
Models and Issues in Data Stream Systems
�

BrianBabcock ShivnathBabu MayurDatar Rajeev Motwani JenniferWidom

Departmentof ComputerScience

Stanford University

Stanford, CA 94305�
babcock,shivnath,datar,rajeev,widom � @cs.stanford.edu

Abstract

In this overview paper we motivate the needfor andresearchissuesarisingfrom a new modelof
dataprocessing.In this model,datadoesnot take the form of persistentrelations,but ratherarrivesin
multiple, continuous,rapid, time-varying datastreams. In additionto reviewing pastwork relevant to
datastreamsystemsandcurrentprojectsin thearea,thepaperexplorestopicsin streamquery languages,
new requirementsandchallengesin query processing,andalgorithmic issues.

1 Introduction

Recently a new class of data-intensive applications hasbecome widely recognized: applications in which
the datais modeled bestnot aspersistent relations but rather astransientdata streams. Examplesof such
applicationsincludefinancialapplications,network monitoring, security, telecommunicationsdatamanage-
ment,webapplications, manufacturing, sensor networks, andothers. In the datastreammodel,individual
dataitemsmayberelational tuples,e.g.,network measurements,call records,webpagevisits,sensorread-
ings, andso on. However, their continuousarrival in multiple, rapid, time-varying, possibly unpredictable
andunbounded streamsappearsto yield somefundamentally new research problems.

In all of the applications cited above, it is not feasible to simply load the arriving datainto a tradi-
tional databasemanagementsystem(DBMS) andoperate on it there. Traditional DBMS’sarenot designed
for rapid andcontinuousloading of individual dataitems,andthey do not directly support the continuous
queries [84] thataretypical of datastreamapplications. Furthermore,it is recognized thatboth approxima-
tion [13] andadaptivity [8] arekey ingredients in executing queriesandperforming otherprocessing(e.g.,
dataanalysisandmining) over rapid datastreams,while traditional DBMS’s focus largely on theopposite
goalof precise answerscomputedby stable query plans.

In this paper we considerfundamentalmodelsandissuesin developinga general-purposeData Stream
ManagementSystem(DSMS). Wearedevelopingsuchasystem atStanford[82], andwewill touchonsome
of our own work in this paper. However, we alsoattemptto providea general overviewof thearea, along
with its relatedandcurrent work. (Any glaring omissions are,naturally, our own fault.)

Webegin in Section2 by consideringthedatastreammodelandqueriesoverstreams.In thissection we
take a simpleview: streamsareappend-only relationswith transienttuples,andqueriesareSQL operating
over theselogical relations. In latersectionswe discussseveral issues thatcomplicatethemodelandquery
language,suchas ordering, timestamping, and sliding windows. Section2 also presents someconcrete
examples to ground our discussion.

In Section3 we review recent projects geared specifically towardsdatastream processing,aswell as
a plethoraof pastresearchin areasrelated to datastreams: active databases,continuous queries, filtering

�
Work supported by NSF GrantIIS-0118173. Mayur Datarwasalsosupported by a Microsoft GraduateFellowship. Rajeev

Motwani receivedpartialsupport from anOkawa Foundation ResearchGrant.

1

systems,view management,sequencedatabases, andothers. Although muchof this work clearly hasap-
plications to datastreamprocessing,we hope to show in this paperthat there aremany new problemsto
addressin realizing a complete DSMS.

Section4 delvesmoredeeply into theareaof query processing, uncoveringanumber of important issues,
including:

� Queries that require anunboundedamount of memoryto evaluate precisely, andapproximatequery
processing techniquesto addressthis problem.

� Sliding window query processing(i.e., considering “recent” portions of the streamsonly), both as
an approximation technique andasan option in the query languagesincemany applications prefer
sliding-window queries.

� Batchprocessing, sampling, andsynopsisstructuresto handle situationswherethe flow rateof the
input streamsmayoverwhelmthequery processor.

� Themeaningandimplementation of blocking operators(e.g.,aggregationandsorting) in thepresence
of unending streams.

� Continuousqueriesthatareregisteredwhenportionsof thedatastreamshavealready “passedby,” yet
thequerieswish to referencestream history.

Section5 then outlinessomedetails of a query languageandan architecture for a DSMSqueryprocessor
designedspecifically to addresstheissuesabove.

In Section6 wereview algorithmicresults in datastream processing. Ourfocusis primarily onsketching
techniquesandbuilding summarystructures(synopses). Wealsotouchuponsliding window computations,
present somenegative results, anddiscussa few additional algorithmic issues.

We conclude in Section7 with someremarks on the evolution of this new field, and a summaryof
directionsfor further work.

2 The Data Stream Model

In thedatastreammodel,someor all of theinputdatathatareto beoperatedonarenotavailablefor random
access from disk or memory, but rather arrive asoneor morecontinuous datastreams. Datastreamsdiffer
from theconventional storedrelation modelin several ways:

� Thedataelementsin thestreamarrive online.

� Thesystem hasno control over theorder in which data elements arrive to beprocessed,either within
a datastreamor acrossdatastreams.

� Datastreamsarepotentially unboundedin size.

� Oncean elementfrom a datastream hasbeenprocessedit is discardedor archived — it cannot be
retrievedeasily unless it is explicitly storedin memory, which typically is smallrelative to thesizeof
thedatastreams.

Operating in thedatastreammodeldoesnot precludethepresenceof somedatain conventional stored
relations. Often, datastream queriesmay perform joins between datastreamsandstored relational data.
For thepurposesof this paper, we will assumethat if stored relationsareused, their contentsremainstatic.
Thus,weprecludeany potential transaction-processingissuesthatmight arisefrom thepresenceof updates
to storedrelationsthatoccur concurrently with data streamprocessing.

2

2.1 Queries

Queriesover continuousdatastreamshave muchin commonwith queries in a traditional databasemanage-
mentsystem. However, thereare two important distinctions peculiar to the datastream model. The first
distinctionis betweenone-timequeriesandcontinuousqueries [84]. One-timequeries(aclassthatincludes
traditional DBMS queries)arequeriesthatareevaluatedonceover a point-in-time snapshot of thedataset,
with theanswerreturnedto theuser. Continuousqueries, on theotherhand, areevaluatedcontinuously as
datastreamscontinueto arrive. Continuousqueriesarethemoreinteresting classof datastreamqueries,and
it is to themthatwe will devote mostof our attention. Theanswerto a continuousquery is producedover
time,always reflecting thestream dataseensofar. Continuousqueryanswersmaybestoredandupdatedas
new data arrives,or they may be producedasdatastreams themselves. Sometimesoneor the othermode
is preferred.For example, aggregationqueriesmayinvolve frequentchangesto answertuples,dictating the
stored approach,while join queries aremonotonic andmay produce rapid, unboundedanswers, dictating
thestreamapproach.

The second distinction is between predefinedqueries andad hoc queries. A predefinedquery is one
that is supplied to the datastreammanagement system before any relevant datahasarrived. Predefined
queriesaregenerally continuousqueries,althoughscheduledone-time queriescanalsobe predefined. Ad
hocqueries,on theother hand, areissuedonline after thedatastreamshave already begun. Ad hocqueries
canbeeitherone-timequeriesor continuousqueries. Ad hocqueriescomplicatethedesign of adatastream
managementsystem, both becausethey arenot known in advance for the purposesof query optimization,
identification of commonsubexpressions across queries, etc., and more importantly because the correct
answerto an ad hoc query may require referencing dataelements that have already arrived on the data
streams (and potentially have already beendiscarded). Ad hoc queries are discussedin more detail in
Section4.6.

2.2 Motivating Examples

Examplesmotivating a datastream system canbe found in many application domains including finance,
webapplications,security, networking, andsensor monitoring.

� Traderbot [85] is a web-basedfinancialsearch engine thatevaluatesqueriesover real-time streaming
financial datasuchasstock tickersandnews feeds. TheTraderbot website[85] givessomeexamples
of one-time andcontinuousqueriesthatarecommonly posed by its customers.

� Modern security applicationsoften applysophisticatedrulesover network packet streams.For exam-
ple, iPolicy Networks[52] providesanintegratedsecurity platform providing servicessuch asfirewall
support andintrusiondetection over multi-gigabitnetwork packet streams. Sucha platform needsto
perform complex stream processing including URL-filtering basedon tablelookups,andcorrelation
acrossmultiple network traffic flows.

� Large web sitesmonitor web logs (clickstreams) online to enable applications suchaspersonaliza-
tion, performancemonitoring, andload-balancing. Somewebsitesservedby widely distributedweb
servers(e.g.,Yahoo[95]) mayneedto coordinatemany distributedclickstream analyses,e.g.,to track
heavily accessedwebpagesaspartof their real-time performancemonitoring.

� Thereareseveralemerging applicationsin theareaof sensor monitoring [16, 58] wherealargenumber
of sensorsaredistributedin thephysical world andgeneratestreamsof datathatneedto becombined,
monitored,andanalyzed.

3

The application domainthat we usefor moredetailed examplesis network traffic management, which
involves monitoring network packet header information across a set of routers to obtain information on
traffic flow patterns.Basedon a description of Babu andWidom [10], we delve into this example in some
detail to help illustratethat continuousqueries arisenaturally in real applications and that conventional
DBMS technology doesnot adequately support such queries.

Consider the network traffic managementsystemof a large network, e.g.,the backbonenetwork of an
InternetServiceProvider (ISP)[30]. Suchsystemsmonitoravariety of continuousdatastreamsthatmaybe
characterizedasunpredictableandarriving at a high rate,includingbothpacket tracesandnetwork perfor-
mancemeasurements. Typically, current traffic-managementtools either rely on a special-purposesystem
thatperformsonlineprocessingof simplehand-coded continuousqueries,or they just log thetraffic dataand
perform periodic offline query processing.ConventionalDBMS’saredeemedinadequateto providethekind
of online continuousqueryprocessingthatwould bemostbeneficial in this domain. A datastream system
thatcould provide effectiveonlineprocessing of continuousqueriesover datastreamswould allow network
operatorsto install, modify, or remove appropriate monitoring queries to support efficient managementof
theISP’s network resources.

Consider the following concretesetting. Network packet traces arebeing collectedfrom a numberof
links in thenetwork. Thefocusis on two specific links: a customerlink, C, which connectsthenetwork of
a customerto the ISP’s network, anda backbonelink, B, which connects two routerswithin the backbone
network of theISP. Let � and � denote two streamsof packet tracescorresponding to these two links. We
assume,for simplicity, thatthetraces contain just thefivefieldsof thepacket header thatarelisted below.

src: IP addressof packet sender.

dest: IP addressof packet destination.

id: Identificationnumber givenby sender sothatdestinationcanuniquely identify eachpacket.

len: Lengthof thepacket.

time: Time whenpacket header wasrecorded.

Consider first the continuousquery �	� , which computes load on the link B averaged over one-minute
intervals,notifying thenetwork operatorwhentheloadcrossesa specified threshold
 . Thefunctionsget-
minute andnotifyoperator have thenatural interpretation.

� � : SELECT notifyoperator(sum(len))
FROM �
GROUPBY getminute(time)
HAVING sum(len) ��

While the functionality of sucha querymay possibly be achieved in a DBMS via the useof triggers,we
arelikely to prefer the useof special techniquesfor performancereasons. For example,consider the case
wherethelink B hasa very high throughput (e.g.,if it wereanoptical link). In thatcase, we maychooseto
compute anapproximate answerto � � by employing random samplingon thestream— a taskoutsidethe
reachof standardtrigger mechanisms.

Thesecond query �� isolatesflows in thebackbonelink anddeterminestheamountof traffic generated
by each flow. A flow is definedhereasa sequenceof packetsgrouped in time, andsentfrom a specific
sourceto a specificdestination.

4

�� : SELECT flowid, src,dest, sum(len) AS flowlen
FROM (SELECT src,dest,len, time

FROM �
ORDER BY time)

GROUPBY src,dest,getflowid(src,dest, time)
AS flowid

Heregetflowid is a user-definedfunction which takes thesourceIP address, thedestination IP address,
andthetimestampof apacket,andreturnstheidentifier of theflow to which thepacketbelongs.Weassume
thatthedatain theview (or table expression) in theFROM clauseis passedto thegetflowid function in
theorderdefined by theORDERBY clause.

Observe thathandling �� over stream� is particularly challenging dueto thepresenceof GROUPBY
andORDER BY clauses,which leadto “blocking” operatorsin a queryexecution plan.

Consider now thetaskof determining thefraction of thebackbonelink’ s traffic thatcanbeattributedto
thecustomernetwork. This query, ��� , is anexampleof thekind of adhoccontinuousqueries thatmaybe
registeredduring periodsof congestionto determinewhether thecustomernetwork is thelikely cause.

��� : (SELECT count (*)
FROM C, B
WHERE C.src= B.srcandC.dest= B.dest

andC.id = B.id) �
(SELECT count (*) FROM �)

Observe that ��� joins streams � and � on their keys to obtaina countof thenumber of commonpackets.
Sincejoining two streamscould potentially require unboundedintermediatestorage(for exampleif thereis
no boundon the delaybetween a packet showing up on the two links), theusermayprefer to compute an
approximateanswer. Oneapproximationtechniquewould beto maintainbounded-memorysynopsesof the
two streams(seeSection6); alternatively, onecould exploit aspectsof the application semantics to bound
the required storage(e.g.,we mayknow that joining tuplesarevery likely to occurwithin a boundedtime
window).

Our final example, ��� , is a continuousquery for monitoring the source-destination pairs in the top 5
percent in termsof backbonetraffic. For easeof exposition, we employ the WITH construct from SQL-
99 [87].

��� : WITH LoadAS
(SELECT src,dest,sum(len) AS traffic
FROM �
GROUPBY src,dest)

SELECT src,dest, traffic
FROM LoadAS ���
WHERE (SELECT count(*)

FROM LoadAS �	
WHERE � .traffic ��� � .traffic) �
(SELECT ����� �"! count(*) FROM Load)

ORDER BY traffic

5

3 Review of Data Stream Projects

We now provide an overviewof several pastandcurrent projects related to datastream management.We
will revisit someof theseprojects in later sectionswhenwediscusstheissuesthatwearefacing in building
a general-purposedata streammanagement system at Stanford.

Continuousqueries wereusedin the Tapestry system [84] for content-basedfiltering over an append-
only databaseof email and bulletin boardmessages. A restricted subset of SQL was used as the query
languagein orderto provide guaranteesaboutefficient evaluation andappend-only query results. TheAlert
system [74] providesa mechanismfor implementing event-condition-action style triggers in a conventional
SQL database,by using continuousqueries definedover special append-only active tables. The XFilter
content-basedfiltering system [6] performs efficient filtering of XML documents basedon userprofiles
expressedascontinuousqueriesin theXPath language[94]. Xyleme[67] is a similar content-basedfiltering
system that enables very high throughput with a restrictedquery language. The Tribeca stream database
manager [83] provides restricted querying capability over network packet streams.The Tangram stream
query processingsystem [68, 69] usesstream processing techniquesto analyze large quantities of stored
data.

The OpenCQ[57] andNiagaraCQ [24] systemssupport continuous queriesfor monitoring persistent
datasetsspread over a wide-areanetwork, e.g.,websitesover theInternet. OpenCQusesa queryprocess-
ing algorithm basedon incrementalview maintenance,while NiagaraCQ addressesscalability in number
of queries by proposingtechniquesfor grouping continuousqueriesfor efficient evaluation. Within theNi-
agaraCQproject, Shanmugasundaram et al. [79] discussthe problem of supporting blocking operatorsin
query plansover data streams,andViglas andNaughton [89] proposerate-basedoptimization for queries
overdatastreams, anew optimizationmethodology thatis basedonstream-arrival anddata-processingrates.

TheChronicledatamodel[55] introducedappend-only orderedsequencesof tuples(chronicles), a form
of datastreams.They defined a restrictedview definition languageandalgebra(chronicle algebra) that
operatesover chronicles togetherwith traditional relations.Thefocusof thework wasto ensure thatviews
definedin chronicle algebra could be maintained incrementally without storing any of the chronicles. An
algebra anda declarative query languagefor querying ordered relations(sequences) wasproposedby Se-
shadri, Livny, andRamakrishnan[76, 77, 78]. In many applications,continuousqueries needto referto the
sequencing aspectof streams,particularly in theform of slidingwindowsoverstreams. Relatedwork in this
category alsoincludeswork on temporal [80] andtime-series databases[31], wherethe ordering of tuples
implied by time canbeusedin querying, indexing, andqueryoptimization.

The body of work on materialized views relates to continuous queries, sincematerialized views are
effectively queriesthatneedto bereevaluatedor incrementally updatedwhenever thebasedatachanges.Of
particularimportanceis work onself-maintenance[15, 45, 71]—ensuring thatenough datahasbeensavedto
maintain a view evenwhenthebasedatais unavailable—andtherelatedproblemof data expiration [36]—
determining whencertain basedata canbediscardedwithout compromisingtheability to maintain a view.
Nevertheless,severaldifferencesexist between materializedviewsandcontinuousqueries in thedatastream
context: continuousqueriesmaystream ratherthanstoretheir results, they maydealwith append-only input
data,they may provide approximateratherthan exact answers,andtheir processingstrategy mayadapt as
characteristics of thedatastreamschange.

The Telegraph project [8, 47, 58, 59] shares sometarget applicationsandbasic technical ideaswith a
DSMS.Telegraph usesan adaptive queryengine (based on the Eddyconcept [8]) to processqueries effi-
ciently in volatile andunpredictableenvironments(e.g.,autonomousdatasourcesovertheInternet,or sensor
networks). MaddenandFranklin [58] focus on queryexecution strategiesover datastreamsgeneratedby
sensors,andMadden etal. [59] discussadaptiveprocessing techniquesfor multiplecontinuousqueries.The
Tukwila system [53] alsosupports adaptive queryprocessing, in orderto perform dynamicdataintegration
over autonomousdatasources.

6

The Aurora project [16] is building a new dataprocessing system targetedexclusively towards stream
monitoring applications. The core of the Aurora system consists of a large network of triggers. Each
trigger is a data-flow graphwith eachnodebeing oneamongsevenbuilt-in operators(or boxesin Aurora’s
terminology). Foreach streammonitoringapplication usingtheAurorasystem,anapplicationadministrator
createsandaddsoneor moretriggersinto Aurora’s trigger network. Aurora performsboth compile-time
optimization(e.g.,reorderingoperators,sharedstatefor commonsubexpressions)andrun-timeoptimization
of thetriggernetwork. As partof run-timeoptimization,Auroradetectsresourceoverload andperformsload
shedding based on application-specific measuresof quality of service.

4 Queries over Data Streams

Queryprocessingin the datastream modelof computation comeswith its own unique challenges. In this
section,wewill outlinewhatweconsiderto bethemostinterestingof thesechallenges,anddescribeseveral
alternative approachesfor resolving them.Theissuesraisedin this section will framethediscussion in the
restof thepaper.

4.1 Unbounded Memory Requirements

Sincedatastreamsarepotentially unboundedin size,the amountof storage required to compute an exact
answerto a datastreamquery may alsogrow without bound. While external memoryalgorithms [91] for
handling datasetslarger thanmainmemoryhave beenstudied, suchalgorithmsarenot well suited to data
stream applications since they do not support continuousqueries andare typically too slow for real-time
response.Thecontinuousdatastreammodelis mostapplicable to problemswheretimely query responses
are important and thereare large volumesof datathat arebeingcontinually producedat a high rateover
time. New datais constantly arriving even asthe old data is being processed; the amount of computation
time perdataelementmustbelow, or elsethelatency of thecomputationwill betoo high andthealgorithm
will not beableto keep pacewith thedatastream.For this reason, we areinterestedin algorithmsthat are
ableto confinethemselvesto mainmemorywithout accessing disk.

Arasuet al. [7] took someinitial stepstowardsdistinguishingbetween queriesthatcanbeansweredex-
actly using agivenboundedamountof memoryandqueries thatmustbeapproximatedunlessdisk accesses
areallowed.They considera limited classof queriesand,for thatclass,provideacompletecharacterization
of thequeriesthatrequire a potentially unbounded amountof memory(proportional to thesizeof theinput
datastreams) to answer. Their resultshows that without knowing the sizeof the input datastreams,it is
impossible to placealimit on thememoryrequirementsfor mostcommonqueriesinvolving joins,unlessthe
domains of the attributesinvolved in the queryarerestricted (either based on known characteristicsof the
dataor through the imposition of query predicates). Thebasicintuition is thatwithout domainrestrictions
an unboundednumber of attribute valuesmustbe remembered, becausethey might turn out to join with
tuples thatarrive in thefuture. Extending theseresults to full generality remains anopen research problem.

4.2 Approximate Query Answering

As describedin theprevioussection,whenwe arelimited to a boundedamountof memoryit is not always
possible to produceexactanswersfor datastreamqueries; however, high-quality approximateanswers are
oftenacceptable in lieu of exactanswers. Approximationalgorithmsfor problemsdefined overdatastreams
hasbeena fruitful research areain the algorithms community in recent years,as discussedin detail in
Section6. This work has led to somegeneral techniquesfor data reduction and synopsisconstruction,
including: sketches[5, 35], random sampling [1, 2, 22], histograms[51, 70], andwavelets [17, 92]. Based
onthesesummarization techniques,wehaveseensomework onapproximatequery answering. For example,

7

recent work [27, 37] develops histogram-basedtechniquesto provide approximateanswersfor correlated
aggregatequeries over datastreams, andGilbert et al. [40] present a general approachfor building small-
space summariesover datastreamsto provide approximateanswersfor many classesof aggregatequeries.
However, research problemsabound in theareaof approximatequery answering, with or without streams.
Eventhebasicnotionof approximationsremains to beinvestigatedin detailfor queriesinvolvingmorethan
simpleaggregation. In thenext two subsections, we will touchupon severalapproaches to approximation,
someof which arepeculiar to thedatastreammodelof computation.

4.3 Sliding Windows

One technique for producing an approximateanswerto a datastream query is to evaluate the query not
over theentirepast history of thedatastreams,but rather only over sliding windowsof recent datafrom the
streams. For example,only datafrom the lastweekcould beconsidered in producingquery answers,with
dataolder thanoneweekbeingdiscarded.

Imposingsliding windowsondatastreamsis anatural methodfor approximation thathasseveralattrac-
tive properties. It is well-definedandeasilyunderstood: the semantics of the approximation areclear, so
thatusersof thesystemcanbeconfident thatthey understand whatis givenup in producingtheapproximate
answer. It is deterministic, so thereis no danger that unfortunate random choiceswill producea badap-
proximation. Most importantly, it emphasizesrecent data, which in themajority of real-world applications
is moreimportant andrelevant thanold data: if oneis trying in real-time to make senseof network traffic
patterns,or phonecall or transaction records,or scientific sensor data, thenin general insightsbased on the
recent pastwill be more informative anduseful than insights based on staledata. In fact, for many such
applications,sliding windows canbethought of not asanapproximation techniquereluctantly imposeddue
to the infeasibility of computing over all historical data,but rather aspart of the desired query semantics
explicitly expressedaspart of the user’s query. For example, queries �#� and �$� from Section2.2, which
trackedtraffic on thenetwork backbone,would likely beappliednot to all traffic over all time,but rather to
traffic in therecent past.

Therearea variety of researchissuesin the useof sliding windowsover datastreams. To begin with,
as we will discussin Section5.1, thereis the fundamentalissueof how we definetimestampsover the
streamsto facilitate theuseof windows. ExtendingSQLor relationalalgebrato incorporateexplicit window
specifications is nontrivial andwe alsotouch uponthis topic in Section 5.1. Theimplementation of sliding
window queriesandtheir impacton query optimization is a largely untouchedarea. In thecase wherethe
sliding window is large enough so that the entire contents of the window cannot be buffered in memory,
therearealsotheoretical challenges in designingalgorithms thatcangive approximateanswers usingonly
theavailable memory. Somerecent results in this vein canbefound in [9, 26].

While existing work on sequenceandtemporaldatabaseshasaddressedmany of the issuesinvolved in
time-sensitive queries (a classthat includessliding window queries) in a relational databasecontext [76,
77, 78, 80], differences in the datastreamcomputation modelpose new challenges. Research in temporal
databases[80] is concerned primarily with maintaining a full history of eachdatavalueover time,while in
a datastream systemwe areconcernedprimarily with processingnew dataelementson-the-fly. Sequence
databases[76, 77, 78] attemptto producequery plansthat allow for stream access, meaningthat a single
scanof theinput datais sufficient to evaluatetheplanandtheamountof memoryrequiredfor planevaluation
is a constant,independent of thedata.This modelassumesthat thedatabasesystemhascontrol over which
sequenceto processtuplesfrom next, e.g.,whenmerging multiple sequences, which wecannot assumein a
datastream system.

8

4.4 Batch Processing, Sampling, and Synopses

Another class of techniquesfor producing approximateanswers is to give up on processing every datael-
ementas it arrives, resorting to somesort of sampling or batch processing technique to speed up query
execution. We describe a general framework for thesetechniques. Supposethat a datastreamquery is
answered using a datastructure that can be maintained incrementally. The most general description of
sucha data structureis that it supports two operations,update(tuple) andcomputeAnswer(). The
update operation is invoked to update thedatastructureaseachnew dataelement arrives,andthecom-
puteAnswer methodproducesnew or updatedresults to thequery. Whenprocessingcontinuousqueries,
thebest scenario is thatbothoperationsarefastrelative to thearrival rateof elements in thedatastreams.In
this case,no special techniquesarenecessaryto keep up with thedata streamandproducetimely answers:
aseachdataelementarrives,it is usedto update thedatastructure, andthennew results arecomputed from
the datastructure,all in lessthanthe average inter-arrival time of the dataelements. If oneor both of the
datastructureoperations areslow, however, thenproducing anexactanswer that is continually up to dateis
not possible. Weconsiderthetwo possible bottlenecks andapproachesfor dealing with them.

Batch Processing

The first scenario is that the update operation is fast but the computeAnswer operation is slow. In
this case,the natural solution is to process the datain batches. Ratherthanproducing a continually up-
to-date answer, the dataelements are buffered as they arrive, and the answerto the query is computed
periodically astime permits. The query answermay be considered approximatein the sensethat it is not
timely, i.e., it representsthe exact answer at a point in the recent past rather thanthe exact answerat the
present moment. This approachof approximation through batch processingis attractive becauseit does
not cause any uncertainty about theaccuracy of theanswer, sacrificing timelinessinstead. It is alsoa good
approachwhendatastreams arebursty. An algorithm that cannot keepup with the peakdatastreamrate
maybeableto handle theaveragestream ratequitecomfortably by buffering thestreamswhentheir rateis
high andcatching up during theslow periods.This is theapproachusedin theXJoin algorithm [88].

Sampling

In thesecondscenario, computeAnswermaybefast, but theupdate operation is slow — it takeslonger
thantheaverageinter-arrival timeof thedataelements. It is futi le to attemptto makeuseof all thedatawhen
computing an answer, becausedataarrivesfaster than it canbe processed. Instead,sometuples mustbe
skippedaltogether, sothatthequery is evaluatedoverasampleof thedatastreamrather thanover theentire
datastream. We obtain an approximateanswer, but in somecases onecangive confidenceboundson the
degreeof errorintroducedby thesamplingprocess[48]. Unfortunately, for many situations(including most
queriesinvolving joins [20, 22]), sampling-based approachescannot givereliable approximationguarantees.
Designing sampling-basedalgorithmsthatcanproduceapproximateanswersthatareprovably closeto the
exactansweris animportantandactive areaof research.

Synopsis Data Structures

Quiteobiously, datastructureswhereboth theupdate andthecomputeAnswer operations arefastare
mostdesirable. For classesof data streamquerieswhereno exactdatastructurewith thedesiredproperties
exists, onecanoften design an approximatedatastructure that maintains a small synopsisor sketch of the
dataratherthanan exact representation, and therefore is able to keepcomputation per dataelementto a
minimum. Performingdatareduction through synopsisdatastructuresasanalternative to batchprocessing

9

or sampling is a fruitful research areawith particular relevanceto the datastreamcomputation model.
Synopsis datastructuresarediscussedin moredetail in Section6.

4.5 Blocking Operators

A blockingqueryoperator is aqueryoperator that is unable to producethefirst tupleof its output until it has
seenits entireinput. Sortingis anexampleof ablockingoperator, asareaggregationoperatorssuchasSUM,
COUNT, MIN, MAX, andAVG. If onethinksaboutevaluatingcontinuousstreamqueriesusingatraditional
treeof queryoperators,wheredatastreamsenterat the leavesandfinal queryanswersareproducedat the
root, then the incorporation of blocking operators into the query tree posesproblems. Sincecontinuous
datastreamsmay be infinite, a blocking operator that hasa datastream asoneof its inputs will never see
its entire input, andtherefore it will never be ableto produceany output. Clearly, blocking operators are
not very suitable to thedata streamcomputation model,but aggregatequeries areextremelycommon, and
sorted datais easier to work with andcanoften be processedmoreefficiently thanunsorted data. Doing
away with blocking operatorsaltogetherwould beproblematic,but dealing with themeffectively is oneof
themorechallenging aspectsof datastream computation.

Blocking operatorsthat arethe root of a treeof query operators aremoretractable thanblocking op-
erators that areinterior nodes in the tree,producing intermediateresults that arefed to other operators for
further processing(for example, the“sort” phase of a sort-mergejoin, or anaggregateusedin a subquery).
Whenwe have a blocking aggregationoperatorat theroot of a query tree,if theoperator producesa single
valueor a small numberof values,thenupdatesto the answercanbe streamedout asthey areproduced.
Whenthe answeris larger, however, suchaswhenthe query answer is a relation that is to be producedin
sorted order, it is morepractical to maintaina datastructurewith the up-to-dateanswer, sincecontinually
retransmitting the entireanswer would be cumbersome. Neitherof these two approaches works well for
blocking operators that produce intermediateresults, however. Thecentral problem is that the results pro-
duced by blocking operatorsmaycontinueto changeover timeuntil all thedatahasbeenseen, sooperators
thatareconsumingthoseresults cannot makereliabledecisionsbasedon theresultsatanintermediatestage
of query execution.

Oneapproachto handling blocking operators asinterior nodesin a query treeis to replacethemwith
non-blocking analogsthatperform approximately thesametask. An exampleof this approachis the juggle
operator [72], which is a non-blocking version of sort: it aims to locally reorder a datastreamso that
tuples thatcomeearlier in thedesiredsortorder areproducedbefore tuplesthatcomelater in thesortorder,
althoughsometuplesmaybedeliveredoutof order. An interestingopenproblemis how to extendthiswork
to other typesof blocking operators, aswell as to quantify the error that is introduced by approximating
blocking operatorswith non-blocking ones.

Tucker et al. [86] have proposeda different approachto blocking operators.They suggestaugmenting
datastreamswith assertionsabout whatcanandcannot appearin the remainderof thedatastream. These
assertions, whicharecalledpunctuations, areinterleavedwith thedataelements in thestreams.An example
of the typeof punctuation onemight seein a streamwith anattributecalled daynumber is “fo r all future
tuples, %�&('*),+*-�.0/*132546� .” Upon seeingthis punctuation, an aggregationoperator that wasgrouping by
daynumbercould streamout its answersfor all daynumbers lessthan10. Similarly, a join operator could
discard all its saved state relating to previously-seentuples in the joining streamwith %�&('()7+*-�.0/(18�946� ,
reducing its memoryconsumption.

An interesting openproblem is to formalize the relationship betweenpunctuation andthe memoryre-
quirementsof a query — e.g.,a query that might otherwiserequire unboundedmemorycould be proved
to beanswerable in boundedmemoryif guarantees about thepresenceof appropriate punctuation arepro-
vided. Closely relatedis the ideaof schema-level assertions (constraints) on datastreams,which alsomay
helpwith blocking operatorsandotheraspects of datastreamprocessing. For example,we mayknow that

10

daynumbers areclusteredor strictly increasing, or whenjoining two stream we mayknow thata kind of
“referential integrity” existsin thearrival of join attributevalues.In bothcaseswemayusetheseconstraints
to “unblock” operatorsor reducememoryrequirements.

4.6 Queries Referencing Past Data

In thedatastreammodelof computation, oncea dataelementhasbeenstreamedby, it cannot berevisited.
This limitation meansthatadhocqueries that areissuedaftersomedatahasalready beendiscardedmaybe
impossible to answeraccurately. Onesimplesolution to this problem is to stipulatethatadhocqueriesare
only allowedto referencefuturedata: they areevaluatedasthough thedatastreamsbeganat thepoint when
thequerywasissued, andany paststream elements areignored (for thepurposesof thatquery). While this
solution maynot appear very satisfying, it mayturn out to beperfectly acceptable for many applications.

A moreambitiousapproachto handling adhocqueries thatreferencepast datais to maintain summaries
of datastreams(in theform of general-purposesynopsesor aggregates)thatcanbeusedto giveapproximate
answersto futureadhocqueries.Takingthis approachrequiresmaking adecision in advanceabout thebest
way to usememoryresourcesto give goodapproximateanswersto abroadrangeof possible futurequeries.
Theproblem is similar in somewaysto problemsin physical databasedesignsuchasselection of indexes
andmaterializedviews [23]. However, thereis an important difference: in a traditional databasesystem,
whenan index or view is lacking, it is possible to go to theunderlying relation, albeit at anincreasedcost.
In thedatastream modelof computation, if theappropriatesummarystructureis notpresent, thenno further
recourseis available.

Evenif adhocqueriesaredeclaredonly to pertain to future data,therearestill research issuesinvolved
in how bestto processthem. In datastream applications, wheremost queries are long-lived continuous
queriesrather thanephemeralone-time queries,thegainsthatcanbeachievedby multi-queryoptimization
canbe significantly greater thanwhat is possible in traditional databasesystems. The presence of ad hoc
queries transforms the problemof finding the bestqueryplan for a setof queries from an offline problem
to an online problem. Ad hoc queriesalso raisethe issue of adaptivity in query plans. The Eddy query
execution framework [8] introducesthe notion of flexible queryplans that adapt to changesin dataarrival
ratesor otherdatacharacteristicsover time. Extending this ideato adapt thejoint planfor asetof continuous
queriesasnew queries areaddedandold ones areremovedremainsanopenresearch area.

5 Proposal for a DSMS

At Stanfordwe have begun the design and prototype implementation of a comprehensive DSMS called
STREAM(for STanfordStREamDatA Manager) [82]. As discussedin earlier sections, in a DSMStradi-
tional one-timequeriesarereplacedor augmentedwith continuous queries, andtechniquessuchassliding
windows, synopsis structures, approximate answers,andadaptive query processingbecome fundamental
featuresof the system. Otheraspects of a completeDBMS alsoneedto be reconsidered, including query
languages, storage andbuffer management,userandapplication interfaces, andtransactionsupport. In this
section we will focus primarily on the query languageandquery processingcomponentsof a DSMS and
only touch uponotherissuesbased on our initial experiences.

5.1 Query Language for a DSMS

Any general-purposedatamanagementsystem musthave aflexible andintuitivemethodby which theusers
of thesystem canexpress their queries.In theSTREAM project,we have chosen to usea modifiedversion
of SQLasthequeryinterfaceto thesystem(althoughwe arealsoproviding a meansto submitquery plans
directly). SQL is a well-known languagewith a large user population. It is also a declarative language

11

thatgivesthesystemflexibil ity in selecting theoptimalevaluationprocedureto producethedesired answer.
Other methodsfor receiving queries from usersare possible; for example, the Aurora systemdescribed
in [16] usesa graphical “boxesandarrows” interfacefor specifying dataflow through the system. This
interfaceis intuitiveandgivestheusermorecontrol over theexactseriesof stepsby which thequery answer
is obtainedthanis providedby a declarative query language.

The main modification that we have madeto standardSQL, in addition to allowing the FROM clause
to refer to streamsas well as relations, is to extend the expressivenessof the query languagefor sliding
windows. It is possible to formulate sliding window queries in SQL by referring to timestampsexplicitly,
but it is often quite awkward. SQL-99 [14, 81] introducesanalytical functions that partially addressthe
shortcomings of SQL for expressingsliding window queries by allowing thespecification of moving aver-
agesandotheraggregationoperationsoversliding windows. However, theSQL-99syntax is notsufficiently
expressive for datastreamqueriessinceit cannot beapplied to non-aggregationoperationssuchasjoins.

The notion of sliding windows requiresat leastan ordering on datastream elements. In many cases,
the arrival order of the elements sufficesasan “implici t timestamp” attachedto eachdataelement;how-
ever, sometimesit is preferable to use“explicit timestamps” provided as part of the datastream. For-
mally we say (following [16]) that a datastream : consists of a set of (tuple, timestamp) pairs: :<;=,>@? �BADCD�FEGA >@? HADCIJEGA6�6�6�JA >@?JK ADC K EML . The timestampattribute could be a traditional timestampor it could be a
sequencenumber — all that is required is that it comesfrom a totally ordereddomainwith a distancemet-
ric. Theordering inducedby thetimestampsis usedwhenselecting thedataelementsmakingup a sliding
window.

We extend SQL by allowing an optional window specification to be provided, enclosedin brackets,
after a stream(or subquery producing a stream) that is supplied in a query’s FROM clause. A window
specification consistsof:

1. anoptional partitioning clause,which partitionsthedata into several groupsandmaintainsa separate
windowfor eachgroup,

2. a window size, either in “physical” units (i.e., the numberof dataelementsin the window) or in
“logical” units (i.e., therange of time coveredby a window, such as30 days), and

3. anoptional filtering predicate.

As in SQL-99, physical windows arespecified usingtheROWS keyword (e.g.,ROWS 50 PRECEDING),
while logical windowsarespecified via theRANGE keyword (e.g.,RANGE 15 MINUTES PRECEDING).
In lieu of a formal grammar, we present several examplesto illustrateour languageextension.

Theunderlying sourceof datafor ourexampleswill beastream of telephonecall records,eachwith four
attributes: customer id, type, minutes, andtimestamp. Thetimestamp attributeis theordering
attributefor therecords.Supposeauserwantedto compute theaveragecall length, but considering only the
tenmostrecent long-distancecallsplacedby eachcustomer. Thequery canbeformulatedasfollows:

SELECT AVG(S.minutes)
FROM CallsS [PARTITION BY S.customer id

ROWS10 PRECEDING
WHERES.type= ’Long Distance’]

wheretheexpressionin bracesdefinesa sliding window on thestreamof calls.
Contrast the previous query to a similar one that computes the average call length considering only

long-distancecallsthatareamongthelast10 calls of all typesplacedby eachcustomer:

12

SELECT AVG(S.minutes)
FROM CallsS [PARTITION BY S.customer id

ROWS10 PRECEDING]
WHERE S.type= ’Long Distance’

Thedistinctionbetweenfiltering predicatesappliedbefore calculating thesliding window cutoffs andpred-
icates applied after windowing motivatesour inclusion of an optional WHEREclausewithin the window
specification.

Here is a slightly morecomplicatedexamplereturning the averagelength of the last 1000 telephone
callsplacedby “Gold” customers:

SELECT AVG(V.minutes)
FROM (SELECTS.minutes

FROM CallsS,CustomersT
WHERES.customer id = T.customer id
AND T.tier = ’Gold’)
V [ROWS1000PRECEDING]

Noticethat in this example, thestreamof callsmustbejoinedto theCustomersrelation beforeapplying the
sliding window.

5.2 Timestamps in Streams

In the previous section, sliding windows aredefinedwith respect to a timestampor sequencenumberat-
tribute representing a tuple’s arrival time. This approachis unambiguous for tuples thatcomefrom a single
stream, but it is lessclearwhatis meantwhenattempting to applysliding windows to composite tuples that
arederivedfrom tuplesfrom multiple underlying streams(e.g.,windowson theoutput of a join operator).
Whatshould thetimestampof atuplein thejoin result bewhenthetimestampsof thetuplesthatwerejoined
to form theresult tuple aredifferent? Timestampissuesalsoarisewhenasetof distributedstreamsmakeup
a singlelogical stream, asin thewebmonitoring application describedin Section2.2,or in truly distributed
streamssuch assensor networks whencomparing timestampsacrossstreamelementsmayberelevant.

In the previoussection we introduced implicit timestamps, in which the system addsa special field
to eachincoming tuple, andexplicit timestamps,in which a dataattribute is designatedasthe timestamp.
Explicit timestampsareusedwheneachtuple corresponds to a real-world event at a particular time that
is of importanceto the meaning of the tuple. Implicit timestamps are usedwhen the datasource does
not already include timestampinformation, or when the exact momentin time associatedwith a tuple is
not important, but general considerations suchas “recent” or “old” may be important. The distinction
betweenimplicit andexplicit timestampsis similarto thatbetween transactionandvalid timein thetemporal
databaseliterature[80].

Explicit timestampshave thedrawback thattuplesmaynot arrive in thesameorderastheir timestamps
— tuples with later timestampsmay comebefore tuples with earlier timestamps.This lack of guaranteed
ordering makesit difficult to perform sliding window computations that aredefinedin relation to explicit
timestamps,or any otherprocessingbased on order. However, aslong asaninput streamis “almost-sorted”
by timestamp,except for local perturbations, then out-of-order tuples can easily be corrected with littl e
buffering. It seemsreasonableto assumethatevenwhenexplicit timestampsareused, tuples will bedeliv-
eredin roughly increasingtimestamporder.

Let us now look at how to assignappropriate timestampsto tuples output by binary operators, using
join asan example. Thereareseveral possible approachesthat could be taken; we discusstwo. The first
approach,which fits better with implicit timestamps,is to provideno guaranteesabout the output order of

13

tuples from a join operator, but to simply assume that tuplesthat arrive earlier are likely to passthrough
the join earlier; exact ordering maydepend on implementation andscheduling vagaries. Eachtuple that is
producedby a join operator is assignedanimplicit timestampthat is setto thetime that it wasproducedby
thejoin operator. This“best-effort” approachhastheadvantagethatit maximizesimplementation flexibil ity;
it hasthedisadvantagethatit makesit impossible to imposeprecisely-defined,deterministicsliding-window
semantics on theresults of subqueries.

Thesecondapproach,whichfits with either explicit or implicit timestamps, is to havetheuser specify as
partof thequery whattimestampis to beassignedto tuplesresulting from thejoin of multiplestreams.One
simplepolicy is that theorderin which thestreamsarelisted in theFROM clause of thequery representsa
prioritization of thestreams.Thetimestampfor a tupleoutput by a join should bethetimestampof thejoin-
ing tuple from theinput streamlisted first in theFROM clause.This approachcanresult in multiple tuples
with thesametimestamp; for thepurposeof ordering theresults, tiescanbebroken usingthetimestamp of
theotherinput stream. For example, if thequery is

SELECT *
FROM S1[ROWS1000PRECEDING],

S2[ROWS100PRECEDING]
WHERE S1.A= S2.B

thentheoutput tupleswould first besortedby thetimestampof S1,andthentieswould bebrokenaccording
to thetimestampof S2.

The second, stricter approachto assigning timestampsto the results of binary operators can have a
drawback from animplementationpoint of view. If it is desirablefor theoutput from a join to besorted by
timestamp, the join operator will needto buffer output tuplesuntil it canbecertainthat future input tuples
will not disrupt the ordering of output tuples. For example,if S1’s timestamphaspriority over S2’s anda
recent S1tuple joinswith anS2tuple, it is possible thata futureS2tuplewill join with anolderS1tuplethat
still falls within thecurrentwindow. In thatcase, thejoin tuple thatwasproducedsecondbelongsbefore the
join tuple thatwasproducedfirst. In a querytreeconsistingof multiple joins, theextra latency introduced
for this reason could propagateup the treein anadditive fashion. If the inputs to the join operatordid not
have sliding windowsat all, thenthejoin operatorcouldnever confidently produceoutputsin sorted order.

As mentionedearlier, sliding windows have two distinct purposes: sometimesthey are an important
partof thequerysemantics,andothertimesthey areanapproximation schemeto improve query efficiency
andreducedatavolumesto a manageable size. Whenthe sliding window servesmostly to increasequery
processingefficiency, thenthebest-effort approach,which allows wide latitudeover theordering of tuples,
is usually acceptable.On theotherhand,whentheordering of tuplesplays asignificant role in themeaning
of thequery, such asfor query-defined slidingwindows,thenthestricterapproachmaybepreferred,evenat
thecost of lessefficient implementation. A general-purposedatastreamprocessingsystemshould support
bothtypesof sliding windows,andthequery languageshould allow users to specify oneor theother.

In our system, we add an extra keyword, RECENT, that replacesPRECEDING when a “best-effort”
ordering may be used. For example, the clauseROWS 10 PRECEDING specifiesa window consisting
of the previous 10 tuples, strictly sorted by timestamporder. By comparison, ROWS 10 RECENT also
specifies a sliding window consisting of 10 records, but the DSMS is allowed to useits own ordering to
producethesliding window, rather thanbeing constrained to foll ow thetimestamp ordering. TheRECENT
keyword is only used with “physical” window sizesspecified asa numberof records; “logical” windows
suchasRANGE 3 DAYS PRECEDING mustusethePRECEDING keyword.

14

N(O N P

NRQ

SDT O

SDT P UWVYX Q

UIVZX O UWVYX P

Figure1: A portion of a queryplanin our DSMS.

5.3 Query Processing Architecture of a DSMS

In this section,wedescribe thequery processingarchitectureof our DSMS. Sofar wehave focusedoncon-
tinuousqueries only. Whena queryis registered,a query executionplan is producedthatbeginsexecuting
andcontinuesindefinitely. We have not yet addressedadhocqueriesregisteredafter relevantstreamshave
begun(Section4.6).

Queryexecution plans in our system consistof operators connectedby queues. Operatorscanmaintain
intermediatestatein synopsisdatastructures.A portion of anexamplequeryplanis shown in Figure1, with
onebinary operator ([]*^) andoneunary operator ([]\H_). Thetwo operatorsareconnectedby a queue �`� ,
andoperator []\7^ hastwo input queues, �$� and �� . Also shown in Figure1 aretwo synopsisstructures
usedby operator []*^ , a#bHc0^ and a#bHc�_ , oneper input. For example, []*^ could be a sliding window join
operator, which maintainsaslidingwindow synopsisfor eachjoin input (Section 4.3). Thesystemmemory
is partitioneddynamically amongthe synopsesandqueuesin queryplans, along with the buffers used for
handling streamscomingover the network anda cache for disk-resident data. Note that both Aurora [16]
andEddies[8] usea single globally-sharedqueuefor inter-operator dataflow insteadof separatequeues
betweenoperatorsasin Figure1.

Operators in our system arescheduled for execution by a central scheduler. During execution, an op-
erator readsdatafrom its input queues,updatesthesynopsisstructures that it maintains,andwrites results
to its output queues. (Our operatorsthusadhere to theupdate andcomputeAnswer modeldiscussed
in Section4.4.) Theperiod of execution of anoperator is determineddynamicallyby thescheduler andthe
operator returnscontrol backto thescheduler onceits periodexpires. We areexperimentingwith different
policiesfor scheduling operatorsandfor determining theperiod of execution. Theperiod of execution may
be basedon time, or it may be based on otherquantities, such asthe numberof tuplesconsumedor pro-
duced. Both Aurora andEddieshave chosento perform fine-grainedscheduling where,in eachstep, the
schedulerchoosesatuplefrom theglobal queueandpassesit to anoperatorfor processing,anapproachthat
our scheduler could choose if appropriate.

We expect continuous queriesandthe data streamson which they operateto be long-running. During
the lifetime of a continuousquery parameterssuchasstreamdatacharacteristics, streamflow rates,and
thenumberof concurrently running queriesmayvary considerably. To handle these fluctuations, all of our
operatorsareadaptive. Sofar we have focusedprimarily on adaptivity to availablememory, althoughother
factors could beconsidered, including usingdisk to increasetemporary storageat theexpense of latency.

15

Our approachto memoryadaptivityis basically oneof trading accuracy for memory. Specifically, each
operatormaximizestheaccuracy of its output based onthesizeof its availablememory, andhandlesdynamic
changesin thesizeof its available memorygracefully, sinceat run-time memorymaybetakenaway from
oneoperatorandgivento another. As a simpleexample,a sliding window join operatorasdiscussedabove
may be usedasan approximation to a join over the entire history of input streams. If so, the larger the
windows (stored in available memory), the better the approximation. Other examples include duplicate
elimination usinglimited-sizehashtables,andsampling usingreservoirs [90]. TheAurorasystem[16] also
proposesadaptivity andapproximations,andusesload-shedding techniques based on application-specified
measuresof quality of service for graceful degradationin theface of systemoverload.

Our fundamentalapproachof trading accuracy for memorybrings up someinterestingproblems:

� We first needto understand how different queryoperatorscanproduceapproximateanswersunder
limited memory, andhow approximateresults behave whenoperatorsarecomposedin queryplans.

� Given a query plan as a tree of operators and a certain amount of memory, how can the DSMS
allocatememoryto theoperatorsto maximize theaccuracy of theanswer to thequery(i.e.,minimize
approximation)?

� Underchanging conditions,how cantheDSMSreallocatememoryamongoperators?

� Supposewe aregivena queryrather thana query plan.How doesthequeryoptimizer efficiently find
theplan that,with thebestmemoryallocation, minimizesapproximation? Shouldplans bemodified
whenconditions change?

� Evenfurther, since synopsescould besharedamongqueryplans [75], how do we optimally consider
a setof queries,which maybeweightedby importance?

In addition to memorymanagement,we are faced the problem of scheduling multiple query plans in
a DSMS.Thescheduler needs to provide ratesynchronizationwithin operators (suchasstreamjoins) and
alsoacrosspipelinedoperatorsin query plans [8, 89]. Time-varying arrival ratesof datastreamsandtime-
varyingoutput ratesof operatorsaddto thecomplexity of scheduling. Scheduling decisionsalsoneedto take
into account memoryallocation acrossoperators, including management of buffersfor incoming streams,
availability of synopseson disk asopposedto in memory, andtheperformancerequirements of individual
queries.

Aside from thequery processing architecture, userandapplication interfacesneedto bereinvestigated
in a DSMS given the dynamic environment in which it operates. SystemssuchasAurora [16] andHan-
cock[25] completely eliminatedeclarative querying andprovideonly proceduralmechanismsfor querying.
In contrast,wewill provideadeclarative languagefor continuousqueries,similar to SQLbut extendedwith
operatorssuchasthosediscussedin Section5.1,aswell asamechanismfor directly submitting plansin the
query algebra thatunderlies our language.

We aredeveloping a comprehensive DSMS interface that allows users andadministrators to visually
monitor theexecution of continuousqueries,including memoryusageandapproximationbehavior. Wewill
alsoprovideaway for administrators to adjust systemparametersasqueriesarerunning, includingmemory
allocationandscheduling policies.

6 Algorithmic Issues

The algorithms communityhasbeenfairly active of late in the areaof datastreams, typically motivated
by problemsin databasesandnetworking. The modelof computation underlying the algorithmic work is

16

similar to that in Section2 andcanbeformally statedasfollows: A datastreamalgorithm takesas input a
sequenceof data items de�fA6�6�6�gADdihjA6�6�6� called thedatastream, where thesequenceis scannedonly oncein
the increasingorder of the indexes. Thealgorithm is required to maintainthevalue of a function k on the
prefixof thestreamseen sofar.

Themaincomplexity measure is thespace usedby thealgorithm, althoughthetime requiredto process
eachstreamelement is alsorelevant. In somecases, thealgorithm maintains a datastructurewhich canbe
usedto compute the valueof the function k on demand, andthenthe time required to processeachsuch
query alsobecomesof interest.Henzingeret al. [49] defined asimilar modelbut alsoallowedthealgorithm
to makemultiple passesover thestreamdata,makingthenumberof passes itself acomplexity measure. We
will restrict our attention to algorithmswhich areallowedonly onepass.

We will measurespace and time in termsof the parameter l which denotes the numberof stream
elementsseensofar. Theprimaryperformancegoalis to ensurethatthespacerequiredby astreamalgorithm
is “small.” Ideally, one would want the memorybound to be independent of l (which is unbounded).
However, for mostinteresting problemsit is easyto proveaspacelowerbound thatprecludesthispossibility,
thereby forcing usto settle for boundsthataremerelysublinearin l . A problemis considered to be“well-
solved” if onecandevise analgorithm which requiresat most m >onipRqYrs>utwv x lyEDE space and m >onipRqYrs>utwv x lyEDE
processingtime perdataelementor query1. We will seethat in somecasesit is impossible to achieve such
analgorithm,evenif oneis willing to settlefor approximations.

Therestof this section summarizesthestateof theart for datastreamalgorithms,at leastasrelevantto
databases.We will focus primarily on the problemsof creating summarystructures(synopses)for a data
stream, suchashistograms,wavelet representation, clustering, anddecision trees; in addition, we will also
touch upon knownlower boundsfor space andtime requirementsof datastreamalgorithms. Most of these
summarystructures have beenconsidered for traditional databases[13]. Thechallengeis to adapt someof
thesetechniquesto thedatastreammodel.

6.1 Random Samples

Randomsamplescanbeusedasa summarystructure in many scenarioswherea smallsample is expected
to capture theessential characteristics of thedataset[65]. It is perhaps theeasiest form of summarization
in a DSMSandothersynopsescanbe built from a sample itself. In fact, the join synopsisin the AQUA
system [2] is nothing but a uniform sampleof the baserelation. Recently stratified sampling hasbeen
proposedasanalternative to uniform sampling to reduceerrordueto thevariancein dataandalsoto reduce
error for group-by queries [1, 19]. To actually computea random sampleover a datastreamis relatively
easy. Thereservoirsampling algorithmof Vitter [90] makesonepassover thedatasetandis well suitedfor
thedatastream model. Thereis alsoanextension by Chaudhuri, Motwani andNarasayya [22] to thecaseof
weighted sampling.

6.2 Sketching Techniques

In their seminal paper, Alon, MatiasandSzegedy[5] introducedthenotion of randomizedsketching which
hasbeenwidely usedever since. Sketching involvesbuilding a summaryof a datastream using a small
amountof memory, usingwhich it is possible to estimatetheanswerto certain queries(typically, “distance”
queries)over thedataset.

Let z{; > d|�BA6�6�6�JADd"h$E beasequenceof elementswhereeachdJ} belongsto thedomain~�; = 4HA6�6�6�JA��#L .
Let themultiplicity ��}];�� =G� � d��j;�CDL7� denote thenumber of occurrences of value C in thesequence z . For� 2{� , the

�
th frequencymoment�0� of z is defined as �s��;����}��]� � �} ; further, we define ���� ;����R� } � } .

1We use�H�G��� to denotea polynomial function.

17

The frequency momentscapture the statistics of the distribution of values in z — for instance, �I� is the
numberof distinct values in the sequence, ��� is the length of the sequence, �� is the self-join size(also
called Gini’s index of homogeneity), and � � is themostfrequent item’s multiplicity. It is not very difficult
to seethat an exact computation of these momentsrequireslinear space andso we focus our attention on
approximations.

Theproblem of efficiently estimating thenumberof distinct values(� �) hasreceivedparticularattention
in thedatabaseliterature,particularly in thecontext of usingsinglepassor randomsampling algorithms[18,
46]. A sketchingtechniqueto compute �,� waspresentedearlier by FlajoletandMartin [35]; however, this
hadthedrawbackof requiring explicit familiesof hashfunctionswith very strong independenceproperties.
This requirementwasrelaxed by Alon, Matias,andSzegedy [5] who presenteda sketching technique to
estimate � � within aconstantfactor2. Their techniqueuseslinearhashfunctionsandrequiresonly m >utwv x ��E
memory. The key contribution of Alon et al. [5] wasa sketching technique to estimate �G that usesonlym >ut�v x ��� twv x l E spaceandprovidesarbitrarily smallapproximation factors. Thistechniquehasfound many
applicationsin thedatabaseliterature, including join sizeestimation[4], estimating �B� normof vectors[33],
andprocessingcomplex aggregatequeriesover multiple streams[27, 37]. It remains an open problem to
comeup with techniquesto maintaincorrelatedaggregates[37] thathave provable guarantees.

The key idea behind the �0 -sketching techniquecanbe describedas follows: Everyelement C in the
domain ~ is hashed uniformly at random onto a value ¡ }$¢ =*£ 4HAG��4RL . Definethe randomvariable ¤¥;
� } �¦}Y¡J} and return ¤ as the estimator of �� . Observe that the estimator canbe computed in a single
passover the dataprovidedwe canefficiently computethe ¡�} values. If the hashfunctions have four-way
independence3, it is easyto prove that the quantity ¤ hasexpectation equal to �e andvariancelessthan§ � . Using standard tricks, we cancombineseveral independent estimatorsto accurately andwith high
probability obtain anestimateof � . At anintuitive level, wecanview this techniqueasa tug-of-war where
elements arerandomly assigned to oneof the two sidesof the rope based on thevalue C ; thesquareof the
displacementof theropecapturestheskew � in thedata.

Observethatcomputing theself-join sizeof arelation is exactly thesameascomputing �¨ for thevalues
of thejoin attributein therelation. Alon etal. [4] extendedthis techniqueto estimating thejoin sizebetween
two distinct relations © and � , asfollows. Let ª and « be random variables corresponding to © and � ,
respectively, similar to the randomvariable ¤ above; themapping from domainvalues C to ¡ } is the same
for both relations. Then, it can be proved that the estimator ª�« hasexpected value equal to � ©¬®�¯�
andvariance lessthan

§ � ©®¬°©±�w� �²¬°�¯� . In orderto get small relative error, we canuse m >�³ ´"µe´]³¶³ ·¸µ#·¹³³ ´iµ#·º³ » E
independent estimators. Observe that for estimating joins between two relations, thenumber of estimators
dependson the datadistribution. In a recent paper, Dobraet al. [27] extended this technique to estimate
the sizeof multi-way joins and for answering complex aggregatesqueries over them. They alsoprovide
techniquesto optimally partition thedatadomainanduseestimators on eachpartition independently, soas
to minimize thetotal memoryrequirement.

The frequency moment �� canalsobe viewedasthe �s norm of a vector whosevaluealong the C th
dimension is the multiplicity �¼} . Thus,theabove techniquecanbeused to compute the �, norm under a
updatemodelfor vectors,whereeach dataelement

>Y½ ADC¾E increments(or decrements)some�`} by aquantity½
. On seeing such anupdate,we update thecorresponding sketch by adding

½ ¡¶} to thesum.Thesketching
ideacanalsobeextendedto computethe � � norm of avector, asfollows. Let usassumethateachdimension
of the underlying vector is an integer, boundedby ¿ . Consider the unaryrepresentation of the vector. It
has ¿�� bit positions (elements), where � is the dimension of the underlying vector. A 4 in the unary

2As discussedin Section6.7, recentlyBar-Yossefet al. [12] andGibbons andTirthapura[38] have devisedalgorithmswhich,
undercertainconditions,provide arbitrarily smallapproximationfactorswithout recourseto perfecthashfunctions.

3Hashfunctionswith four-way independencecan be obtainedusing standardtechniquesinvolving the useof parity check
matricesof BCH codes[65].

18

representation denotesthattheelement corresponding to thebit position is presentonce; otherwise,it is not
present. Then �s capturesthe �À� norm of thevector. Thecatchis that,givenanelement ÁY} alongdimension
C , it is required thatwe canefficiently computetherange sum�ÃÂIÄ@Å ��F�"� ¡B}YÆ � of thehashvaluescorresponding
to thepertinentbit positionsthataresetto 4 . Feigenbaumet al. [33] showedhow to constructsucha family
of range-summable Ç±4 -valued hashfunctions with limited (four-way) independence. Indyk [50] provided
a uniform framework to compute the ��È norm (for

n ¢ > ��A §gÉ) using the so-called
n

-stable distributions,
improving uponthepreviouspaper[33] for estimating the �7� norm,in that it allowedfor arbitrary addition
anddeletion updatesin everydimension. Theability to efficiently compute� � and �º normof thedifference
of two vectorsis central to somesynopsisstructuresdesignedfor datastreams.

6.3 Histograms

Histogramsare commonly-usedsummarystructuresto succinctly capture the distribution of values in a
dataset (i.e., a column, or possibly even a collection of columns, in a table). They have been employed
for a multitudeof taskssuchasquery sizeestimation,approximatequery answering, anddatamining. We
considerthesummarizationof datastreamsusing histograms.Thereareseveral differenttypesof histograms
thathavebeenproposedin theliterature.Somepopular definitionsare:

� V-Optimal Histogram: Theseapproximatethedistribution of asetof values
½ �BA6�6�6�BA ½HK by apiecewise-

constantfunction Ê ½i> C¨E , soasto minimizethesumof squarederror � } >Y½ } £ Ê ½"> C¨EDE .
� Equi-Width Histograms: Thesepartition thedomaininto bucketssuch thatthenumberof

½ } values
falling into eachbucket is uniform acrossall buckets. In otherwords, they maintain quantiles for the
underlying datadistribution asthebucket boundaries.

� End-Biased Histograms: Thesewill maintain exact countsof itemsthatoccur with frequency above
a threshold, andapproximatethe other counts by an uniform distribution. Maintaining the count of
suchfrequent itemsis relatedto Iceberg queries [32].

We give anoverviewof recent work on computing suchhistogramsover datastreams.

V-Optimal Histograms over Data Streams

Jagadish et al. [54] showed how to computeoptimal V-Optimal Histogramsfor a given datasetusing dy-
namicprogramming.Thealgorithm usesm > lyE spaceandrequires m > l �ËE time,wherel is thesizeof the
datasetand � is thenumberof buckets.This is prohibitive for datastreams.Guha,Koudas andShim[43]
adapted this algorithm to sorteddatastreams. Their algorithm constructs an arbitrarily-close V-Optimal
Histogram(i.e.,with error arbitrarily close to thatof theoptimal histogram),using m > � twv x lyE spaceand
m > � twv x l E time perdataelement.

In a recent paper, Gilbert et al. [39], removed the restriction that the data streambe sorted, providing
algorithmsbased on thesketchingtechniquedescribedearlier for computing �F norms.Theidea is to view
eachdata elementasanupdate to anunderlying vector of length l thatwe aretrying to approximateusing
thebest � -bucket histogram.Thetime to processa dataelement, thetime to reconstruct thehistogram,and
thesizeof thesketch areeachboundedby

n�pHqZrs> �ÌA twv x lÍAB4J�HÎGE , where Î is therelative errorwe arewillin g
to tolerate.Theiralgorithm proceedsby first constructing a robustapproximation to theunderlying “signal.”
A robust approximation is built by repeatedlyadding adyadic intervalof constantvalue4 whichbestreduces
the approximation error. In order to find sucha dyadic interval it is necessary to efficiently computethe

4A signalthatcorrespondsto aconstant valueover thedyadicinterval andzeroeverywhereelse.

19

sketch of the original signal minus the constant dyadic interval5. This translatesto efficiently computing
the range sumof

n
-stable random variables (used for computing the �H sketch, seeIndyk [50]) over the

dyadic interval. Gilbert et al. [39] showhow to construct suchefficiently range-summable
n
-stable random

variables.Fromtherobusthistogramthey cull a histogramof desiredaccuracy andwith � buckets.

Equi-Width Histograms and Quantiles

Equi-width histogramsbasedonhistogramsaresummarystructureswhich characterizedatadistributionsin
a mannerthat is lesssensitive to outliers.In traditional databasesthey areusedby optimizersfor selectivity
estimation. Paralleldatabasesystemsemploy valuerangedatapartitioning thatrequiresgeneration of quan-
tilesor splittersthatpartition thedatainto approximatelyequal parts. Recently, GreenwaldandKhanna[41]
presentedasingle-passdeterministic algorithm for efficient computationof quantiles. Theiralgorithm needs
m > �Ï twv x Î�lyE space andguaranteesa precision of Î�l . They employ a novel datastructurethatmaintains a
sampleof thevalues seensofar (quantiles),along with a range of possible ranksthat thesamplescantake.
Theerror associatedwith eachquantile is thewidth of this range. They periodically merge quantiles with
“similar” errorssolongastheerrorfor thecombinedquantile doesnotexceed ÎMl . Thisalgorithmimproves
upontheprevioussetof resultsby Manku, Rajagopalan, andLindsay[61, 62] andChaudhuri, Motwani,and
Narasayya [21].

End-Biased Histograms and Iceberg Queries

Many applications maintainsimple aggregates(count) over an attribute to find aggregatevaluesabove a
specified threshold. Thesequeries are referred to as iceberg queries [32]. Suchiceberg queries arisein
many applications,including datamining, datawarehousing,informationretrieval, market basket analysis,
copy detection, andclustering. For example,a searchengine might beinterestedin gathering searchterms
thataccount for morethan1%of thequeries.Suchfrequentitemsummariesareuseful for applicationssuch
ascachingandanalyzing trends. Fangetal. [32] gaveanefficientalgorithmto computeIceberg queriesover
disk-residentdata.Their algorithm requiresmultiple passeswhich is not suitedto thestreaming model. In
a recent paper, MankuandMotwani [60] presentedrandomizedanddeterministic algorithmsfor frequency
counting and iceberg queries over datastreams. The randomizedalgorithm usesadaptive sampling and
the main idea is that any item which accountsfor an Î fraction of the items is highly likely to be a part
of a uniform sampleof size �Ï . Thedeterministic algorithm maintains a sample of thedistinct itemsalong
with their frequency. Whenever a new item is added, it is given a benefit of doubt by over-estimating its
frequency. If we seean item that already exists in the sample,its frequency is incremented.Periodically
itemswith low frequency aredeleted.Their algorithmsrequire m > �Ï twv xi> ÎMl EDE space, where l is thelength
of thedatastream,andguaranteethatany element is undercountedby at most ÎMl . Thus,thesealgorithms
report all itemsof count greater than ÎMl . Moreover, for all itemsreported,they guaranteethat thereported
count is lessthantheactual count, but by no morethan ÎMl .

6.4 Wavelets

Waveletsareoften usedasatechniqueto provideasummaryrepresentation of thedata.Waveletscoefficients
areprojections of thegivensignal (setof datavalues) ontoanorthogonalsetof basisvector. Thechoice of
basisvectors determinesthe type of wavelets. Often Haarwavelets areusedin databasesfor their easeof
computation. Waveletcoefficientshave thedesirableproperty thatthesignal reconstructedfrom thetop few
waveletcoefficientsbestapproximates theoriginal signal in termsof the � norm.

5Thatis, a sketchfor Ð » normof thedifferencebetweentheoriginal signalandthedyadicinterval with constant value.

20

Recentpapers have demonstrated the efficacy of waveletsfor different tasks suchas selectivity esti-
mation [63], datacubeapproximation [93] andcomputing multi-dimensional aggregates[92]. This body
of work indicatesthat estimates obtainedfrom wavelets weremoreaccurate thanthoseobtained from his-
togramswith the sameamountof memory. Chakrabarti et al. [17] proposetheuseof waveletsfor general
purposeapproximatequeryprocessinganddemonstratehow to compute joins, aggregations,andselections
entirely in thewaveletcoefficient domain.

To extend this body of work to datastreams,it becomesimportant to devise techniquesfor computing
wavelets in the streaming model. In a related development,Matias, Vitter, andWang[64] show how to
dynamically maintain thetop waveletcoefficients efficiently astheunderlying data distribution is updated.
Therehasbeen recent work in computing the top waveletcoefficientsin thedata stream model. Thetech-
nique of Gilbert et al. [39], to approximatethe bestdyadic interval that mostreducesthe error, givesrise
to aneasygreedyalgorithm to find thebest � -termHaarwavelet representation. This is becausetheHaar
wavelet basis consists of dyadic intervals with constant values. This improvesupon a previous result by
Gilbert et al. [40]. If the datais presentedin a sorted order, there is a simple algorithm that maintains the
best � -termHaarwaveletrepresentation using m > �°� t�v x lyE spacein a deterministic manner[40].

While therehasbeenlot of work on summarystructures, it remainsan interestingopen problem to
addresstheissueof global spaceallocation between differentsynopsesvying for thesamespace. It requires
thatwe comeup with a global error metric for thesynopses, which we minimizegiventhe(mainmemory)
space constraint. Moreover, theallocationwill have to be dynamic astheunderlying datadistribution and
query workload changesover time.

6.5 Sliding Windows

As discussedin Section4, sliding windows preventstaledatafrom influencing analysisandstatistics, and
also serve as a tool for approximation in faceof bounded memory. Therehasbeen very littl e work on
extending summarization techniques to sliding windows and it remainsa ripe research area. We briefly
describe someof therecentwork.

Dataret al. [26] showedhow to maintain simplestatistics over sliding windows,includingthesketches
usedfor computing the �`� or �À norm.Theirtechniquerequiresamultiplicativespaceoverheadof m > �Ï t�v x l E ,
where l is the lengthof the sliding window and Î is the accuracy parameter. This enables the adaptation
of thesketching-basedalgorithmsto thesliding windows model.They alsoprovide spacelower boundsfor
various problemsin the sliding windows model. In another paper, Babock, DatarandMotwani [9] adapt
thereservoir sampling algorithm to thesliding windows case. In their paper for computing Iceberg queries
over datastreams,Manku andMotwani [60] alsopresent techniques to adapt their algorithmsto thesliding
window model. GuhaandKoudas[42] have adapted their earlier paper[43], to provide a technique for
maintaining V-Optimal Histogramsover sorteddatastreamsfor the sliding window model; however, they
require thebuffering of all theelements in thesliding window. Thespacerequirementis linear in thesizeof
thesliding window (l), althoughupdate time perdataelement is amortized to m >D> � � �HÎ E twv x � lyE , where
� is thenumber of bucketsin thehistogramand Î is theaccuracy parameter.

Someopenproblemsfor sliding windowsare: clustering, maintaining top wavelet coefficients,main-
taining statisticslike variance,andcomputing correlatedaggregates[37].

6.6 Negative Results

Thereis an emerging setof negative results on space-timerequirementsof algorithms that operatein data
stream model.Henzinger, Raghavan, andRajagopalan[49] providedspacelowerboundsfor concreteprob-
lemsin the datastream model. Theselower bounds arederived from results in communication complex-
ity [56]. To understandthe connection, observe that the memoryusedby any one-passalgorithm for a

21

function k , after seeing a prefix of the data stream, is lower boundedby the one-way communication re-
quired by two parties trying to compute k wherethefirst party hasaccessto thesameprefix andthesecond
partyhasaccessto thesuffix of thestream that is yet to arrive. Henzingeret al. usethis approachto provide
lowerboundsfor problemssuchasfrequentitemcounting, approximatemedian, andsomegraph problems.

Again basedon communication complexity, Alon, MatiasandSzegedy [5] provide almosttight lower
boundsfor computing thefrequency moments.In particularthey provedalowerboundof Ñ > lyE for estimat-
ing � � , thecountof themostfrequentitem, where l is thedomainsize. At first glancethis lower bound
anda similar lower bound in Henzinger et al. [49] may seemto contradict the frequent item-set counting
results of MankuandMotwani [60]. But note that thelatter paper estimates thecountof themostfrequent
item only if it exceeds Î�l . Suchskeweddistributionsarecommonin practice,while the lower boundsare
proven for pathological distributions whereitemshave near-uniform frequency. This servesasa reminder
that while it may be possible to prove strong spacelower boundsfor streamcomputations, considerations
from applicationssometimesenable usto circumventthenegative results.

SaksandSun[73] provide spacelower boundsfor distanceapproximation betweentwo vectors under
the � È norm,for

n �3Ò , in thedatastreammodel. Munro andPaterson [66] showedthat any algorithm that
computesquantilesexactly in

n
passesrequires Ñ > l �IÓ È E space. Spacelowerboundsfor maintaining simple

statisticslike count, sum,min/max, andnumber of distinct valuesunder thesliding windowsmodelcanbe
found in thework of Dataret al. [26].

A general lowerbound techniquefor sampling-basedalgorithmswaspresentedby Bar-Yossef etal. [11].
It is useful for derivingspace lower boundsfor datastreamalgorithmsthat resort to oblivioussampling. It
remainsan interestingopenproblem to obtain similar general lower bound techniques for other classes
of algorithms for the data stream model. We feel that techniques based on communication complexity
results [56] will proveuseful in this context.

6.7 Miscellaneous

In this section, wegive a potpourri of algorithmic results for datastreams.

Data Mining

Decision treesare another form of synopsis usedfor prediction. Domingoset al. [28, 29] have studied
the problem of maintaining decision trees over datastreams. Clustering is yet another way to summarize
data.Consider the

�
-medianformulation for clustering: Given Ô datapoints in ametricspace,theobjective

is to choose
�

representative points, suchthat the sumof the errorsover the Ô datapoints is minimized.
The“error” for each datapoint is thedistancefrom thatpoint to thenearest of the

�
chosen representative

points. Guhaet al. [44] presenteda single-passalgorithm for maintaining approximate
�
-medians (cluster

centers) that uses m > l
Ï
E space for some Î¯�54 using m >on�pHqYr">utwv x l EDE amortized time per dataelement,

to compute a constant factor approximation to the
�
-median problem. Their algorithm usesa divide-and-

conquerapproachwhich worksasfoll ows: Clustering proceedshierarchically, wherea smallnumber
> l
Ï
E

of the original datapoints are clustered into
�

centers. These
�
-centers are weighted by the number of

points that areclosestto themin thelocal solution. Whenwe get l
Ï

weighted cluster centers by clustering
differentsets, we cluster theminto higher-level cluster centers,andsoon.

Multiple Streams

Gibbons andTirthapura [38] considered the problem of computing simple functions, suchasthe number
of distinct elements, over unionsof datastream. This is useful for applications that work in a distributed
environment, whereit is not feasible to sendall the datato a central site for processing. It is important to

22

notethatsomeof thetechniquespresentedearlier, especially thosethatarebasedonsketching, areamenable
to distributedcomputationover multiple streams.

Reductions of Streams

In a recent paper, Bar-Yossef,Kumar, andSivakumar[12] introducethe notion of reductions in streaming
algorithms.In order for thereductionsto beefficient, oneneedsto employ list-efficientstreamingalgorithms.
Theideabehind list-efficientstreamingalgorithmsis thatinsteadof beingpresentedonedataitemata time,
they are implicitly presentedwith a list of dataitems in a succinct form. If the algorithm canefficiently
processthelist in time thatis a function of thesuccinct representationsize, thenit is saidto belist-efficient.
They develop somelist-efficient algorithms andusing the reduction paradigm addressseveral interesting
problemslike computing frequency moments[5] (which includesthe special caseof counting the number
of distinct elements)andcounting thenumber of trianglesin agraphpresentedasastream. They alsoprove
a spacelower bound for the latter problem. To the bestof our knowledge, besides this work and that of
Henzingeretal. [49], therehasbeenlittle work ongraph problemsin thestreamingmodel. Suchalgorithms
will likely bevery usefulfor analyzing large graphical structuressuch asthewebgraph.

Property Testing

Feigenbaumet al. [34] introducedthe concept of streaming property testers andstreaming spotcheckers.
Theseare programsthat make one passover the dataand using small space verify if the datasatisfies
certain property. They show that there arepropertiesthat areefficiently testable by a streaming-tester but
not by a sampling-tester, andother problemsfor which the converseis true. They alsopresent anefficient
sampling-tester for testing the “groupedness” property of a sequencethat use m > Õ lyE samples, m >uÕ lyE
space and m >ZÕ l twv x lyE time. A sequence Ö��BA6�6�6�BA�Öih is said to be groupedif ÖR}$;×Ö7� and C�� � � �
imply Ö } ;²Ö��Ø;�Ö � , i.e., for eachtype Ù , all occurrences of Ù are in a single contiguous run. Thus,
groupednessis a natural relaxationof thesortednessproperty andis a natural property that onemaydesire
in a massive streaming dataset. The work discussedhereillustratesthat somepropertiesare efficiently
testable by sampling algorithmsbut not streaming algorithms.

Measuring Sortedness

Measuring the“sortedness” of adatastreamcould beuseful in someapplications; for example,it is usefulin
determining thechoice of a sortalgorithm for theunderlying data.Ajtai et al. [3] have studiedtheproblem
of estimating thenumberof inversions(ameasureof sortedness) in apermutation to within a factor Î , where
thepermutationis presentedin a datastreammodel.They obtainedanalgorithm using m >ut�v x l twv xÀtwv x l E
space and m >utwv x lyE time per dataelement.They alsoprove an Ñ > lyE space lower bound for randomized
exactcomputation, thusshowingthatapproximation is essential.

7 Conclusion and Future Work

We have isolateda numberof issues that arise whenconsidering datamanagement,query processing,and
algorithmic problemsin thenew setting of continuousdatastreams.Weproposedsomeinitial solutions,de-
scribedpastandcurrent work related to datastreams, andsuggested ageneral architecturefor aDataStream
ManagementSystem(DSMS).At thispoint let ustakeastepbackandconsidersome“meta-questions” with
regardto themotivationsandneedfor a new approach.

� Is there moreto effective datastreamsystemsthanconventional databasetechnology with enhanced
support for streamingprimitivessuchastriggers,temporalconstructs,anddataratemanagement?

23

� Is therea needfor databaseresearchersto develop fundamentalandgeneral-purposemodels, algo-
rithms,andsystems for datastreams? Perhapsit sufficesto build ad hoc solutionsfor eachspecific
application (network management,webmonitoring, security, finance, sensorsetc.).

� Are there any “kil ler apps” for datastream systems?

Webelieve thatall threequestionscanbeanswered in theaffirmative,althoughof courseonly timewill tell.
Assumingpositive answersto the “meta-questions” above, we seeseveral fundamentalaspects to the

design of datastream systems,someof which we discussedin detail in this paper. Oneimportantgeneral
question is the interfaceprovided by the DSMS. Our approachat Stanfordis to extend SQL to support
stream-oriented primitives, providing a purely declarative interfaceas in traditional databasesystems,al-
though we also allow direct submission of query plans. In contrast, the Aurora project [16] providesa
procedural“boxesandarrows”approachastheprimaryinterfacefor theapplicationdeveloper.

Otherfundamentalissuesdiscussedin thepaper includetimestampingandordering,support for sliding
window queries,anddealing effectively with blocking operators. A majoropen question, about which we
hadvery little to say, is that of dealing with distributed streams. It doesnot make senseto redirect high-
ratestreamsto a central location for queryprocessing, so it becomesimperative to pushsomeprocessing
to the points of arrival of the distributedstreams, raising a hostof issuesat every level of a DSMS [58].
Another issue we touchedon only briefly in Section 4.5 is that of constraintsover streams,andhow they
canbeexploited in query processing. Finally, many systemsquestionsremainopenin query optimization,
construction of synopses,resourcemanagement,approximatequeryprocessing,andthedevelopmentof an
appropriate andwell-acceptedbenchmarkfor datastreamsystems.

Froma purely theoretical perspective,perhaps themostinterestingopenquestion is thatof defining ex-
tensionsof relational operatorsto handle datastreamconstructs,andto studytheresulting “stream algebra”
andotherpropertiesof theseextensions. Sucha foundation is surely key to developing a general-purpose
well-understood queryprocessorfor datastreams.

Acknowledgements

We thankall themembersof theStanford STREAM researchgroup for their contributionsandfeedback.

References

[1] S. Acharya, P. B. Gibbons, and V. Poosala. Congressional samplesfor approximate answering of
group-by queries. In Proc. of the 2000 ACM SIGMODIntl. Conf. on Managementof Data, pages
487–498,May 2000.

[2] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy. Join synopsesfor approximate query
answering. In Proc. of the1999 ACM SIGMODIntl. Conf. on Managementof Data, pages275–286,
June1999.

[3] M. Ajtai, T. Jayram, R. Kumar, andD. Sivakumar. Counting inversionsin a datastream. manuscript,
2001.

[4] N. Alon, P. Gibbons, Y. Matias,andM. Szegedy. Trackingjoin andself-join sizesin limited storage.
In Proc.of the1999ACM Symp.on Principlesof DatabaseSystems, pages10–20,1999.

[5] N. Alon, Y. Matias,andM. Szegedy. Thespacecomplexity of approximating thefrequency moments.
In Proc.of the1996Annual ACM Symp.on Theoryof Computing, pages20–29, 1996.

24

[6] M. Altinel andM. J. Franklin. Efficient filtering of XML documentsfor selective disseminationof
information. In Proc.of the2000 Intl. Conf. on Very Large Data Bases, pages53–64, Sept.2000.

[7] A. Arasu,B. Babcock, S. Babu, J. McAlister, andJ. Widom. Characterizing memoryrequirements
for queriesover continuousdata streams. In Proc.of the2002 ACM Symp.on Principlesof Database
Systems, June2002.Available at http://dbpubs.stanford.edu/pub/2001-49.

[8] R. Avnur andJ. Hellerstein. Eddies:Continuously adaptive query processing. In Proc. of the 2000
ACM SIGMODIntl. Conf. on Managementof Data, pages261–272,May 2000.

[9] B. Babcock, M. Datar, andR. Motwani. Samplingfrom a moving window over streaming data. In
Proc.of the2002 AnnualACM-SIAMSymp.on Discrete Algorithms, pages633–634,2002.

[10] S.Babu andJ.Widom. Continuousqueriesoverdatastreams.SIGMODRecord, 30(3):109–120, Sept.
2001.

[11] Z. Bar-Yossef, R. Kumar, andD. Sivakumar. Sampling algorithms: Lower bounds andapplications.
In Proc.of the2001Annual ACM Symp.on Theoryof Computing, pages266–275,2001.

[12] Z. Bar-Yossef, R. Kumar, andD. Sivakumar. Reductionsin streaming algorithms,with anapplication
to counting trianglesin graphs. In Proc.of the2002Annual ACM-SIAMSymp.onDiscreteAlgorithms,
pages 623–632,2002.

[13] D. Barbaraet al. TheNew Jersey datareduction report. IEEEData Engineering Bulletin, 20(4):3–45,
1997.

[14] S. Bellamkonda, T. Borzkaya, B. Ghosh, A. Gupta, J. Haydu, S. Subramanian, and A. Witkowski.
Analytic functions in oracle 8i. Available at http://www-db.stanford.edu/dbseminar/Archive
/SpringY2000/speakers/agupta/paper.pdf.

[15] J. A. Blakeley, N. Coburn, and P. A. Larson. Updating derived relations: Detecting irrelevant and
autonomously computableupdates.ACM Trans.on Database Systems, 14(3):369–400, 1989.

[16] D. Carney, U. Cetinternel, M. Cherniack, C. Convey, S.Lee,G. Seidman, M. Stonebraker, N. Tatbul,
andS. Zdonik. Monitoring streams– a new class of dbmsapplications. Technical ReportCS-02-01,
Department of Computer Science,Brown University, Feb. 2002.

[17] K. Chakrabarti, M. N. Garofalakis, R. Rastogi, andK. Shim. Approximatequeryprocessing using
wavelets. In Proc.of the2000 Intl. Conf. on Very Large Data Bases, pages 111–122,Sept.2000.

[18] M. Charikar, S. Chaudhuri, R. Motwani, andV. Narasayya. Towardsestimation error guaranteesfor
distinct values. In Proc. of the2000 ACM Symp.on Principlesof DatabaseSystems, pages268–279,
2000.

[19] S. Chaudhuri, G. Das, and V. Narasayya. A robust, optimization-based approachfor approximate
answering of aggregatequeries. In Proc. of the 2001 ACM SIGMODIntl. Conf. on Managementof
Data, pages 295–306,May 2001.

[20] S.Chaudhuri andR. Motwani. On sampling andrelationaloperators. Bulletin of theTechnical Com-
mitteeon Data Engineering, 22:35–40,1999.

[21] S. Chaudhuri, R. Motwani, andV. Narasayya. Randomsampling for histogramconstruction: How
much is enough? In Proc. of the 1998 ACM SIGMODIntl. Conf. on Managementof Data, pages
436–447,1998.

25

[22] S. Chaudhuri, R. Motwani, andV. Narasayya. On random sampling over joins. In Proc. of the1999
ACM SIGMODIntl. Conf. on Managementof Data, pages263–274,June1999.

[23] S.Chaudhuri andV. Narasayya. An efficient cost-drivenindex selection tool for microsoft sql server.
In Proc.of the1997Intl. Conf. on Very Large Data Bases, pages146–155,1997.

[24] J. Chen,D. J. DeWitt, F. Tian, and Y. Wang. NiagraCQ:A scalable continuous query system for
internet databases. In Proc. of the 2000ACM SIGMODIntl. Conf. on Managementof Data, pages
379–390,May 2000.

[25] C. Cortes,K. Fisher, D. Pregibon, and A. Rogers. Hancock: a languagefor extracting signatures
from datastreams. In Proc.of the2000 ACM SIGKDDIntl. Conf. on Knowledge DiscoveryandData
Mining, pages 9–17, Aug. 2000.

[26] M. Datar, A. Gionis, P. Indyk, andR.Motwani. Maintainingstreamstatisticsoverslidingwindows. In
Proc.of the2002 AnnualACM-SIAMSymp.on Discrete Algorithms, pages635–644,2002.

[27] A. Dobra,J.Gehrke,M. Garofalakis,andR. Rastogi. Processingcomplex aggregatequeriesover data
streams. In Proc.of the2002ACM SIGMODIntl. Conf. on Managementof Data, 2002.

[28] P. DomingosandG.Hulten. Mining high-speed datastreams. In Proc.of the2000ACM SIGKDDIntl.
Conf. on Knowledge Discovery andData Mining, pages71–80,Aug. 2000.

[29] P. Domingos, G. Hulten, andL. Spencer. Mining time-changing datastreams. In Proc. of the 2001
ACM SIGKDDIntl. Conf. on Knowledge Discovery andData Mining, pages 97–106,2001.

[30] N. Duffield andM. Grossglauser. Trajectory sampling for direct traffic observation. In Proc. of the
2000ACM SIGCOMM, pages 271–284,Sept.2000.

[31] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence matching in time-series
databases.In Proc. of the 1994 ACM SIGMODIntl. Conf. on Managementof Data, pages 419–429,
May 1994.

[32] M. Fang,N. Shivakumar, H. Garcia-Molina,R.Motwani,andJ.D. Ullman.Computing iceberg queries
efficiently. In Proc.of the1998Intl. Conf. on Very Large Data Bases, pages299–310,1998.

[33] J.Feigenbaum,S.Kannan, M. Strauss, andM. Viswanathan. An approximatel1-difference algorithm
for massive datastreams. In Proc. of the 1999 Annual IEEE Symp.on Foundations of Computer
Science, pages 501–511,1999.

[34] J.Feigenbaum,S.Kannan, M. Strauss,andM. Viswanathan.Testingandspot checking of datastreams.
In Proc.of the2000Annual ACM-SIAMSymp.on DiscreteAlgorithms, pages165–174, 2000.

[35] P. FlajoletandG. Martin. Probabilistic counting. In Proc.of the1983 AnnualIEEESymp.onFounda-
tionsof ComputerScience, 1983.

[36] H. Garcia-Molina, W. Labio, andJ. Yang. Expiring datain a warehouse. In Proc. of the 1998Intl.
Conf. on Very Large Data Bases, pages500–511,Aug. 1998.

[37] J.Gehrke, F. Korn,andD. Srivastava.Oncomputing correlatedaggregatesovercontinualdatastreams.
In Proc.of the2001ACM SIGMODIntl. Conf. on Managementof Data, pages13–24, May 2001.

[38] P. Gibbons andS. Tirthapura. Estimating simplefunctions on the union of datastreams. In Proc. of
the2001ACM Symp.on Parallel AlgorithmsandArchitectures, pages281–291,2001.

26

[39] A. Gilbert, S. Guha,P. Indyk, Y. Kotidis, S. Muthukrishnan, andM. Strauss.Fast,small-spacealgo-
rithmsfor approximatehistogrammaintenance. In Proc.of the2002Annual ACM Symp.on Theoryof
Computing, 2002.

[40] A. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss. Surfing wavelets on streams: One-pass
summariesfor approximateaggregatequeries. In Proc. of the 2001 Intl. Conf. on Very Large Data
Bases, pages79–88,2001.

[41] M. Greenwald andS.Khanna. Space-efficient onlinecomputation of quantile summaries. In Proc.of
the2001ACM SIGMODIntl. Conf. on Managementof Data, pages58–66, 2001.

[42] S. GuhaandN. Koudas.Approximating a datastream for querying andestimation: Algorithmsand
performanceevaluation. In Proc.of the2002 Intl. Conf. on Data Engineering, 2002.

[43] S. Guha,N. Koudas,andK. Shim. Data-streamsandhistograms.In Proc. of the 2001Annual ACM
Symp.on Theoryof Computing, pages 471–475,2001.

[44] S.Guha,N. Mishra,R. Motwani, andL. O’Callaghan. Clustering datastreams. In Proc. of the2000
AnnualIEEESymp.on Foundations of ComputerScience, pages359–366, Nov. 2000.

[45] A. Gupta,H. V. Jagadish,andI. S.Mumick. Dataintegrationusingself-maintainable views. In Proc.
of the1996 Intl. Conf. on Extending DatabaseTechnology, pages140–144,Mar. 1996.

[46] P. Haas,J.Naughton, P. Seshadri, andL. Stokes. Sampling-basedestimation of thenumber of distinct
valuesof anattribute. In Proc.of the1995Intl. Conf. on VeryLargeData Bases, pages311–322,Sept.
1995.

[47] J. Hellerstein, M. Franklin, et al. Adaptive query processing: Technology in evolution. IEEE Data
Engineering Bulletin, 23(2):7–18,June2000.

[48] J. Hellerstein, P. Haas,andH. Wang. Online aggregation. In Proc. of the 1997ACM SIGMODIntl.
Conf. on Managementof Data, pages171–182, May 1997.

[49] M. Henzinger, P. Raghavan,andS. Rajagopalan. Computing on datastreams. TechnicalReportTR
1998-011,CompaqSystemsResearch Center, Palo Alto, California, May 1998.

[50] P. Indyk. Stabledistributions,pseudorandomgenerators,embeddingsanddatastreamcomputation. In
Proc.of the2000 AnnualIEEESymp.on Foundations of ComputerScience, pages189–197,2000.

[51] Y. E. Ioannidis andV. Poosala. Histogram-basedapproximationof set-valuedquery-answers. In Proc.
of the1999 Intl. Conf. on Very Large Data Bases, pages 174–185,Sept.1999.

[52] iPolicy Networkshomepage. http://www.ipolicynetworks.com.

[53] Z. Ives,D. Florescu, M. Friedman,A. Levy, andD. Weld. An adaptivequery execution systemfor data
integration. In Proc.of the1999 ACM SIGMODIntl. Conf. on Managementof Data, pages299–310,
June1999.

[54] H. Jagadish, N. Koudas, S. Muthukrishnan,V. Poosala, K. Sevcik, andT. Suel. Optimal histograms
with quality guarantees. In Proc. of the 1998 Intl. Conf. on Very Large Data Bases, pages275–286,
1998.

[55] H. Jagadish, I. Mumick, andA. Silberschatz. View maintenanceissues for theChronicle datamodel.
In Proc.of the1995ACM Symp.on Principlesof DatabaseSystems, pages113–124,May 1995.

27

[56] E. Kushlevitz andN. Nisan.Communication Complexity. CambridgeUniversityPress,1997.

[57] L. Liu, C. Pu, andW. Tang. Continual queries for internet scaleevent-driven informationdelivery.
IEEETrans.on Knowledge andData Engineering, 11(4):583–590,Aug. 1999.

[58] S.MaddenandM. J.Franklin. Fjording thestream:An architecturefor queriesover streamingsensor
data.In Proc.of the2002Intl. Conf. on Data Engineering, Feb. 2002. (To appear).

[59] S. Madden, J. Hellerstein, M. Shah,andV. Raman. Continuously adaptive continuous queriesover
streams. In Proc. of the 2002ACM SIGMODIntl. Conf. on Managementof Data, June2002. (To
appear).

[60] G. MankuandR. Motwani. Approximatefrequency countsover streaming data. manuscript, 2002.

[61] G. Manku,S.Rajagopalan,andB. G. Lindsay. Approximatemediansandother quantiles in onepass
andwith limited memory. In Proc. of the 1998 ACM SIGMODIntl. Conf. on Managementof Data,
pages 426–435,June 1998.

[62] G. Manku,S.Rajagopalan,andB. G. Lindsay. Randomsampling techniques for spaceefficient online
computation of orderstatistics of large datasets. In Proc. of the 1999ACM SIGMODIntl. Conf. on
Managementof Data, pages 251–262,June1999.

[63] Y. Matias, J.Vitter, andM. Wang.Wavelet-based histogramsfor selectivity estimation. In Proc.of the
1998ACM SIGMODIntl. Conf. on Managementof Data, pages 448–459,June 1998.

[64] Y. Matias, J.Vitter, andM. Wang.Dynamicmaintenanceof wavelet-based histograms.In Proc.of the
2000Intl. Conf. on Very Large Data Bases, pages101–110, Sept.2000.

[65] R. Motwani andP. Raghavan. RandomizedAlgorithms. CambridgeUniversity Press,1995.

[66] J.Munro andM. Paterson.Selection andsorting with limited storage. Theoretical ComputerScience,
12:315–323, 1980.

[67] B. Nguyen,S.Abiteboul, G.Cobena,andM. Preda.Monitoring XML dataon theweb. In Proc.of the
2001ACM SIGMODIntl. Conf. on Managementof Data, pages 437–448,May 2001.

[68] D. S.Parker, R. R. Muntz, andH. L. Chau.TheTangramstream query processingsystem. In Proc.of
the1989Intl. Conf. on Data Engineering, pages 556–563,Feb. 1989.

[69] D. S.Parker, E. Simon,andP. Valduriez. SVP: A modelcapturing sets, lists, streams,andparallelism.
In Proc.of the1992Intl. Conf. on Very Large Data Bases, pages115–126,Aug. 1992.

[70] V. PoosalaandV. Ganti.Fastapproximateanswersto aggregatequeriesonadatacube.In Proc.of the
1999Intl. Conf. on Scientific andStatistical DatabaseManagement, pages24–33,July 1999.

[71] D. Quass, A. Gupta,I. Mumick, andJ.Widom. Making viewsself-maintainablefor datawarehousing.
In Proc.of the1996Intl. Conf. on Parallel andDistributedInformationSystems, pages158–169,Dec.
1996.

[72] V. Raman,B. Raman,andJ.Hellerstein.Onlinedynamic reorderingfor interactivedataprocessing. In
Proc.of the1999 Intl. Conf. on Very Large Data Bases, 1999.

[73] M. SaksandX. Sun. Spacelower boundsfor distanceapproximation in the data streammodel. In
Proc.of the2002 AnnualACM Symp.on Theoryof Computing, 2002.

28

[74] U. Schreier, H. Pirahesh, R.Agrawal, andC.Mohan. Alert: An architecture for transformingapassive
DBMS into anactive DBMS. In Proc.of the1991Intl. Conf. on Very Large Data Bases, pages 469–
478,Sept.1991.

[75] T. K. Sellis. Multipl e-query optimization. ACM Trans.on DatabaseSystems, 13(1):23–52,1988.

[76] P. Seshadri, M. Livny, andR. Ramakrishnan. Sequence queryprocessing. In Proc. of the1994 ACM
SIGMODIntl. Conf. on Managementof Data, pages430–441,May 1994.

[77] P. Seshadri, M. Livny, andR. Ramakrishnan. Seq:A modelfor sequencedatabases. In Proc. of the
1995Intl. Conf. on Data Engineering, pages 232–239,Mar. 1995.

[78] P. Seshadri, M. Livny, andR. Ramakrishnan. Thedesign andimplementation of a sequencedatabase
system. In Proc.of the1996Intl. Conf. on Very Large Data Bases, pages99–110,Sept.1996.

[79] J. Shanmugasundaram, K. Tufte, D. J. DeWitt, J. F. Naughton, and D. Maier. Architecting a net-
work query engine for producing partial results. In Proc. of the2000 Intl. Workshop on theWeband
Databases, pages 17–22, May 2000.

[80] R. SnodgrassandI. Ahn. A taxonomyof time in databases.In Proc.of the1985 ACM SIGMODIntl.
Conf. on Managementof Data, pages236–245, 1985.

[81] S.-.Standard. On-lineanalytical processing (sql/olap). Available from http://www.ansi.org/, document
#ISO/IEC9075-2/Amd1:2001.

[82] Stanford StreamDataManagement(STREAM) Project.http://www-db.stanford.edu/stream.

[83] M. Sullivan. Tribeca: A stream databasemanager for network traffic analysis. In Proc. of the 1996
Intl. Conf. on Very Large Data Bases, page594,Sept.1996.

[84] D. Terry, D. Goldberg, D. Nichols, andB. Oki. Continuousqueries over append-only databases. In
Proc.of the1992 ACM SIGMODIntl. Conf. on Managementof Data, pages321–330,June1992.

[85] Traderbot homepage.http://www.traderbot.com.

[86] P. Tucker, D. Maier, T. Sheard,and L. Fegaras. Enhancing relational operators for querying
over punctuateddata streams.manuscript, 2002. Available at http://www.cse.ogi.edu/dot/niagara
/pstream/punctuating.pdf.

[87] J.UllmanandJ.Widom. A FirstCoursein DatabaseSystems. PrenticeHall, UpperSaddleRiver, New
Jersey, 1997.

[88] T. UrhanandM. Franklin. Xjoin: A reactively-scheduled pipelined join operator. IEEE Data Engi-
neering Bulletin, 23(2):27–33, June2000.

[89] S.ViglasandJ.Naughton. Rate-basedquery optimization for streaming informationsources.In Proc.
of the2002 ACM SIGMODIntl. Conf. on Managementof Data, June 2002. (To appear).

[90] J. Vitter. Random sampling with a reservoir. ACM Trans.on Mathematical Software, 11(1):37–57,
1985.

[91] J. Vitter. External memoryalgorithms and datastructures. In J. Abello, editor, External Memory
Algorithms, pages1–18. Dimacs,1999.

29

[92] J.Vitter andM. Wang.Approximatecomputationof multidimensionalaggregatesof sparsedatausing
wavelets. In Proc. of the 1999 ACM SIGMODIntl. Conf. on Managementof Data, pages 193–204,
June1999.

[93] J.Vitter, M. Wang,andB. Iyer. Datacubeapproximation andhistogramsvia wavelets. In Proc.of the
1998Intl. Conf. on InformationandKnowledge Management, Nov. 1998.

[94] Xml path language (XPath) version 1.0, Nov. 1999. W3C Recommendation available at
http://www.w3.org/TR/xpath.

[95] Yahoohomepage.http://www.yahoo.com.

30

