and any I ′ such that I ⇒T

α I ′ it is the case that I ′ |= φ.

Consistency of Actions with TBoxes

Executability is not sufficient to ensure that a composite
action does not get stuck, i.e., that all the composite actions
of an executable action will be carried out.

It might be the case that we have a φ1/ψ and φ2/¬ψ where
φ1 and φ2 are both satisfied in the model I. In this case the
action is said to be inconsistent with respect to I.

Therefore to guarantee that an executable action is carried
out without getting stuck we stipulate that each of the basic
actions are consistent with any model I of A and T .

Complexity for Execution and Projection

Our aim is to find out complexity results for various
(interesting) sublanguages of ALCQIO.

Executability and Projection are mutually reducible in
polynomial time. So we are free to focus on projection.

First we will look at some upper bound results.

Complexity for Execution and Projection

Strategy of proof: show upper complexity bounds by reducing
projection to a standard reasoning problem in DL.
Preliminary: Given a DL L we will denote by LO the extension of
L with nominals.

Complexity for Execution and Projection

Theorem
L ∈ {ALC,ALCI,ALCO,ALCIO,ALCQ,ALCQO,ALCQI}
Then the projection of composite actions in L can be reduced in
polynomial time to the problem of non-consistency in LO of an
ABox relative to an acyclic TBox.

Complexity for Execution and Projection

We define the complement of the projection problem wrt to
an assertion φ, an action α an ABox A, a TBox T but this
time we want to know whether there exist possible worlds I,
J such that J follows from I after applying the action α and
¬φ holds at J .

It turns out that we can reduce the complement of projection
problem in L to the consistency problem for Aboxes in LO.

Therefore solving the complement of the projection problem
for L cannot be more difficult than the consistency problem
(since we can use an efficient algorithm for consistency to
derive an efficient algorithm for the complement of
projection).

Complexity Results

This gives us an upper bound result. But for logics such as
ALCO,ALCIO,ALCQO where the complexity of ABox
consistency for L is the same as in LO we also get matching
lower bounds since it is very easy to reduce ABox non
consistency to projection in L.

(Since ¬>(a) is a consequence of applying the empty action
(∅, ∅, ∅) iff there exists no model of A and T).

So

ALC,ALCO,ALCIO,ALCQO are PSPACE-complete.
ALCIO is EXPTIME-complete.
ALCQIO is co-NEXPTIME-complete.

Complexity Results

For the logics ALCI and ALCQI where adding nominals
gives a corresponding increase in the complexity of the ABox
consistency problem we can still get lower bound results by
reducing the satisfiability problem for ALCIO(ALCQIO)
with a single nominal and an empty TBox to the projection
problem This gives us that

ALCI is EXPTIME-complete.
ALCQI is co-NEXPTIME-complete.

Semantics of services
Service
Let T acyclic TBox, atomic service S = (pre, occ, post) for T

pre ABox assertions, all must be true in order to execute
service,

occ assertions that should not change by S, only allow
primitive concepts,

post finite set of conditional post-conditions ϕ/ψ, only
allow primitive concepts

How the application of an atomic service changes the world?
Assumption - interpretation domain is never changed by the
application of a service

Idea
Interpretation of atomic concepts and roles should change as little
as possible while still making post-condition true

Possible Models Approach

Precedence relation �I,S,T on interpretations, characterizes their
proximity to a given I.
We use M1∇M2 to denote symmetric difference between sets M1
and M2.
Preferred interpretations
I ′ �I,S,T I ′′ iff

AI∇AI′ \ {aI |A(a) ∈ occ}) ⊆ AI∇AI′′

sI∇sI′ \ {(aI , bI)|s(a, b) ∈ occ}) ⊆ sI∇sI′′

Service application

Satisfaction of post-conditions
Pair I, I ′ satisfies set of post-conditions post(I, I ′ � post) iff

∀(ϕ/ψ) ∈ post, I ′ � ψ, whenever I � ϕ

We say that S may transform I to I ′(I ⇒TS I ′) iff

1. I, I ′ � post, and
2. @J , I,J � post,J 6= I ′, and J �I,S,T I ′.

Since TBoxes are acyclic and post-conditions allow primitive
concepts only, services without occlusions are deterministic, i.e.

∀I ∈ M(T),∃≤1I ′, I ⇒TS I ′

Application of services without occlusions

Let T - acyclic TBox, S = (pre,∅, post) a service for T , and for
I, I ′ ∈M(T), I ⇒TS I ′. A - primitive concept, s - role name, then

AI′
:= (AI ∪ {bI |ϕ/A(b) ∈ post and I � ϕ})\

{bI |ϕ/¬A(b) ∈ post and I � ϕ},
sI′

:= (sI ∪ {(aI , bI)|ϕ/s(a, b) ∈ post and I � ϕ})\
{(aI , bI)|ϕ/¬s(a, b) ∈ post and I � ϕ},

Problematic Extensions

Syntactic restrictions adopted in this approach:
1. Transitive roles are disallowed (although available in OWL-DL)
2. Only acyclic TBoxes are allowed
3. No complex concepts in post-conditions,(i.e ϕ/C(a) or
ϕ/¬C(a) only)

Relaxing first restriction leads to semantic problems, removing
second and third leads to semantic and computational problems.

Transitive roles

interpretation of transitive roles in ALCQIO
transitive role r ∈ NtR ⊂ NR is interpreted as transitive relation rI
in all models I
Addition of transitive roles NtR no longer guarantees determinism
for services without occlusions, i.e.

I ⇒TS I ′ and I ⇒TS I ′′ may not necessarily imply I ′ = I ′′

Due to the fact that ⇒TS does not take into account r ∈ NtR

Transitive roles (contd.)

Consider S = (∅,∅, {has part(car , engine)}), has part ∈ NtR ,
and a model I

∆I := {car , engine, valve}
has partI := {(engine, valve)}

zI := z for z ∈ ∆I .

We may have I ⇒TS I ′, I ⇒TS I ′′ and I ′ 6= I ′′, where

has partI′
:= {(car , engine), (engine, valve), (car , valve)},

and
has partI′′

:= {(car , engine)},
applying S in {has part(engine, valve)} 2 has part(car , engine)
(counterintuitive)

Cyclic TBoxes and GCIs (general concept inclusion)

Problems
1. For acyclic TBoxes, the interpretation of primitive concepts

uniquely determines the extension of defined ones, which is
not the case for cyclic ones.

2. ⇒TS only takes into account primitive concepts

Consider the following example:

A := {Dog(a)}
T := {Dog ≡ ∃parent.Dog}

post := {Cat(b)}

(application of S = (∅,∅, post) in A w.r.t. T) 2 Dog(a) (as one
would intuitively expect)

Counter model construction
Define interpretation I as follows:

∆I := {b} ∪ {d0, d1, d2, . . .}
DogI := {d0, d1, d2, . . .}
CatI := ∅

parentI := {(di , di+1|i ∈ N}
aI := d0

bI := b

Define I ′ as I except for CatI′
:= {b} and DogI := ∅.

Semantic issue
Dog - defined concept, not considered in ⇒TS , hence

I � A, I ⇒TS I ′, and I ′ 2 Dog(a)

Possible solutions

I Include defined concepts in the minimization of changes, i.e.
treat them in ⇒TS

I infeasible, even minimization of Boolean concepts induces
technical problems

I Use semantics that regains the “definitorial power” of acyclic
TBoxes (Fixpoint semantics)

I in the case of least or greatest fixpoint semantics proposed by
Nebels, indeed primitive concepts uniquely determine defined
ones

Complex Concepts in Post-Conditions

Post conditions are of the form ϕ/ψ, if we allow arbitrary
(complex) assertions ϕ and ψ we run into Semantic problems.
Example
Let a : ∃r .A be a post-condition, not satisfied before the execution
of the service, then any x ∈ ∆I may be chosen to satisfy
(aI , x) ∈ rI and x ∈ AI after execution.
e.g.

S := (∅,∅, {mary : ∃has child .¬Female})
A := {Female(mary)}

(applying S in A) 2 Female(mary)

Computational problems with GCIs

GCI is an expression C v D, with C and D (possibly complex)
concepts. It generalizes cyclic TBoxes, i.e. A ≡ C may be
rewritten as two GCIS A v C and C v A
Minimization of all concepts
I GCIs do not allow obvious partitioning of complex concepts

into primitive and defined.
I Thus ⇒TS has to minimize all concepts (infeasible as

mentioned before)

Executability and projection for generalized services become
undecidable
Proven by redaction of the domino problem to non-consequence
and non-executability

Conclusion and Future work
Main technical results
I Standard problems in reasoning about actions (projection,

execution) become decidable
I Complexity of inferences is determined by the complexity of

standard DL reasoning in L extended by nominals

Possible extensions of formalism
I Consider cyclic TBoxes and fixpoint semantics
I Decide projection problem through progression instead of

regression
I Check for which of the extensions of Reiter’s action formalism

these results still hold
I Allow for more complex composition of actions
I Support automatic composition of services, how planning fits

in this formalism

Polynomial reduction from executability to projection and
vice versa

Lemma. Executability and projection can be reduced to each other
in polynomial time
Proof
S1, . . . ,Sk with Si = (prei , occi , posti) composite service for T . S
is executable in A iff

(i)∀M ∈M(A,T), pre1 satisfied in M
(ii)∀i ∈ [1, k), (application of S1, . . . ,Si in A) � prei+1

Condition (ii) is a projection problem, (i) is a projection problem
for S = (∅,∅,∅)

Polynomial reduction from executability to projection and
vice versa (contd)

Proof (contd)
Conversely, assume we want to know whether
(application of S1, . . . ,Sk in A) � ϕ?
Consider, S ′1, . . . ,S ′k , S ′, where S ′i = (∅, occi , posti),∀i ∈ [i , k],
and S ′ = ({ϕ,∅,∅}). Then

application S1, . . . ,Sk in A � ϕ iffS ′1, . . . ,S ′k ,S ′ is executable

Relationship to SitCalc

Services without occlusions - instance of SitCalc
I Expand T and replace in A and in S1, . . . ,Sk
I Translate ⇒TS into first-order logic (action pre-conditions and

successor state axioms)
I Primitive concepts and roles regarded as fluents
I ABox first-order translation is the initial state
I projection and executability are instances of Reiter’s definitions

However this translation leads to a standard first-order theory,
which is not in the scope of what GOLOG can handle

References

Franz Baader, Carsten Lutz, Ulrike Sattler and Frank Wolter.
Integrating description logics and actionformalisms: First
Results.
In Proceedings of the 20th National Conference on Artificial
Intelligence (AAAI-2005), 572-577, 2005.

Franz Baader, Diego Calvanese, Deborah L. McGuinness,
Daniele Nardi and Peter F. Patel-Schneider.
The description logic handbook: theory, implementation, and
applications.
Cambridge University Press New York, NY, USA, 2003.

Raymond Reiter.
The frame problem in situation the calculus: a simple solution
(sometimes) and a completeness result for goal regression.
Artificial intelligence and mathematical theory of computation,
359-380, 1991.

