Stream Data Management

Divesh Srivastava AT&T Labs-Research http://www.research.att.com/~divesh/

Stream Map

- Part I: Motivation
 - Data streams: what, why now, applications
 - Data streams: architecture and issues
- Part II: Query processing
- Part III: Gigascope DSMS

Data Streams: What and Where?

- A data stream is a (potentially unbounded) sequence of tuples
- **Transactional** data streams: log interactions between entities
 - Credit card: purchases by consumers from merchants
 - Telecommunications: phone calls by callers to dialed parties
 - Web: accesses by clients of resources at servers
- **Measurement** data streams: monitor evolution of entity states
 - IP network: traffic at router interfaces
 - Sensor networks: physical phenomena, road traffic
 - Finance: stock prices, bids and asks

Data Streams: Why Now?

Haven't data feeds to databases always existed? Yes

- Modify underlying databases, data warehouses
- Complex queries are specified over stored data

Two recent developments: application- and technology-driven

- Need for sophisticated near-real time queries/analyses
- Massive data volumes of transactions and measurements

Data Streams: Real-Time Queries

- With traditional data feeds
 - Simple queries (e.g., value lookup) needed in real-time
 - Complex queries (e.g., trend analyses) performed offline
- Now need sophisticated near-real time queries/analyses
 - AT&T: fraud detection on call detail tuple streams
 - NOAA: tornado detection using weather radar data

Telecommunications Application: Fraud Detection

- Business Challenge: AT&T wanted to track calling pattern of each of ~100M callers, and raise real-time fraud alerts
- Issues:
 - Handwritten, optimized C code difficult to maintain
 - Signature computation is I/O intensive
- Solution: Using Hancock domain-specific language
 - Abstract logical/physical streams and signatures
 - Express I/O and CPU efficient signature programs cleanly

Hancock: Data Streams

typedef struct {

line_t origin; line_t dialed; date_t connectTime; time_t duration; char isIncomplete; char isIntl; char isTollFree;

} callRec_t;

. . .

- Physical data representation of tuples on disk
 - Highly encoded structure
- Logical data representation
 C struct
- Conversion functionsSpecified in Hancock

Hancock: Signature Programs

Data Streams: Massive Volumes

- Now able to deploy transactional data observation points
 - AT&T long-distance: ~300M calls/day
 - AT&T IP backbone: ~50B IP flows/day
- Now able to generate automated, highly detailed measurements
 - NOAA: satellite-based measurement of earth geodetics
 - Sensor networks: huge number of measurement points

IP Network Application: Hidden P2P Traffic Detection

- Business Challenge: AT&T IP customer wanted to accurately monitor peer-to-peer (P2P) traffic evolution within its network
- Issues
 - Use of P2P port numbers in Netflow data is not adequate
 - P2P traffic may be "hidden" in, e.g., HTTP traffic
- Solution: Using Gigascope data stream management system
 - Search for P2P related keywords within TCP datagrams
 - Classified 3 times more traffic as P2P than Netflow

IP Network Application: Web Client Performance Monitoring

- Business Challenge: AT&T IP customer wanted to monitor latency observed by clients to find performance problems
- Issues
 - Use of few "active clients" is not very representative
 - Massive volumes of data (Gbit/sec links, multiple links)
- Solution: Using Gigascope data stream management system
 - Track timestamps of TCP SYN and ACK packets
 - Report latency as RTT, i.e., difference of timestamps

IP Network Application: Security

Business Challenge: Alert IP customers about DDoS attacks and worms by monitoring and analyzing network data streams

Issues

- Massive volumes of data (Gbit/sec links, multiple links)
- Real-time alerting (reaction time in minutes, not days)
- Solution: Using Gigascope data stream management system
 - Monitor IP traffic data streams across customer networks
 - Analyze headers + contents, identify new attack signatures

IP Network Packet Data

PROTOCOL IP (Layer2) { uint ipversion

}

PROTOCOL IPv4(IP) {
 uint hdr_length;
 uint service_type;
 uint total_length;
 uint id;
 bool do_not_fragment;
 bool more_fragments;
 uint offset;
 uint ttl;
 uint protocol;

- Heterogeneous records
 - Layer 2: ETH/HDLC
 - Layer 3: IP/IPv4
 - Layer 4: UDP/TCP/ICMP
 - Layers 5-7: application level, e.g., HTTP, SMTP
- Analysis complicated by
 - Missing packets
 - Repeated packets
 - Out of order packets

}

- Gigascope is a fast, flexible data stream management system
 - High performance at speeds up to OC768 (2 x 40 Gbits/sec)
 - GSQL queries support SQL-like functionality
- Monitoring platform of choice for AT&T IP network
- Developed at AT&T Labs-Research
 - Collaboration between database and networking research

Gigascope: GSQL Queries

Example: Email Bombing

- Attack characteristic: excessively many email messages
- Attack detection: monitor SMTP traffic, compare with trends

GSQL query

define { query_name smtp_perhost; }
select_tb, destIP, count(*), sum(len)
from TCP
where protocol = 6 and destPort = 25
group by time/60 as tb, destIP

Example: TCP SYN Flood

- Attack characteristic: exploits 3-way TCP handshake
- Attack detection: correlate SYN, ACK packets in TCP stream

GSQL query

define { query_name toomany_syn; }
select A.tb, (A.cnt – M.cnt)
outer_join from all_syn_count A,
matched_syn_count M
where A.tb = M.tb

define { query_name all_syn_count; }
select S.tb, count(*) as cnt
from tcp_syn S
group by S.tb

define { query_name matched_syn_count; }
select S.tb, count(*) as cnt
from tcp_syn S, tcp_ack A
where S.sourceIP = A.destIP and
S.destIP = A.sourceIP and
S.sourcePort = A.destPort and
S.destPort = A.sourcePort and
S.tb = A.tb and
S.timestamp <= A.timestamp and
(S.sequence_number+1) = A.ack_number
group by S.tb</pre>

Example: Port Scans

- Attack characteristic: probing for vulnerability
- Attack detection: track number of distinct targets probed

GSQL query

define { query_name countdest_persource; } select tb, sourceIP, count_distinct(PACK(destIP,destPort)) as cnt from TCP group by time/60 as tb, sourceIP define { query_name countdest; }
select tb, count_distinct(
 PACK(destIP,destPort)) as cnt
from TCP
group by time/60 as tb

Illustrates use of UDAFs, approximate algorithms

Example: Worms

- Attack characteristic: self-propagating malicious code
- Attack detection: payload analysis using inverse distributions

GSQL query

define { query_name inverse_distrib; }
select B.tb, B.cnt, count(*) as invcnt
from base_distrib B
group by B.tb, B.cnt

define { query_name base_distrib; }
select C.tb, C.Sid, count(*) as cnt
from tcp_content C
group by C.tb, C.Sid

Stream Map

Part I: Motivation

- Data streams: what, why now, applications
- Data streams: architecture and issues

Part II: Query processing

Part III: Gigascope DSMS

DSMS + DBMS: Architecture

- Data stream management system at multiple observation points
 - (Voluminous) streams-in, (data reduced) streams-out
- Database management system

Outputs of DSMS can be treated as data feeds to database

AT&T Labs-Research

DSMS + DBMS: Architecture

Data Stream Systems

- Resource (memory, pertuple computation) limited
- Reasonably complex, near real time, query processing
- Useful to identify what data to populate in database

- **Database Systems**
- Resource (memory, disk, per-tuple computation) rich
- Extremely sophisticated query processing, analyses
- Useful to audit query results of data stream system

DBMS versus DSMS: Issues

Database Systems

Data Stream Systems

- Model: persistent relations
- Relation: tuple set/bag
- Data Update: modifications
- Query: transient
- Query Answer: exact
- Query Evaluation: arbitrary
- Query Plan: fixed

Really a continuum ...

- Model: transient relations
- Relation: tuple sequence
- Data Update: appends
- Query: persistent
- Query Answer: approximate
- Query Evaluation: one pass
- Query Plan: adaptive

Relation: Tuple Set or Sequence?

- Traditional relation = set/bag of tuples
- Tuple sequences have been studied:
 - Temporal databases [TCG+93]: multiple time orderings
 - Sequence databases [SLR94]: integer "position" -> tuple
- Data stream systems:
 - Ordering domains: Gigascope [CJSS03], Hancock [CFP+00]
 - Position ordering: Aurora [CCC+02], STREAM [MWA+03]

Update: Modifications or Appends?

- Traditional relational updates: arbitrary data modifications
- Append-only relations have been studied:
 - Tapestry [TGNO92]: emails and news articles
 - Chronicle data model [JMS95]: transactional data
- Data stream systems:
 - Streams-in, stream-out: Aurora, Gigascope, STREAM
 - Stream-in, relation-out: Hancock

Query: Transient or Persistent?

- Traditional relational queries: one-time, transient
- Persistent/continuous queries have been studied:
 - Tapestry [TGNO92]: content-based email, news filtering
 - OpenCQ, NiagaraCQ [LPT99, CDTW00]: monitor web sites
 - Chronicle [JMS95]: incremental view maintenance
- Data stream systems:
 - Support persistent and transient queries

Query Answer: Exact or Approximate?

- Traditional relational queries: exact answer
- Approximate query answers have been studied [BDF+97]:
 - Synopsis construction: histograms, sampling, sketches
 - Approximating query answers: using synopsis structures
- Data stream systems:
 - Approximate joins: using windows to limit scope
 - Approximate aggregates: using synopsis structures

Query Evaluation: One Pass?

- Traditional relational query evaluation: arbitrary data access
- One/few pass algorithms have been studied:
 - Limited memory selection/sorting [MP80]: n-pass quantiles
 - Tertiary memory databases [SS96]: reordering execution
 - Complex aggregates [CR96]: bounding number of passes

Data stream systems:

- Per-element processing: single pass to reduce drops
- Block processing: multiple passes to optimize I/O cost

Query Plan: Fixed or Adaptive?

- Traditional relational query plans: optimized at beginning
- Adaptive query plans have been studied:
 - Query scrambling [AFTU96]: wide-area data access
 - Eddies [AH00]: volatile, unpredictable environments
- Data stream systems:
 - Adaptive query operators
 - Adaptive plans

Data Stream Query Processing: Anything New?

Architecture

Issues

- Resource (memory, pertuple computation) limited
- Reasonably complex, near real time, query processing

- Model: transient relations
- Relation: tuple sequence
- Data Update: appends
- Query: persistent
- Query Answer: approximate
- Query Evaluation: one pass
- Query Plan: adaptive

A lot of challenging problems ...

Stream Map

Part I: Motivation

- Part II: Query processing
 - Stream query language issues (compositionality, windows)
 - Query operators
 - Optimization objectives
 - Multi-query execution
 - Prototype systems

Stream Query Languages

- SQL-like proposals suitably extended for a stream environment
 - Composable SQL operators
 - Queries reference/produce relations or streams
 - GSQL [CJSS03]: SQL used by Gigascope
 - CQL [ABW03]: SQL used by STREAM

UDA-SQL [LWZ04]: Monotonic sequence based queries

AT&T Labs-Research

Windows

Mechanism for extracting a finite relation from an infinite stream

- Various window proposals for restricting operator scope
 - Windows based on ordering attributes (e.g., time)
 - Windows based on tuple counts
 - Windows based on explicit markers (e.g., punctuations)

Ordering Attribute Based Windows

Assumes existence of an ordering attribute (e.g., time)

Various possibilities exist

- Window of size N tuples (sliding, tumbling) over the stream
- Problematic with non-unique time stamps associated with tuples
- Ties broken arbitrarily may lead to non deterministic output

Punctuation Based Windows [TMSF03]

- Application inserted "end-of-processing" markers
 - Each data item identifies "beginning-of-processing"
- Enables data item-dependent variable length windows
 - E.g., a stream of auctions
- Similar utility in query processing
 - Limit the scope of query operators relative to the stream
UDA-SQL [LWZ04]

- Key Idea: Only permit non-blocking queries on data streams
 - Non-blocking queries = monotonic queries
- Non-blocking RA cannot express all monotonic FO queries
 Set difference (-) in RA is blocking wrt its second argument
 Expression of "coalesce" and "until" use set difference
- Proposal: Support non-blocking user-defined aggregates
 - INITIALIZE, ITERATE: process tuples in an ordered fashion
 - NB-UDAs + Union = computable monotonic functions

Stream Map

Part I: Motivation

Part II: Query processing

- Stream query language issues
- Query operators (selections/projections, joins, aggregations)
- Optimization objectives
- Multi-query execution
- Prototype systems

Selections, Projections

- Selections, (duplicate preserving) projections are straightforward
 - Local, per-element operators
 - Duplicate eliminating projection is like grouping

Projection needs to include ordering attribute [JMS95]
 No restriction for position ordered streams

Select sourceIP, time from TCP where length > 512

Join Operators

General case of join operators problematic on streams

- Equijoin on stream ordering attributes is tractable [JMS95]
- May need to join arbitrarily far apart stream tuples

Majority of work focuses on joins between streams with windows

Select A.sourceIP, B.sourceIP from TCP A [window T1], TCP B [window T2] where A.destIP = B.destIP

Join Operators: Background

- Symmetric Hash Joins [WA91]
 - Takes into account streaming nature of inputs

XJoin [UF00]: extends Symmetric Hash Joins

Overflowing inputs spilled to disk for later evaluation

Binary Joins [KNV03]

New A tuple:

- Scan B's window for joining tuples and output result
- Insert tuple into A's window
- Invalidate all expired tuples in A's window

Binary Joins: Asymmetry

- Asymmetric join processing useful if arrival rates differ
- Goal: maximize tuple output
 - Limited computation, but sufficient memory
 - Limited memory, but sufficient computation

Strategies and Expirations

Aggregation

- General form:
 - **select** G, F1 from S where P group by G having F2 op ϑ
 - G: grouping attributes, F1,F2: aggregate expressions
- Aggregate expressions:
 - Distributive: sum, count, min, max
 - Algebraic: avg
 - Holistic: count-distinct, median

Aggregation in Theory

- An aggregate query result can be streamed if group by attributes include the ordering attribute [JMS95]
- A single stream aggregate query "select G,F from S where P group by G" can be executed in bounded memory if [ABB+02]:
 - Every attribute in G is bounded
 - No aggregate expression in F, executed on an unbounded attribute, is holistic
 - Arasu et al. [ABB+02] derive conditions for bounded memory execution of aggregate queries on multiple streams

Aggregation in Bounded Memory

Aggregate query execution not in bounded memory:

select length from TCP [window T] where length > 512 group by length select distinct length from TCP [window T] where length > 512

Aggregate query execution in bounded memory:

```
select length, count(*)
from TCP [window T]
where length > 512 and length < 1024
group by length
```

Aggregation in Gigascope

- Grouping attributes contain window expressions restricting the scope of the group (e.g., temporally)
 - select peerid, tb, count(*) from TCP group by time/60 as tb, f(destIP,'peerid.tbl') as peerid
 - time/60 is a minute-long tumbling window (epoch)
- Gigascope applies partial-aggregation on low-level data streams
 - Bounded number of groups maintained at low level
 - Unbounded number of groups maintainable at high level

Aggregation & Approximation

When aggregates cannot be computed exactly in limited storage, approximation may be possible and acceptable

Examples:

- select G, median(A) from S group by G
- select G, count(distinct A) from S group by G
- Use summary structures: samples, histograms, sketches

Quantiles

- What: quantiles are order statistics
 - Minimum, maximum, median
 - Φ-quantile: item with rank ΦN in data set of size N
- Why: useful to summarize data distributions
 - Example: 0.1, 0.2, ..., 0.9-quantiles of GRE scores
 - Median (0.5-quantile) more robust to outliers than average

Quantile Computation

- Exact computation of Φ-quantile
 - Sort data set, pick out item in position ΦN
 - On a data stream (one pass), need $\Omega(N)$ space [MP80]
- ε-approximate computation in sub-linear space
 - Φ -quantile: item with rank between $(\Phi \varepsilon)N$ and $(\Phi + \varepsilon)N$
 - [MRL98]: N known a priori, space O(1/ε log²(εN))
 - [GK01]: N not known a priori, space $O(1/\epsilon \log(\epsilon N))$

Biased Quantiles: Motivation

- IP network traffic has a lot of skew
 - Long tails of great interest
 - Example: 0.9, 0.95, 0.99-quantiles of TCP round trip times
- Issue: uniform error guarantees
 - ϵ = 0.05: okay for median, but not 0.99-quantile
 - ϵ = 0.001: okay for both, but needs too much space
- Goal: support relative error guarantees in small space
 1-Φ, ...,1-Φ^k quantiles in ranks (1-(1±ε)Φ)N, ..., (1-(1±ε)Φ^k)N

Biased Quantiles: Intuition

¾-quantile at time step N' = 2N

N' = 2N, eN = e/2(2N)

Biased Quantiles [CKMS06]

L(v)

- Domain-oriented [SBAS04]
 - Items drawn from [1...U]
 - Impose binary tree over domain
 - Want space to be O(log U)

- Maintain counts c_w on (subset of) nodes
 - Represents input items from subtree
 - L(v): counts to left of a leaf are certainly less
 - A(x): uncertainty in rank is from ancestors

Biased Quantiles: Results

- Maintain accuracy invariants
 - Deterministically bound ranks: $L(x) A(x) \le rank(x) \le L(x)$
 - Bound possible ranks: $v \neq lf(v) \rightarrow C_v \leq (\epsilon/\log U) L(v)$
 - Consequence: can find r'(x) so $|r'(x) rank(x)| \le \varepsilon rank(x)$
- Results: can answer queries with error $\leq \varepsilon$ rank(x)
 - Use space O(1/ε log(εN) log(U))
 - Amortized update time O(log log U)
 - Lower bound on space of O(1/ε log(εN))

Stream Map

Part I: Motivation

Part II: Query processing

- Stream query language issues
- Query operators
- Optimization objectives (stream rate, resource limits, QoS)
- Multi-query execution
- Prototype systems

Optimization Objectives: Issues

- Traditionally table based cardinalities used in query optimization
- Problematic in a streaming environment
- Need for novel optimization objectives that are relevant when inputs consist of streaming information sources

Optimization Objectives

- Rate-based optimization [VN02]:
 - Take into account rates of streams in query evaluation tree
 - Rates can be known and/or estimated
- Overall objective is to maximize the tuple output rate for a query
 Instead of seeking the least cost plan

Rate Based Optimization

Rate Based Optimization

- Output rate of a plan: number of tuples produced per unit time
- Derive expressions for the rate of each operator
- Combine expressions to derive expression r(t) for the plan output rate as a function of time:
 - Optimize for a specific point in time in the execution
 - Optimize for the output production size

Optimization Objectives: Summary

- Novel notions of optimization
 - Stream rate based
 - Resource based
 - QoS based
- Continuously adaptive optimization
- Possibility that objectives cannot be met:
 - Resource constraints
 - Bursty arrivals under limited processing capability

Load Shedding

- When input stream rate exceeds system capacity a stream manager can shed load (tuples)
- Load shedding affects queries and their answers
- Introducing load shedding in a data stream manager is a challenging problem
- Random and semantic load shedding

Stream Map

Part I: Motivation

Part II: Query processing

- Stream query language issues
- Query operators
- Optimization objectives
- Multi-query execution
- Prototype systems

Multi-query Processing on Streams

- In traditional multi-query optimization:
 - Result sharing among queries leads to better performance
 - Similar issues arise when processing queries on streams:
 - Sharing between select/project expressions
 - Sharing between sliding window join expressions

Grouped Filters [MSHR02]

8/20/07

AT&T Labs-Research

Shared Window Joins [HFAE03]

Consider the two queries:

select sum (A.length) from TCP A [window 1hour], TCP B [window 1 hour] where A.destIP = B.destIP

select count (distinct A.sourceIP) from TCP A [window 1 min], TCP B [window 1 min] where A.destIP = B.destIP

Shared Window Joins

- Great opportunity for optimization as windows are highly shared
- Strategies for scheduling the evaluation of shared joins
 - Largest window only
 - Smallest window first
 - Process at any instant the tuple that is likely to benefit the largest number of joins (maximize throughput)

Shared Window Aggregates [AW04]

- Great opportunity for optimization as windows are highly shared
- Sliding window aggregates
 - Various aggregation functions (e.g., distributive, algebraic)
 - Various window types (time, tuple based)
 - Input models (single, multiple streams)

Stream Map

Part I: Motivation

Part II: Query processing

- Stream query language issues
- Query operators
- Optimization objectives
- Multi-query execution
- Prototype systems

Prototype systems

- Aurora (Brandeis, Brown, MIT) [CCC+02]
- Gigascope (AT&T) [CJSS03]
- Hancock (AT&T) [CFP+00]
- Nile (Purdue) [AEA+04]
- STREAM (Stanford) [MWA+03]
- Telegraph (Berkeley) [CCD+03]

Related DSMS Technologies

System	Data Stream Architecture	Data Model	Query Language	Query Answers	Query Plan
Aurora StreamBase	low-level	RS-in RS-out	Operators	approximate	QoS-based, load shedding
Gigascope	two level (low, high)	S-in S-out	GSQL	approximate	decomposition, distribution
Hancock	high-level	RS-in R-out	Procedural	exact, signatures	optimize for I/O, process blocks
Nile	high level	RS-in RS-out	SQL-based	approximate	incremental evaluation, multi-query
STREAM	low-level	RS-in RS-out	CQL	approximate	optimize space, static analysis
Telegraph	high-level	RS-in RS-out	SQL-based	exact	adaptive plans, multi-query

Aurora

- Geared towards monitoring applications (streams, triggers, imprecise data, real time requirements)
- Specified set of operators, connected in a data flow graph
- Optimization of the data flow graph
- Three query modes (continuous, ad-hoc, view)
- Aurora accepts QoS specifications and attempts to optimize QoS for the outputs produced
- Real time scheduling, introspection and load shedding
Gigascope

- Specialized stream database for network applications
- GSQL for declarative query specifications: pure stream query language (stream input/output)
- Uses ordering attributes in IP streams (timestamps and their properties) to turn blocking operators into non blocking ones
- GSQL processor is code generator.
- Query optimization uses a two level hierarchy

Hancock

- A C-based domain specific language which facilitates transactor signature extraction from transactional data streams
- Support for efficient and tunable representation of signature collections
- Support for custom scalable persistent data structures
- Elaborate statistics collection from streams

Nile

- Summary Manager with the notion of promising tuples
- Sliding and predicate windows
- Negative tuples
- Shared execution
- Admission control and quality of service support
- Context-aware query processing and optimization
- Disk-based data streams

STREAM

- General purpose stream data manager
- CQL for declarative query specification
- Consider query plan generation
- Resource management: operator scheduling
- Static and dynamic approximations

Telegraph

- Continuous query processing system
- Support for stream oriented operators
- Support for adaptivity in query processing
- Various aspects of optimized multi-query stream processing

Benchmark: Linear Road [ACG+04]

- Goal: Compare performance of DSMSs and DBMSs
- Linear Road Benchmark: Challenges
 - Semantically valid input: high-volume simulated data
 - Performance metrics: real-time query response, load
 - No query language: queries specified in predicate calculus

Stream Map

- Part I: Motivation
- Part II: Query processing
- Part III: Gigascope DSMS
 - Scalable aggregate query processing
 - Open Issues

Gigascope: Scalability

- Gigascope is a fast, flexible data stream management system
 - High performance at OC768 speeds (2 x 40 Gbit/sec)
 - Non-trivial queries at 200,000 pkts/sec using 38% of 1 CPU
- Monitoring platform of choice for AT&T IP network
- Scalability mechanisms
 - Two-level architecture: Query splitting, pre-aggregation
 - Distribution architecture: Query-aware stream splitting
 - Unblocking: Reduce data buffering
 - Sampling algorithms: Data reduction

Gigascope: Two-Level Architecture

- Low-level queries perform fast selection, aggregation
- High-level queries complete complex aggregation

Gigascope: Query Splitting

	select tb, destIP, sum(sumLen)	
	<u>from</u> SubQ	
<pre>define { query_name smtp; }</pre>	<u>group by</u> tb, destIP	
<u>select</u> tb, destIP, sum(len)	<u>having</u> sum(cnt) > 1	
from TCP		
where protocol = 6 and	<u>define</u> { query_name SubQ; }	
destPort = 25	<u>select</u> tb, destIP, sum(len) as	
group by time/60 as tb, destIP	sumLen, count(*) as cnt	
<u>having</u> count(*) > 1	from TCP	
	where protocol = 6 and	
	destPort = 25	

group by time/60 as tb, destIP

Gigascope: Low-Level Aggregation

- Fixed number of slots for groups, fixed size slot for each group
- Direct-mapped hashing
- Optimizations
 - Limited hash chaining reduces eviction rate
 - Slow eviction of groups when epoch changes

Gigascope: UDAF Specification

- Standard database UDAF: INIT, ITERATE, TERMINATE
- Gigascope UDAF: similar to standard database UDAF, but
 Break TERMINATE into OUTPUT and DESTROY: enables, e.g., quantile(len, 0.9), quantile(len, 0.95), quantile(len, 0.99)
- Can support arbitrary data stream algorithms as UDAFs
 - GK quantile summary, CKMS (biased) quantile summary
 - Count-min (CM) sketch

Gigascope: UDAF Design Issues

- Split processing effort between high and low level
- Processing at low-level saves processing at high-level
 Data reduction, fewer transfers, fewer merges, etc.
- Too much processing at low-level causes packet drops
 Quick-and-dirty filtering and aggregation
- Need to strike the right balance
 - Lightweight data structures, especially at low level
 - Avoid excessive processing at bottlenecks

Gigascope: Performance

Query	Low	High	Packets/sec
counting only	8%	0%	145,000
grouping aggregatio	12.6%	0.5%	145,000
inverse distribution	25%	15.5%	142,000
UDAF	30%	43%	141,000
DDoS (join)	16.9%	3.1%	142,000
P2P (content)	10.7%	0%	139,000

Distributed Gigascope

- Problem: OC768 monitoring needs more than one CPU
 - 2x40 Gb/s = 16M pkts/s
 - Solution: split data stream, process query, recombine partitioned query results
- For linear scaling, splitting needs to be query-aware

Gigabit Ethernet

Gigascope: Query-Unaware Splitting

define { query_name flows; }
select tb, srcIP, destIP,
 count(*)
from TCP
group by time/60 as tb, srcIP,
 destIP

<u>define</u> { query_name hflows; } <u>select</u> tb, srcIP, max(cnt) <u>from</u> flows <u>group by</u> tb, srcIP

Gigascope: Query-Aware Splitting

define { query_name flows; }
select tb, srcIP, destIP,
 count(*)
from TCP
group by time/60 as tb, srcIP,
 destIP

<u>define</u> { query_name hflows; } <u>select</u> tb, srcIP, max(cnt) <u>from</u> flows <u>group by</u> tb, srcIP

Gigascope: Unblocking

Issues

- Produce useful output over potentially infinite streams
- A link failure can stall an input stream
- Solution technique: Timestamps
 - Identify fields behaving like timestamps (monotone)
 - Determine tuple locality by query analysis on references
- Solution technique: Punctuation carrying "heartbeats"
 - Inject heartbeats into streams, propagate through query dag
 - Significant reduction in memory usage with low CPU cost

Gigascope: Sampling Algorithms

Issues

- Need sampling to deal with high volume streams (attacks)
- Solution technique: Single operator that can be specialized
 - Simple communication structure between samples, summary
 - Efficient implementation using multiple hash tables
- Solution technique: User-defined aggregate functions (UDAFs)
 - Separate UDAFs for distinct sampling algorithms
 - Added flexibility permits inter-sample communication

Stream Map

- Part I: Motivation
- Part II: Query processing
- Part III: Gigascope DSMS
 - Scalable aggregate query processing
 - Open Issues

Challenges and Opportunities

Challenges

- Large query sets: 100s of GSQL queries, black-box UDAFs
- Data quality: inadequate understanding of network protocols
- Network speeds increasing: $OC48 \rightarrow OC192 \rightarrow OC768$

Opportunities

- Multi-query optimization: predicates, joins, UDAFs, etc.
- Stream integrity: PAC constraints, etc.
- Using specialized hardware: GPUs, FPGAs, etc.

Multi-Query Optimization

Challenge

100s of GSQL queries, black-box UDAFs

Traditional MQO problem: predicates, aggregates, joins, etc.
 Fast identification of queries relevant to a record

Novel MQO problem: optimizable, shareable UDAFs

- Example: GSQL queries using different sampling strategies
- Declarative characterization (specification?) of UDAFs

Stream Integrity

- Challenge
 - Complex protocols, inadequate understanding in practice
- Queries can return inexplicable results
 - Unlike in a DBMS, cannot go back to explore the raw data
- Need to formally characterize and monitor query pre-conditions
 - Example: stream sorted on time? multiple SYN packets?
 - PAC constraints to approximately quantify violations

Using Specialized Hardware

Challenge

■ Network speeds increasing: $OC48 \rightarrow OC192 \rightarrow OC768$

Using commodity hardware

GPUs for highly parallel computations with spatial locality

Using specialized hardware

- FPGAs to parse TCP packet headers
- RegEx matchers to access application-level (HTTP) fields

Conclusions

- Data stream query processing has real applications
 - Need for sophisticated near-real time queries
 - Massive data volumes of transactions and measurements
- Gigascope is a flexible DSMS, used in practice
 - Designed to support complex aggregation on fast streams
 - Careful algorithm engineering essential for performance
- Wealth of challenging technical and practical problems exist
 - Resource limitations exist, especially at low-level
 - Important to think of the end-to-end architecture

Acknowledgements

- Colleagues
 - Graham Cormode, Lukasz Golab, Ted Johnson, Flip Korn, Nick Koudas, S. Muthukrishnan, Irina Rozenbaum, Vlad Shkapenyuk, Oliver Spatscheck
- Papers and tutorials
 - Data stream query processing tutorials at VLDB'03, ICDE'05
 - Papers in SIGMOD'03, VLDB'03, SIGMOD'04, ICDE'05, SIGMOD'05, DBSec'05, VLDB'05, PODS'06

- [AF00] M. Altinel, M. J. Franklin: Efficient Filtering of XML Documents for Selective Dissemination of Information. VLDB 2000: 53-64
- [AFTU96] L. Amsaleg, M. J. Franklin, A. Tomasic, T. Urhan: Scrambling Query Plans to Cope With Unexpected Delays. PDIS 1996: 208-219
- [ABB+02] A. Arasu, B. Babcock, S. Babu, J. McAlister, J. Widom: Characterizing Memory Requirements for Queries over Continuous Data Streams. PODS 2002: 221-232
- [ABB+03] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, R. Motwani, I. Nishizawa, U. Srivastava, D. Thomas, R. Varma, J. Widom: STREAM: The Stanford Stream Data Manager. IEEE Data Engineering Bulletin 26(1): 19-26 (2003)
- [ABW03] A. Arasu, S. Babu, J. Widom: An Abstract Semantics and Concrete Language for Continuous Queries Over Data Streams. DBPL 2003
- [ACG+04] A. Arasu, M. Cherniack, E. Galvez, D. Maier, A. S. Maskey, E. Ryvkina, M. Stonebraker, R. Tibbetts: Linear Road: A Stream Data Management Benchmark. VLDB 2004

- [AEA+04] W. Aref, A. Elmargamid, M. Ali, M. Caltin et. Al.: Nile: A Query Processing Engine for Data Streams, ICDE 2004.
- [AH00] R. Avnur, J. M. Hellerstein: Eddies: Continuously Adaptive Query Processing. SIGMOD Conference 2000: 261-272
- [BBD+02] B. Babcock, S. Babu, M. Datar, R. Motwani, J. Widom: Models and Issues in Data Stream Systems. PODS 2002: 1-16
- [BBDM03] B. Babcock, S. Babu, M. Datar, R. Motwani: Chain: Operator Scheduling for Memory Minimization in Data Stream Systems. SIGMOD Conference 2003: 253-264
- [BDM03] B. Babcock, M. Datar, R. Motwani: Load Shedding Techniques for Data Stream Systems. MPDS Workshop 2003
- [BO03] B. Babcock, C. Olston: Distributed Top-K Monitoring. SIGMOD Conference 2003: 28-39

- [BW01] S. Babu, J. Widom: Continuous Queries over Data Streams. SIGMOD Record 30(3): 109-120 (2001)
- [BMMNW04] S. Babu, R. Motwani, K. Munagala, I. Nishizawa, J. Widom. Adaptive Ordering of Pipelined Stream Filters, SIGMOD 2004: 407-418.
- [BR87] I. Balbin, K. Ramamohanarao: A Generalization of the Differential Approach to Recursive Query Evaluation. JLP 4(3): 259-262 (1987)
- [BDF+97] D. Barbara, W. DuMouchel, Christos Faloutsos, Peter J. Haas, J. M. Hellerstein, Y. E. Ioannidis, H. V. Jagadish, T. Johnson, R. T. Ng, V. Poosala, K. A. Ross, K. C. Sevcik: The New Jersey Data Reduction Report. Data Engineering Bulletin 20(4): 3-45 (1997)
- [BCG+03] C. Barton, P. Charles, D. Goyal, M. Raghavachari, M. Fontoura, V. Josifovski: Streaming XPath Processing with Forward and Backward Axes. ICDE 2003
- [BFRS99] D. Bonachea, K. Fisher, A. Rogers, F. Smith: Hancock: a language for processing very large-scale data. DSL 1999: 163-176

- [BGKS03] N. Bruno, L. Gravano, N. Koudas, D. Srivastava: Navigation- vs. Index-Based XML Multi-Query Processing. ICDE 2003
- [CCC+02] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stonebraker, N. Tatbul, S. B. Zdonik: Monitoring Streams A New Class of Data Management Applications. VLDB 2002: 215-226
- [CCR+03] D. Carney, U. Cetintemel, A. Rasin, S. B. Zdonik, M. Cherniack, M. Stonebraker: Operator Scheduling in a Data Stream Manager. VLDB 2003
- [CFGR02] C. Y. Chan, P. Felber, M. N. Garofalakis, R. Rastogi: Efficient filtering of XML documents with XPath expressions. VLDB Journal 11(4): 354-379 (2002)
- [CF02] S. Chandrasekaran, M. J. Franklin: Streaming Queries over Streaming Data. VLDB 2002: 203-214

- [CCD+03] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy, S. Madden, V. Raman, F. Reiss, M. A. Shah: TelegraphCQ: Continuous Dataflow Processing for an Uncertain World. CIDR 2003
- [CR96] D. Chatziantoniou, K. A. Ross: Querying Multiple Features of Groups in Relational Databases. VLDB 1996: 295-306
- [CDTW00] J. Chen, D. J. DeWitt, F. Tian, Y. Wang: NiagaraCQ: A Scalable Continuous Query System for Internet Databases. SIGMOD Conference 2000: 379-390
- [CBB+03] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. Cetintemel, Y. Xing, S. B. Zdonik: Scalable Distributed Stream Processing. CIDR 2003
- [CFP+00] C. Cortes, K. Fisher, D. Pregibon, A. Rogers, F. Smith: Hancock: a language for extracting signatures from data streams. KDD 2000: 9-17
- [CJSS03] C. D. Cranor, T. Johnson, O. Spatscheck, V. Shkapenyuk: Gigascope: A Stream Database for Network Applications. SIGMOD Conference 2003: 647-651
- [CJSS03a] C. D. Cranor, T. Johnson, O. Spatscheck, V. Shkapenyuk: The Gigascope Stream Database. IEEE Data Engineering Bulletin 26(1): 27-32 (2003)
- [DF03] Y. Diao, M. J. Franklin: High-Performance XML Filtering: An Overview of YFilter. IEEE Data Engineering Bulletin 26(1): 41-48 (2003)
- [DF03a] Yanlei Diao, Michael J. Franklin: Query Processing for High-Volume XML Message Brokering. VLDB 2003
- [DMRH'04] L. Ding, N. Mehta, E. Rundersteiner, G. Heineman: Joining Punctuated Streams EDBT 2004.

- [FLBC02] L. Fegaras, D. Levine, S. Bose, V. Chaluvadi: Query Processing of Streamed XML Data. CIKM 2002
- [FHK+03] D. Florescu, C. Hillary, D. Kossmann, P. Lucas, F. Riccardi, T. Westmann, M. J. Carey, A. Sundararajan, G. Agrawal: A Complete and High-performance XQuery Engine for Streaming Data. VLDB 2003
- [GGR02] Minos N. Garofalakis, Johannes Gehrke, Rajeev Rastogi: Querying and Mining Data Streams: You Only Get One Look: A Tutorial. SIGMOD Conference 2002: 635
- [GO03] L. Golab, M. T. Ozsu: Processing Sliding Window Multi-Joins in Continuous Queries over Data Streams. VLDB 2003
- [GMOS03] T. J. Green, G. Miklau, M. Onizuka, D. Suciu: Processing XML Streams with Deterministic Automata. ICDT 2003

- [GS03] A. Gupta, D. Suciu: Stream Processing of XPath Queries with Predicates. SIGMOD Conference 2003
- [HFAE03] M. A. Hammad, M. J. Franklin, W. G. Aref, A. K. Elmagarmid: Scheduling for shared window joins over data streams. VLDB 2003
- [ILW00] Z. Ives, A. Y. Levy, D. Weld: Efficient evaluation of regular path expressions on streaming data. University of Washington Tech Report, 2000
- [JMS95] H. V. Jagadish, I. S. Mumick, A. Silberschatz: View Maintenance Issues for the Chronicle Data Model. PODS 1995: 113-124

- [KNV03] J. Kang, J. F. Naughton, S. Viglas: Evaluating window joins over unbounded streams. ICDE 2003: 37-48
- [LP02] L. V. S. Lakshmanan, S. Parthasarathy: On Efficient Matching of Streaming XML Documents and Queries. EDBT 2002: 142-160
- [LCHT02] M-L. Lee, B. C. Chua, W. Hsu, K-L. Tan: Efficient Evaluation of Multiple Queries on Streaming XML Data. CIKM 2002
- [LPT99] L. Liu, C. Pu, W. Tang: Continual Queries for Internet Scale Event-Driven Information Delivery. TKDE 11(4): 610-628 (1999)
- [LWZ04] Y. N. Law, H. Wang, C. Zaniolo: Query Languages and Data Models for Database Sequences and Data Streams. VLDB 2004
- [MF02] S. Madden, M. J. Franklin: Fjording the Stream: An Architecture for Queries Over Streaming Sensor Data. ICDE 2002: 555-566

- [MSHR02] S. Madden, M. A. Shah, J. M. Hellerstein, V. Raman: Continuously adaptive continuous queries over streams. SIGMOD Conference 2002: 49-60
- [MFHH03] S. Madden, M. J. Franklin, J. M. Hellerstein, W. Hong: The Design of an Acquisitional Query Processor For Sensor Networks. SIGMOD Conference 2003: 491-502
- [MCC03] M. L. Massie, B. N. Chun, D. E. Culler: The Ganglia Distributed Monitoring System: Design, Implementation and Experience. Draft, 2003. See <u>http://ganglia.sourceforge.net/</u>
- [MWA+03] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G. S. Manku, C. Olston, J. Rosenstein, R. Varma: Query Processing, Approximation, and Resource Management in a Data Stream Management System. CIDR 2003
- [MP80] J. I. Munro, M. Paterson: Selection and Sorting with Limited Storage. TCS 12: 315-323 (1980)

- [M03] S. Muthukrishnan: Data streams: algorithms and applications. SODA 2003: 413-413 <u>http://athos.rutgers.edu/~muthu/stream-1-1.ps</u>
- [MS03] S. Muthukrishnan, D. Srivastava: Workshop on Management and Processing of Data Streams (2003). <u>http://www.research.att.com/conf/mpds2003/</u>
- [OJW03] C. Olston, J. Jiang, J. Widom: Adaptive Filters for Continuous Queries over Distributed Data Streams. SIGMOD Conference 2003: 563-574
- [PC03] F. Peng, S. S. Chawathe: XPath Queries on Streaming Data. SIGMOD Conference 2003: 431-442
- [PFJ+01] J. Pereira, F. Fabret, H-A. Jacobsen, F. Llirbat, D. Shasha: WebFilter: A High-throughput XML-based Publish and Subscribe System. VLDB 2001: 723-724
- [RNC03] G. Russell, M. Neumuller, R. Connor: TypEx: A Type Based Approach to XML Stream Querying. WebDB 2003

- [SS96] S. Sarawagi, M. Stonebraker: Reordering Query Execution in Tertiary Memory Databases. VLDB 1996: 156-167
- [SV02] L. Segoufin, V. Vianu: Validating Streaming XML Documents. PODS 2002: 53-64
- [SLR94] P. Seshadri, M. Livny, R. Ramakrishnan: Sequence Query Processing. SIGMOD Conference 1994: 430-441
- [SLR95] P. Seshadri, M. Livny, R. Ramakrishnan: SEQ: A Model for Sequence Databases. ICDE 1995: 232-239
- [S96] M. Sullivan: Tribeca: A Stream Database Manager for Network Traffic Analysis. VLDB 1996: 594

- [TCG+93] A. U. Tansel, J. Clifford, S. K. Gadia, S. Jajodia, A. Segev, R. T. Snodgrass: Temporal Databases: Theory, Design, and Implementation. Benjamin/Cummings 1993
- [TCZ+03] N. Tatbul, U. Cetintemel, S. B. Zdonik, M. Cherniack, M. Stonebraker: Load Shedding in a Data Stream Manager. VLDB 2003
- [TGNO92] D. B. Terry, D. Goldberg, D. Nichols, B. M. Oki: Continuous Queries over Append-Only Databases. SIGMOD Conference 1992: 321-330
- [TMSF03] P. A. Tucker, D. Maier, T. Sheard, L. Fegaras: Exploiting Punctuation Semantics in Continuous Data Streams. TKDE 15(3): 555-568 (2003)
- [TMS03] P. A. Tucker, D. Maier, T. Sheard: Applying Punctuation Schemes to Queries Over Continuous Data Streams. IEEE Data Engineering Bulletin 26(1): 33-40
- [UF00] T. Urhan, M. J. Franklin: XJoin: A Reactively-Scheduled Pipelined Join Operator. IEEE Data Engineering Bulletin 23(2): 27-33 (2000)

- [VN02] S. Viglas, J. F. Naughton: Rate-based query optimization for streaming information sources. SIGMOD Conference 2002: 37-48
- [VNB03] S. Viglas, J. F. Naughton, J. Burger: Maximizing the Output Rate of Multi-Way Join Queries over Streaming Information Sources. VLDB 2003
- [WA91] A. N. Wilschut, P. M. G. Apers: Dataflow Query Execution in a Parallel Main-Memory Environment. PDIS 1991: 68-77
- [ZGTS02] D. Zhang, D. Gunopulos, V. J. Tsotras, B. Seeger: Temporal Aggregation over Data Streams Using Multiple Granularities. EDBT 2002: 646-663