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D We address the problem of formalizing the evolution of a database un- 
der the effect of an arbi trary sequence of update  transactions. We do so 
by appealing to a first-order representation language called the situation 
calculus, which is a s tandard approach in artificial intelligence to the for- 
malization of planning problems. We formalize database transactions in 
exactly the same way as actions in the artificial intelligence planning do- 
main. This leads to a database version of the frame problem in artificial 
intelligence. We provide a solution to the frame problem for a special, but 
substantial,  class of update  transactions. Using the axioms corresponding 
to this solution, we provide procedures for determining whether a given 
sequence of update  transactions is legal, and for query evaluation in an 
updated database. These procedures have the desirable property tha t  they 
appeal to theorem-proving only with respect to the initial database state. 

We next address the problem of proving properties true in all s tates 
of the database. I t  turns out tha t  mathematical  induction is required 
for this task, and we formulate a number of suitable induction princi- 
ples. Among those properties of database states tha t  we wish to prove 
are the s tandard database notions of static and dynamic integrity con- 
straints. In our setting, these emerge as inductive entailments of the 
database. 

Finally, we discuss various possible extensions of the approach of this 
paper, including transaction logs and historical queries, the complexity of 
query evaluation, actualized transactions, logic programming approaches 
to updates,  database views, and state constraints. <~ 

This paper consolidates and expands on a variety of results, some of which have been described 
elsewhere (Reiter [44, 45, 46]). 

Address correspondence to P~ymond Reiter, Department of Computer Science, University of 
Toronto, Toronto, Canada M5S 1A4. E-maih reiter~ai.toronto.edu. 

Received August 1992~ revised May 1994, February 1995; accepted February 1995. 

THE JOURNAL OF LOGIC PROGRAMMING 

Q Elsevier Science Inc., 1995 
655 Avenue of the Americas, New York, NY 10010 

0743-1066/95/$9.50 
SSDI 0743-1066(95)00049-P 



54 R. R E I T E R  

1. I N T R O D U C T I O N  

Our concern in this paper is with formalizing the evolution of a database under 
arbitrary sequences of update transactions. A wide variety of proposals for this 
exist in the literature (e.g., Abiteboul [1]; Grahne [13]; Katsuno and Mendelzon [20]; 
Winslett [48]; Fagin, Ullman, and Vardi [10]; Ginsberg and Smith [12]; Guessoum 
and Lloyd [16, 17]; Manchanda and Warren [32]; Kowalski [22]; Bonner and Kifer 
[6]). In this paper, we advance a substantially different approach. 

To begin, we take seriously the fact that,  during the course of its evolution, 
a database will pass through different states; accordingly, we endow updatable 
database relations with an explicit state argument that  records the sequence of 
update transactions that  the database has undergone thus far. Second, in our ap- 
proach, the transactions themselves are first-class citizens, so for example, if the 
database admits a transaction for changing the grade g of a student st to a new 
grade g~ for the course c, then the first-order term change(st, c,g,g~) will be an 
individual in the database language. These two features--an explicit state argu- 
ment for updatable relations, and first-order terms for t ransact ions--are the basic 
ingredients of the situation calculus, one of the standard approaches in artificial 
intelligence to the formalization of planning problems. The essence of our pro- 
posal is to specify databases and their update transactions within the situation 
calculus. 

One difficulty that  arises immediately is the so-called frame problem, well known 
in the artificial intelligence planning literature. Briefly, this is the problem of how 
to succinctly represent the invariants of the domain, namely, those relations whose 
t ru th  values are unaffected by a transaction. Section 2 describes the problem in 
more detail, while Sections 3 and 4 describe our axiomatization of databases and 
transactions, and how these address the frame problem. 

With this axiomatization in hand, we are in a position to address query evalua- 
tion for updated databases. This we do in Section 5, where we provide procedures 
for determining whether a given sequence of update transactions is legal, and for 
querying an updated database. These procedures have the desirable property that  
they appeal to theorem-proving only with respect to the initial database state. 

In Section 6, we address the problem of proving properties true in all states of the 
database. It turns out that  mathematical induction is required for this task, and 
we formulate a number of suitable induction principles. Among those properties 
of database states that  we wish to prove are the standard database notions of 
static and dynamic integrity constraints. In our setting, these emerge as inductive 
entailments of the database. 

Subsequently, in Section 7, we discuss various possible extensions of the approach 
of this paper, including transaction logs and historical queries, the complexity of 
query evaluation, actualized transactions, logic programming approaches to up- 
dates, database views, and state constraints. 

We close with Section 8, which provides a comparative discussion of various 
approaches to a theory of database updates. 

A pleasant consequence of our appeal to the situation calculus as a database rep- 
resentation language is that,  in almost all respects, the resulting theory of database 
updates is isomorphic to the theory of planning in dynamic worlds as studied in 
artificial intelligence. This formal identity provides a potentially fruitful synthesis 
of problems and solutions from both disciplines. 
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. P R E L I M I N A R I E S :  T H E  S I T U A T I O N  C A L C U L U S  A N D  T H E  
F R A M E  P R O B L E M  

The situation calculus (McCarthy [33]) is a first-order language designed to repre- 
sent dynamically changing worlds in which all such changes are the result of named 
actions. The world is conceived as being in some state s, and this s tate  can change 
only in consequence of some agent (human, robot, nature) performing an action. If  

is some such action, then the successor state to s resulting from the performance 
of action a is denoted by do(m s). In general, actions may be parameterized. For 
example, put(x, y) might stand for the action of putt ing object x on object y, in 
which case do(put(A, B), s) denotes that  s tate resulting from placing A on B when 
the world is in state s. Notice that  in this language, actions are denoted by func- 
tion symbols. Those relations whose t ru th  values may vary from state to s tate  are 
called fluents, and are denoted by predicate symbols taking a s tate  te rm as one of 
their arguments.  For example, in a world in which it is possible to paint objects, 
we would expect a fluent color(x, c, s), meaning tha t  the color of object x is c when 
the world is in state s. 

Normally, actions will have preconditions, namely, sufficient conditions tha t  the 
current world state must satisfy before the action can be performed in this state. 
For example, it is possible for a robot r to pick up an object  x in the world 
state s provided the robot is not holding any object, it is next to x, and x is 
not heavy: 

[(Vz)~holding(r, z, s)] A ~heavy(x) A nexto(r, x, s) D Poss(pickup(r, x), s).l 

I t  is possible for a robot to repair an object provided the object is broken, and 
there is glue available: 

hasglue(r, s) A broken(x, s) D Poss(repair(r, x), s). 

The dynamics of a world are specified by effect axioms, which specify the effect 
of a given action on the t ru th  value of a given fluent. For example, the effect on 
the fluent broken of a robot dropping an object can be specified by: 

Poss(drop(r, x), s) A fragile(x) D broken(x, do(drop(r, x), s)). 

A robot repairing an object causes it not to be broken: 

Ross(repair(r, x), s) D ~roken(x,  do(repair(r, x), s) ). 

As has been long recognized (McCarthy and Hayes [35]), axioms other than  effect 
axioms are required for formalizing dynamic worlds. These are called frame axioms, 
and they specify the action invariants of the domain, i.e., those fluents unaffected 
by the performance of an action. For example, dropping things does not affect an 
object 's  color: 

Poss( drop(r, x), s) A color(y, e, s) D color(y, e, do(drop(r, x ), s) ). 

1 In the  sequel,  lowercase roman  le t te rs  will  deno te  variables .  All  formulas  are  unde r s tood  to  be 
impl i c i t ly  un iversa l ly  quant i f ied  wi th  respect  to  the i r  free var iables  whenever  expl ic i t  quant i f ie rs  
are not  indica ted .  We also a s sume  t h a t  A takes  precedence over V, so t h a t  a A b V c A d means  

(a A b) v (e ^ d). 
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Not breaking things: 

Poss(drop(r, x), s) A -~broken(y, s) A [y ~ x V -~fragile(y)] 

-~broken(y, do(drop(r, x), s) ). 

The problem associated with the need for frame axioms is that  normally there will 
be a vast number of them. For example, an object 's color remains unchanged as 
a result of picking things up, opening a door, turning on a light, electing a new 
prime minister of Canada, and so on. Normally, only relatively few actions in any 
repertoire of actions about a world will affect the t ru th  value of a given fluent; all 
other actions leave the fluent invariant, and will give rise to frame axioms, one for 
each such action. This is the frame problem. 

In this paper, we shall propose specifying databases and update transactions 
within the situation calculus. Transactions will be treated exactly as actions are in 
dynamic worlds, i.e., they will be functions. Thus, for example, the transaction of 
changing a student's grade in an education database will be treated no differently 
than the action of dropping an object in the physical world. This means that  we 
immediately confront the frame problem; we must find some convenient way of 
stating, for example, that  a student's grade is unaffected by registering another 
student in a course, or by changing someone's address or telephone number or 
student number, and so on. 

The frame problem has been recognized in the setting of database transaction 
processing, notably by Kowalski [22] and Borgida, Mylopoulos and Schmidt [7]. It 
is also implicit in various semantic approaches to database updates (but without 
appealing explicitly to transactions), such as the work of Grahne [13]; Katsuno 
and Mendelzon [20]; Grahne, Mendelzon, and Revesz [14]; and Winslett [48]. Our 
approach differs from these semantic accounts in two ways: it explicitly provides 
for transactions, and it relies on an axiomatic treatment of the frame problem. The 
next section provides an example of our axiomatic approach to specifying database 
update transactions, and how it addresses the frame problem. 

3. T H E  B A S I C  A P P R O A C H :  A N  E X A M P L E  

We consider a toy education database to illustrate our approach to specifying up- 
date transactions. 

Relations. The database involves the following three relations: 

1. enrolled(st, course, s): Student st is enrolled in course course when the data- 
base is in state s. 

2. grade(st, course, grade, s): The grade of student st in course course is grade 
when the database is in state s. 

3. prerequ(pre, course): pre is a prerequisite course for course course. Notice 
that  this relation is state independent, so is not expected to change during 
the evolution of the database. 

Initial Database State. We assume given some first-order specification of what is 
true of the initial state So of the database. These will be arbitrary first-order 
sentences, the only restriction being that  those predicates that  mention a state, 
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mention only the initial state So. Examples of information that  might be true 
in the initial state are: 

(Vx).enrolled(x, e l 0 0 ,  So) D enrolled(x, 6200, So), 

enroUed(Sue, C100, So) V enrolled(Sue, 6200, So), 

( 3c)enroUed( BiU, c, So), 

(Vp).prerequ(p, P300) -= p = P100 V p = M100, 

(Vp )-~pr er equ(p , 6100), 

(Vc).enrolled(Bill, c, So) =- c = M100 V c = C100 V c = P200, 

enrolled(Mary,  C100, So), -~enrolled(John, M200, So) , . . .  

grade(Sue, P300, 75, So), grade(Bill ,  M200, 70, So) , . . .  

prerequ( M200, M100), -~prerequ( M l O0, ClO0), . . . 

Database Transactions. Update transactions will be denoted by function symbols, 
and will be treated in exactly the same way as actions are in the situation 
calculus. For our example, there will be three transactions: 

1. register(st ,  course): Register student st in course course. 
2. change(st, course, grade): Change the current grade of student st in course 

course to grade. 
3. drop(st, course): Student st drops course course. 

Transaction Preconditions. Normally, transactions have preconditions that  must be 
satisfied by the current database state before the transaction can be "executed." 
In our example, we shall require that  a student can register in a course iff she 
has obtained a grade of at least 50 in all prerequisites for the course: 

Poss(regis ter(  st, c), s) - { (Vp).prerequ(p, c) D (3g).grade( st, p, g, s ) A g  > 50}. 

It is possible to change a student's grade iff he has a grade that  is different than 
the new grade: 

Poss(change(st ,  c, g), s) =- (3g').grade(st, c, g', s) A g' ~ g. 

A student may drop a course iff the student is currently enrolled in that  course: 

Poss(  drop( st, c), s) =- enrolled(st, c, s). 

Update Specifications. These are the central axioms in our formalization of up- 
date transactions. They specify the effects of all transactions on all updatable 
database relations. As usual, all lowercase roman letters are variables that  are 
implicitly universally quantified. In particular, notice that  these axioms quantify 
over transactions. 

Poss(a,  s) D [enrolled(st, c, do(a, s) ) = 

a -= register(st,  c) V enrolled(st, c, s) A a ~ drop(st, c)], (3.1) 

Poss(a,  s) D [grade(st, c, g, do(a, s) ) - 

a = change(st, c, g) V grade(st, c, g, s) A {(Vg').g' ~ g D a ~ change(st,  c, g')}]. 

This last sentence is logically equivalent to the simpler: 

Poss(a,  s) D [grade(st, c, g, do(a, s) ) - 

a = change(st, c, g) V grade(st, c, g, s) A (Vg')a ~ change(st,  c, g')]. 
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It  is the upda te  specification axioms tha t  "solve" the frame problem. To see 
why, notice tha t  (3.1) entails: 

Poss(a, s) A a ~ register(st,  c) A a ~ drop(st, c) D 

{enrolled(st, c, do(a, s) ) = enrolled(st, e, s)}, 

t ha t  is, register(st,  c) and drop(st, c) are the only t ransact ions tha t  can possibly 
affect the t ru th  value of enrolled; all other transactions leave its truth value un- 
changed (provided Poss(a, s) is true, of course). 2'3 But  this ability to succinct ly 
represent all of the. t ransact ions tha t  leave a given fluent invariant is precisely the  
kind of  solution to the frame problem tha t  we seek. A little reflection reveals those 
properties of the axiom (3.1) tha t  solve the  problem for us: 

1. quantification over transactions,  and 
2. the assumpt ion tha t  relatively few transact ions  (in this case register(st ,  e) 

and drop(st, c)) affect the t ru th  value of the fluent, so tha t  the  sentence (3.1) 
is reasonably short.  In other  words, most  t ransact ions  leave a fluent 's t r u th  
value unchanged,  which of course is what  originally led to too  m a n y  frame 
axioms. 

For a more detailed description of  this approach to the  frame problem, and a 
procedure for automat ica l ly  obta ining this solution from the effect axioms alone, 
see Reiter [40]. For an independent ly  mot ivated  circumscriptive justification of this 
solution to  the frame problem, see Lin and Reiter [29]. 

3.1. Querying a Database 

Notice tha t  in the  above account  of database evolution, all updates  are virtual; 
the da tabase  is never physically changed. To query the da tabase  resulting from 
some sequence of transactions,  it is necessary to  refer to  this sequence in the  query. 
For example, to  determine if John is enrolled in any courses after the t ransac t ion  
sequence 

drop(John, C100), regis ter(Mary,  C100) 

has been "executed," we must  determine whether  

Database 

(3c).enrolled( John, c, do(register(Mary,  C100), do(drop(John, C100),  So))). 

Querying an evolving da tabase  is precisely wha t  is called the  temporal projection 
problem in AI  planning [18]. 

2Notice that to draw this conclusion we require unique names axioms for transactions, i.e., 

change(st, c, g) ~ drop(st, c), 
drop(st, e) ~ register(st, c), 

etc. 
3Since for our example there are just three transactions, this might not seem to be much 

of an achievement. To see that it is, simply imagine augmenting the set of transactions with 
arbitrarily many new transactions, each of which is irrelevant to the truth of enrolled; say, 
transactions for changing student's registration numbers, addresses, telephone numbers, fees, and 
SO o n .  



ON SPECIFYING DATABASE UPDATES 59 

4. A N  A X I O M A T I Z A T I O N  OF U P D A T E  T R A N S A C T I O N S  

The example education domain illustrates the general principles behind our ap- 
proach to the specification of database update transactions. In this section we 
precisely characterize a class of databases and updates of which the above example 
will be an instance. To begin, we must specify a second-order language on which 
to base the axiomatization. 4 L e t / :  be a sorted second-order language with equal- 
ity, with two disjoint sorts for transactions and states, and suppose these sorts 
are disjoint from any other sorts of the language. Assume £ has the following 
vocabulary: 

• Individual variables: Infinitely many of each sort. 
• Predicate variables: Infinitely many of each arity, each of which takes argu- 

ments, all of which are of sort state. 
• Function symbols of sort state: There are just two of these- - the  constant So, 

and the binary function symbol do, which takes arguments of sort transaction 
and state, respectively. 

• Function symbols of sort transaction: Finitely many. 
• Other function symbols: Infinitely many of sort other than transaction and 

state for each arity, none of which take an argument of sort state. 
• Predicate symbols: 

1. A distinguished binary predicate symbol Poss taking arguments of sort 
transaction and state, respectively. 

2. A distinguished binary predicate symbol < taking arguments of sort state. 
3. Finitely many predicate symbols, distinct from the predicate symbols 

Poss, < and <, each of which takes, among its arguments, exactly one 
of sort state; these are called fluents. Notice that  the predicate symbols 
Poss, < and _<, which do take arguments of sort state, are not fluents. 

4. Infinitely many predicate symbols of each arity, none of which take argu- 
ments of sort state. 

• Logical constants and punctuation: As usual, including equality. 

Notice t h a t / :  does not allow state dependent functions like employer-of  (x, s), or 
Canadian-prime-minister(s) .  

Unique Names  Ax ioms  for Transactions. For distinct transaction names T and 
T ' ,  

T(~)  ~ T ' ( y  ~) 

Identical transactions have identical arguments: 

T ( X l , . . . , x , ~ )  = T ( y l , . . . , y n )  ~ Xl = Yl A . . .  A xn = yn, 

for each function symbol T of £ of sort transaction. 
Unique Names  Axioms  for States 

(Va, s)So ~ do(a, s), 

(Va, s, a', s').do(a, s) = do(a', s') D a = a' A s = s'. 

4 T h e  language  m u s t  be second order  because  we shall  require  a t rans i t ive  order ing relat ion,  <:, 
on s ta tes ,  and  th i s  is not  f irst-order definable (Section 5.1). 
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Notice that  the unique names axioms for states imply tha t  two states are the 
same iff they result from the same sequence of transactions applied to the ini- 
tial state. Two states $1 and $2 may be different, yet assign the same t ru th  
value to all fluents. So a state in the situation calculus must not be identified 
with the set of fluents that  hold in that  state. A bet ter  way to understand a 
state is as a history of transactions; two states are equal iff they have identical 
histories. 

Definition: The Simple Formulas. The simple formulas of E are defined to be the 
smallest set such that:  

1. F( t ,  s) and F( t ,  S0) are simple whenever F is a fluent, the i ' a re  terms, and s 
is a variable of sort state. 5 

2. Any equality atom is simple. Notice that  equality atoms, unlike fluents, are 
permit ted to mention the function symbol do. 

3. Any other a tom with predicate symbol other than  Poss or < is simple. 
4. If $1 and $2 are simple, so are ~$1, $1 A $2, $1 V $2, S1 D $2, S1 -- $2. 
5. If S is simple, so are (3x)S  and (Vx)S whenever x is an individual variable 

not of sort state. 

In short, the simple formulas are those first-order formulas tha t  do not mention 
the predicate symbols Poss or <, whose fluents do not mention the function 
symbol do, and tha t  do not quantify over variables of sort state. 

Definition: Transaction Precondition Axiom. A Transaction precondition axiom is 
a sentence of the form 

(VZ, s ) . P o s s ( T ( x l , . . . ,  xn), s) =- HT, 

where T is an n-ary function of sort transaction of 1:, and HT is a simple formula 
of E whose free variables are among x l , . . . ,  x~, s. 

Definition: Successor State Axiom. A successor state axiom for an ( n +  1)-ary fluent 
F of l: is a sentence o f / :  of the form 

(Va, s).Poss(a, s) D (Vx l , . . . ,  X n ) . F ( x , , . . . ,  xn, do(a, s)) - @F, 

where, for notational convenience, we assume that  F ' s  last argument is of sort 
state, and where (~F is a simple formula, all of whose free variables are among 
a , s , x l , .  . . ,Xn. 

5. T R A N S A C T I O N  L O G S  A N D  Q U E R Y  E V A L U A T I O N  

In many  database applications, a log is maintained of the sequence of (virtual) 
update  transactions that  has occurred against the database, and queries are pro- 
cessed with respect to this log and the initial (static) database. We emphasize 

5For notational convenience, we assume that the last argument of a fluent is always the (only) 
argument of sort state. 
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tha t  these transactions are virtual; they are not actualized on the given initial 
database.  Our objective in this section is to present a sound and complete query 
evaluator for this case. The general problem is this: given a query Q, and a se- 
quence ~-1,... ,Tn of update  transactions, is this sequence legal, and if so, what  is 
the answer to Q in tha t  s tate of the database tha t  would result from perform- 
ing these transactions in the indicated sequence, beginning with the initial s tate 
So of the database? This is exactly what  is called the temporal projection prob- 
lem in the AI planning literature [18]. For the class of databases of this paper,  
Reiter [43] has provided a closed-form solution to this problem, which we now 
describe. 

5.1. Legal Transaction Sequences 

In this section we provide necessary and sufficient conditions tha t  a sequence 
•1, • - •, Tn of update  transactions be legal. Notice tha t  not all t ransaction sequences 
need be legal. For example, the sequence drop(Sue, C100), change(Bill, C100, 60) 
would be illegal if the drop t ransaction was impossible in the initial database state, 
i.e., if Poas(drop(Sue, C100), So) was false. Even if the drop t ransact ion were pos- 
sible, the sequence would be illegal if the change t ransaction was impossible in tha t  
s tate resulting from doing the drop transaction, i.e., if Poss(change(Bill, C100, 60), 
do(drop(Sue, C100), So)) was false. 

Intuitively, a t ransaction sequence is legal iff, beginning in state So, each trans- 
action in the sequence is possible in tha t  s tate resulting from performing all the 
transactions preceding it in the sequence. To formalize this notion, we define an 
ordering relation < on states. The intended interpretation of s < s t is tha t  s tate 
a t is reachable from state s by some sequence of transactions, each transact ion of 
which is possible in tha t  s tate resulting from executing the transactions preced- 
ing it in the sequence. As in Reiter [42], we begin by postulating the following 
axioms: 

(Vs)~s < So. (5.1) 

(Va, s, a').a < do(a, s t) ~ Poss(a, s t) A s < s t. (5.2) 

Here, s < s t is an abbreviation for s < s t V s = s t. 
In addition, we shall later need a (second-order) induction axiom over states, so 

we include tha t  here for future reference: 

(VP).P(So) A (Va, s)[P(s) D P(do(a, s))] D (Vs)P(s). (5.3) 

Compare  this with the induction axiom for the natural  numbers: 

(VP).P(0) A (Vx)[P(x) D P(suec(x))] D (Vx)P(x). 

Just  as the induction axiom for the natural  numbers restricts the domain of num- 
bers to 0 and its successors, the effect of the induction axiom (5.3) is to restrict 
the state domain of any of its models to be isomorphic to the smallest set S 
satisfying: 

1. S o E S .  
2. If  S c S, and A E A, then do(A, S) E S, where A is the domain of actions in 

the model. 
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Notation (do(I l l , . . . ,  an], s)). Let a l , . . .  , an be terms of sort transaction. Define 

do([ ], s) = s, 

do([al , . . . ,an],s)  = do(an, do([al , . . . ,an- l ,S) )  n = 1 , 2 , . . .  

do([al , . . . ,  an], s) is a compact  notation for the state te rm 

do(an, do(an_l , . . . ,  dO(al, s) . ..)) 

which denotes tha t  state resulting from performing the transaction a l ,  followed by 
a2 , . . . ,  followed by an, beginning in state s. 

Definition: The Legal Transaction Sequences. Suppose r l , . . . ,  Tn is a sequence of 
ground terms (i.e., terms not mentioning any variables) of/2,  where each Ti is 
of SOrt transaction. Then this sequence is legal (with respect to some background 
database axiomatization /)) iff 

7) ~ So <_ do([T1,..., Tn], So). 

Definition: Databases. In the sequel, a database 7) will always be a set of sentences 
of Z: of the following form: 

7) = ~ U/).,~.,~ u / ) tp  u/).~..~ u/)u,~t u / )so 

where 

• F~ is the set consisting of the above three axioms (5.1), (5.2), and (5.3). 
• /)ss is a set of successor state axioms, one for each fluent of £:. 
• /)tp is a set of transaction precondition axioms, one for each t ransact ion 

function of / : .  
• /)~ns is the set of unique names axioms for states. 
• /)~nt is the set of unique names axioms for transactions. 
• /)So is a set of first-order sentences with the proper ty  tha t  So is the only te rm 

of sort state mentioned by the fluents of a sentence of/)So.  Thus, no fluent 
of a formula of/)So mentions a variable of sort state or the function symbol 
do. 7)So will play the role of the initial database (i.e., the one we star t  off 
with, before any transactions have been "executed"). 

Notice tha t  the induction axiom (5.3) is the only second-order sentence of 7); all 
other sentences of 7) are first order. 

Definition: A Regression Operator. We now introduce an operator  corresponding to 
the notion of goal regression as it, arises in artificial intelligence planning problems 
(Waldinger [47]). I t  is also a parallel version of the operation of unfolding in logic 
programming. The purpose of the regression operator  is to systematically reduce 
the complexity of ground-state terms occurring in situation calculus formulas; 
by repeatedly applying this operator,  we eventually obtain a formula whose only 
state te rm is So. As the following theorems show, this reduces theorem proving 
for formulas with arbi trary ground-state terms to theorem proving for formulas 
whose only state term is So. 
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Assume given a database 7P, as defined above. The regression operator 7~ when 
applied to a formula of/2 is determined relative to the database D and is defined 
recursively as follows: 

1. When A is a nonfluent atom, including equality atoms, and atoms with pred- 
icate symbol Poss or <, 

7~[A] = A. 

2. When ¢ is a fluent a tom whose state argument is a variable, 

~[¢]  = ¢. 

3. When F is a fluent whose successor state axiom in Dss is 

(Va, s).Poss(a,s) D (Vxl , . . .  ,Xn).F(xl, . . .  ,xn,do(a,s)) =- ~ (5.4) 

then 

n[F(tl , .  ,tn, do(a,o))] • x, ..... x,~,a,s 
• " : F t l ~ . . . , t n ~ o t ~ g r "  

4. Whenever W is a formula, 

n [ ~ W ]  = ~n[W] ,  

T~[(vv)w] = (w , )n [w] ,  

n [ ( 3 v ) w ]  = (3v)~[w] .  

5. Whenever W1 and W2 are formulas, 

n[w1 A w2] = n[w1] A 7~[w2], 

~[w~ v w~] = 7~[w~] v n [ w 2 ] ,  

7~[w1 ~ w2] = 7~[w~] ~ ~[w~], 

n [ w ~  - w~] = 7~[w1] - n[w2]. 

7~[G] is simply tha t  formula obtained from G by substi tuting suitable instances of 
~ F  in F ' s  successor state axiom for each occurrence in G of a fluent a tom of the 
form F( t l , . . . ,  tn, do(a, 0)). 

Example. 

G = (Ya, s).P(A, do(a, do(a', s))) A s = do(B, So) D 

(3x).P(x, s) A Ross(B, do(a, s) ) A R(x) A Q(do( B, s) ). 

Here, P and Q are fluents; R is not a fluent. Suppose the successor-state axioms 
for P and Q are 

Ross(a, s) D [P(x, do(a, s)) =- ~p(X, a, s)], 

Poss(a, s) D [Q(do(a, s)) =- OQ(a, s)]. 

Then 

n[G] = (Va, s).¢p(A, a, do(a', s)) A s = do(B, So) D 

(3x).P(x, s) A Poss( B, do(a, s) ) A R(x) A q~q( B, s). 
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The idea behind the regression operator 7~ is to reduce the depth of nest- 
ing of the function symbol do in the fluents of G by substituting suitable in- 
stances of ~F from (5.4) for each occurrence of a fluent atom of G of the form 
F(tl , . . . , tn ,do(a,  cr)). Since no fluent atom of ~)F mentions the function sym- 
bol do, the effect of this substitution is to replace each such F by a formula 
whose fluents mention only the state term a, and this reduces the depth of nesting 
by one. 

Definition ['Rn]. When G is a formula of £, 

7a°[a] = a ,  

For n = 1 ,2 , . . .  

ra ~ [a  I = n[ ra  ~- l[c]]. 

Suppose T is a ground transaction term, say T ( g l , . . . , g k ) ,  and suppose T's  
transaction precondition axiom is: 

(Vxl , . . . ,  xk, s).Poss(T(Xl,. . . ,  Xk), s) = FIT(X1,... , Xk, S). 

Define precond(T,s) to be the formula YIT(gl,... ,gk, S). The formula precond 
(T, s) specifies the conditions under which the ground transaction ~- is possible 
in state s. 

The following is proved in Reiter [43]: 

Theorem 5.1. The sequence TI, . . .  , T n o f  ground terms of £ of sort transaction is 
legal w.r.t. 7) iff 

ft 

Z)unt U Z)So ~ A ~i-l~rec°nd(Ti' do(IT1,..., Ti-1], So))]. 
i~-i 

Notice that  Theorem 5.1 reduces the test for the legality of a transaction se- 
quence to a first-order theorem proving task in the initial database 7)8o, together 
with unique names axioms for transactions. In particular, the second-order induc- 
tion axiom is not required for the purpose of testing legality. 

Example: Legality Testing. We compute the legality test for the transaction se- 
quence 

register(Bill, C100), drop(Bill, C100), drop(Bill, C100) 

which intuitively should fail because the first drop leaves Bill unenrolled in C100, 
so that  the precondition for the second drop will be false. We must first com- 
pute 

0 7¢ [precond(register(Bill, C100), So)] A 

T¢ 1 ~recond( drop( BiU, C100), do(register(Bill, C100), So))] A 

TC2[precond(drop(Bill, e l00 ) ,  do(drop(Bill, C100), do(register(BiU, e l 0 0 ) ,  So)))], 
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which is 

T~°[(k/p).prerequ(p, C100) D (3g).grade( Bill,p, g, So) A g > 50] A 

T~ 1 [enrolled(Bill, Cl00, do(register(Bill, C100), So))] A 

7~2[enrolled(Bill, C100, do(drop(Bill, C100), do(register(Bill, C100), So)))]. 

This yields 

{(Vp).prerequ(p, C100) D 3g).grade(BiU,p,g, So) A g > 50} A 

true A 

false 

so the transaction sequence is indeed illegal. 
Consider next the sequence 

change(Bill, C100, 60), register(Sue, C200), drop(Bill, C100). 

We first compute 

T~°[preeond(change(Bill, C100, 60), So)] A 

T~ 1 [precond(register(Sue, C200), do(change(Bill, C100, 60), So))] A 

T~ 2 [pr econd( drop( B ill, C100), do(register(Sue, C200), 

do(change(Bill, C100, 60), So)))], 

which is 

7~°[(3g')grade(Bill, C100, g', So) A g' ~ 60] A 

T~ 1 [(Vp)prerequ(p, C200) D (3g)grade( Sue, p, g, do(change(Bill, el00,  60), So)) A 

g > 50] A 

n 2 [enrolled(Bill, el00,  do(register(Sue, C200), do(change(Bill, C100, 60), So)))]. 

This simplifies to 

((3g'), grade(Bill, el00,  g', So) A g' ~ 60) A 

((Vp).prerequ(p, C200) D Bill = Sue A p = C100 v (3g).grade(Sue, p, g, So) A 

g > so} A 

(Sue = Bill A C200 = C100 V enrolled(Bill, C100, So)}. 

So the transaction sequence is legal iff this formula is entailed by the initial database. 

5.2. Query Evaluation" 

We now consider the evaluation of queries in a database state resulting from a given 
sequence of update transactions. Specifically, we address the following problem: 
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Given a sequence T1, . . . ,  Tn of ground terms of sort transaction, and a query Q(s) 
whose only free variable is the state variable s, what  is the answer to Q in tha t  
s tate resulting from performing this transaction sequence, beginning with the initial 
database state So? This can be formally defined as the problem of determining 
whether 

/) ~ Q(do([~'l, . . . , Tn], So)). 

Our principal result is the following: 

Theorem 5.2 (Reiter [43]). Suppose Q(s) E £ is simple, and that the state variable 
s is the only free variable of Q(s). Suppose v l , . . .  ,Tn is a sequence of ground 
terms of ~ of sort transaction. Then if T1, . . . ,Tn is a legal transaction se- 
quence, 

if/ 

/) ~ Q(do([71,. . . ,  Tn], So)) 

/)~,u U I)So ~ n'~[Q(do([T1,..., T,~], So))]. 

Notice that ,  as in the case of verifying legality, query evaluation reduces to first- 
order theorem proving in the initial database ~)So, together with unique names 
axioms for transactions. Once again, the second-order induction axiom is not re- 
quired. 

Corollary 5.1. (Relative Consistency) 7P is satisfiable iff /)~nt U ~)so is. 

PROOF. Take Q(s) = false in Theorem 5.2. [] 

Corollary 5.1 provides an important  relative consistency result. I t  guarantees 
that  we cannot introduce an inconsistency to a "base" theory / )un t  U ~)so by aug- 
menting it with the axioms for < and induction, together with successor s tate  and 
transaction precondition axioms and unique names axioms for states. 

The legality condition in Theorem 5.2 is necessary, as the following example 
shows: 

Example. Suppose / :  has just a 0-ary function symbol T of sort transaction and a 
fluent F.  Consider the successor state axiom 

(Va, s).Poss(a, s) D {F(do(a, s)) = F(s)}  

and the transaction precondition axiom 

Then i f / )so = {F(So)}, 

but 

Poss(T,  s) - false.  

/)s,, ~ n[F(do(T,  So))], 

D ~= F(do(T, So)). 
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Example: Query Evaluation. Consider again the transaction sequence 

T = change(Bill, C100, 60), register(Sue, C200), drop(Bill, C100). 

Suppose the query is 

(3st).enrolled(st, C200, do(T, So)) A 

~enrolled( st, Cl00, do(T, So)) A 

(~g).grade(st, C200, g, do(T, So)) A g > 50. 

We must compute T~ 3 of this query. After some simplification, assuming that  
:Dso ~ C100 ~ C200, we obtain 

(3st).[st = Sue V enrolled(st, C200, So)] A 

[st = Bill V -~enrolled(st, C100, So)] A 

[(3g).grade(st, C200, g, So) A g > 50]. 

Therefore, assuming that  the transaction sequence T is legal, the answer to the 
query is obtained by evaluating this last formula in Ds0. 

6. P R O V I N G  P R O P E R T I E S  OF D A T A B A S E  STATES 

As indicated in Section 5.1, there is a close analogy between our approach to 
database updates and the theory of the natural numbers; simply identify So with 
the natural number 0, and do(Addl, s) with the successor of the natural number s. 
In effect, a database is a theory in which each "natural number" s has arbitrarily 
many successors. 6 Just as mathematical induction is necessary to prove anything 
interesting about the natural numbers, so also is induction required to prove gen- 
eral properties of database states. This section is devoted to formulating some 
induction principles suitable for this task, and to providing an account of integrity 
constraints in this setting. As we shall see, integrity constraints will emerge as 
inductively derivable general properties of database states. 

Let W be a unary predicate variable of £:. Using the axioms (6), (5.1), (5.2), and 
(5.3), Reiter [42] derives the following second-order induction principle, suitable for 
proving properties of states s when So <_ s: 

(VW).W(So) A [(Va, s).Poss(a, s) A So <_ s A W(s) D W(do(a, s))] 

O (Vs).S0 < ~ ~ W(s) .  
(IPso<s) 

Frequently, we shall want to prove sentences of the form 

(vs, s ' ) .s0 < s A s <_ ~' ~ T(~, J ) .  

Toward that  end, Reiter [42] derives the following induction principle, suitable for 

aThere could even be infinitely many successors whenever a transaction function is parameter- 
ized by a real number, as for example change-salary(p, $). 
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proving  p roper t i e s  of  pai rs  of  s t a t e s  s and  s ~ when So _< s A s _< s~: 

(VR).R( So, So) A 

[(Ya, s, s').Poss(a, s') A So <_ s A s < s' A n(s,  s') D n(s ,  do(a, s '))] A 

[(Va, s, s').Poss(a, s) A So <_ s A n(s,  s) D R(do(a, s), do(a, s))] 

(Vs, s ' ) . s0  < s A s < s '  ~ R(s ,  s ' ) .  

(IPs,,<s<s,) 

6.1. Induction and the Verification of Integrity Constraints 

In t he  t heo ry  of da tabases ,  an integrity constraint specifies w h a t  counts  as a legal 
d a t a b a s e  s ta te ;  it  is a p r o p e r t y  t h a t  every d a t a b a s e  s t a t e  mus t  satisfy. The  concept  
of an in tegr i ty  cons t ra in t  is i n t ima t e ly  connec ted  wi th  t h a t  of  d a t a b a s e  evoluation; 
no m a t t e r  how the  d a t a b a s e  evolves, the  cons t ra in t  mus t  be t rue  in all d a t a b a s e  
futures.  Accordingly ,  it  is n a t u r a l  to  represent  these  as sentences,  un iversa l ly  quan-  
t if ied over s ta tes .  For  example ,  no one m a y  have two different g rades  for t he  same  
course in any d a t a b a s e  s ta te :  

(Vs)(Vst, c, g, g').So <<_ s A grade(st, c, g, s) A grade(st, c, g', s) D g = g'. 

In a personnel  da t abase ,  we might  require  t h a t  salar ies  mus t  never decrease  du r ing  
the  evolu t ion  of the  da tabase :  

(Vs, s ')(Vp, $, $') .S0 _< s A s < s '  A sal(p, $, s) A sal(p, $', s') D $ <_ $,.7 

The  in tu i t ion  t h a t  cons t ra in ts  are sentences  t h a t  mus t  be t rue  in all  d a t a b a s e  s t a tes  
leads  to  the  following: 

Definition: Constraint Satisfaction. A d a t a b a s e  D B satisfies an in tegr i ty  cons t r a in t  
I C  iff the  d a t a b a s e  entai ls  the  cons t ra in t :  

DB ~ IC. 8 

Notice  t he  a s sumpt ion  under ly ing  the  above  not ion  of an in tegr i ty  cons t r a in t  and  
its sa t i s fac t ion  by a da tabase :  Cons t r a in t s  are  sentences  quant i f ied  over s ta tes ,  and  
in t he  s i tua t ion  calculus,  s ta tes  change only by virtue of transaction "occurrences." 
So when  we speak  of  a cons t r a in t  being t rue  in all d a t a b a s e  s ta tes ,  we mean  t h a t  
a r b i t r a r y  t r a n s a c t i o n  sequences preserve the  t r u t h  of  t he  cons t ra in t .  In  o the r  words,  
we are  here imagin ing  t h a t  the only way a database evolves is through transactions. 
Cons ider  a d a t a b a s e  t h a t  in i t ia l ly  has  no in format ion  a b o u t  John ' s  m a r i t a l  s t a tus .  
Af te r  several  t r ansac t ions ,  we discover t h a t  he is marr ied .  If  the re  is a t r a n s a c t i o n  
for mar r i age  events,  and  if John ' s  mar r i age  in the  real  world is the  nex t  event  to 

7The symbol < in $ < $~ is the usual ordering relation on the reals, and is not to be confused 
with our ordering relation on states. 

8This definition should be contrasted with those in Reiter [38, 41]. It seems that there is not 
a unitary concept of integrity constraint in database theory, and that there are many subtleties 
involved. 
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be recorded in the database,  then simply add this marriage transact ion to the cur- 
rent sequence of transactions, and we are done. On the other hand, if there is no 
database transact ion for marriage events, or if we do not know when he married, 
then the best we can do is add an assertion to the database tha t  John is married. 
This change to the database is not the result of a transaction, and therefore can- 
not be formalized within our transaction-centered approach to database evolution. 
Our concept of" an integrity constraint and its satisfaction would not apply in this 
setting. 9 There is obviously an intimate connection between this observation and 
tha t  of Katsuno and Mendelzon [20], who argue tha t  there is a difference between 
updat ing a database and revising it. To formally capture this distinction, they 
propose a set of update postulates tha t  differ from, but are in the same style as, the 
AGM postulates for revision (Alchourrdn, G£rdenfors, and Makinson [3]). With  
respect to the above example, recording a marriage transaction corresponds to an 
update,  while simply recording the fact that  John is married corresponds to a re- 
vision. For a further discussion of this distinction, see Section 7. In the remainder 
of this paper,  our perspective on integrity constraints and their satisfaction will 
be exclusively transaction-centered; we do not consider databases evolving under 
revision operations. 

We return now to the problem of verifying constraints. Since this requires show- 
ing tha t  some sentence is true in all database states, it is not surprising tha t  induc- 
tion is required. The following result will provide a useful corollary for verifying 
integrity constraints by induction. 

Lemma 6.1 (Reiter [43]). Suppose G(~, s) E £, where G(I,  s) is simple, s is a 
state variable, and the free variables of G are among ~, s. Then 

:Ds~ ~ (Va, s).Poss(a, s) D (V~).{G(~, do(a, s)) - ~[G(~ ,  do(a, s))]}. 

Notation: IPso<s<_8,(H), IPso<s(G). When H(s, s') E £ is a formula with two free 
variables s and # of sort state, IPso<<_~<~,(H) denotes the substi tution instances 
of H for R in the induction principle (IPso<~<~,). When G(s) c £ is a formula 
with one free variable of sort state, IPso<~ (G) denotes the substi tution instances 
of G for W in the induction principle (IPso<j). 

The following is an immediate consequence of Lemma 6.1. We will find it 
useful for verifying integrity constraints by induction. 

Corollary 6.1. Suppose G(s) c g and H(s, s') c £ are both simple, that the state 
variable s is the only free variable of G, and that the state variables s and s ~ are 
the only free variables of H. Then, 

T)s~ ~ IPso<8(G) = 

a(So) A 

{(Va, s).Poss(a, s) A So <_ s A G(s) D T~[G(do(a, s))]} 
D (Vs).S0 s s D a(s), 

9I a m  grateful to one of the referees for this example, and for pointing out that our ap- 
proach to integrity constraints applies only to databases whose evolution is governed exclusively 
by transactions. 
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Dss 

IPso<s<_s,(H) - 

H(So, So) A 

{(Va, s, s').PosS(a, s') A So <_ s A s < s' A H(s, s') D Ti[g(s, do(a, s'))]} A 

{(Va, s).Poss(a, s) A So <_ s A H(s, s) D 7¢[g(do(a, s), do(a, s))]} 

D (Ys, s').SO <_ s A s <_ s' D g ( s ,  s'). 

6.2. Examples of Constraints and Their Verification 

Proving a Functional Dependency. Consider again the example education database, 
and the successor state axiom 

Poss(a, s) D {grade(st, c, g, do(a, s)) - 

a = change(st, c, g) V grade(st, c, g, s) A (Vg')a ~ change(st, c, g')}. 

Normally, the relation grade(st, c, g, s) is functional in its third argument. Such 
functional dependencies are examples of so-called static integrity constraints. Sup- 
pose T)so contains the initial functional dependency 

(Vst, c,g,g').grade(st, c,g, So) A grade(st, c,g', So) D g = g'. (6.1) 

We prove that transaction sequences preserve this functional dependency, namely 
that 

(Vs).So _< s D {(Vst, c, g, g').grade(st, c, g, s) A grade(st, c, g', s) D g = g'}. 

This we do by invoking the first result of Corollary 6.1 with 

G(s) = (Vst, c, g,g').grade(st, c, g, s) A grade(st, c, g', s) D g = g'. 

Therefore, we must prove the following two sentences: G(So), which is the initial 
functional dependency (6.1). 

(Ya, s).Poss(a, s) A So <_ s A 

{(Vst, c, g, g').grade(st, c, g, s) A grade(st, c, g', s) D g = g'} D 

[(Vst, c, g, g'){a = change(st, c, g) V 

grade(st, c, g', s) A (Vg")a ~ change(st, c, g")} A 

{a = change(st, c, g') V 

grade(st, c, g', s) A (Vg')a ~ change(st, c, g")} 

g = g']. 

This has an easy proof using the unique names axioms for transactions. Notice that 
the proof does not appeal to any transaction precondition axioms. 
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Proving a Dynamic Integrity Constraint. The classic example of a dynamic 
integrity constraint is that  a person's salary must not decrease: 

(Vs, s', p, $, $').So <_ s A s < s ~ D sal(p, $, s) A sal(p, St, s t) D $ <_ S t. (6.2) 

We shall require a transaction precondition axiom stating that  the prerequisite for 
changing a person's salary is that  the new salary be greater than the old: 

Poss(change-sal(p, $), s) =- (35 ~).sal(p, $', s) A $t < $. (6.3) 

Initially, the relation sal is functional in its second argument: 

(Vp, $, $').sal(p, $, So) A sal(p, $', So) 3 $ -: $'. (6.4) 

Finally, we assume the following successor state axiom for sal: 

Ross(a, s) D {sal(p, $, do(a, s)) - a = change-sal(p, $) V 

sal(p, $, s) A a ~ fire(p) A (V$')a ~ change-sal(p, $')}. 

Now, to prove (6.2) we appeal to the second result of Corollary 6.1 with 

H(s, s') = (Vp, $, $').sal(p, $, s) A sal(p, $', s') D $ < $'. 

Accordingly, we must prove the following three sentences: 

1. 

(Vp, $, $').sal(p, $, So) A sal(p, $', So) D $ <_ $'. 

This follows from the initial functional dependency axiom (6.4). 
2. 

(Va, s, s').Ross(a, s') A So <_ s A s < s' A 

[(Vp, $, $').sal(p, $, s) A sal(p, $', s') D $ <_ $'] 

D 

[(Vp, $, $').sal(p, $, s) A {a = change-sal(p, $') V 

sal(p, $', s') A a ~ fire(p) A (V$")a ~ change-sal(p, $")} 
$ _< $']. 

The straightforward proof requires the transaction precondition axiom (6.3). 
3. 

(Va, s).Poss(a, s) A So _< s A {(Vp, $, $').sal(p, $, s) A sal(p, $', s) D $ <: $'} 

D 

(Vp, $, $').{a ----- change-sal(p, $) V 

sal(p, $, s) A a ~ fire(p) A (V$")a ~ change-sal(p, $")} A 

{a ---- ehange*sal(p, $') V 

sal(p, $, s) A a ~ fire(p) A (V$")a ~ change-sal(p, $")} 

D$<_$' .  

This has a simple proof using unique names axioms for transactions. 
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6.2.1. AN EXAMPLE OF CASANOVA AND FURTADO [8]. Suppose no one who 
has been fired can ever be rehired: 

Poss( hire(p), s) =- -~trans(f ire(p), s)/~ -~emp(p, s). (6.5) 

Intuitively, trans(a, s) means that  the transaction a is part  of the transaction se- 
quence leading from So to s. Formally, we have the successor state axiom 

Poss(a, s) D {trans(a' ,  do(a, s)) =- a = a' V trans(a' ,  s)}, (6.6) 

together with the initial state axiom 

~trans(a,  So). (6.7) 

Finally, assume the following successor state axiom for the relation emp: 

Poss(a,  s) D {emp(p, do(a, s)) - a = hire(p) V emp(p, s) A a • f ire(p)} .  

We wish to prove that  any employed person who subsequently becomes unem- 
ployed will forever thereafter remain unemployed: 

(Vp, s, s', s").S0 _< s A s < s' A s' _< s" A emp(p, s) A -~emp(p, s') D ~ernp(p, s"). 

This is easy to prove using transitivity of < (a fact tha t  is easily proved by induction) 
together with the following three sentences: 

(Va, s, s').So <_ s A s <_ s' A trans(a, s) D trans(a, s'). (6.8) 

(Vp, s).So <_ s A trans( f ire(p) ,  s) D -~emp(p, s). (6.9) 

(Vp, s, s0.S0 _< s A s _< s' A e, p(p, ^  emp(p, tran (fire(p), s')i6.10 ) 

Accordingly, we indicate how to prove these. 

• Proof of (6.8): Use the second result of Corollary 6.1 and (6.7). 
• Proof of (6.9): Use the first result of Corollary 6.1, (6.7), unique names 

axioms for transactions, and the transaction precondition axiom (6.5). 
• Proof  of (6.10): Use the second result of Corollary 6.1. 

7. E X T E N S I O N S  O F  T H I S  A P P R O A C H  

We have described a fairly general approach to specifying update transactions for 
databases. Nevertheless, within this framework, there remain a number of out- 
standing problems to be addressed. In order to demonstrate the generality of our 
situation calculus-based approach to describing evolving databases, we describe 
some of these research problems, and sketch possible solutions to them within our 
framework. The proposed solutions are presented with varying degrees of detail, 
and should be viewed as suggestions for approaching a variety of what, at the 
moment, are open research problems. 

7.1. Transaction Logs and Historical Queries 

Using the relation < on states, as defined in Section 5, it is possible to pose historical 
queries to a database. For example, if T is the transaction sequence leading to the 
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current database state (i.e., the current database state is do(T, So)), the following 
asks whether Mary's salary was ever less than it is now: 

(3s, $, $').So <<_ sAs < do(T, So)Asal(Mary, $, s)Asal(Mary, $', do(T, S0)) A$ < $'. 

Was John ever simultaneously enrolled in both C100 and M100? 

(3s).So <_ s A s <_ do(T, So) A enrolled(John, C100, s)A 
(7.1) 

enrolled(John, M100, s). 

Has Sue always worked in Department 13? 

(Vs).S0 <_ s A s _< do(T, So) D amp(Sue, 13, s). (7.2) 

The rest of this section sketches an approach to answering historical queries of 
this kind. The approach is of interest because it reduces the evaluation of such 
queries to evaluations in the initial database state, together with conventional list 
processing techniques on the transaction log consisting of the list of those transac- 
tions that  are assumed to have taken place. 

Begin by defining an abbreviation, occurs-between(a, s, s'), whose intended in- 
terpretation is that  situation s I is accessible from situation s via some sequence of 
executable transactions, and that  transaction a is one of the transactions in this 
sequence: 

occurs-between(a, s, s') ~ (3s").s < do(a, s") < s'. 

If we think of a state as a list of all the transactions leading from So to that  state, 
then provided state s' is legal (see Section 5.1), occurs-between(a, s, s') is true iff a 
is a member of the "list difference" of s / and s, where state s is a "sublist" of #. 
For example, if 

do([register( John, C100), drop(Bill, C100), drop(Mary, C100), 

is legal, then 

is true, whereas 

drop(John, M100)], So) 

occurs-between(drop(Mary, C100), 

do([register(John, C100)], So), 

do([register( John, C100), drop(Bill, C100), 

drop(Mary, C100), drop(John, M100)], So)), 

occurs-between(register(Mary, C100), 

do([register(John, C100)], So), 

do([register(John, C100), drop(Bill, C100), 

drop(Mary, el00) ,  drop(John, M100)], So)), 

is false (assuming unique name axioms for transactions). 
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Example. We begin by showing how to answer query (7.2). Toward that  end, we 
first derive a suitable closed-form solution for fluent F. Assume that  F ' s  successor- 
state axiom has the following syntactic form: 

Poss(a,s) D [F(5, do(a,s)) - ~/+(5, a,s) V F(~7, s) A -~VF(5, a, s)]. (7.3) 

Here, 7 + (5, a, s) and 7F (5, a, s) are arbitrary first-order formulas with free variables 
among 5, a, and s. All of the successor-state axioms used in the examples of this 
paper have this syntactic form. Using this and the induction principle (IPso <_s), it 
is possible to prove: 

(Vs').SO < s' D {[(Vs)(SO < s < s' D F(5,  s))] -= 

F(5,  So) A -~(3a, #').do(a, s") < s' A VF (5, a, s")}. 

Suppose that  7F (x, a, s) is independent of s, i.e., it nowhere mentions a state vari- 
able s. To indicate this, we write it as 7F (5, a). Then, using the above sentence 
for F and the abbreviation for occurs-between, it is easy to prove that: 

(Vs').SO _< s' D {[(Vs)(SO < s < s' D F(5,  s))] -- 
(7.4) 

F(5, So) A ~(3a)oecurs-between(a, So, s') A ~'F (5, a)}. 

Suppose, for the sake of the example, that  the successor state axiom for emp is: 

Poss(a, s) D emp(p, d, do(a, s)) -= 

a = hire(p, d) V emp(p, d, s) A a ~ fire(p) A a ~ quit(p). 

Using this successor state axiom, it is easy to show that  the following follows from 
(7.4): 

(Vs').SO < s' D {[(Vs)(S0 < s < s' D emp(p, d, s))] = 

emp(p, d, So) A -,occurs-between(fire(p), So, s') 

A -~occurs-between(quit(p), So, s') }. 

Using this, together with the assumption that  the transaction sequence T is legal, 
we get that  the original query is equivalent to: 

emp(Sue, 13, So) A 

~occur s-between( f ire( Sue), So, do(T, So)) A 

-~occurs-between(quit( Sue), So, do(T, So)). 

This form of the original query reduces query evaluation to evaluation in the initial 
database state, together with simple list processing on the database log T of those 
transactions leading to the current database state. We can verify that  Sue has 
always been employed in Department 13 in the following way: 

1. Verify that  she was initially employed in Department 13, and 
2. Show that  neither fire(Sue) nor quit(Sue) are member of list T 3  ° 

l e T h e  correc tness  of  th is  s imple -minded  list process ing  procedure  relies on some  a s sumpt ions ,  
notably,  su i tab le  un ique  n a m e s  axioms.  
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Example. We now consider evaluating the first query (7.1) in the same list pro- 
cessing spirit. First, we introduce a new abbreviation last(a, s) meaning that  a is 
the last transaction of the sequence s: 

last(s, a) a__ (3s')s = do(a, s'). 

For example, 

last(do([drop(Mary, C100), register(John, C100)], So), register(John, e l00 ) )  

is true, while 

last(do([drop(Mary, C100), drop(John, Cl00)], So), register(John, e l 0 0 ) )  

is false, assuming unique names axioms for transactions. 

Next, using (7.3) and the induction principle (IPso<s), we can derive the follow- 
ing closed-form solution for the fluent F: 

s0 < s ~ {F(Z,  s) - 

F(Z, So) A -~(3a, s')[do(a, s') ~ s A ~/F(Z, a, s')] V 

(3a', s')[do(a', s') <_ s A ~/+(Z, a', s') A 

~(3a", s")[do(a', s') < do(a", s") <_ s A "rE(i, a", s")]]). 

Suppose that  ~/F (Z, a, s) and -7+(Z, a, s) are both independent of s, i.e., nowhere do 
they mention a state variable s. To indicate this, we write them as ~F (Z, a) and 
~+(Z, a), respectively. Then, using the above closed-form solution for F and the 
abbreviations for last and occurs-between, it is easy to prove that: 

so < s ~ {F(Z,  s) - -  

F(Z, So) A ~(3a)[occurs-between(a, So, s) A 7F (~, a)] V 

(3a', s')[ last(s' ,  a') ^ s' < s A ~r+(z, a ') A (7.s) 

-~(3a") [occurs-between(a", s', s) A ~fF (Z, a")]] }. 

Suppose the successor state axiom for enrolled is: o 

P oss( a, s) D {enrolled(st, c, do(a, s ) ) - 

a = register(st, c) Y enrolled(st, e, s) A a ~ drop(st, c)}. 

Using this successor-state axiom, it is easy to show that the following closed-form 
solution for enrolled follows from (7.5): 

So ~_ s D [enroled(st, c, s)) -- 

{enrolled(st, c, So) A -~occur s-between( drop(st, c), So, s) V 

(3s').s' < s A last(s', register(st, c)) A (7.6) 

-~occur s-between( drop( st, c) , s ', s)}]. 
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Then, on the assumption that  the transaction sequence T is legal, it is simple 
to prove that  the query (7.1) is equivalent to: 

{ enrolled(John, ClOO, So) A } 
enrolled(John, MIO0, So) 

V 

(3s).S0 < s <_ do(T, So) A 
~occurs-between(drop(John, C100), So, s) A 

last(s, register(John, M100)) 
V 

enrolled(John, MlOO, So) A } 
(3s).So < s < do(T, So) A 

-~occurs-between(drop(John, MIO0), So, s) A 

last(s, register(John, C100)) 
V 

last(s', register(John, MIO0)) A 

last(s, register(John, C100)) A 

-,occurs-between(drop(John, MIO0), s', s) 
V 

(3S, s').So < s' < s <<_ do(T, So) A 
last(s', register(John, C100)) A 

last(s, register(John, M100)) A 

-,occurs-between(drop(John, C100), s', s) 

Despite its apparent complexity, this sentence also has a simple list processing 
reading; we can verify that  John is simultaneously enrolled in C100 and M100 in 
some previous database state provided one of the following conditions holds: 

1. John was initially enrolled in both C100 and M100. 
2. John was initially enrolled in C100. Moreover, T has a sublist (loosely denoted 

by s) whose last element is register(John, M100) and that  does not contain 
drop(John, M100). 

3. John was initially enrolled in M100. Moreover, T has a sublist s whose last el- 
ement is register(John, C100) and that  does not contain drop(John, M100). 

4. T has a sublist s, which in turn has a sublist s', s' ends with register(John, 
M100), s ends with register(John, C100), and drop(John, M100) is not a 
member of the list difference of s and s t. 

5. T has a sublist s, which in turn has a sublist s', s I ends with register(John, 
C100), s ends with register( John, MlO0), and drop(John, ClO0) is not a 
member of the list difference of s and s'. 

Historical queries need not reference only the past; meaningful queries can be 
posed about the future, for example, given the current database state (which we 
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shall take to be So) is it possible for John to ever graduate? 

(3s).So <_ s A graduate(John, s). 

Answering queries of this form is precisely the problem of plan synthesis in AI 
(Green [15]). Moreover, from a constructive proof of such a query, one can ob- 
tain a sequence of transactions leading to a state in which the query is true. This 
means that  in the event that  the query's answer is "yes," one can also provide 
a sequence of steps that ,  if executed, is guaranteed to lead to the desired state. 
Thus, for the example at hand, one would be able to compute answers of the 
form "Yes, it is possible for John to graduate, provided he registers for C400 and 
obtains a passing grade for it." For the class of databases of this paper, Re- 
iter [43] shows how regression provides a sound and complete evaluator for such 
queries. 

7.2. Complexity of Query Evaluation 

The results of the previous section on transaction logs and historical queries provide 
a basis for a complexity analysis of query evaluation. As an indication of how such 
an analysis might proceed, consider the problem of evaluating a query in a database 
state resulting from a given legal sequence T of transactions, as in Section 5.2. For 
simplicity, suppose the query is ground and atomic, say, pursuing Example 2 of 
the previous section, enrolled(John, C100, do(T So)). It is easy to see that  the 
following is a consequence of (7.6) and the assumption that  T is legal: 

enrolled(st, c, do(T, So)) = 

[enrolled(st, c, So) A ~occurs-between( drop( st, c), So, do(T, So)) V 

(3s').s' < do(T, So) A last(s', register(st, c)) A 

-~occur s-between( drop( st, c ) , s', do(T, So))]. 

Therefore, the query enrolled(John, C100, do(T, So)) is logically equivalent to: 

enrolled(John, C100, So) A ~occurs-between(drop( John, C100), So, do(T, So)) V 

( ~s').s' < do(T, So) A last( s', register(John, C100)) A 

-~occur s-between ( drop( John, C100), s ', do(T, So)). 

As before, this has a simple list processing reading: John is enrolled in C100 iff 

1. John was initially enrolled in C100 and drop(John, C100) is not a member of 
the transaction log T,  or 

2. register(John, C100) is a member of the log T and drop(John, C100) does not 
occur later than it in the log T. 

Clearly, the complexity of this procedure is linear in the length of the log T,  plus 
whatever the complexity is of query evaluation in the initial state. Moreover, there 
is nothing very special about this example, which is to say that  under fairly general 
conditions: 11 

11Specifically, these general conditions are tha t  the successor s tate  axiom be what  Lin and 

Reiter [28] call context  free. 
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For queries that are ground literals, the complexity of query evaluation 
using a transaction log adds complexity linear in the length of the log to 
the complexity of query evaluation in the initial database. 

When the initial database is complete, as would be the case when it is relational, 
a ground query may be evaluated by first computing its atomic subqueries, as 
indicated above, then combining those answers in the obvious way according to 
the sentential structure of the original query. This provides a tolerable algorithmic 
complexity for query evaluation. When :DSo is incomplete, then we do not have 
this query decompositional structure, and it appears that  we must resort to the full 
generality of regression, as in Section 5.2. As it happens in this case, a complexity 
analysis in the length of the log is still possible; moreover, the complexity turns out 
to be tolerable for successor-state axioms having a suitable syntactic form. Since 
these considerations take us too far from the main thrust  of this paper, we do 
not pursue these ideas any further here, except to observe that  a rich complexity 
theory for transaction processing appears to be possible within the framework of 
the situation calculus. 

7.3. Actualizing Transactions 

Recall that  within our approach to specifying transactions, all updates are virtual; 
the database is never physically changed. Instead, the axiomatization characterizes 
all possible database futures under all possible transaction sequences. Determining 
whether a given formula Q(s) is true in that  database state resulting from the trans- 
action log T reduces to the question of whether the database entails Q(do(T, So)) 
(Section 5.2). 

Transaction-intensive databases can lead to extremely long transaction logs, so 
that  regression-based query evaluation (Section 5), or the improved methods of Sec- 
tion 7.1, can become computationally unfeasible, even when the database successor- 
state axioms support linear complexity (in the length of the log) for atomic query 
evaluation. In such cases, it may be profitable to view a transaction as a map- 
ping from one static database to another, in the style of Abiteboul [1]. From 
this perspective, a database transaction can be implemented as a physical modi- 
fication of the current database to yield the updated database that  actualizes the 
transaction. In the case of relational databases, such transactions are normally 
actualized by suitable insertions/deletions of tuples into/from the relational tables 
of the database. Generally speaking, such static databases suppress all references 
to the state argument of their corresponding situation calculus specification; they 
are meant to represent those sentences that  would be true in that  situation calculus 
state corresponding to the suppressed-state argument. 

This idea that  transactions are mappings from static databases to static data- 
bases is intuitively very appealing; indeed, it informs many approaches to database 
updates in the literature (e.g., Abiteboul [1]; Bonner and Kifer [6]; Fagin, Ullman, 
and Vardi [10]; Ginsberg and Smith [12]; Guessoum and Lloyd [16, 17]; Kakas 
and Mancarella [19]). Surprisingly, this idea is not as simple as it appears on the 
surface. Lin and Reiter [28] show that  even when the initial database is first order 
(i.e., represents a finite set of first-order situation calculus sentences whose only 
state argument is So), the successor database that  actualizes the transaction need 
not be first-order definable. It is, however, always second-order definable. 
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This negative result leads to the natural question: when does a situation calculus 
specification admit a realization in terms of transaction mappings from first-order 
static databases to first-order static databases? Reiter and Lin [27, 28] provide two 
conditions under which this is possible, together with a systematic procedure for 
computing the successor database from the initial one: 

1. When the database is relational. 
2. When the database consists of ground literals (but need not be complete), 

and the successor-state axioms have a certain general syntactic form. 

These considerations naturally lead one to address the problem of updates for 
relational databases with null values of the kind denoting existing but  unknown 
individuals. A first-order axiomatization of this setting was provided by Reiter [39]. 
While we have not worked out the details, it is clear that  the ideas of this paper 
can be combined with those of Reiter [39] to provide a logical specification of the 
correct t reatment  of null values under updates for relational databases. With such 
a specification in hand, it should be possible to characterize transaction mappings 
from static databases to static databases, as discussed above, which are provably 
correct with respect to this specification. 

A final consideration concerns the trade-offs to be expected, in particular database 
application settings, between the approach emphasized in this paper based on trans- 
action logs, and the more conventional t reatment  of transactions in database sys- 
tems that  involves actualizing each transaction as it is received. It is difficult to 
provide a formal comparison between these two approaches; neither is uniformly 
better than the other. Consider a database log of length n. In the case where query 
evaluation has complexity n, one might think that  for large n it would be more effi- 
cient to adopt the transaction actualizing approach. But this requires n calculations 
of the successor databases, and each of these calculations may be nontrivial, or even 
impossible in first-order logic, when the initial database is not relational. Of course, 
these n database actualizations will take place over the lifetime of the database, so 
in many cases, there will be sufficient database idle time over its lifetime to make 
this conventional approach computationally feasible. On the other hand, if the 
database application is transaction intensive, with little need for query evaluation, 
the approach based on transaction logs is more attractive. This is so especially 
when the database is required to process transactions in real time, and there is not 
enough idle time to perform the transaction actualizing computations. This is the 
case for the applications to robotics that  we are pursuing in the Cognitive Robotics 
Project  at the University of Toronto. Some of the theoretical and computational 
foundations for this work are provided by the approach to database logs and query 
evaluation described in this paper. We have found that  an approach based ex- 
clusively on actualizing transactions is not feasible in this setting, part ly because 
of real t ime constraints, partly because in this application, transaction logs may 
shr ink  as well as expand because rollbacks in the log occur whenever the robot 's 
projected behavior would lead to a dead end (or worse), in which case backtracking 
is necessary to the last point in the log in which an alternative behavioral action 
was possible. Accordingly, we have opted for a mixed strategy in which a database 
log is maintained, and the robot 's "mental idle time" (corresponding to the time it 
is performing physical activities) is used for the purpose of actualizing the current 
log. For a description of this application, and the reasons for some of our design 
decisions regarding logs versus actualizing transactions, see Lesp~rance et al. [24]. 
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7.4. Updates in the Logic Programming Context 

Our approach to database updates can be implemented in a straightforward way as a 
logic program, thereby directly complementing the logic programming perspective 
on databases (Minker [36]). For example, the axiomatization of the education 
example of Section 3 has the following representation as clauses. 

7.4.1. SUCCESSOR STATE AXIOM TRANSLATION 

enrolled(st, c, do(register(st, c), s) ) ~ Ross(register(st,  c), s). 

enrolled(st, c, do(a, s) ) ~ a ~ drop(st, c), enrolled(st, c, s), Ross(a, s). 

grade(st, c, g, do(change(st, c, g ), s) ) ~-- Ross(change(st, c, g), s). 

grade(st, e, g, do(a, s) ) ~-- not R(a, st, c), grade(st, e, g, s), Poss(a, s). 

R( change( st, c, g'), st, c).12 

7 . 4 . 2 .  T R A N S A C T I O N  P R E C O N D I T I O N  AXIOM TRANSLATION 

Ross(register(st, c), s) *-- not P(st,  c, s). 

P ( st, c, s) ~-- prerequ(p, c), not Q ( st,p, s). 

Q(st,p, s) ,-- grade(st,p, g, s), g > 50.13 

Ross(change(st, c, g), s) ~- grade(st, c, g', s), g ~ g'. 

Ross(drop(st, c), s) enrolled(st, e, s). 

With a suitable clausal form for/)so, it would then be possible to evaluate queries 
against updated databases, for example, 

~-- enrolled(John, C200, do(register(Mary, el00), do(drop(John, C'100), So))). 

Presumably, all of this can be made to work under suitable conditions. The 
remaining problem is to characterize what these conditions are, and to prove cor- 
rectness of such an implementation with respect to the logical specification of this 
paper. In this connection, notice that the equivalences in the successor-state and 
transaction-precondition axioms are reminiscent of Clark's [9] completion semantics 
for logic programs, and our unique names axioms for states and transactions provide 
part of the equality theory required for Clark's semantics (Lloyd [31], pp. 79, 109). 

7.5. Views 

In our setting, a view is a fluent V(£, s) defined in terms of so-called base predicates: 

(V~, s).V(~, s) = 13(~., s), (7.7) 

12We have here  invoked some  o f  the  p rog ram t r ans fo rma t ion  rules of  (Lloyd [31], p. 113) to 
conver t  the  nonclausa l  formula  

[(Vg')a ~ change(st, c, g')] A grade(st, c, g, s) A Ross(a, s) D grade(st, e, g, do(a, s) ) 

to a Prolog executab le  form. R is a new predica te  symbol .  
l aWe have here  invoked some  of t he  p rog ram t r ans fo rma t ion  rules of  (Lloyd [31], p. 113) to 

conver t  the  nonclausa l  formula  

{ (Vp).prerequ(p, c) D (3g).grade( st, c, g, s) A g > 50} D Ross(register(st, e), s) 

to a Prolog executab le  form. P and  Q are new predica te  symbols .  
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where B is a simple formula with free variables among ~ and s, and that  mentions 
only base predicates. 14 Unfortunately, sentences like (7.7) pose a problem for us 
because they are precluded by their syntax from the databases considered in this 
paper. However, we can accommodate nonrecursive views by representing them as 
follows: 

(v~).v(~, s0) = ~ ( £  So), (7.8) 

(Va, s).Poss(a, s) D (VZ).V(2, do(a, s)) - Ti[B(~., do(a, 8))]. 15 (7.9) 

Sentence (7.8) is a perfectly good candidate for inclusion in / )So,  while (7.9) has 
the syntactic form of a successor-state axiom and hence may be included in/ )ss .  

This representation of views requires some formal justification, which the follow- 
ing theorem provides: 

Theorem 7.1. Suppose V(~, s) is a fluent of E, and that B(£, s) E /: is a simple 
formula that does not mention V and whose free variables are among 3, s. Sup- 
pose further that/)ss contains the successor-state axiom (7.9) for V, and that 
~)So contains the initial-state axiom (7.8). Then, 

/) u {(Zpso_(s)} ~ (Vs).S0 < s ~ (v£).v(£, s) -_- B(£, s). 

PROOF. We use result 4 of Corollary 6.1 with G(s) as (VZ).V(Z, s) = B(Z, s). This 
requires proving the following two antecedent conditions: 

1. G(So), which is simply the axiom (7.8). 
2. The second condition is the formula 

(Va, s).Poss(a, s) A So _< s A {(V~?).V(3?, s) _-- B(Z, s)} D 

7"¢[(VZ).V(Z, do(a, s)) - B(Z, do(a, s))]. 

By the properties of the regression operator 7~, this is the same as 

(Va, s).Poss(a, s) A S0 <_ s A {(VZ).V(Z, s) --- B(Z, s)} D 

(VZ).Ti[V(Z, do(a, s))] -= Ti[B(.~., do(a, s))]. 

Using the successor-state axiom (7.9) for V, this becomes 

(Va, s).Poss(a, s) A So _< s A {(V~).V(~, s) - B(~, s)} D 

(VZ).n[B(Z, do(a, s))] =- n[B(Z, do(a, s))], 

which is identically true. [] 

Theorem 7.1 informs us that  from the initial-state and successor-state axioms 
(7.8) and (7.9) we can inductively derive the view definition 

(Vs).So <_ ~ n ( w ) . v ( ~ ,  s) = B(~, s). 

14We do not consider recursive views. Views may also be defined in terms of other views 
already defined, but everything eventually "bottoms out" in base predicates, so we only consider 
this case. 



82 R. REITER 

This is not quite the same as the view definition (7.7), with which we began this 
discussion, but it is close enough. It guarantees that  in any database state reachable 
from the initial state So, the view definition (7.7) will be true. We take this as 
sufficient justification for representing views within our framework by the axioms 
(7.8) and (7.9). 

7. 6. State Constraints and the Ramification and Qualification Problems 

Recall that  our definition of a database (Section 5.1) does not admit state-dependent 
axioms, except those of T)So referring only to the initial state So. For example, we 
are prevented from including in a database a statement requiring that  any student 
enrolled in C200 must also be enrolled in C100. 

(Vs, st).So <_ s A enrolled(st, C200, s) D enrolled(st, C100, s). (7.10) 

In a sense, such a state-dependent constraint should be redundant, since the 
successor-state axioms, because they are equivalences, uniquely determine all fu- 
ture evolutions of the database given the initial database state So. The information 
conveyed in axioms like (7.10) must already be embodied in 7)So, together with the 
successor-state and transaction-precondition axioms. We have already seen hints 
of this observation. In Section 6 we showed how the functional dependency 

(Vs).So _< s D {(Vst, c, g, g').grade(st, c, g, s) A grade(st, c, g', s) D g = g'} 

is an inductive entailment of the example education database. Similarly, in Section 
6, we argued that  dynamic integrity constraints should be viewed as inductive 
entailments of the database, and we gave several examples of such derivations. 
Finally, Theorem 7.1 shows that  the view definition 

(Vs).S0 < s D (V~).V(~, s) = B(~, s). 

is an inductive entailment of the database containing the initial-state axiom (7.8) 
and the successor-state axiom (7.9). 

These considerations suggest that  a state constraint can be broadly conceived as 
any sentence of the form 

( V S l , . . . ,  8n).Si ~_ Sj A SO ~_ Sk /k ' . .  D W ( S l , .  • • , Sn), (7.11) 

and that  a database is said to satisfy this constraint if[ the database inductively 
entails i t3 5 This perspective on state constraints-- that  they are inductive entail- 
ments of the database provides a unifying view of the classical notions of static 
and dynamic integrity constraints. In our setting, a static integrity constraint is 
simply a sentence of the form (7.11) with n = 1, i.e., a sentence true in all states s 
accessible from So, while a dynamic constraint relates two or more accessible states. 
Aside from this syntactic difference, they have the same logical status in our theory, 
namely, as sentences that  must be entailed by the database. 

The fact that  state constraints like (7.10) must be inductive entailments of a 
database does not of itself dispense with the problem of how to deal with such 
constraints in defining the database. For in order that  a state constraint be an 
inductive entailment, the successor-state axioms must be so chosen as to guarantee 

15This definition should be contrasted with tha t  of Reiter [38]. 
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this entailment. For example, the original successor-state axiom for enroll (Section 
3) was: 

Ross(a,  s) D {enrolled(st ,  c, do(a, s)) - 
a = regis ter(s t ,  c) V enrolled(st,  c, s) A a # drop(st, c)}. (7.12) 

As one would expect, this does not inductively entail (7.10). One way to accom- 
modate the state constraint (7.10), is to change this successor-state axiom to: 

Ross(a,  s) D {enrolled(st ,  c, do(s, s) ) - 
a = regis ter(s t ,  c) V e = C100 A a = regis ter(s t ,  C200)V (7.13) 
enrolled(st,  c, s) A a ¢ drop(st, c) A [c = C200 D a ¢ drop(st, el00)]} .  

It  is now simple to prove that ,  provided :DSo contains the unique names axiom 
C100 # C200 and the initial instance of (7.10), 

enrolled(st,  C200, So) D enrolled(st,  C100, So), (7.14) 

then (7.10) is an inductive entailment of the database. 
This, however, is not the only way to accommodate the state constraint (7.10). 

Another is to view (7.10) as implicitly imposing a further constraint on the precon- 
ditions of the transaction register (st, C200), namely, that  st be enrolled in C100. 
Recall tha t  the original transaction precondition axiom for register (with reference 
to the example database of Section 3) was: 

Ross(regis ter (s t ,  c), s) - { (Vp).prerequ(p, c) D (3g).grade( st, p, g, s ) A  g >_ 50}. 

Now, to accommodate the state constraint (7.10), we can change this axiom to: 

Ross(regis ter(s t ,  c), s) - 

{(Vp)]prerequ(p, c) D (3g).grade(st,p,  g, s) A g ~_ 50] A (7.15) 

[c = C200 D enrolled(st,  C100, s)]}. 

As before, it is simple to prove that ,  provided DSo contains the unique names axiom 
C100 ~ C200 and the initial instance (7.14) of (7.10), then the state constraint 
(7.10) is an inductive entailment of the database. 

The example illustrates the subtleties involved in getting the successor-state 
and/or  transaction-precondition axioms to reflect the intent of a state constraint. 
These difficulties are a manifestation of the so-called ramification (Finger [11]) and 
qualification (McCarthy [34]) problems in artificial intelligence planning domains. 
Transactions might have ramifications, or indirect effects. For the example at hand, 
the transaction of registering a student in C200 can be viewed as having the di- 
rect effect of causing the student to be enrolled in C200, and the indirect effect of 
causing her to be enrolled in C100 (if she is not already enrolled in C100). The 
modification (7.13) of (7.12) was designed to capture this reading of the state con- 
straint as an indirect effect. The alternative perspect ive-- that  the state constraint 
provides an implicit constraint on transaction-precondition axioms--characterizes 
the qualification problem. For the current example, this is reflected in our choice 
of the transaction-precondition axiom (7.15). 

In our setting, the ramification problem is this: Given a static state constraint 
like (7.10), how can the indirect effects implicit in the state constraint be embod- 
ied in the successor-state axioms so as to guarantee that  the constraint will be an 
inductive entailment of the database? The qualification problem is this: Given a 
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static state constraint like (7.10), how can its implicit constraints on transaction 
preconditions be embodied in the transaction-precondition axioms so as to guaran- 
tee that  the constraint will be an inductive entailment of the database? A variety 
of circumscriptive proposals for addressing these problems (in conjunction with the 
frame problem) have been proposed in the artificial intelligence literature, notably 
by Baker [4], Baker and Ginsberg [5], Ginsberg and Smith [12], Lifschitz [26], and 
Lin and Shoham [30]. Our formulation of the problem in terms of inductive en- 
tailments of the database appears to be new. This perspective on constraints is 
pursued by Lin and Reiter in [29], where techniques are presented for "compil- 
ing" the information implicit in the state constraints into the successor-state and 
transaction-precondition axioms. 

8. C O M P A R I S O N  W I T H  O T H E R  A P P R O A C H E S  TO A T H E O R Y  
O F  U P D A T E S  

Relying as it does on the situation calculus, our approach to specifying update 
transactions differs substantially from other proposals in the literature. We here 
present a brief comparison with representatives of what we take to be the principal 
competing logical perspectives on formalizing database updates. We do not consider 
procedurally oriented approaches (such as Abiteboul [1]). 

8.1. Comparison 

8 . 1 . 1 .  LOGIC STATUS OF DATABASE STATES. In the situation calculus, states 
are first-class citizens over which one can quantify. Quantification over states in 
the situation calculus amounts to quantification over sequences of transactions. For 
example, one can assert that,  or ask whether, there exists a transaction sequence 
leading to a database state in which such-and-such property is true. This makes 
historical queries possible (Section 7.1), and provides for a theory of integrity con- 
straints (Section 6.1). This is impossible or extremely awkward to do within the 
logic for those approaches to updates formalized in modal logics (e.g., dynamic 
logic, Manchanda and Warren [32], temporal logic, Casanova and Furtado [8]), or 
in "path-based" logics (e.g., Bonner and Kifer), for which there is only an implicit 
notion of state. 

8 . 1 . 2 .  LO GIC AL  STATUS OF T R ANS AC T IONS.  .A feature of the situation calculus 
related to that  of states as first-class citizens is that  transactions and transaction 
sequences are first-order terms, in contrast to the approaches of Manchanda and 
Warren and of Bonner and Kifer, in which transactions are predicates. This pre- 
cludes talking about transactions within the logic (e.g., that  all transactions of a 
certain kind must have such-and-such properties). It also precludes the ability to 
analyze, within the logic, the features of a given transaction sequence, for exam- 
ple, that  a given transaction sequence mentions a register transaction. We made 
extensive use of this property of the situation calculus in our analysis of historical 
queries (Section 7.1). 

8.1.3. T R A N S A C T I O N - C E N T E R E D  VERSUS U P D A T E - C E N T E R E D  THEORIES  OF 

UPDATES.  Like the work of Abiteboul and Vianu [2], our approach to a the- 
ory of updates is transaction-centered meaning that  an update is possible only 
when the database provides for a suitable prespecified transaction corresponding 
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to the desired update. For our example education database, it is possible to alter 
a student 's grade only because there is a prespecified grade-changing transaction 
change(st, c, g) in the database together with an axiomatization of the intended ef- 
fects of this transaction; without such a prespecified transaction, it would be impos- 
sible to change a grade in this database. Thus, for transaction-centered databases, 
updates with arbitrary sentences are not permitted. A wide variety of update pro- 
posals in the literature are not transaction-centered; they provide for updates of a 
database with arbitrary sentences (e.g., the model theoretic approaches of Grahne 
[13]; Katsuno and Mendelzon [20]; Grahne, Mendelzon, and Revesz [14] or Winslett  
[48]; the syntactic approaches of Fagin, Ullman, and Vardi [10] or Ginsberg and 
Smith [12], and the abductive approaches of Guessoum and Lloyd [16, 17] or Kakas 
and Mancarella [19]). In this respect, such proposals are more general than ours, 
but  this generality comes at a price. With the exception of [14], the model theoretic 
approaches are based on propositional databases. Grahne, Mendelzon, and Reverz 
[14] provide an account for first-order models based on the Winslett  ordering. Their 
account assumes that  the set of all models of a first-order theory is in hand. In 
this case, they provide a computationally tractable (in the sum of the sizes of these 
models) update algorithm, but the assumption that  these models are in hand, or 
that  their sizes are reasonable, is limiting. Similarly, the syntactic approaches are 
first order, but provide no systematic update operator. The abductive proposals 
are first order, but are limited to Prolog deductive databases. 

There is also a very important  conceptual issue related to the distinction between 
transaction-centered theories of updates, and those that  permit updates with ar- 
bi trary sentences. Following Keller and Winslett [21], Katsuno and Mendelzon 
observe [20] that  there is a difference between updating a database and revising it. 
To formally capture this distinction, they propose a set of update postulates that  dif- 
fer from, but are in the same style as, the AGM postulates for revision (Alchourr6n, 
G~rdenfors, and Makinson [3]). For Keller-Winslett and Katsuno-Mendelzon up- 
dates differ from revisions in that  the former result from event occurrences that  
change the state of the world, while the latter result from changes in our theory 
of what a static world is really like. Notice that,  conceptually, this perspective 
on the nature of updates is transaction-centered; updates occur only in response 
to events (read "transactions"). On this analysis, the above proposals are really 
transaction-centered (or, at least, they should be viewed this way), but  so far as 
the database is concerned, these transactions are implicit; they exist in the mind of 
the user, not of the database. Whenever a user requests an update with a sentence, 
she has in mind some event of which that  sentence is an effect; at least this must 
be so whenever she is requesting an update, as opposed to a revision. 

Now it can be argued that  a user may not know the event underlying a proposed 
update. Consider a user who, observing that  the street is now wet, wishes to record 
this fact in the database. She does not know what event in the world had street-is- 
wet as its effect. Since it is transaction-centered, our approach cannot handle this 
setting at all (but see below for a proposed approach). But  neither, we shall ar- 
gue, can the Katsuno-Mendelzon theory. Certainly, Katsuno-Mendelzon can, and 
will, accept this update. One consequence of the resulting updated database will be 
that  if grass-is-dry were true of the previous database, it will be true of the updated 
database. But this is clearly undesirable since the underlying event for street-is-wet 
might have been rain, one of whose effects would be -~grass-is-dry. (Notice that  
an equally plausible underlying event might have been sprinkler-truck, which would 
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have no effect on the t ru th  value of grass-is-dry.) So the Katsuno-Mendelzon theory 
cannot guarantee an intuitively correct account of updates with a sentence whose 
underlying event is unknown, the reason being that  all and only the effects of this 
event will also be unknown, not only to the database (which knows nothing about  
events and their effects), but also to the user whose responsibility it is to provide 
a suitable update sentence consisting of all and only those effects of the event in 
question. In those cases where all possible underlying events and their effects are 
known, it may be that  the Katsuno-Mendelzon theory can be correctly applied, 
but with some modification whenever there might be several such events tha t  could 
explain the observed effect. For example, both rain and sprinkler-truck explain the 
observation street-is-wet, but neither grass-is-dry nor ~grass-is-dry should be conse- 
quences of the updated (with street-is-wet) database whenever the original database 
entails grass-is-dry. One way to achieve this within the Katsuno-Mendelzon frame- 
work would be to create two databases, one resulting from updating the original 
database with all the effects of rain (including, presumably, both street-is-wet and 
-~grass-is-dry), and one resulting from updating the original with all the effects of 
sprinkler-truck (including street-is-wet, but not -~grass-is-dry). So the picture that  
emerges is roughly the following: Assume we have in hand a description of all possi- 
ble events together with their effects. Given an observation that  we wish to record 
in a database, determine all events whose effects include the observation. For each 
such event, perform the Katsuno-Mendelzon update of the database with all the 
effects of tlae event. The resulting set of databases represents the update with the 
original observation. 

In general, our conclusion is that  before a database can correctly record an up- 
date, the database or the user must know what its underlying event is. This is 
true for all the above update mechanisms, as well as for the transaction-centered 
approach of this paper. The question remains: Given only the results of some 
world observation, where the event underlying this observation is unknown, how 
is an agent (human or database) to perform the update? The answer seems to 
be: By inferring what the underlying event(s) might be. One possible mechanism 
for this is abduction (Poole [37]), which has been applied in a wide variety of set- 
tings (diagnosis, natural language, planning) for inferring events tha t  might explain 
an observation. 16 Combining abduction with a conventional approach to updates 
would lead to a very rich theory of database evolution, but such considerations take 
us well beyond the focus of this paper. 

We summarize what we take to be the major limitation with all the above ap- 
proaches. Since updates are responses to events occurring in the world, it becomes 
the responsibility of the user, and not the database, to know all the effects on the 
world of an event, and to request updates that include all and only these effects. In- 
advertantly omitting one such effect, or proposing an inappropriate one, will leave 
the database in an intuitively incorrect state with respect to the world being mod- 
eled, even though, insofar as the" database update mechanism is concerned, every- 
thing is fine. The source of the problem is clear: the database has no knowledge of 
events and their effects. If it did, then a suitable theory of updates would simply pro- 
vide the user with a way to key in the event she wishes to record, and the database 
would do the rest. This, then, is the major distinction between our approach and 

16This use of abduction for inferring event occurrences is quite different than the abductive 
approaches to updates advocated by Guessoum and Lloyd [16, 17] and Kakas and Mancaxella [19]. 
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these others. We require that the database contain knowledge of events and their 
effects, whereas these other approaches place the responsibility for knowing, and 
correctly using this information on the individual issuing the update requests. 

8.1.4. VIRTUAL VERSUS ACTUALIZED UPDATES. Many approaches to a theory 
of updates (e.g., the model theoretic, syntactic, and abductive proposals mentioned 
above) have in common that an update is a mapping which, for a given database (a 
logical theory) and sentence, determines another database (another logical theory) 
that is taken to be the result of the update with the sentence (Section 7.3). This 
mapping is usually accomplished by the addition/deletion of sentences to/from the 
current database, yielding a database that actualizes the update. In contrast, up- 
dates for us are virtual; the database itself never changes. We accomplish this by 
the choice of a suitable ontology in which states are first-class citizens and transac- 
tions are first-order terms, and by an axiomatization that (implicitly) characterizes 
all possible future evolutions of the database. 

From the perspective of updates as mappings from databases to databases, the 
very concept of an update is metatheoretic in character, even when the databases 
themselves are theories in some logic. In other words, the effects of updates are not 
described within the database axiomatization, as they are in our approach, but are 
defined by mechanisms external to the database itself. Any such theory of updates 
will lack certain desirable properties, for example, the ability to reason, within 
the database itself, about transaction sequences and integrity constraints (as in 
Section 6.1), or an object-level account of query evaluation for a database that has 
undergone a sequence of update transactions (as in Section 5). Such capabilities 
can only be realized metatheoretically in any approach that views updates in terms 
of addition/deletion of sentences to/from some axiom set. 

As loin and Relier [28] have shown, it is not always possible to actualize updates 
within first-order logic, which is to say that there are certain limitations to such as 
an approach to specifying updates. 

8.1.5. PRIMITIVE VERSUS COMPLEX TRANSACTIONS. The ability to define com- 
plex transactions in terms of primitive ones is extremely important  for a theory of 
updates. As currently developed, our proposal does not provide a mechanism for 
defining complex transactions. In contrast, such proposals do exist, notably by 
Manchanda and Warren [32], based on dynamic logic in the logic programming 
context, and by Bonner and Kifer [6], based on a new logic specifically tailored to 
transactions. The latter theory is especially interesting for its rich repertoire of 
operators for defining new transactions in terms of old. These include sequence, 
nondeterministic choice, conditionals, and iteration. The Bonner-Kifer paper fo- 
cuses on the definition of complex transactions in terms of elementary updates. 
On the assumption that  these elementary updates successfully address the frame 
problem, any complex update defined in terms of these elementary ones will inherit 
a correct solution to the frame problem. Unfortunately, Bonner and Kifer do not 
address the frame problem for these elementary updates; this task is left to the per- 
son specifying the database. In this connection, our current proposal can be seen 
as complementary to that  of Bonner and Kifer in that  our focus is on addressing 
the frame problem only for elementary updates, while deferring consideration of 
this problem for complex transactions. For an extension of the situation calculus to 
provide for complex transactions along the lines of Bonner and Kifer, see Levesque, 
Lin, and Reiter [25]. 
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8.1.6. CLASSICAL VERSUS OTHER LOGICS. Unlike proposals based on modal 
logics, e.g., dynamic logic (Manchanda and Warren [32]) or temporal logic (Casanova 
and Furtado [8]), or specially tailored logics (e.g., Bonner and Safer [6]), ours is 
based on first-order logic (with a second-order induction principle). This has the 
advantage of an established, well-understood semantics and proof theory, and it 
meshes well with the standard perspective of a (static) database as a special kind 
of first-order theory. Moreover, it provides a sound and complete query evalu- 
ation mechanism based on goal regression, and an account of database integrity 
constraints in terms of inductive entailments of the database. 

8.1.7. PROVING IaROPERTIES OF DATABASE STATES. In Section 6 we intro- 
duced an induction principle suitable for proving properties true in all database 
states. This feature is particularly important for the purposes of verifying integrity 
constraints that,  from our perspective, are inductive entailments of the database. 
None of the other logical approaches to a theory of updates with which we are 
familiar provides for inductive proofs of database states. Indeed, this would ap- 
pear to be impossible in those approaches that  treat  transactions as predicates. 
It is, of course, meaningless for those update theories that  are not transaction- 
centered. 

8 . 1 . 8 .  THE EVENT CALCULUS. The one proposal in the literature closest in 
spirit to ours is Kowalski's theory of updates based on the event calculus [22]. 
His axiomatization is first order (with a Prolog semantics), transactions are first- 
order terms (actually, constants), states (in his case, time) are first-class citizens, 
updates are virtual, the approach is transaction-centered, and it addresses the frame 
problem (using Prolog's negation-as-failure mechanism). Despite these similarities, 
it is difficult to compare the two approaches, primarily because they appeal to 
quite different logical foundations. Recently, nevertheless, Kowalski and Sadri [23] 
compare the situation calculus axioms of this paper with an axiomatization of the 
event calculus and reveal some interesting relationships between our successor-state 
axioms and their analog within the event calculus. 

9. C O N C L U S I O N S  

The situation calculus is an extremely rich language for the purposes of specifying 
databases and their evolution under update transactions. In this paper we have 
presented one way of using the situation calculus for these objectives. Ours is a 
transaction-centered approach, in which all transactions are treated as primitive. 
States are first-class citizens, transactions are first-order terms, and the theory pro- 
vides an object level account of the effects of updates. We observed that  the frame 
problem is a fundamental obstacle to an adequate formalization of database evolu- 
tion, and we showed how to axiomatize the effects of elementary transactions in such 
a way as to overcome this problem. For a certain class of database axiomatizations, 
incorporating our proposed solution to the frame problem, we gave a sound and 
complete query evaluation mechanism based on goal regression. We also provided 
an induction principle, suitable for proving properties of database states under ar- 
bitrary sequences of transactions, and for verifying integrity constraints. Finally, 
we discussed possible extensions of the approach of this paper, including trans- 
action logs and historical queries, the complexity of query evaluation, actualized 
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t r ansac t ions ,  logic p r o g r a m m i n g  approaches  to  upda tes ,  d a t a b a s e  views, and  s t a t e  
cons t ra in ts .  

I had a lot of help on this one. Many thanks to Leo Bertossi, Tony Bonner, Alex Borgida, Craig 
Boutilier, Charles Elkan, Michael Gelfond, GSsta Grahne, Russ Greiner, Joe Halpern, Michael 
Kifer, Hector Levesque, Vladimir Lifschitz, Fangzhen Lin, Wiktor Maxek, John McCarthy, Alberto 
Mendelzon, John Mylopoulos, Javier Pinto, Len Schubert, Yoav Schoham, and Marianne Winslett. 
The referees' suggestions considerably 'improved an earlier version of this paper. Funding for this 
work was provided by the National Science and Engineering Research Council of Canada, and 
by the Institute for Robotics and Intelligent Systems. I am grateful to the Canadian Institute 
for Advanced Research for granting me a Fellowship providing the release time during which this 
work as done. 

R E F E R E N C E S  

1. Abiteboul,  S., Updates, a new frontier, in: Second International Conference on 
Database Theory, Springer, New York, 1988, pp. 1-18. 

2. Abiteboul, S. and Vianu, V., A transaction-based approach to relational database 
specification, Journal of the ACM 36:759-789 (1989). 

3. Alchourr6n C. E., G~rdenfors, P., and Makinson, D., On the logic of theory change: 
part ial  meet contraction and revision functions, Journal of Symbolic Logic 50:510- 
530 (1985). 

4. Baker, A., A simple solution to the Yale shooting problem, in: R. Brachman, H. J. 
Levesque, and R. Reiter (eds.), Proceedings of the First International Conference on 
Principles of Knowledge Representation and Reasoning (KR'89), Morgan Kaufmann, 
1989, pp. 11-20. 

5. Baker, A. and Ginsberg, M., Temporal projection and explanation, in: Proceedings 
of the Eleventh International Joint Conference on Artificial Intelligence, Detroit, MI, 
1989, pp. 906-911. 

6. Bonner, A. and Kifer, M., Transaction logic programming, Technical Report ,  De- 
par tment  of Computer Science, University of Toronto, 1992. 

7. Borgida, A., Mylopoulos, J., and Schmidt, J., The TaxisDL software description 
language, Technical Report,  Department  of Computer Science, University of Toronto, 
1991. 

8. Casanova, M. A. and Furtado, A. L., A family of temporal  languages for the descrip- 
tion of transit ion constraints, in: H. Gallaire, J. Minker, and J. M. Nicolas (eds.), 
Advances in Database Theory, vol. 2, Plenum Press, New York, 1984, pp. 211-238. 

9. Clark, K. L., Negation as failure, in: H. Gallaire and J. Minker (eds.), Logic and 
Data Bases, Plenum Press, New York, 1978, pp. 292-322. 

10. Fagin, R., Ullman, J. D., and Vardi, M. Y., Updating logical databases,  in: Proceed- 
ings of the ACM Symposium on Principles of Database Systems, Apr. 1983. 

11. Finger, J., Exploiting Constraints in Design Synthesis, Ph.D. dissertation, Stanford 
University, Stanford, CA, 1986. 

12. Ginsberg, M. L. and Smith, D. E., Reasoning about actions I: A possible worlds 
approach, Artificial Intelligence 35:165-195, 1988. 

13. Grahne, G., Updates and counterfactuals, in: J. Allen, R. Fikes, and E. Sandewall 
(eds.), Proceedings of the Second International Conference on Principles of Knowl- 
edge Representation and Reasoning (KR'91), Los Altos, CA, Morgan Kaufmann, 
1991, pp. 269-276. 

14. Grahne, G., Mendelzon, A. O., and Revesz, P., Knowledgebase transformations, in: 
Proceedings of the A CM SIGA CT-SIGMOD-SIGART Symposium on Principles of 
Database Systems, San Diego, CA, June 2-4, 1992, pp. 246-260. 



90 R. REITER 

15. Green, C. C., Theorem proving by resolution as a basis for question-answering sys- 
tems, in: B. Meltzer and D. Michie (eds.) Machine Intelligence 4, American Elsevier, 
New York, 1969, pp. 183-205. 

16. Guessoum, A. and Lloyd, J. W., Updating knowledge bases, New Generation Com- 
puting 8(1):71-89, 1990. 

17. Guessoum, A. and Lloyd J. W., Updating knowledge bases II, Technical Report, 
University of Bristol, 1991, to appear. 

18. Hanks, S. and McDermott, D., Default reasoning, nonmonotonic logics, and the 
frame problem, in: Proceedings of the National Conference on Artificial Intelligence, 
1986, pp. 328-333. 

19. Kakas, A. C. and Mancarella, P., Database updates through abduction, in: Proceed- 
ings VLDB-90, Brisbane, Australian, 1990. 

20. Katsuno, H. and Mendelzon, A. O., On the difference between updating a knowledge 
base and revising it, in: J .  Allen, R. Fikes, and E. Sandewall (eds.), Proceedings of 
the Second International Conference on Principles of Knowledge Representation and 
Reasoning (KR'91) Morgan Kaufmann, Los Altos, CA, 1991, pp. 387-394. 

21. Keller, A. M. and Winslett Wilkins, M., On the use of an extended relational model 
to handle changing incomplete information, Trans. on Software Engineering SE- 
11(7):620-633, July 1985. 

22. Kowalski, R., Database updates in the event calculus, gournal of Logic Programming 
12:121-146, 1992. 

23. Kowalski, R. and Sadri, F., The situation calculus and event calculus compared, 
Technical Report, Department of Computing, Imperial College, London, England, 
1994. 

24. Lesp~rance, Y., Levesque, H., Lin, F., Marcu, D., Reiter, R., and Scherl, R., A 
logical approach to high-level robot programming--A progress report, in: Control 
of the Physical World by Intelligent Systems, Working Notes of the 1994 AAAI  Fall 
Symposium, Nov. 1994, New Orleans, LA. 

25. Levesque, H. L., Lin, F., and Reiter, R., Defining complex actions in the situation 
calculus, Technical Report, Department of Computer Science, University of Toronto, 
1995, in preparation. 

26. Lifschitz, V., Toward a metatheory of action, in: J. Allen, R. Fikes, and E. Sandwall 
(eds.), Proceedings of the Second International Conference on Principles of Knowl- 
edge Representation and Reasoning (KR'gl), Morgan Kaumann, Los Altos, CA, 
1991, pp. 376-386. 

27. Lin, F. and Reiter, R., How to progress a database II: The STRIPS connection, To 
appear in Proc. IJCAI'95, the International Joint Conference in Artificial Intelli- 
gence, Montreal, Aug. 19-25, 1995. 

28. Lin, F. and Reiter, R., How to progress a database (and why) I. Logical foundations, 
in: J. Doyle, E. Sandewall, and P. Torasso (eds.), Proceedings KR'94, Fourth In- 
ternational Conference on Principles of Knowledge Representation and Reasoning, 
1994, pp. 425-436. 

29. Lin, F. and Reiter, R., State constraints revisited, Journal of Logic and Computation, 
Special Issue on Actions and Processes 4:655-678, 1994. 

30. Lin, F. and Shoham, Y., Provably correct theories of action, in: Proceedings of the 
National Conference on Artificial Intelligence, 1991. 

31. Lloyd, J. W., Foundations of Logic Programming, Springer Verlag, second edition, 
1987. 

32. Manchanda, S. and Warren, D. S., A logic-based language for database updates, 
in: J. Minker (ed.), Foundations of Deductive Databases and Logic Programming, 
Morgan Kaufmann, Los Altos, CA, 1988, pp. 363-394. 

33. McCarthy, J., Programs with common sense, in: M. Minsky (ed.), Semantic Infor- 
mation Processing, MIT Press, Cambridge, MA, 1968, pp. 403-418. 



ON SPECIFYING DATABASE UPDATES 91 

34. McCarthy, J., Epistemological problems of artificial intelligence, in: Proceedings of 
the Fifth International Joint Conference on Artificial Intelligence, Cambridge, MA, 
1977, pp. 1038-1044. 

35. McCarthy, J. and Hayes, P., Some philosophical problems from the standpoint of 
artificial intelligence, in: B. Meltzer and D. Michie (eds.), Machine Intelligence 4, 
Edinburgh University Press, Edinburgh, Scotland, 1969, pp. 463-502. 

36. Minker, J. (ed.), Foundations of Deductive Databases and Logic Programming, 
Morgan Kanfmann, Los Altos, CA, 1988. 

37. Poole, D., Explanation and prediction: An architecture for default and abductive 
reasoning, Computational Intelligence, 5:97-110, 1989. 

38. Reiter, R., Towards a logical reconstruction of relational database theory, in: M. L. 
Brodie, J. Mylopoulos, and J. W. Schmidt (eds.), On Conceptual Modelling: Perspec- 
tive from Artificial Intelligence, Databases and Programming Languages, Springer, 
New York, 1984, pp. 191-233. 

39. Reiter, R., A sound and sometimes complete query evaluation algorithm for relational 
databases with null values, Journal of the ACM 33(2):349-370, 1986. 

40. Reiter, R., The frame problem in the situation calculus: A simple solution (some- 
times) and a completeness result for goal regression, in: V. Lifschitz (ed.), Artificial 
Intelligence and Mathematical Theory of Computation: Papers in Honor o/John 
McCarthy, Academic Press, San Diego, CA, 1991, pp. 359-380. 

41. Reiter, R., What should a database know? Journal of Logic Programming 14 
(1-2):127-153, 1992. 

42. Reiter, R., Proving properties of states in the situation calculus, Artificial Intelligence 
64:337-351, 1993. 

43. Reiter, R., A simple solution to the frame problem (sometimes), Technical Report, 
Department of Computer Science, University of Toronto, in preparation. 

44. Reiter, R. Formalizing database evolution in the situation calculus, in: Proceedings 
Fifth Generation Computer Systems, Tokyo, June 1-5, 1992, pp. 600-609. 

45. Reiter, R., The projection problem in the situation calculus: A soundness and com- 
pleteness result, with an application to database updates, in: J. Hendler (ed.), Pro- 
ceedings First International Conference on Artificial Intelligence Planning Systems, 
College Park, MD, June 15-17, 1992, Morgan Kanfmann, Los Altos, CA, pp. 198- 
203. 

46. Reiter, R., On formalizing database updates: Preliminary report, in: Proceedings 
3rd International Conference on Extending Database Technology, Vienna, Austria, 
Mar. 23-27, 1992, pp. 10-20. 

47. Waldinger, R., Achieving several goals simultaneously, in: E. Elcock and D. Michic 
(eds.), Machine Intelligence 8, Ellis Horwood, Edinburgh, Scotland, 1977, pp. 94- 
136. 

48. Winslett, M., Reasoning about action using a possible models approach, in: Pro- 
ceedings of the National Conference on Artificial Intelligence, 1988, pp. 89-93. 


