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This paper surveys the temporal extensions of description logics appearearing in the lit-
erature. The analysis considers a large spectrum of approaches appearearing in the temporal
description logics area: from the loosely coupled approaches – which comprise, for example,
the enhancement of simple description logics with a constraint based mechanism – to the most
principled ones – which consider a combined semantics for the abstract and the temporal do-
mains. It will be shown how these latter approaches have a strict connection with temporal
logics.

Advantages of using temporal description logics are their high expressivity combined with
desirable computational properties – such as decidability, soundness and completeness of de-
duction procedures. In this survey the computational properties of various families of temporal
description logics will be pointed out.
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1. Introduction

Description logics1 are formalisms designed for the logical reconstruction and the
extension of representational tools such as object-oriented data models, semantic data
models (e.g., extended entity/relationship), frame-based ontology languages, and se-
mantic networks, KL-ONE-like languages, type systems, and feature logics. Nowadays,
description logics are also considered the most important unifying formalism for the
many object-centered representation languages used in areas other than knowledge rep-
resentation. Important characteristics of description logics are high expressivity together
with decidability, which guarantee that reasoning algorithms always terminate with the
correct answers.

Temporal extensions of modeling formalisms are relevant to capture the evolving
behavior of dynamic domains, and they have been extensively considered in artificial
intelligence. In the description logic literature, several approaches for representing and
reasoning with time dependent concepts have been proposed. These temporal extensions
differ from each other in different ways. They differ on the ontology of time, whether

1 Description logics have been also called frame-based description languages, term subsumption languages,
terminological logics, taxonomic logics, concept languages or KL-ONE-like languages.
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they adopt an interval-based or a point-based notion of time. They differ on how the
temporal dimension is handled, i.e., whether an explicit notion of time is adopted in
which temporal operators are used to build new formulae, or the temporal information
is only implicit in the language by resorting to a state-change style of representation to
denote sequences of events. In the case of an explicit representation of time, there is a
further distinction – introduced by Finger and Gabbay [23] – between an external and
an internal point of view. In the external method the very same individual can have
different “snapshots” in different moments of time that describe the various states of the
individual at these times. In this latter case, the representation language can be seen in
a modular way where two different logics are combined: while an atemporal part of the
language describes the “static” aspects, the temporal part relates the different snapshots
– describing in such a way the “dynamic” aspects. In the internal method the different
states of an individual are seen as different individual components: an individual is a
collection of distinct temporal “parts” each one holding at a particular moment.

This paper is organized as follows. After introducing the main features of descrip-
tion logics in section 2, and the interval temporal logic HS in section 3, we propose to
group the surveyed papers in four different areas: sections 4 and 5 illustrate what we
called the external method where an interval-based or a point-based temporal logic is
combined with a description logic. Section 6 describes the languages using an internal
representation of time, and section 7 presents the extensions which avoid any explicit
temporal representation – like the state-change based approaches. Section 8 concludes
the paper.

2. Description logics

In this section the formal framework of description logics is briefly presented. The
presentation of the formal apparatus will strictly follow the ALC notation introduced
by Schmidt-Schauss and Smolka [41] and summarized in [14,21]: in this perspective,
description logics are considered as a structured fragment of predicate logic. ALC is the
minimal description logic including full negation and disjunction – i.e., it is proposition-
ally closed. In this section, we will consider the language ALCF [31], extending ALC
with functions. In the rest of the paper several variants of this basic description logic
will be introduced.

The basic types of ALCF are concepts, roles, and features. A concept is a descrip-
tion gathering the common properties among a collection of individuals; from a logical
point of view it is a unary predicate ranging over the domain of individuals. Properties
are represented either by means of roles – which are interpreted as binary relations asso-
ciating to individuals of a given class values for that property – or by means of features
– which are interpreted as functions associating to individuals of a given class a single
value for that property.

According to the syntax rules of figure 1, ALCF concepts (denoted by the letters C
and D) are built out of atomic concepts (denoted by the letter A), atomic roles (denoted
by the letter R), and atomic features (denoted by the letter f ). The syntax rules are
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C,D→ A | (atomic concept)
� | (top)
⊥ | (bottom)
¬C | (complement)
C �D | (conjunction)
C �D | (disjunction)
∀R.C | (universal quantifier)
∃R.C | (existential quantifier)
p : C (selection)
p ↓ q | (agreement)
p ↑ q | (disagreement)
p ↑| (undefinedness)

p, q→ f | (atomic feature)
p ◦ q (path)

Figure 1. Syntax rules for the ALCF description logic.

expressed following the tradition of description logics [8]: they can be read as, e.g., if C
and D are concept expressions then C �D is a concept expression, too.

Let us now consider the formal semantics. We define the meaning of concept ex-
pressions as sets of individuals – as for unary predicates – and the meaning of roles as
sets of pairs of individuals – as for binary predicates. Formally, an interpretation is a pair
I = (
I, ·I) consisting of a set 
I of individuals (the domain of I) and a function ·I
(the interpretation function of I) mapping every concept to a subset of
I , every role to
a subset of
I×
I , and every feature to a partial function from
I to
I , such that the
equations of the left column in figure 2 are satisfied. The semantics of the language can
also be given by stating equivalences among expressions of the language and open first
order logic formulae. An atomic concept A, an atomic role R, and an atomic feature f ,
are mapped respectively to the open formulae A(α), R(α, β), and f (α, β) – with f
a functional relation, also written f (α) = β, and α, β denoting the free variables. The
rightmost column of figure 2 gives the transformational semantics of ALCF expressions
in terms of equivalent FOL well-formed formulae. A concept C, a role R and a path p
correspond to the FOL open formulae FC(α), FR(α, β) and Fp(α, β), respectively. It is
worth noting that, using the standard model-theoretic semantics, the extensional seman-
tics of the left column can be derived from the transformational semantics of the right
column.

Description logics allow to express Knowledge Bases (KB) by means of two kinds
of logical axioms. The intensional axioms express generic knowledge about the con-
cepts and roles in the KB. The extensional axioms constrain the way concept and roles
are instantiated. Intensional knowledge is conveyed through a terminology or a TBox
expressed as finite set of terminological axioms. For a concept name A, and (possibly
complex) concepts C,D, terminological axioms are of the form A

.= C (concept def-
inition), A � C (primitive concept definition), C � D (general inclusion statement).
An interpretation I satisfies C � D if and only if the interpretation of C is included
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�I =
I true

⊥I =∅ false

(¬C)I =
I \ CI ¬FC(α)
(C �D)I =CI ∩DI FC(α) ∧ FD(α)
(C �D)I =CI ∪DI FC(α) ∨ FD(α)
(∃R.C)I = {a ∈ 
I | ∃b.(a, b) ∈ RI ∧ b ∈ CI} ∃x.FR(α, x) ∧ FC(x)
(∀R.C)I = {a ∈ 
I | ∀b.(a, b) ∈ RI → b ∈ CI} ∀x.FR(α, x)→ FC(x)

(p : C)I = {a ∈ dompI | pI (a) ∈ CI} ∃x.Fp(α, x) ∧ FC(x)
p ↓ qI = {a ∈ dompI ∩ domqI | pI(a) = qI(a)} (∃x.Fp(α, x) ∧ Fq(α, x))∧

(∀x, y.Fp(α, x) ∧ Fq(α, y)→ x = y)
p ↑ qI = {a ∈ dompI ∩ domqI | pI(a) �= qI(a)} (∃x, y.Fp(α, x) ∧ Fq(α, y))∧

(∀x, y.Fp(α, x) ∧ Fq(α, y)→ x �= y)
(p↑)I =
I \ dompI ¬∃x.Fp(α, x)

(p ◦ q)I = pI◦ qI ∃x.Fp(α, x) ∧ Fq(x, β)

Figure 2. The extensional and transformational semantics in ALCF .

in the interpretation of D, i.e., CI ⊆ DI . It is clear that the last kind of axiom is a
generalization of the first two: concept definitions of the type A

.= C – where A is an
atomic concept – can be reduced to the pair of axioms (A � C) and (C � A). An
interpretation I is a model for a TBox T if I satisfies all the terminological axioms in T .
Unless explicitly noted, in the following we will consider acyclic simple TBoxes only:
there are only concept definitions, and a defined concept may appear at most once as
the left-hand side of an axiom, and no terminological cycles are allowed, i.e., no defined
concepts may occur – neither directly nor indirectly – within its own definition [37]. As
an example of the expressive power of an ALCF TBox, we can consider the class de-
noting “happy fathers”, defined using the atomic predicates Man, Woman, Doctor,
Rich, Famous (concepts), CHILD, FRIEND (roles) and WIFE (feature):

HappyFather
.=Man � (WIFE : Woman) � (∃CHILD.�)
� ∀CHILD.(Doctor � ∃FRIEND.(Rich � Famous))

i.e., the men with a wife (exactly one!) whose children are doctors having some rich or
famous friend.

Extensional knowledge is expressed by means of an ABox which is formed by a fi-
nite set of assertional axioms, i.e., predications on individual objects. LetO be the alpha-
bet of symbols denoting individuals; an assertion is an axiom of the form C(a), R(a, b)
or p(a, b), where a and b denote individuals in O. The interpretation I is extended over
individuals in such a way that aI ∈ 
I for each individual a ∈ O, and aI �= bI if a �= b
(unique name assumption). C(a) is satisfied by an interpretation I iff aI ∈ CI , R(a, b)
is satisfied by I iff (aI , bI) ∈ RI , and p(a, b) is satisfied by I iff pI(aI) = bI . An
interpretation I is a model for an ABox A if I satisfies all the assertional axioms in A.



A. Artale, E. Franconi / Temporal extensions of description logics 175

For example, the individual john, as defined by the following ABox, could be
recognised as an HappyFather:

Man(john), WIFE(john,mary), CHILD(john,bill),

Doctor(bill), FRIEND(bill,peter), Rich(peter).

A knowledge base is a finite set � of terminological and assertional axioms (i.e.,
� = 〈TBox,ABox〉). An interpretation I is a model of a knowledge base � iff every
axiom of � is satisfied by I .

Let us describe now the basic reasoning services provided by a DL-system. C
.= ⊥

is not logically implied by � (written � �|= C .= ⊥) if there exists a model I of � such
that CI �= ∅: we say that C is satisfiable and we indicate this reasoning problem as
concept satisfiability. � logically implies D � C (written � |= D � C) if DI ⊆ CI

for every model of �: we say that D is subsumed by C in �. The reasoning problem
of checking whether D is subsumed by C in � is called subsumption checking. We
write � �|= to indicate the problem of checking whether � has a model, a problem called
knowledge base consistency. � logically implies C(a) (written � |= C(a)) if aI ∈ CI

for every model of �: we say that a is an instance of C in �. The reasoning problem
of checking whether a is an instance of C in � is called instance checking. Notice
that for propositionally complete languages we have that � |= D � C if and only if
� |= D � ¬C .= ⊥, and � |= C(a) if and only if � ∪ {¬C(a)} �|=. In other words,
subsumption can be reduced to satisfiability and instance checking to knowledge base
consistency.

An acyclic simple TBox can be transformed into an expanded TBox having the
same models, where no defined concepts make use in their definitions of any other de-
fined concept. In this way, the interpretation of a defined concept in an expanded TBox
does not depend on any other defined concept. It is easy to see that D is subsumed
by C in � with an acyclic simple TBox if and only if the expansion of D (w.r.t. �)
is subsumed by the expansion of C (w.r.t. �) in �′ = 〈∅,ABox〉 (i.e., the knowledge
base with an the empty TBox). The expansion procedure recursively substitutes every
defined concept occurring in a definition with its defining expression; such a procedure
may generate a TBox exponential in size, but it was proved [36] that it could remain
polynomial under reasonable restrictions. In the following we will interchangeably refer
either to reasoning with respect to a TBox or to reasoning involving expanded concepts
with respect to an empty TBox.

2.1. Correspondence with modal logics

Schild [39] proved the correspondence between the description logic ALC and the
propositional multi-modal logic K(m) [25,27]. K(m) is the simplest normal multi-modal
logic interpreted over Kripke structures: there is more than one modal accessibility re-
lation, each one independently behaving as a K accessibility relation. Informally, a
concept corresponds to a propositional formula, and it is interpreted as the set of possi-
ble worlds over which the formula holds. The existential and universal quantifiers cor-
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respond to the possibility and necessity operators over different accessibility relations:✷rC is interpreted as the set of all the possible worlds such that in every r-accessible
world C holds; ✸rC is interpreted as the set of all the possible worlds such that in some
r-accessible world C holds. Thus, roles are interpreted as the accessibility relations
between worlds. A knowledge base includes also constraints on the Kripke structures
through the ABox, by stating which are the necessary relations between worlds, and
which are the formulae necessarily holding in some world. Thus, we can speak of satis-
fiability of a formula φ of K(m) with respect to a set of world constraints �.

Starting from the work of Schild, the work presented in [14] analyses a very expres-
sive modal logic, which extends the expressivity of PDL – i.e., the propositional dynamic
modal logic [29] – with the converse operator and graded modalities. They have proved
the correspondence with a very expressive description logic (called ALCQIreg or CIQ),
which includes ALC, qualified cardinality restrictions, inverse roles, and regular expres-
sions over roles. Reasoning in ALCQIreg is decidable, and it has been proved to be an
EXPTIME-complete problem [14].

3. The temporal logic HS

Since description logics are in a strict correspondence with propositional modal
logics, the interval-based temporal extensions of description logics that follow an exter-
nal approach can be seen as the combination of a propositional modal logic with the
interval-based temporal logic introduced by Halpern and Shoham [28] – we indicate this
temporal logic as HS .

Well-formed formulae of HS are built by augmenting the propositional calculus
with the modal temporal operators corresponding to the Allen interval relations [1] (fig-
ure 3): before (b), meets (m), during (d), overlaps (o), starts (s), finishes (f), equal (=),
after (a), met-by (mi), contains (di), overlapped-by (oi), started-by (si), finished-by (fi). In
practice, only the starts and finishes relationships and their inverses are needed: 〈starts〉,
〈finishes〉, 〈started-by〉, 〈finished-by〉. The semantics of the language is based on Kripke

Figure 3. The Allen’s interval relationships.
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structure whose domain is a set of intervals, and formulae are interpreted as sets of inter-
vals – we say that a formula holds at an interval if it is evaluated as true at that interval.
In carrying on the interpretation process there is an implicit use of the reference inter-
val, i.e., the actual evaluation interval – called now. The modal operators relate the now
interval with other intervals. Intuitively, the meaning of an HS formula is the following:

• 〈starts〉φ is true iff φ holds at some interval starting the reference interval,

• 〈finishes〉φ is true iff φ holds at some interval finishing the reference interval,

while the modal operators 〈started-by〉, 〈finished-by〉 introduce the inverse temporal re-
lations. It is also possible to define the duals of these operators as usual: [X] .= ¬〈X〉¬φ
– where X stands for a temporal relation. For example, [starts]φ says that φ is true at all
beginning intervals.

It is worth noting that, the thirteen temporal relations can be simulated by using
the above mentioned four modal operators provided that the temporal structure allows
for point intervals [44]2. Indeed, if both a beginning point and an ending point modal
operators can be defined in the following way:

[[BP ]]φ .= ([starts]⊥ ∧ φ) ∨ 〈starts〉([starts]⊥ ∧ φ),
[[EP ]]φ .= ([finishes]⊥ ∧ φ) ∨ 〈finishes〉([finishes]⊥ ∧ φ)

which allows us to define the meets and met-by modal operators as: 〈meets〉φ .=
[[EP ]]〈started-by〉φ and 〈met-by〉φ .= [[BP ]]〈finished-by〉φ. For the other temporal re-
lations the following definitions hold:

〈during〉φ .= 〈starts〉〈finishes〉φ,
〈before〉φ .= 〈meets〉〈meets〉φ,

〈overlaps〉φ .= 〈starts〉〈finished-by〉φ.
As an example, the notion of Mortal can be expressed in this logic as:

LivingBeing ∧ 〈met-by〉¬LivingBeing, with the meaning of a LivingBeing
who will not be alive in some interval met by the current interval.

For what concerns the semantics, this tense logic is provided with a Tarski-style
semantics. A linear and unbounded temporal structure T = (P,<) is assumed, where P
is a set of time points and< is a strict partial order on P. The interval set of a structure T
is defined as the set T �

<
of all closed intervals [t1, t2] .= {x ∈ P | t1 � x � t2} in T . An

interpretation I .= 〈T �
<
, ·I〉 consists of a set T �

<
(the interval set of the selected temporal

structure T ), and a function ·I which maps each primitive proposition into a set of closed
intervals where it is true – i.e., pI ⊆ T �

<
. The interpretation of generic formulae in HS

is inductively defined, as reported in figure 4. As usual, a formula φ is said satisfiable if
there exists an interpretation I such that [t1, t2] ∈ φI for some [t1, t2] ∈ T �

<
. A formula φ

is said valid with respect to a class of temporal structures A if ¬φ is not satisfiable in A.

2 If the temporal structure allows only for proper intervals then the meets operator is also needed as a basic
modal operator.
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¬φI = T �
<
\ φI

(φ ∧ ψ)I = φI ∩ ψI

(〈starts〉φ)I = {[t1, t2] ∈ T �
<
| ∃u.t1 � u < t2 and [t1, u] ∈ φI}

(〈started-by〉φ)I = {[t1, t2] ∈ T �
<
| ∃u.t2 < u and [t1, u] ∈ φI}

(〈finishes〉φ)I = {[t1, t2] ∈ T �
<
| ∃u.t1 < u � t2 and [u, t2] ∈ φI}

(〈finished-by〉φ)I = {[t1, t2] ∈ T �
<
| ∃u.u < t1 and [u, t2] ∈ φI}

Figure 4. HS’s semantics.

Halpern and Shoham prove many interesting complexity results concerning the
validity and satisfiability problems. It is worth noting how these results depend upon
the underlying temporal structure. The validity problem ranges from decidable to  1

1-
hard; for what concerns the satisfiability problem its complexity class can be obtained by
observing that it is the complement of the validity problem. The bad result is summarized
by the following statement:

“One gets decidability only in very restricted cases, such as when the set of temporal
models considered is a finite collection of structures, each consisting of a finite set of
natural numbers (since in this case one can simply perform an exhaustive check on all
structures).” [28]

To present the complexity results in a formal way we introduce the notion of an infinitely
ascending sequence. A temporal structure is said to contain an infinitely ascending se-
quence if it contains an infinite sequence of points t0, t1, . . . such that ti < ti+1. The
critical complexity result is stated by the following proposition.

Proposition 3.1. The validity problem for any class of temporal structures that contains
an infinitely ascending sequence is r.e.-hard.

This was proved by constructing tense formulae that encode the computation of
a Turing machine. The next theorem summarizes the complexity results provided by
Halpern and Shoham.

Theorem 3.2. The validity problem for all dense, linear and unbounded classes of tem-
poral structures is r.e.-complete. The validity problem for Q is r.e.-complete. The valid-
ity problem for N is  1

1-complete. The validity problem for R is in  2
1.

4. Interval-based temporal description logics

In this section we present various proposals that extend description logics with an
explicit interval-based notion of time following the external approach. The resulting
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logics are the combination of a static DL with a temporal logic. These logics have in the
interval-based temporal logics introduced by [28] their natural ancestor.

4.1. Schmiedel’s formalism

Schmiedel [42] was the first to propose an extension of description logics with an
interval-based temporal logic. The underlying description logic is the prefix version of
the FLENR− language3 [20], while the new term-forming operators are the temporal
qualifier at, the existential and universal temporal quantifiers sometime and alltime. The
at operator specifies the time at which a concept holds while sometime and alltime are
temporal quantifiers introducing temporal variables. Temporal variables are constrained
by means of temporal relationships based on Allen’s interval algebra extended with met-
ric constraints in order to deal with durations, absolute times and granularities of in-
tervals. Figure 5 shows the syntax of the temporal extension proposed by Schmiedel.
To give an example of this temporal description logic, the concept of Mortal can be
defined as:

Mortal
.=LivingBeing and(

sometime (x)(met-by x now).(at x (not LivingBeing))
)

with the meaning of a LivingBeing at the reference interval now, who will not be
alive at some interval x met by the reference interval now. A concept denotes a set on
pairs, 〈i, a〉, composed by a temporal interval and an individual. With the use of the at
temporal operator it is possible to bind the evaluation time of a concept to a particular
interval of time: (at ′1993′ Student) denotes the set of persons that were students
during 1993.

The expressive power of the language is a direct consequence of the introduction
of temporal variables constrained by temporal relations. In this way the logic is able to
express abstract temporal patterns. Temporal variables are introduced by the quantifiers
sometime and alltime together with a set of constraints – indicated as <time-net> in the
syntax. There are three kinds of temporal constraints: qualitative relations between
pairs of intervals by using the Allen algebra, metric constraints on a single interval, and
granularity constraints where an interval is required to take values that are multiples of
some time unit. The following example shows a <time-net> which makes use of the
three kinds of constraints:(

and (day x)(= x ′24h′)
(day y)(= y ′24h′)
(meets x y)
(or starts finishes during) x now)
(or starts finishes during) y now)

)

3 Note that FLE− differs from ALC in that neither it contains the concepts � and ⊥ nor it allows for
complement or disjunction; the letter N stands for cardinality restrictions on roles, while R indicates the
role conjunction operator.



180 A. Artale, E. Franconi / Temporal extensions of description logics

<concept> ::= <atomic-concept>

| (and <concept>+)
| (all <role> <concept>)

| (atleast min <role>)

| (atmost max <role>)

| (at <interval> <concept>)

| (sometime (<interval-variable>+) <time-net>.<concept>)

| (alltime (<interval-variable>+) <time-net>.<concept>)

<atomic-concept> ::= symbol

<role> ::= <atomic-role>

| (and <role>+)
| (domain <concept>)

| (range <concept>)

| (at <interval> <role>)

| (sometime (<interval-variable>+) <time-net>.<role>)

| (alltime (<interval-variable>+) <time-net>.<role>)

<atomic-role> ::= symbol

<time-net> ::= <time-constraint>

| (and <time-constraint>+)
<time-constraint> ::= (<interval-relation> <interval> <interval>)

| (<comparison> <interval> <duration-constant>)

| (<granularity> <interval>)

<interval-relation> ::= equal | meets | met-by | after | before

| overlaps | overlapped-by | starts | started-by

| finishes | finished-by | during | contains

| (or <interval-relation>+)
<comparison> ::=< | � | = | � | >
<granularity> ::= sec | min | hour | . . .

<interval> ::= <interval-variable> | <interval-constant> | now

<interval-variable> ::= symbol

<interval-constant> ::= symbol

<duration-constant> ::= symbol

Figure 5. Syntax rules for the Schmiedel proposal.

where x and y are two consecutive days within now. The two constraints (day x) and
(= x ′24h′) restrict x to be coincident with a calendar day. Note that, without the
constraint (day x), x could be any interval spanning 24 hours, but not necessarily a full
day of the calendar. On the other hand, leaving away the duration constraint, x could
take any value that is started and finished by a full day.
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Let us show now the model-theoretic semantics. The author assumes a discrete
temporal structure over the integers T = (Z,<), where< is a strict partial order over Z .
The interval set T �

<
is defined as the set of closed intervals [t1, t2] .= {x ∈ Z | t1 � x �

t2, t1 �= t2} in T – in the following the letter i will be used to denote time intervals.
For the temporal relations a fixed temporal model M .= {M1,M2,M3,M4,M5} is
assumed such that:

• M1 : interval-constant %→ T �
<

,

• M2 : duration-constant %→ 2T
�
< ,

• M3 : comparison-operator %→ 2T
�
<×T �< ,

• M4 : interval-relation %→ 2T
�
<×T �< ,

• M5 : granularity-predicates %→ 2T
�
< .

Such an interpretation preserves the intuitive meaning of the various temporal constructs
– e.g., 〈M1[′August1990′],M1[′September1990′]〉 ∈ M4[meets] and M1[′3/12/1990′]
∈ M5[day]. Since concepts can have temporal variables, a variable assignment func-
tion V :X %→ T �

<
, where X denotes a set of temporal variables, is introduced. To give

a meaning to a time-net, the temporal interpretation function is introduced: 〈X,Tc〉E
– where Tc is a set of temporal constraints – is the set of all possibles variable assign-
ments which satisfy the temporal relations in Tc. As an example, let X = {x, y} and
Tc = {(meets x y)}, then ∀V ∈ 〈X,Tc〉E , 〈V(x),V(y)〉 ∈ M4[meets]. Furthermore,
〈X,Tc〉Ex %→i denotes the set of interpretations of a time-net where x is mapped to i.

The interpretation of temporal conceptual expressions is a triple I .= 〈T �
<
,
I , ·I〉,

with the interval domain T �
<

, a generic non empty individual domain 
I and an inter-
pretation function ·I which fixes the extension of atomic concepts and roles – denoted
with the letters A and R respectively – in such a way that:

AI ⊆ T �
<
×
I , RI ⊆ T �

<
×
I ×
I .

Note that, with respect to the temporal logic HS the interpretation of a temporal DL adds
an object domain 
I to the interval domain T �

<
. To interpret generic concept and role

expressions the interpretation function has to satisfy the equations showed in figure 6 –
the equations for the analogous operators on roles are left to the intuition of the reader.
Thus, each concept (role) is mapped to a function that assigns a set of individuals (of
pairs of individuals) to each time interval. The notation CI

V ,i(R
I
V ,i) stands for the set of

individuals (of pairs of individuals) of the domain which are of type C(R) at the time
interval i, with the assignment to the free temporal variables in C(R) given by V . Thus,
the interpretation of a generic expression depends both on a given time interval i and on
an assignment V for the free variables.

If we consider just closed concept expressions the interpretation does not depend
on V . An interpretation I is a model for a closed concept C if CI

i �= ∅, for some
interval i. A concept C is subsumed by the concept D (C � D) if CI

i ⊆ DI
i for all

interpretation I and all time intervals i.
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(and C1 . . . Cn)
I
V ,i =

n⋂
i=1

(Ci)
I
V ,i

(all R C)IV ,i = {a ∈ 
I | ∀b.(a, b) ∈ RI
V ,i ⇒ b ∈ CI

V ,i}
(atleast m R)IV ,i = {a ∈ 
I | |{b | (a, b) ∈ RI

V ,i}| � m}
(atmost m R)IV ,i = {a ∈ 
I | |{b | (a, b) ∈ RI

i }| � m}

(at x C)IV ,i =




CI
V ,V(x) if x �= now

CI
V ,i if x = now
CI
V ,M(x) if x is a constant

(sometime (X) Tc.C)IV ,i =
{
a ∈ 
I | ∃W .W ∈ 〈X,Tc〉E'%→i ∧ a ∈ CI

W,i

}

(alltime (X) Tc.C)IV ,i =
{
a ∈ 
I | ∀W .W ∈ 〈X,Tc〉E'%→i ⇒ a ∈ CI

W,i

}

(domain C)IV ,i =CI
V ,i ×
I

(range C)IV ,i =
I × CI
V ,i

Figure 6. Semantics for composed terms.

Schmiedel’s work does not propose any algorithm for computing subsumption for
this temporal variant of description logics, but only some preliminary hints are given.
Schmiedel’s temporal description logic can be formally related to the interval-based tem-
poral logic HS proposed by Halpern and Shoham. As Bettini [9] shows (see lemma 4.3
in the next section), Schmiedel’s logic when closed under complementation contains the
HS logic as a proper fragment. Schmiedel’s logic is argued to be undecidable, sacrific-
ing the main benefit of description logics, i.e., the possibility to have decidable inference
techniques (see the next section for more details).

4.2. The undecidable realm

Bettini [9,10] suggests a variable-free extension with both existential and universal
temporal quantification. He gives undecidability results for the proposed class of tempo-
ral languages – resorting to the undecidability results of Halpern and Shoham’s temporal
logic – and investigates approximated reasoning algorithms. Starting from the language
ALCN two concept constructors are introduced: ✸TE. C and ✷TE. C. The ✸ and ✷
operators are respectively the existential and universal temporal quantifiers, but, unlike
Schmiedel’s formalism, they do not allow for explicit interval variables. The temporal
expression, TE, is a set of temporal constraints on two implicit intervals: the reference
interval and the current one. This makes the language very close to the HS logic if we
note that each TE can be simulated by an appropriate combination of temporal operators.
Bettini presents a hierarchy of temporal expressions TEi , with i = 1, . . . , 5, with higher
temporal expressiveness. TE1 allows us to express single basic temporal relations, i.e.,
meets, starts, finishes and their converses. They are called basic since the other Allen’s
relations can be expressed by a combination of them. TE2 includes the thirteen Allen’s
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relations. TE3 allows all those combinations of temporal relations which give rise to the
pointisable interval set. TE4 allows for an arbitrary disjunction of temporal relations.
TE5 extends TE4 with metric constraints by means of either duration intervals or spe-
cific constant intervals – reaching in this latter case an expressive power close to the one
of the time-net of Schmiedel. Every language is indicated by prefixing the name of the
non-temporal description logic composing it with the letter T and by adding a numerical
subscript which denotes the kind of temporal expressions allowed. For example, T FL−

5
is the temporal extension of FL− allowing TE5 as temporal expressions in ✸TE. C and✷TE. C operators. In this framework the concept of Mortal can be defined as:

Mortal
.= LivingBeing� ✸(met-by). ¬LivingBeing

Depending on the underlying non-temporal description logic, there are some expressive-
ness equivalence between apparently different languages due to the interaction between
temporal and non-temporal operators. As an example, when the languages are built upon
ALC the following equivalences hold: TALC1 ≡ TALC2 ≡ TALC3 ≡ TALC4. These
equivalences can be easily proved by recovering to the equivalences showed by Halpern
and Shoham on the reducibility of the Allen’s relations to a combination of the basic
ones, and by noting that:

✸(rel1, rel2). C ≡ (✸(rel1). C � ✸(rel2). C
)
,

✷(rel1, rel2). C ≡ (✷(rel1). C � ✷(rel2). C
)

whenever you read (rel1, rel2) as the disjunction (or rel1rel2).
As in the case of Schmiedel’s formalism, the time is part of the semantic structure.

A concept denotes a set of pairs of temporal intervals and individuals 〈i, a〉. Intuitively,
a given individual belongs to the extension of a concept at certain time intervals. The
temporal operators allow us to relate the current interval to other intervals. The expres-
sion ✸TE. C denotes the set of pairs 〈i, a〉 such that the individual a belongs to the
extension of C at the interval i′ which satisfies i′TEi. For example, 〈1990, a1〉 belongs
to the set ✸after. Engineer if there exists an interval that is after 1990 in which the
individual a1 is an Engineer – this will be the case if 〈1991, a1〉 would be an instance
of the concept Engineer. The ✷ operator works in a similar way, but it universally
qualifies the implicit temporal variable that satisfies the temporal constraint.

Let us now briefly introduce the model-theoretic semantics. Given an unbound and
linear temporal structure, 〈P,<〉, the domain of temporal intervals, T �

<
, is defined, as

usual, as the set of pairs of points in P. A fixed temporal model, M, is assumed in the
same spirit of Schmiedel, while ·E is the temporal interpretation function that maps a
temporal expression TE and a reference interval i into a set of intervals in T �

<
:

[rel]Ei =
{
i′ | 〈i′, i〉 ∈ M4[rel]},

[rel1, . . . , reln]Ei =
n⋃
j=1

[relj ]Ei .
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In addition, there are other equations taking into account the interaction between qual-
itative and metric temporal constraints. An interpretation structure is a triple I .=
〈T �

<
,
I , ·I〉, where 
I is a set of individuals, T �

<
is the time interval set and ·I an

interpretation function. It assigns a meaning to generic concept expressions by mapping
each atomic concept into a set of pairs 〈i, a〉, and each role into a set of triples 〈i, a, b〉 –
only the time-dependent constructs are reported here:

(✸TE. C)IV ,i =
{
a ∈ 
I | ∃i′. i′ ∈ (TE)Ei ∧ a ∈ CI

i

}
,

(✷TE. C)IV ,i =
{
a ∈ 
I | ∀i′. i′ ∈ (TE)Ei → a ∈ CI

i

}
.

An interpretation I is a model for a concept C if CI
i �= ∅, for some i ∈ T �

<
. If a concept

has a model, then it is satisfiable, otherwise it is unsatisfiable. A concept C is subsumed
by a concept D (written C � D) if CI

i ⊆ DI
i for every interpretation I , and every

i ∈ T �
<

.
Let us comment now on the temporal expressivity of this family of languages.

The absence of explicit temporal variables weakens the temporal structure of a concept
since arbitrary relationships between more than two intervals can not be represented
anymore. For example, it is not possible to describe the situation where two concept
expressions, say C and D, hold at two meeting intervals (say x,y) with the first inter-
val starting and the second finishing the reference interval (i.e., the temporal pattern
(x meets y)(x starts ')(y finishes ') cannot be represented). More precisely, it is not
possible to represent temporal relations between more than two intervals if they are not
derivable by the temporal propagation of the constraints imposed on pairs of variables.
Although the use of explicit variables is against the general trust of description logics,
the gained expressive power together with the observation that the variables are limited
only to the temporal part of the language are the main motivation for using them.

This limited temporal expressive power is motivated by the need to study the com-
putational properties of such description logics extended with temporal operators on
intervals. Bettini provides a set of equivalence preserving reductions between HS for-
mulae and T ALCi concept expressions.

The following theorem easily follows from the above reductions, from the results
provided for HS, and by observing that in a propositionally complete language sub-
sumption reduces to unsatisfiability.

Theorem 4.1. The problem of determining the satisfiability of terms in T ALCi (P,�)
is co-r.e.-hard, for all i with 1 � i � 5. The subsumption problem in T ALCi (P,�) is
r.e.-hard.

These complexity results were obtained for HS but they were limited to temporal
structures allowing for durationless intervals. Bettini extends these results to temporal
structures which allow only for proper intervals. The following theorem considers the
realm of integer numbers without durationless intervals.
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Theorem 4.2. The satisfiability and subsumption problems for the languages T ALCi
(Z,<) with i = 1, . . . , 5 are undecidable. In particular, they belong to the classes
�1

1 -hard and  1
1-hard, respectively.

The author then shows that the Schmiedel’s formalism, indicated as T B, is strictly
related to the class of languages T ALCi (and so to the modal logic HS). In particular,
he considers the language T B extended with the complement operator, called T Bneg.

Lemma 4.3 (Correspondence between T ALC1 and T Bneg). Every concept expression
C in T ALC1(Z,<) can be translated into a concept expression in T Bneg, in such a way
that C is satisfiable if and only if its translation is a T Bneg satisfiable concept.

From this equivalence it follows that for the language T Bneg the very same com-
plexity results of theorem 4.2 apply. Bettini’s analysis leaves some important open prob-
lems, as declared by the author himself. The decidability of satisfiability and subsump-
tion remains an open problem when considering temporal structures which allow only
for proper intervals and which are different from the structure of integer numbers. An
example of such a structure is the one that interprets intervals on the rational numbers,Q.
A critical point that will deserve a deep investigation is the decidability of satisfiability
and subsumption with respect to languages without negation. Since in this case the two
problems are no more each other reducible they might belong to different complexity
classes. In particular, it remains an open problem whether reasoning in the language T B,
as presented by Schmiedel, is decidable.

4.3. Towards decidable logics

Artale and Franconi [2,3] consider a class of interval-based temporal description
logics by reducing the expressivity of [42]. While Schmiedel’s work lacks computa-
tional machinery, and Halpern and Shoham’s logic is undecidable, Artale and Franconi
present different decidable logics, providing for them sound, complete and terminating
reasoning algorithms.

The most expressive language, TL-ALCF , is presented here. TL-ALCF is com-
posed by the temporal logic TL – able to express temporally quantified terms – and the
non-temporal description logic ALCF . Concept expressions (denoted by C,D) are built
following the syntax rules of figure 7. Temporal concepts (C,D) are distinct from non-
temporal concepts (E,F ). Names for atomic features and atomic parametric features
are from the same alphabet of symbols; the � symbol is not intended as an operator,
but only as differentiating the two syntactic types. For the basic interval relations the
Allen notation [1] is adopted. Temporal variables are introduced by the temporal exis-
tential quantifier “✸” – excluding the special temporal variable ', usually called now,
and intended as the reference interval.

The intended meaning of the terms of the language TL-ALCF is similar to the
meaning of concept and role terms found in Schmiedel’s and Bettini’s logics. Concept
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TL C,D→ E | (non-temporal concept)

C �D | (conjunction)

C@X | (qualifier)

C[Y ]@X | (substitutive qualifier)

✸(X) Tc.C (existential quantifier)

Tc → (X (T ) Y ) | (temporal constraint)

(X (T ) ') |
(' (T ) Y )

Tc → Tc | Tc Tc

T, S→ T , S | (disjunction)

starts | finishes | met-by | . . . (Allen’s relations)

X,Y → x | y | z | . . . (temporal variables)

X→ X | X X
ALCF E,F → A | (atomic concept)

� | (top)

⊥ | (bottom)

¬E | (complement)

E � F | (conjunction)

E � F | (disjunction)

∀R.E | (universal quantifier)

∃R.E | (existential quantifier)

p : E (selection)

p ↓ q | (agreement)

p ↑ q | (disagreement)

p ↑ (undefinedness)

p, q→ f | (atomic feature)

�g | (atomic parametric feature)

p ◦ q (path)

Figure 7. Syntax rules for the interval description logic TL-ALCF .

expressions are interpreted over pairs of temporal intervals and individuals 〈i, a〉 (roles
are interpreted as triples 〈i, a, b〉), meaning that the individual a is in the extension of
the concept (is related to b via a role) at the interval i. Thus, a concept interpretation
can be seen as the set of individuals of that concept type at some interval. Within a
concept expression, the special “'” variable denotes the current interval of evaluation.
The temporal existential quantifier introduces interval variables, related to each other and
possibly to the ' variable in a way defined by the set of temporal constraints. In order to
evaluate a concept at an interval X, different from the current one, we need to temporally
qualify it at X – written C@X; in this way, every occurrence of ' embedded within the
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�

�

��

�

�OnTable(BLOCK)

Basic-Stack(BLOCK)

OnBlock(BLOCK)

x

'

y

Figure 8. Temporal dependencies in the definition of the Basic-Stack action.

concept expression C is interpreted as the X variable4. The informal meaning of a
concept with a temporal existential quantification can be understood with the following
examples in the action domain.

Basic-Stack
.=✸(xy)(x meets ')(' meets y).(
(�BLOCK : OnTable)@x � (�BLOCK : OnBlock)@y).

Figure 8 shows the temporal dependencies of the intervals in which the concept
Basic-Stack holds. Basic-Stack denotes, according to the definition (a termino-
logical axiom), any action occurring at some interval involving a �BLOCK that was once
OnTable and then OnBlock. The ' interval could be understood as the occurring time
of the action type being defined: referring to it within the definition is an explicit way
to temporally relate states and actions occurring in the world with respect to the occur-
rence of the action itself. The temporal constraints (x m ') and (' m y) state that the
interval denoted by x should meet the interval denoted by ' – the occurrence interval
of the action type Basic-Stack – and that ' should meet y. The parametric feature
�BLOCK plays the role of formal parameter of the action, mapping any individual action
of type Basic-Stack to the block to be stacked, independently from time. Please note
that, whereas the existence and identity of the �BLOCK of the action is time invariant, it
can be qualified differently in different intervals of time, e.g., the �BLOCK is necessarily
OnTable only during the interval denoted by x.

In this framework, the concept defining a Mortal is:

Mortal
.= ✸(x) (' meets x). LivingBeing� ¬LivingBeing@x.

TL-ALCF is provided with a Tarski-style extensional semantics. A linear, un-
bounded, and dense temporal structure T = (P,<) is assumed, where P is a set of time
points and < is a strict linear order on P. The interval set of a structure T is defined
as the set T �

<
of all closed proper intervals [t1, t2] .= {x ∈ P | t1 � x � t2, t1 �= t2}

in T . A primitive interpretation I .= 〈T �
<
,
I , ·I〉 consists of a set T �

<
(the interval set

of the selected temporal structure T ), a set 
I (the domain of I), and a function ·I (the
primitive interpretation function of I) which gives a meaning to atomic concepts, roles,
features and parametric features:

AI ⊆ T �
<
×
I, RI ⊆ T �

<
×
I ×
I ,

f I : (T �
<
×
I)

partial%−→ 
I , �gI :
I partial%−→ 
I .

4 Since any concept is implicitly temporally qualified at the special ' variable, it is not necessary to explicitly
qualify concepts at '.
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(starts)E = {〈[u, v], [u1, v1]〉 ∈ T �
<
× T �

<
| u = u1 ∧ v < v1}

(finishes)E = {〈[u, v], [u1, v1]〉 ∈ T �
<
× T �

<
| v = v1 ∧ u1 < u}

(met-by)E = {〈[u, v], [u1, v1]〉 ∈ T �
<
× T �

<
| u = v1}

... (meaning of the other Allen temporal relations)

(T , S)E = T E ∪ SE
〈X,Tc〉E = {

V :X %→ T �
<
| ∀(X (T ) Y ) ∈ Tc. 〈V(X),V(Y )〉 ∈ (T )E}

Figure 9. The temporal interpretation function.

Atomic parametric features are interpreted as partial functions; they differ from atomic
features for being independent from time5. In order to give a meaning to temporal ex-
pressions present in generic concept expressions, figure 9 defines the temporal interpre-
tation function. The temporal interpretation function ·E depends only on the temporal
structure T . The labelled directed graph 〈X,Tc〉 – where X is the set of variables rep-
resenting the nodes, and Tc is the set of temporal constraints representing the arcs – is
called temporal constraint network. The interpretation of a temporal constraint network
is a set of variable assignments which satisfy the temporal constraints. A variable as-
signment is a function V :X %→ T �

<
associating an interval value to a temporal variable.

A temporal constraint network is consistent if it admits a non empty interpretation. The
notation, 〈X,Tc〉E{x1 %→i1,x2 %→i2,...}, used to interpret concept expressions, denotes the subset

of 〈X,Tc〉E where the variable xj is mapped to the interval value ij .
At this point we are able to interpret generic concept expressions. An interpretation

function ·IV ,i,H, based on a variable assignment V , an interval t and a set of constraints
H = {x1 %→ i1, . . .} over the assignments of inner variables, extends the primitive in-
terpretation function in such a way that the equations of the figure 10 are satisfied – we
do not report the constructors that can be obtaind by complementation. Intuitively, the
interpretation of a concept CI

V ,i,H is the set of entities of the domain which are of type C
at the time interval i, with the assignment for the free temporal variables in C given by V
– (C@X)IV ,i,H – and with the constraints for the assignment of variables in the scope of
the outermost temporal quantifiers given by H. Notice that H interprets the variable re-
naming due to the temporal substitutive qualifier – (C[Y ]@X)IV ,i,H – and it takes effect

during the choice of a variable assignment, as the equation (✸(X) Tc. C)IV ,i,H shows.
In absence of free variables in the concept expression – with the exception of ' –

the natural interpretation function, CI
i , is introduced as a notational simplification. The

natural interpretation is equivalent to the interpretation function CI
V ,i,H with any V such

that V(') = i, and H = ∅. The set of interpretations {CI
V ,i,H} obtained by varying

I,V, i with a fixed H is maximal wrt set inclusion if H = ∅, i.e., the set of natural inter-
pretations includes any set of interpretations with a fixed H. In fact, since H represents
a constraint in the assignment of variables, the unconstrained set is the largest one. Note

5 Parametric features can be seen as a form of global roles (see section 5.2).
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AI
V ,i,H = {a ∈ 
I | 〈i, a〉 ∈ AI} = AI

i

�I
V ,i,H =
I = �I

(¬C)IV ,i,H =
I \ CI
V ,i,H

(C �D)IV ,i,H =CI
V ,i,H ∩DI

V ,i,H

(∀R.C)IV ,i,H = {
a ∈ 
I | ∀b.(a, b) ∈ RI

i ⇒ b ∈ CI
V ,i,H

}

(p ↓ q)IV ,i,H = {
a ∈ dompIi ∩ domqIi | pIi (a) = qIi (a)

} = (p ↓ q)Ii
(p : C)IV ,i,H = {

a ∈ dompIi | pIi (a) ∈ CI
V ,i,H

}

(C@X)IV ,i,H =CI
V ,V(X),H

(C[Y ]@X)IV ,i,H =CI
V ,i,H∪{Y %→V(X)}

(✸(X) Tc. C)IV ,i,H = {
a ∈ 
I | ∃W . W ∈ 〈X,Tc〉EH∪{'%→i} ∧ a ∈ CI

W,i,∅
}

RI
i = R̂i ⊆ 
I ×
I | ∀a, b. 〈a, b〉 ∈ R̂i ↔ 〈i, a, b〉 ∈ RI

f I
i = f̂i :
I partial%−→ 
I | ∀a. (a ∈ dom f̂i ↔ 〈i, a〉 ∈ domf I) ∧

f̂i (a) = f I(i, a)

(p ◦ q)Ii =pIi ◦ qIi
�gIi = �gI

Figure 10. The interpretation function.

that, the features are interpreted with the natural interpretation since it is not admitted to
temporally qualify them.

An interpretation I is a model for a concept C if CI
i �= ∅ for some i ∈ T �

<
. If a

concept has a model, then it is satisfiable, otherwise it is unsatisfiable. A concept C is
subsumed by a concept D (written C � D) if CI

i ⊆ DI
i for every interpretation I and

every interval i ∈ T �
<

.
Similar to the case for the logic HS , only the relations starts, finishes, met-by are

really necessary (note that, the temporal structure does not allow durationless intervals),
because it is possible to express any temporal relationship between two distinct intervals
using only these three relations and their transposes started-by, finished-by, meets. In
fact, the following equivalences hold:

✸x (x after '). C@x ≡✸xy (y met-by ')(x met-by y). C@x,

✸x (x during '). C@x ≡✸xy (y starts ')(x finishes y). C@x,

✸x (x overlaps '). C@x ≡✸xy (y starts ')(x finished-by y). C@x.

We report here how the authors propose to represent complex actions that involve
parameters. A stacking action involves two blocks, which should be both clear at the
beginning; the central part of the action consists of holding one block; at the end, the
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� �

� ���

��

Holding-Block(OBJ1)

Clear-Block(OBJ2) ON(OBJ1, OBJ2)

Clear-Block(OBJ1) Clear-Block(OBJ1)

Stack(OBJ1, OBJ2)

w

x y

v z

'

Figure 11. Temporal dependencies in the definition of the Stack action.

blocks are one on top of the other, and the bottom one is no longer clear (figure 11):

Stack
.=

✸(x y z v w)(x finished-by ')(y meets ')(z met-by ')

(v overlaps ')(w finishes ')(w met-by v).(
(�OBJECT2 : Clear-Block)@x � (�OBJECT1◦ON ↓ �OBJECT2)@y �
(�OBJECT1 : Clear-Block)@v � (�OBJECT1 :Holding-Block)@w �
(�OBJECT1 : Clear-Block)@z

)
.

The definition makes use of temporal qualified concept expressions: the expression
(�OBJECT2 : Clear-Block)@x means that the second parameter of the action
should be a Clear-Block at the interval denoted by x; while (�OBJECT1◦ON ↓
�OBJECT2)@y indicates that at the interval y the object on which �OBJECT1 is placed
is �OBJECT2. The above defined concept does not state which properties are the pre-
requisites for the stacking action or which properties must be true whenever the action
succeeds. What this action intuitively states is that �OBJECT1will be on �OBJECT2 in
a situation where both objects are clear at the start of the action.

Artale and Franconi explore the decidable realm of interval-based temporal de-
scription logics by presenting sound, complete and terminating procedures for subsump-
tion reasoning. In order to obtain decidable languages a serious restriction has been
posed on the temporal expressivity: the universal quantification on temporal variables
has been eliminated. The main results are proved starting with the simplest language,
TL-F , where F is a feature language (i.e., only functional roles are permitted) with
neither negation nor disjunction. Then, the authors show how to reason with more
expressive languages such as TLU-FU , which adds disjunction both at the temporal
and non-temporal sides of the language, and TL-ALCF . The subsumption procedures
are based on a normalization procedure, i.e., an interpretation preserving transforma-
tion which operates a separation between the temporal and the non-temporal part of
the formalism. A concept in normal form can be seen as a conceptual temporal con-
straint network , i.e., a labeled directed graph 〈X,Tc,Q@X〉 (in TL-ALCF syntax:✸(X) Tc. (Q0 �Q1@X1 � · · · �Qn@Xn)) where arcs are labeled with a set of arbitrary
temporal relationships – representing their disjunction, and temporal nodes are labeled
with non-temporal concepts (i.e., each Qj is an ALCF concept expression). The sub-
sumption procedure checks whether there is a mapping function between the conceptual
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temporal constraint networks (i.e., a form of subgraph isomorphism, called by the au-
thors s-mapping) such that a subsumption relation holds both among the non-temporal
concepts labeling the corresponding nodes in the mapping function, and among the tem-
poral relations of the corresponding arcs. Then the calculus can adopt standard proce-
dures developed both in the description logics community and in the temporal constraints
community. The following theorem summarizes the main results proved by Artale and
Franconi:

Theorem 4.4. Let C1 and C2 be either TL-F or TL-ALCF concepts in normal form,
then C1 subsumes C2 (C2 � C1) if and only if there exists an s-mapping from C1 to C2.

Let C = C1 � · · · � Cm and D = D1 � · · · �Dn be TLU-FU concepts in normal
form; then D subsumes C if and only if ∀i∃j . Ci � Dj .

Concept subsumption between TL-F or TLU-FU concept expressions in normal
form is an NP-complete problem.

5. Point-based temporal description logics

In this section we present various proposals that extend description logics with an
explicit point-based notion of time following the external approach. The resulting logics
are the combination of a static DL with a tense logic [13,24,43].

5.1. Combining description and tense logics

Schild [40] combines the description logic ALC with point-based modal tempo-
ral connectives. The new language is called ALCT , and the temporal connectives are
those of tense logic [13]: existential future (✸), universal future (✷), next instant (©),
until (U ), reflexive until (U).

As in the case of Schmiedel, Bettini, Artale and Franconi’s formalisms, the time is
part of the semantic structure. A concept denotes a set of pairs of temporal points and
individuals 〈t, a〉, while a role is interpreted as a set of triples 〈t, a, b〉. The operator
existential future denotes those individuals that belong to C at some time coincident or
successive to the actual time. As an example, the concept of Mortal can be defined in
ALCT as:

Mortal
.= LivingBeing� ✸¬LivingBeing

which denotes the set of pairs 〈t, a〉 where a is a kind of LivingBeing at the time t ,
and there exists an instant t ′ � t where a is no more a LivingBeing. We observe that,
in this example, the time point t ′ should not be coincident with t , since an individual can-
not belong to disjoint concepts, as is the case for LivingBeing and ¬LivingBeing.
Thus, a better definition for Mortal makes use of the next instant operator, ©. Intu-
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itively, given a time t , the concept ©C denotes the set of individuals that belong to C at
the immediate successor of t6. The new definition of Mortal is the following:

Mortal
.= LivingBeing�©✸¬LivingBeing

The operator universal future, ✷, is the dual of ✸. Given a time point t , the concept✷C denotes the set of individuals which are of kind C at every time t ′ � t . With this
operator, the definition of a mortal can be refined by saying that from a certain future
time, t ′ > t , he will never be alive again:

Mortal
.= LivingBeing�©✸✷¬LivingBeing

This definition is still incomplete since does not tell anything about the time between t –
when the mortal is alive – and t ′ – when a mortal dies. At each time t ′′ with t < t ′′ < t ′,
a mortal can be dead or alive. For this purpose the binary operator until, U , can be used.
At time t , the concept C U D denotes all those individuals which are of kind D at some
time t ′ > t and which are of kind C for all times t ′′ with t < t ′′ < t ′. Thus, a mortal can
be redefined as a living being who is alive until he dies:

Mortal
.= LivingBeing� (LivingBeing U ✷¬LivingBeing)

A slight variant of the until operator is the constructor reflexive until, U. At time t the
concept C UD denotes all those individuals which are of kind D at some time t ′ � t ,
and which are of kind C for every time t ′′ with t � t ′′ < t ′. In the last definition of
mortal, U can be substituted by U without changing its meaning.

More formally, complex temporal concepts can be expressed using the following
syntax.

Definition 5.1. The tense-logical extension of a concept language L, called LT , is the
least set containing all concepts of L, and such that ©C, ✸C, ✷C, C U D, C UD are
concepts of LT if C and D are concepts of LT .

An interpretation for LT is a triple I .= 〈T ,
I , ·I〉, with the time domain T =
(P,<), a generic individual domain
I and an interpretation function ·I which fixes the
extension of atomic concepts and roles – denoted with the letters A and R respectively
– in such a way that:

AI ⊆ T ×
I , RI ⊆ T ×
I ×
I .

To interpret generic concept expressions the interpretation function has to satisfy the
equations showed in figure 6 (only the semantics for the temporal constructs in LT is
illustrated)7 . An LT concept C is satisfiable if there exists an interpretation I such that
CI
t �= ∅, for some t . A concept C is subsumed by D, C � D, if CI

t ⊆ DI
t , for all

interpretations I and all time points t .

6 For the immediate successor to be definable, a discrete temporal structure is needed.
7 Analogously to the case of interval-based extensions, the notation CIt stands for the set of individuals

belonging to C at the time point t .
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(©C)It =
{
a ∈ 
I | ∃t ′.t < t ′ ∧ a ∈ CI

t ′ ∧ ¬∃t ′′.t < t ′′ < t ′}

(✸C)It = {
a ∈ 
I | ∃t ′.t � t ′ ∧ a ∈ CI

t ′
}

(✷C)It = {
a ∈ 
I | ∀t ′.t � t ′ ∧ a ∈ CI

t ′
}

(C U D)It =
{
a ∈ 
I | ∃t ′.t < t ′ ∧ a ∈ DI

t ′ ∧ ∀t ′′.t < t ′′ < t ′ → a ∈ CI
t ′′
}

(C UD)It =
{
a ∈ 
I | ∃t ′.t � t ′ ∧ a ∈ DI

t ′ ∧ ∀t ′′.t � t ′′ < t ′ → a ∈ CI
t ′′
}

Figure 12. The LT semantics.

Schild analyzes the computational property of the concept satisfiability problem8

with respect to an empty KB. He proves that concept satisfiability checking in ALCT
is of the same complexity class as concept satisfiability in ALC, when interpreted over
linear, unbounded and discrete time structures like the natural numbers. Thus, reasoning
in ALCT (N ) – which denotes the language ALCT interpreted over the natural num-
bers – with respect to an empty KB, is a PSPACE-complete problem. These important
results show that adding a point-based time dimension to ALC does not alter its compu-
tational behavior. However, since for branching, discrete and unbounded time reasoning
in classical tense logic is an EXPTIME-hard problem [22] then the same lower com-
plexity bound carries over ALCT . When ALC is extended with an interval-based time
dimension (let us call it ALC-INT ) the undecidability results showed by Halpern and
Shoham for the logic HS, and the one presented by Bettini, apply also to ALC-INT .
Interesting open problems remain. One concerns the complexity of ALCT (N ) when
extended with past tense operators. It is also unknown whether ALCT is still decid-
able when interpreted on the structure of real numbers. Another analyzed language is
the temporal extension of deterministic PDL (D-PDL). It is proved that satisfiability in
temporal D-PDL interpreted over branching (linear), discrete and unbounded temporal
structures is log-space reducible to the non-temporal version of D-PDL. Thus, also in
this case adding tense operators does not deteriorate the computational complexity of
D-PDL – which is EXPTIME-complete [39].

5.2. Description logics with modal operators

Starting from the correspondence between description and modal logics many re-
cent works investigate various way of combining modal operators within a description
language. Multi-dimensional description logics [6,7,48–50] have been studied where the
usual object dimension is combined with other dimensions like time, knowledge, belief,
actions, etc.

As observed by Wolter and Zakharyaschev [48], different design choices have to be
taken concerning the integration of modal operators. First of all, modal operators can be
applied in different places. They can be used not only to form new concept terms but also
in front of terminological and assertional axioms – as proposed by Baader and Laux [6]

8 We remind here that in ALCT concept subsumption reduces to concept satisfiability (see section 2).
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– and to build new roles – as proposed by Baader and Ohlbach [7]. The following
examples show the use of a modalized terminological axiom, and of a modalized role:

[BEL-JOHN](Happy-father
.= ∃MARRIED-TO.(Woman � [BEL-JOHN]Pretty)
� 〈future〉∀CHILD.Graduate)

John : ∃[always]LOVES.Woman

expressing that, it is John’s belief that a Happy-father is someone married to a
woman believed to be pretty by John, and whose children will be graduate sometime
in the future; and that John will always love the same woman. Note that, the modal-
ized role [always]LOVES restricts the role LOVES to the pairs 〈x, y〉 which are in the
LOVES relation in every future time.

Another parameter concerns the different dimensions we want to model. For ex-
ample, if we are interested in modeling both the time and the belief dimensions, then in
the temporal dimension we could have future and past modalities as well as one for the
next instant, while in the dimension of belief we could be interested in both belief-John
and belief-Mary. In the following, we will introduce a general framework for combining
a DL with additional modal dimensions, without necessarily reduce ourselves to just the
temporal dimension. At the end, results about the specific temporal case will be reported.

With respect to the object domain dimension three different assumptions can be
made. Either different modal worlds give rise to arbitrary object domains (varying do-
main assumption), or the object domain relative to a world w is contained in all the
object domains relative to worlds reachable from w (expanding domain assumption), or
the object domain is the same for all worlds (constant domain assumption). Reasoning
with respect to different domain assumptions can give different results. For example, the
following set of formulae:

✸(C �= ⊥), (✷¬C) .= �
is satisfiable adopting either the varying or the expanding domain assumption – since
the � in the second formula denotes only the actual world – but not assuming constant
domains – since the � in the second formula will always denote the whole domain in all
possible worlds.

The final decision regards the distinction between local and global concepts, roles
and constants. While global elements have the same extension in all possible worlds,
local ones may have arbitrary extensions. In some sense, for a global element the in-
terpretation is decoupled from the modal dimension. The rigid designator hypothesis
assumes that each constant denotes the same domain object in all possible worlds – i.e.,
constants are globals.

Wolter and Zakharyaschev [48,49] introduce the language called ALCM.

Definition 5.2. ALCM concepts are defined inductively as follows: All concept names
as well as ⊥ and � are concepts. If C and D are concepts, R is a role name and ✸i , ✷i ,
with i = 1, . . . , n, are n modalities then C � D, ¬C, ∃R.C, ✸iC are concepts, while✸iR, ✷iR are roles.
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Let C and D be concepts, R a role, a, b object names. Then expressions of the
form C

.= D, aRb, a : C are (atomic) formulae. If φ and ψ are formulae then so are✸iφ, ¬φ, φ � ψ . The language without modalized roles will be called ALC−
M.

Each modal operator is interpreted as an accessibility relation on a set of possible
worlds. Thus we need a set of possible worlds Di for each dimension i (in the case of
time an additional temporal structure on the possible worlds is needed). To each world
a classical ALC interpretation structure is defined, where concepts and roles are given a
meaning.

Definition 5.3. An interpretation for ALCM consists of a Kripke structure K =
〈W, 1, I〉 such that: W , the set of possible worlds, is the Cartesian product of non-empty
domains D1, . . . ,Dn, one for each modal dimension; 1 contains for each modality of
dimension i an accessibility relation γi , which is a function γi :W %→ 2Di (whenever
d ′i ∈ γi(d1, . . . , di, . . . , dn) we will write 〈(d1, . . . , di, . . . , dn), (d1, . . . , d

′
i , . . . , dn)〉 ∈

γi); I is a function associating to each world w ∈ W an interpretation structure
〈
I(w), ·I(w)〉 which consists of a non-empty set of objects 
I(w), and of an interpre-
tation function ·I(w) that associates: to each object name a an element aI(w) ∈ 
I(w)

such that aI(w) = aI(v) for any w, v ∈ W (i.e., the interpretation of individuals does
not depend on the actual world, this is the rigid designator hypothesis); to each con-
cept name A and world w ∈ W a set AI(w) ⊆ 
I(w); to the ⊥, � concepts the sets
�I(w) = 
I(w) and ⊥I(w) = ∅; to each role name R and world w ∈ W a binary relation
RI(w) ⊆ 
I(w)×
I(w). Furthermore, the interpretation is extended to generic concepts
and roles as follows:

(C �D)I(w)=CI(w) ∩DI(w),

(¬C)I(w)=
I(w) \ CI(w),

(∃R.C)I(w)= {
x ∈ 
I(w) | ∃y.〈x, y〉 ∈ RI(w) ∧ y ∈ CI(w)},

(✸iC)I(w)= {
x ∈ 
I(w) | ∃v.〈w, v〉 ∈ γi ∧ x ∈ CI(v)},

(✸iR)I(w)= {〈x, y〉 ∈ 
I(w) ×
I(w) | ∃v.〈w, v〉 ∈ γi ∧ 〈x, y〉 ∈ RI(v)},
(✷iR)I(w)= {〈x, y〉 ∈ 
I(w) ×
I(w) | ∀v.〈w, v〉 ∈ γi → 〈x, y〉 ∈ RI(v)}.

The choice of constant domain is realized by constraining 
I(w) = 
I(v) for all
w, v ∈W . In the case of expanding domain we have that 
I(w) ⊆ 
I(v) whenever
〈w, v〉 ∈ γi for some modality of the dimension i. At this point it is possible to define
the notion of satisfiability of a formula.

Definition 5.4. Given a formula φ, a Kripke structure K = 〈W, 1, I〉 and a world
w ∈ W the truth relation K, w |= φ is defined inductively by:
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K, w |= C .= D iff CI(w) = DI(w),

K, w |= a : C iff aI(w) ∈ CI(w),

K, w |= aRb iff 〈aI(w), bI(w)〉 ∈ RI(w),

K, w |= φ ∧ ψ iff K, w |= φ ∧K, w |= ψ,
K, w |= ¬φ iff K, w �|= φ,
K, w |= ✸iφ iff ∃v.〈w, v〉 ∈ γi ∧K, v |= φ.

A formula φ is satisfiable if there is a Kripke structure K and a world w such that
K, w |= φ. A formula is valid if for each world w ∈ W then K, w |= φ.

It should be clear that formulae in ALCM are in a strict correspondence with ax-
ioms in DL with the exception that they are assumed to hold just in a single world, while
a DL axiom should hold in all possible worlds – like in the case of the temporal de-
scription logics defined in the previous sections. Thus, DL axioms can be captured by
valid formulae. The classical reasoning problems of concept satisfiability and concept
subsumption can be reduced to formula satisfiability. A concept C is satisfiable iff there
exists K and w such that K, w |= ¬(C = ⊥) – indeed, this means that there exists an in-
terpretation I such that CI(w) �= ∅ for some w. A concept C is subsumed byD, C � D,
iff the formula (C → D = �) is valid, i.e., ¬(C → D = �) is unsatisfiable. As far
as the entailment problem is concerned, two different problems can be defined [48,50]:
local and global consequence. The local consequence problem – � |= φ – is defined
as follows: for a finite set of formulae �, � |= φ if for every K and every w ∈ K, if
K, w |= � then also K, w |= φ – i.e. � |= φ iff

∧
� ∧ ¬φ is not satisfiable. The

global consequence problem – � |=∗ φ – is defined as follows: for a finite set of for-
mulae �, � |=∗ φ if for every interpretation K such that K, w |= � for every w in K,
then also K, w |= φ for every w in K. Global consequence is reducible to local con-
sequence (and then to a satisfiability problem) for example when temporal structures
are considered and both future (✷+) and past (✷−) modalities are present: � |=∗ φ iff
� ∪ {✷+ψ | ψ ∈ �} ∪ {✷−ψ | ψ ∈ �} |= φ.

Note that, the classical logical implication problem in description logics, � |=
C � D where � is the knowledge base, is reformulated in a temporal DL as a global
consequence: � |=∗ (C → D = �).

Baader and Laux [6] propose a complete and terminating algorithm, based on
tableaux calculus, for testing satisfiability of ALC−

M formulae under the expanding do-
main assumption. The main limitation is that all the modal operators do not satisfy any
specific axiom for belief or time (i.e., the modalities are interpreted in the basic modal
logic K).

The work of Wolter and Zakharyaschev [48] proves the decidability of satisfia-
bility of ALC−

M formulae when the accessibility relations satisfy the most common
conditions for the belief and temporal operators (i.e., when the modalities give rise to
the modal systems K,S4, S4.3, S5,KD45,GL,GL.3 and the tense logic over linear,
discrete and unbounded temporal structures like 〈N ,�〉). They start by considering
mono-dimensional description languages and then prove a general transfer theorem for
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deciding satisfiabily in the multi-dimensional case. Furthermore, they prove decidability
of these logics under the constant domain assumption showing that both the varying and
the expanding domain assumptions are reducible to it. These decidability results hold
true only for the case where rigid designators are assumed. It is still an open problem
the case where non-rigid designators are assumed. Finally, they investigate the model
properties of the different logics. They show how for logics based on linear temporal
models (i.e., 〈N ,≤〉) or models whose accessibility relations are transitive and reflex-
ive (S4, S4.3) the finite model property does not hold anymore. As far as global roles
are concerned, the satisfiability problem for ALCM is decidable in the modal systems
K,S5,KD45 [49].

The temporal case. Wolter and Zakharyaschev [48,49] study the language ALCM in-
terpreted over temporal stuctures: The formula satisfiability problem in ALC−

M is de-
cidable in the class of linear, discrete and unbounded structures [48]; the same problem
is undecidable for ALCM (i.e., considering modalized roles), or for ALC−

M with global
roles [49]. Thus, modalized or global roles interpreted over temporal structures are a
source of undecidability.

Wolter and Zakharyaschev [50] consider the combination of tense logics and three
expressive DLs, CIQ, CIO, CQO [15,16] (see section 2.1) where C stands for proposi-
tional dynamic modal logic (PDL) while I adds the converse operator, Q adds qualified
cardinality restrictions on roles, and O adds individuals as concepts constructors (called
nominals in the modal logic literature [11]). The temporal operators introduced are: ex-
istential future (✸+), existential past (✸−), universal future (✷+), universal past (✷−),
next instant (©), until (U ), since (S)9. As for ALC−

M, the temporal operators can be
applied both to concepts and formulae. The following theorem summarises the obtained
results.

Theorem 5.5. The problem of formula satisfiability is decidable for the following lan-
guages:

1. CIQU ,S assuming 〈Z,<〉 as temporal structure.

2. CIQ✸ in strictly linear ordered structures as well as in 〈Q,<〉.
3. CIOU ,S, CQOU ,S in 〈Z,<〉.
4. CIO✸, CQO✸ in strictly linear ordered structures as well as in 〈Q,<〉.

The framework presented in this section in its generality gives us a very useful tool
to compare the expressivity of the DL extensions presented until now. Let us consider, as
an example, the language proposed by Schild (see section 5.1). We have one dimension
(i.e., the temporal one) with two modalities (U ,U) applicable only in front of concepts.

9 The following equivalences hold: ✸+C .= �U C, ✸−C .= �S C, ©C .= ⊥U C, ✷+ .=
¬✸+¬, ✷− .= ¬✸−¬, if the temporal structure is linear and discrete, and U is the non reflexive un-
til.
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Each interpretation is based on a branching (linear), discrete, unbounded temporal struc-
ture under the constant domain and rigid designators assumptions. Analogous choices
are the basis of the works presented in section 4 whenever interval-based modal oper-
ators are considered (dropping the variables in the case of Schmiedel, and Artale and
Franconi).

6. Description logics with temporal parts

This section overviews two representative approaches of the internal perspective
in adding a temporal dimension to a description logic.

6.1. The T-REX system

Weida and Litman [45,46] propose T-REX, a loose hybrid integration between
description logics and temporal constraint networks with the aim of representing and
reasoning about plans. Plans are defined as collections of steps (i.e., actions) together
with temporal constraints between their duration. Each step is associated with an action
type, represented by a generic concept in K-REP – a non-temporal description logic [35].
Thus, a plan is seen as a plan network: a temporal constraint network in the style of
Allen [1], whose nodes, labeled with action types and corresponding to the steps of the
plan itself, are associated with time intervals. As an example of plan in T-REX we show
the plan of preparing spaghetti marinara:

(
defplan Assemble-Spaghetti-Marinara

((step1 Boil-Spaghetti)

(step2 Make-Marinara)

(step3 Put-Together-SM))

((step1 (before meets) step3)

(step2 (before meets) step3))
)

This is a plan composed by three actions, i.e., boiling spaghetti, preparing marinara sauce
and assembling all things at the end. Temporal constraints between the steps establish
the temporal order in doing the corresponding actions. In this sense, T-REX con be
classified as a system with an internal representation of time: a plan is a collection
of temporal parts possibly holding at different times. The notion of Mortal can be
expressed in this framework as:

(
defplan Mortal

((alive-state ALIVE)

(dead-state DEAD))

((alive-state (meets) dead-state))
)
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It is worth noting that no formal semantics was provided for T-REX. For a better under-
standing of the consequences that an internal representation framework may have, the
next Section should be enlightening.

A structural plan subsumption is defined, characterized in terms of graph match-
ing, and based on two separate notions of subsumption: terminological subsumption
between action types labeling the nodes, and temporal subsumption between interval
relationships labeling the arcs. The main application of T-REX is plan recognition. An
individual plan is a network where nodes are individual actions while arcs are labeled
with temporal relations. The following is an example of an individual plan of type
Assemble-Spaghetti-Marinara:

Boil17 before MakeMarinara1 before PutTogetherSM27

The plan library is used to guide plan recognition in a way similar to that proposed
by Kautz [32]. According to these ideas, a Closed World Assumption (CWA) is made,
assuming that the plan library is complete and an observed plan will be fully accounted
for by a single plan. The plan recognition process partitions the plan library into the
categories possible, necessary and impossible that describe the status of each plan in
the plan library with respect to a given observation. A plan is said to be possible if the
observation might eventually be an instance of it, also in case of further refinements
of the observation itself. A possible plan which actually represents an observation is
also necessary; possible but not necessary plans are called optional plans. When an
observation cannot be an instance of the plan then it is an impossible plan. Before any
observation is made, all plans are optional except for the plan root, which is obviously
necessary.

6.2. Time as concrete domain

In the concrete domain extension of description logics, abstract individuals (i.e.,
elements of an abstract domain 
I) can now be related to values in a concrete do-
main (e.g., the integers, strings, etc.) via features (i.e., functional roles). Furthermore,
tuples of concrete values identified by such features can be constrained to satisfy an
n-ary predicate over the concrete domain. The first work in this direction is the one
of Baader and Hanschke [5]. For example, by choosing the natural numbers with the
usual total ordering relation “�” as a concrete domain, it is possible to express the
concept describing managers that, every month, spend more money than they earn:
(Manager�∀MONTHLY-BALANCE.∃(INCOME,EXPENSES). �). Here, INCOME and
EXPENSES are features that map objects to elements of the actual concrete domain –
integers in this example.

More formally, Baader and Hanschke propose an extension to ALC, i.e., the so
called ALC(D), where D stands for the concrete domain. A concrete domain is a pair
D = (dom(D), pred(D)) that consists of a set dom(D) (the domain), and a set of predi-
cate symbols pred(D). Each predicate symbol P ∈ pred(D) is associated with an arity n
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and an n-ary relation PD ⊆ dom(D)n. The syntax of ALC is augmented with the fol-
lowing rule:

C,D→ ∃(u1, . . . , un).P (concrete predicate)

where P ∈ pred(D) is an n-ary predicate name, and u1, . . . , un are n feature chains. The
semantics of the new operator is the following:

(∃(u1, . . . , un).P)I = {
a ∈ 
I | 〈uI1 (a), . . . , uIn (a)〉 ∈ PD}

where the interpretation function ·I is extended to map every feature name p to a partial
function pI :
I → 
I ∪ dom(D). Thus, we can review the previous example of the
concept defining the managers that spend each month more money than they earn:

(Manager � ∀MONTHLY-BALANCE.∃(INCOME,EXPENSES). �)

where “�” is a binary predicate symbol, and INCOME,EXPENSES are features mapping
individuals of the abstract domain 
I – i.e., the monthly balance of a manager – into
elements of the numeric domain dom(D) – i.e., the amount of their income and expenses.

Concrete domains are restricted to so-called admissible concrete domains in or-
der to keep the inference problems of this extension decidable. We recall that, roughly
speaking, a concrete domain D is called admissible iff (1) pred(D) is closed under nega-
tion and contains a unary predicate name � for dom(D), and (2) satisfiability of finite
conjunctions over pred(D) is decidable. Given an admissible concrete domain, a sound,
complete and terminating reasoning technique for checking concept subsumption and
satisfiability is devised. In fact, condition (1) says that pred(D) is a complete language
on D allowing for the reduction of the reasoning services to the problem of checking
for knowledge base consistency. The second condition is crucial for the decidability
of the reasoning procedure since, as a subtask, it will have to decide satisfiability of
conjunctions of the form

∧k
i=1 Pi(x

(i)) in the concrete domain.
In this framework, assuming a concrete domain composed by temporal intervals

and the Allen’s predicates, the concept of Mortal can be defined as follows:

Mortal
.= ALIVE-STATE : LivingBeing� DEAD-STATE : (¬LivingBeing)
� ∃(ALIVE-STATE ◦ HAS-TIME,DEAD-STATE ◦ HAS-TIME).meets

i.e., a mortal is any individual having the property of being alive at some temporal inter-
val that meets some other temporal interval at which the same individual has the property
of being dead.

It is important to emphasize a major difference of this approach, that formalizes the
internal point of view in temporally extending a DL, from the languages surveyed in the
previous sections that adopt an external perspective. Temporal description logics that
follow the external approach provide a logical framework for describing objects whose
properties may vary in time. For example, a mortal describes all those objects “being
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alive” at certain time and then “being dead” at some following time (we use below the
Bettini’s language):

Mortal
.= LivingBeing� ✸(met-by). ¬LivingBeing

In the external approach a property is represented by means of a concept expression,
which is interpreted as the class of objects having that property at the time of eval-
uation. Since time is embedded in the semantics, all the language constructors have
time-varying extensions, thus the same object may satisfy different properties at dif-
ferent times. In the concrete domain approach – just like in the T-REX system – the
representation of time is lifted up to the language level – i.e., there is an internal rep-
resentation of time. Considering the definition of mortal, in order to assign a temporal
property (e.g., being alive) a copy of the object should be created by an explictly func-
tional relation (ALIVE-STATE), and the temporal property will hold for that copy. To
specify a validity time for this property an ad-hoc function (called HAS-TIME in the
example) associates to the object copy its valid temporal interval. This has the drawback
that, as far as an object has different temporal properties, different copies of the object
itself (one for each temporal property) will be generated in the internal approach.

We introduce now an example which shows that the ALC(D) description logic
is more suitable to describe properties of temporal objects (e.g., intervals) rather than
properties of objects varying in time (like in the Mortal example). In [5] the Allen’s
interval relations is internally defined using the set of real numbers R together with
the predicates ≤,�,≥,�,=, �= as the concrete admissible domain. The Interval
concept can be defined as an ordered pair of real numbers by referring to the concrete
predicate ≤ applied to the features LEFT-HAS-TIME and RIGHT-HAS-TIME:

Interval
.= ∃(LEFT-HAS-TIME,RIGHT-HAS-TIME). ≤

Allen’s relations are binary relations on two intervals and are represented by the Pair
concept which uses the features FIRST and SECOND:

Pair
.= ∃FIRST.Interval � ∃SECOND.Interval

Now Allen’s relation can be easily defined as concepts:

C-Equals
.= Pair � ∃(FIRST ◦ LEFT-HAS-TIME,SECOND ◦ LEFT-HAS-TIME). =

� ∃(FIRST ◦ RIGHT-HAS-TIME,SECOND ◦ RIGHT-HAS-TIME). =
C-Before

.= Pair � ∃(FIRST ◦ RIGHT-HAS-TIME,SECOND ◦ LEFT-HAS-TIME). ≤
C-Meets

.= Pair � ∃(FIRST ◦ RIGHT-HAS-TIME,SECOND ◦ LEFT-HAS-TIME). =

...

An extension to the language ALC(D) was studied by Haarslev et al. [26]. The
new language, called ALCRP(D), allows for the definition of roles based on properties
between concrete objects (RP stands for Role definition based on Predicates). The new
role-forming operator has the following syntax:

∃(u1, . . . , un)(v1, . . . , vm).P (role forming predicate restriction),
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where u1, . . . , un, v1, . . . , vm are feature chains, and P ∈ pred(D)with arity n+m. The
interpretation function has to be extended in order to satisfy the following equation:

(∃(u1, . . . , un)(v1, . . . , vm).P)I

= {
(a, b) ∈ 
I ×
I | (uI1 (a), . . . , uIn (a), vI1 (b), . . . , vIm(b)) ∈ PD}

.

Given an abstract object, say a, it is possible to refer to all those objects whose concrete
facet relates with the concrete facet of the starting object a by some specific concrete
predicate. In this way we can quantify over these roles using both the existential and the
universal quantifier on roles. As a simple example, we can define the BEFORE role as
being the counterpart of the concrete predicate before in the abstract domain, and use it
for defining a new concept NoBefore, as the class of objects which do not have any
BEFORE-related object:

BEFORE
.= ∃(HAS-TIME)(HAS-TIME).before

NoBefore
.= ∀BEFORE.⊥

It is important to point out the difference with the similar definition which can be done
using a description logic that follows an external approach. As an example, let us con-
sider Bettini’s logic:

NoBefore
.= ✷(before). ⊥

Assuming that in both cases the temporal structure is isomorphic to the real numbers .,
while the concept NoBefore in the concrete domain approach is satisfiable, denoting
all the objects of the abstract domain having no BEFORE-related objects, the concept
NoBefore in the external approach is clearly unsatisfiable. The reason is that the con-
crete domain approach follows an internal temporal representation. This means that
we can only quantify over the abstract domain and not over the concrete one, i.e., we
can only quantify over the abstract objects which may possibly have a specific temporal
facet lifted up from the concrete domain. On the other hand, in the logics that follow
an external approach (like Bettini’s logic) both the abstract objects and the temporal el-
ements are first-class citizens, resulting in a language where it is possible to quantify on
both abstract objects and temporal elements. A partial study on the relative expressive
power between the languages TL-ALCF (see section 4.3) and ALCF(D) has been con-
ducted [4]. In particular, it has been proved how the satisfiability of a TL-ALCF con-
cept can be reduced to the satisfiability of some corresponding concept in the language
ALCF(D). The limit of this result is that the encoding preserves only satisfiability, and
it does not clarify the real relationships between the two languages with respect to the
problems of subsumption and logical implication.

As far as the computational properties are concerned, Lutz [34] proves that concept
satisfiability, subsumption and ABox consistency for the logics ALC(D) and ALCF(D)
are PSPACE-complete – provided that satisfiability in the concrete domain is in PSPACE.
In the case of ALCRP(D), it has been proved the undecidability of reasoning in the full
language [26]. However, the authors propose a restricted language for which a sound,
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complete and terminating reasoning procedure based on tableaux calculus is presented.
The undecidability result is due to the interaction of complex roles with existential and
universal restrictions.

Finally we should mention the flexibility of these appoaches in order to represent a
variety of concrete domains: every concrete domain can be embedded in these logics as
far as it is admissible. Indeed, ALCRP(D) has been considered both over the Allen’s
algebra [33], and over a spatial concrete domain [26] where the concrete predicates are
the binary spatial relations of the RCC-8 theory [38].

7. State-change based description logics

In this section we illustrate the approaches where the temporal dimension is only
implicit in the language. Both languages presented below describe essentially sets of
linearly ordered objects. Time has no first-class citizenship in these representation lan-
guages.

7.1. The CLASP system

Devambu and Litman [17,18] describe the CLASP system (CLAssification of
Scenarios and Plans), a DL system extending the notion of subsumption and classifi-
cation to plans, in order to build an efficient information retrieval system. CLASP was
used to represent plan-like knowledge in the domain of telephone switching software by
extending the use of the software information system LASSIE [19]. CLASP is designed
for representing and reasoning about large collections of plan descriptions, using a lan-
guage able to express ordering, conditional and looping operators. Following the STRIPS

tradition, plan descriptions are built starting from states and actions, both represented by
using the CLASSIC [12] description logic. The simplest action is represented by the
atomic CLASSIC concept Action (figure 13), which constrains every kind of action to

(
DEFINE-CONCEPT Action

(PRIMITIVE (AND Classic-Thing
(AT-LEAST 1 ACTOR)
(ALL ACTOR Agent)
(EXACTLY 1 PRECONDITION)
(ALL PRECONDITION State)
(EXACTLY 1 ADD-LIST)
(ALL ADD-LIST State)
(EXACTLY 1 DELETE-LIST)
(ALL DELETE-LIST State)
(EXACTLY 1 GOAL)
(ALL GOAL State)))

)

Figure 13. The generic Action concept.
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have at least one ACTOR, all of whose ACTORs are of type Agent, whose PRECONDI-
TION is of type State, whose ADD-LIST is of type State, whose DELETE-LIST
is of type State, and whose GOAL is of type State. Note that EXACTLY is an
operator simulating the conjunction of AT-LEAST and AT-MOST constructs.

State descriptions are restricted to a simple conjunction of atomic CLASSIC con-
cepts. Furthermore, the concept State is a predefined atomic CLASSIC concept spe-
cializing Classic-Thing:

(
DEFINE-CONCEPT State

(PRIMITIVE Classic-Thing)
)

Actions and states can be further restricted; for example, the following is the defi-
nition for a System-Act:

(
DEFINE-CONCEPT System-Act

(AND Action

(ALL ACTOR System-Agent))
)

which fully defines System-Act as the subconcept of Actionwhere the fillers of the
role ACTOR are restricted to belong to the concept System-Agent.

A plan is a conceptual description which uses the roles PLAN-EXPRESSION,
INITIAL and GOAL. While INITIAL and GOAL roles can be restricted with CLASSIC

concepts, the PLAN-EXPRESSION role is restricted to a plan concept expression which
is compositionally built from CLASSIC actions and states concepts using the operators
SEQUENCE, LOOP, REPEAT, TEST, OR and SUBPLAN, as showed by the syntax
rules of figure 14, where <action-concept> and <state-concept> refer to CLASSIC con-
cepts subsumed by the concepts Action and State. The intuitive meaning of the
CLASP constructs is clarified by the following examples:

• (SEQUENCE A B C): An action of type A is followed by an action of type B, which
is followed by an action of type C.

• (LOOP A): Zero or more repetitions of actions of type A.

• (REPEAT 7 A): Equivalent to (SEQUENCE A A A A A A A).

<plan-expression> ::= <action-concept>

| (SEQUENCE <plan-expression> +)
| (LOOP <plan-expression>)

| (REPEAT <integer> <plan-expression>)

| (TEST (<state-concept> <plan-expression>)+)
| (OR <plan-expression> +)
| (SUBPLAN <symbol>)

Figure 14. Plan expression syntax.
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(
DEFINE-PLAN Pots-Plan

(AND Plan
(ALL PLAN-EXPRESSION

(SEQUENCE (SUBPLAN Originate-And-Dial-Plan)
(TEST (Callee-On-Hook-State

(SUBPLAN Terminate-Plan))
(Callee-Off-Hook-State

(SEQUENCE
Non-Terminate-Act
Caller-On-Hook-Act
Disconnect-Act))))))

)

Figure 15. The Pots-Plan expression.

• (TEST (S1 A) (S2 B)): If the current state is of type S1, then action type A, else if
state type S2, then action type B.

• (OR A B): Either action type A or type B.

• (SUBPLAN Plan-Name): Insert the Plan-Name’s definition in the current plan-
expression.

The root of the plan taxonomy is the following CLASP concept Plan:
(
DEFINE-PLAN Plan
(PRIMITIVE (AND Clasp-Thing

(EXACTLY 1 INITIAL)
(ALL INITIAL State)
(EXACTLY 1 GOAL)
(ALL GOAL State)
(EXACTLY 1 PLAN-EXPRESSION)
(ALL PLAN-EXPRESSION (LOOP Action))))

)

More specific plans are built by refining the roles PLAN-EXPRESSION, INITIAL
and GOAL. The example domain in which CLASP is tested is that one of telephone
switching software. Figure 15 shows the plan Pots-Plan which makes use of the
previously defined plans Originate-And-Dial-Plan and Terminate-Plan.
Intuitively, the plan Pots-Plan describes a situation in which the caller picks up a
phone, gets a dial tone, and dials a callee. If the callee’s phone is on-hook (TEST on
Callee-On-Hook-State), the call goes through; if the callee’s phone is off-hook
(TEST on Callee-Off-Hook-State), the caller gets a busy signal, hangs up, and
is disconnected.

CLASP gives also the possibility to describe individual plans, called scenarios.
Every scenario corresponds to an initial state, a final state and a sequence of individual
actions. A scenario is well-formed if the given sequence of individual actions will indeed
transform the specified initial state into the goal state. Whenever a scenario is created,
CLASP checks it for well-formedness. During this process any unspecified intermediate
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state is inferred, and any partially specified intermediate state is completed by using
STRIPS-like rules.

The temporal expressivity of CLASP is implicit in the representation language pro-
vided for building plans. In this language you can essentially express a sequential tem-
poral order of actions, where each action is instantaneous. Plan definitions can use
disjunction to represent alternative ways of accomplishing a given plan, and iteration
constructors to abstractly describe repetitions of the same action.

The authors provided CLASP both with a plan type subsumption algorithm, and
with a plan recognition algorithm that verifies whether a scenario fulfills the conditions
to belong to a given plan type. The key idea in developing both algorithms is the ob-
servation that plan concept expressions correspond to regular expressions. CLASP is
able to trasform each plan expression into a finite state automaton. This correspondence
allows the authors to develop algorithms for subsumption and recognition by integrat-
ing work in automata theory with work in concept subsumption and recognition. More
formally, a plan description, P , subsumes another plan description, Q, if there is a sub-
sumption relation between the expressions restricting the roles INITIAL, GOAL and
PLAN-EXPRESSION. Since INITIAL and GOAL are restricted with CLASSIC con-
cepts standard algorithms for computing terminological subsumption are adopted. The
problem of plan expressions subsumption is reduced to finite automata (or regular lan-
guage) subsumption. The case of plan recognition algorithm is similar. A scenario s
satisfies a plan P if the actual fillers of INITIAL and GOAL satisfy the CLASSIC con-
cept restrictions of the respective roles in P , and the plan expression of s is a string in
the language defined by the abstract plan expression of P .

7.2. The RAT system

Heinsohn et al. [30] describe the RAT system, used in the WIP project at the Ger-
man Research Center for AI (DFKI). They use description logics to represent both the
world states and the atomic actions. A second formalism is added to compose actions
in plans and to reason about simple temporal relationships. RAT actions are defined by
the change of the world state they cause, and they are instantaneous as in the STRIPS-
like systems, while plans are linear sequences of actions. Thus, as for CLASP, explicit
temporal constraints are not expressible in the language.

Formally, an action is defined as a triple of parameters, pre-conditions and post-
conditions, 〈pars, pre, post 〉. As an example, consider:

PutCupUnderWaterOutlet
.=

〈(agent : Person � object : Cup � machine : EspressoMachine),
(object ◦ position ↓ agent ◦ has-hand ◦ inside-region),

(object ◦ position ↓ machine ◦ has-water-outlet ◦ under-region)〉
where agent, object and machine are the formal parameters of the action; the pre-
conditions state that the Cup is held by the agent’s hand; the post-conditions state that
the Cup is located under the water-outlet.
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Actions can be composed to build plan schemata. A plan schema is a triple of ac-
tion parameters, sequence of actions, and equality constraints over the action parameters,
〈pars, seq, cons 〉:
MakeEspresso

.=
〈(agent : Person � object1 : Cup � object2 : EspressoMachine),
(. . . ,

(A5 : PutCupUnderWaterOutlet),
(A6 : TurnSwitchToEspresso),
. . .),

(object2 ↓ A5 ◦ machine � object2 ↓ A6 ◦ machine)〉
The plan MakeEspresso has one agent and two objects as parameters. Each
subaction – or subplan – in the sequence is prefixed by a label that will be used as an
index in the constraint part which, in this case, states that the EspressoMachine,
the machine of the action PutCupUnderWaterOutlet, and the machine of the
action TurnSwitchToEspresso are the same object.

The state representation in RAT uses the feature construct – i.e., a functional role –
to describe the parameters of an action. Furthermore, the possibility to express equality
constraints between paths of features is a powerful mechanism in order to bind action
parameters. While the language for the state representation is more expressive than the
one used in CLASP, the language for composing plans is much richer in CLASP than in
RAT, which only allows for sequences.

The most important reasoning services offered by RAT are the simulated execution
of parts of a plan, and the feasibility checking of a plan. The feasibility test is similar
to the usual consistency check for a concept description: the pre- and post-conditions of
individual actions composing the plan are temporally projected, respectively backwards
and forward. This procedure differs from the same service offered in CLASP due to
the richer expressiveness of state descriptions. If the feasibility test does not lead to an
inconsistent initial, final or intermediate state, the plan is feasible and the global pre- and
post-conditions are determined as a side effect.

8. Conclusions

In this paper we have presented an overview of the various approaches found in the
literature to represent temporal knowledge using description logics. The most interesting
and general approaches are based on the combination of a standard description logic
with some temporal logic, either interval-based or point-based. We have first analyzed
the results for interval-based temporal description logics. It turns out that a full fledged
interval-based logic is undecidable [10,28]. However, there are still fragments which
are interesting from the application point of view which have been found decidable [3].
On the other hand, point-based logics have nicer computational properties [40,50]. The
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most expressive decidable logic is CIQU ,S , which allows for temporal operators on
concepts and formulae. In general, having temporal operators on the role side leads to
undecidability when considering the usual temporal structures [49]. The combination
of a description logic with a temporal concrete domain [26] has been pointed out as a
promising framework.

As a suggestion for the development of the field, it might be then very interest-
ing to devise a general framework subsuming most of the work presented here, based
on the combination of a description logic, seen as a propositional modal logic over
unconstrained frames, with some propositional temporal logic, over various temporal
structures and including some notion of time granularity.
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