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Data Streams: What and Where?

A data stream is a (potentially unbounded) sequence of tuples

Transactional data streams: log interactions between entities
Credit card: purchases by consumers from merchants
Telecommunications: phone calls by callers to dialed parties
Web: accesses by clients of resources at servers

Measurement data streams: monitor evolution of entity states
IP network: traffic at router interfaces
Sensor networks: physical phenomena, road traffic
Finance: stock prices, bids and asks
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Data Streams: Why Now?

Haven’t data feeds to databases always existed? Yes
Modify underlying databases, data warehouses
Complex queries are specified over stored data

Data Feeds Queries

Two recent developments: application- and technology-driven
Need for sophisticated near-real time queries/analyses
Massive data volumes of transactions and measurements
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Data Streams: Real-Time Queries

With traditional data feeds
Simple queries (e.g., value lookup) needed in real-time
Complex queries (e.g., trend analyses) performed offline

Now need sophisticated near-real time queries/analyses
AT&T: fraud detection on call detail tuple streams
NOAA: tornado detection using weather radar data

Data Feeds Queries
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Telecommunications Application:
Fraud Detection

Business Challenge: AT&T wanted to track calling pattern of
each of ~100M callers, and raise real-time fraud alerts

Issues:

Handwritten, optimized C code difficult to maintain
Signature computation is I/O intensive

Solution: Using Hancock domain-specific language

Abstract logical/physical streams and signatures
Express 1/0 and CPU efficient signature programs cleanly
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Hancock: Data Streams

typedef struct { Physical data representation
line_t origin; of tuples on disk
line_t dialed; Highly encoded structure
date t connectTime;
time_t duration; Logical data representation
char isIncomplete; C struct
char isintl;
char isTollFree; Conversion functions

Specified in Hancock

} callRec t;
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Hancock program paradigm:
Stream-in, relation-out

Block processing of data
Multiple passes on block

iterate (over calls
I/ I//

sortedby origin
filteredby nolncomplete

withevents originDetect){

Hancock: Signature Programs
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Hancock programs support:
Iterating on sorted data

event line_begin(lpn_t pn){
cumSec.outTF = 0;

}

Exchange
Filtering
Event clause hierarchy

event call(callRec_t c){

if (c.isTollFreeCall)

cumSec.outTF += c.duration;
Line

}
event line_end(lpn_t pn){
mySig us = data<:pn:>;
us.outTF = blend(cumSec.outTF, us.outTF);
data<:pn:> := us; User-defined aggregation
AT&T Labs-Research
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Data Streams: Massive Volumes

Now able to deploy transactional data observation points
AT&T long-distance: ~300M calls/day
AT&T IP backbone: ~50B IP flows/day

Now able to generate automated, highly detailed measurements
NOAA: satellite-based measurement of earth geodetics
Sensor networks: huge number of measurement points

Data Feeds
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[P Network Application: Hidden
P2P Traffic Detection

Business Challenge: AT&T IP customer wanted to accurately
monitor peer-to-peer (P2P) traffic evolution within its network

Issues
Use of P2P port numbers in Netflow data is not adequate
P2P traffic may be “hidden” in, e.g., HTTP traffic

Solution: Using Gigascope data stream management system
Search for P2P related keywords within TCP datagrams
Classified 3 times more traffic as P2P than Netflow
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IP Network Application: Web Client

Performance Monitoring

Business Challenge: AT&T IP customer wanted to monitor
latency observed by clients to find performance problems

Issues
Use of few “active clients” is not very representative
Massive volumes of data (Gbit/sec links, multiple links)

Solution: Using Gigascope data stream management system

Track timestamps of TCP SYN and ACK packets
Report latency as RTT, i.e., difference of timestamps
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IP Network Application: Security

Business Challenge: Alert IP customers about DDoS attacks
and worms by monitoring and analyzing network data streams

Issues
Massive volumes of data (Gbit/sec links, multiple links)

Real-time alerting (reaction time in minutes, not days)
Solution: Using Gigascope data stream management system

Monitor IP traffic data streams across customer networks
Analyze headers + contents, identify new attack signatures
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IP Network Packet Data

PROTOCOL IP (Layer2) {
uint ipversion

}

PROTOCOL IPv4(IP) {
uint hdr_length;
uint service_type;
uint total_length;
uint id;
bool do_not_fragment;
bool more_fragments;
uint offset;
uint ttl;
uint protocol;

8/20/07

Heterogeneous records
Layer 2: ETH/HDLC
Layer 3: IP/IPv4
Layer 4: UDP/TCP/ICMP

Layers 5-7: application
level, e.g., HTTP, SMTP

Analysis complicated by
Missing packets
Repeated packets
Out of order packets
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Gigascope

Gigascope is a fast, flexible data stream management system
High performance at speeds up to OC768 (2 x 40 Gbits/sec)
GSQL queries support SQL-like functionality

Monitoring platform of choice for AT&T IP network

Developed at AT&T Labs-Research
Collaboration between database and networking research
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Gigascope: GSQL Queries

GSQL queries support: HEEEEEEEE
Filtering, aggregation > )

Merges and joins ﬂ

Arbitrary code support
UDFs (e.g., LPM)
UDAFs

GSQL query paradigm:
Streams-in, stream-out
Permits composability

8/20/07 AT&T Labs-Research 15



Example: Email Bombing

Attack characteristic: excessively many email messages

Attack detection: monitor SMTP traffic, compare with trends

GSQL query

o

I,

define { query_name smtp_perhost; } = @
select tb, destIP, count(*), sum(len) @

from TCP P @
where protocol = 6 and destPort = 25
group by time/60 as tb, destIP

&

o B
m Mo
B
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Example: TCP SYN Flood

Attack characteristic: exploits 3-way TCP handshake
Attack detection: correlate SYN, ACK packets in TCP stream

GSQL query

define { query_name matched_syn_count; }

select S.tb, count(*) as cnt

from tcp_syn S, tcp_ack A

where S.sourcelP = A.destIP and

matched_syn_count M S.destIP = A.sourcelP and

where A.tb = M.tb S.sourcePort = A.destPort and
S.destPort = A.sourcePort and

define { query_name all_syn_count; } S.tb = A.tb and

select S.tb, count(*) as cnt S.timestamp <= A.timestamp and

from tcp_syn S (S.sequence_number+1) = A.ack_number
group by S.tb group by S.tb

define { query_name toomany_syn; }
select A.tb, (A.cnt — M.cnt)
outer_join from all_syn_count A,
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Example: Port Scans

Attack characteristic: probing for vulnerability

Attack detection: track number of distinct targets probed

GSQL query

define { query_name define { query_name countdest; }
countdest_persource; } select tb, count_distinct(

select tb, sourcelP, count_distinct( PACK(destIP,destPort) ) as cnt
PACK(destIP,destPort) ) as cnt from TCP

from TCP group by time/60 as tb

group by time/60 as tb, sourcelP

lllustrates use of UDAFs, approximate algorithms
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Example: Worms

Attack characteristic: self-propagating malicious code

Attack detection: payload analysis using inverse distributions

GSQL query

define { query_name inverse_distrib; } define { query_name base_distrib; }
select B.tb, B.cnt, count(*) as invent select C.tb, C.Sid, count(*) as cnt
from base_distrib B from tcp_content C

group by B.tb, B.cnt group by C.tb, C.Sid

8/20/07 AT&T Labs-Research
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Stream Map

Part |: Motivation

Data streams: architecture and issues
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DSMS + DBMS: Architecture

Data stream management system at multiple observation points
(Voluminous) streams-in, (data reduced) streams-out
Database management system
Outputs of DSMS can be treated as data feeds to database

E— Cucre: ()
o »DSMS[—_|

E— Cueres ()
o »DSMS{ |

Data Streams

Data Feeds Queries
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DSMS + DBMS: Architecture

Data Stream Systems Database Systems
Resource (memory, per- Resource (memory, disk,
tuple computation) limited per-tuple computation) rich
Reasonably complex, near Extremely sophisticated
real time, query processing guery processing, analyses
Useful to identify what data Useful to audit query results

to populate in database of data stream system
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DBMS versus DSMS: Issues

Database Systems

Data Stream Systems

Model: persistent relations Model: transient relations

Relation: tuple set/bag

Relation: tuple sequence

Data Update: modifications Data Update: appends

Query: transient
Query Answer: exact

Query: persistent
Query Answer: approximate

Query Evaluation: arbitrary Query Evaluation: one pass

Query Plan: fixed

Really a continuum ...

8/20/07

Query Plan: adaptive
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Relation: Tuple Set or Sequence?

Traditional relation = set/bag of tuples

Tuple sequences have been studied:
Temporal databases [TCG+93]. multiple time orderings
Sequence databases [SLR94]: integer “position” -> tuple

Data stream systems:

Ordering domains: Gigascope [CJSS03], Hancock [CFP+00]
Position ordering: Aurora [CCC+02], STREAM [MWA+03]
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Update: Modifications or Appends?

Traditional relational updates: arbitrary data modifications

Append-only relations have been studied:
Tapestry [TGNO92]: emails and news articles
Chronicle data model [JMS95]: transactional data

Data stream systems:

Streams-in, stream-out: Aurora, Gigascope, STREAM
Stream-in, relation-out: Hancock

8/20/07 AT&T Labs-Research
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Query: Transient or Persistent?

Traditional relational queries: one-time, transient

Persistent/continuous queries have been studied:
Tapestry [TGNO92]: content-based email, news filtering
OpenCQ, NiagaraCQ [LPT99, CDTWO0O0]: monitor web sites
Chronicle [JMS95]: incremental view maintenance

Data stream systems:
Support persistent and transient queries

8/20/07 AT&T Labs-Research
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Query Answer: Exact or Approximate?

Traditional relational queries: exact answer

Approximate query answers have been studied [BDF+97]:
Synopsis construction: histograms, sampling, sketches
Approximating query answers: using synopsis structures

Data stream systems:

Approximate joins: using windows to limit scope
Approximate aggregates: using synopsis structures
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Query Evaluation: One Pass?

Traditional relational query evaluation: arbitrary data access

One/few pass algorithms have been studied:
Limited memory selection/sorting [MP80]: n-pass quantiles
Tertiary memory databases [SS96]: reordering execution
Complex aggregates [CR96]: bounding number of passes

Data stream systems:

Per-element processing: single pass to reduce drops
Block processing: multiple passes to optimize 1/0O cost
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Query Plan: Fixed or Adaptive?

Traditional relational query plans: optimized at beginning

Adaptive query plans have been studied:
Query scrambling [AFTU96]: wide-area data access
Eddies [AHOO]: volatile, unpredictable environments

Data stream systems:

Adaptive query operators
Adaptive plans

8/20/07 AT&T Labs-Research
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Data Stream Query Processing:
Anything New?

Architecture Issues
Resource (memory, per- Model: transient relations
tuple computation) limited Relation: tuple sequence
Data Update: appends
Reasonably complex, near Query: persistent

real time, query processing Query Answer: approximate

Query Evaluation: one pass
Query Plan: adaptive

A lot of challenging problems ...

8/20/07 AT&T Labs-Research 30



Stream Map

Part Il: Query processing

8/20/07

Stream query language issues (compositionality, windows)
Query operators

Optimization objectives

Multi-query execution

Prototype systems

AT&T Labs-Research
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Stream Query Languages

SQL-like proposals suitably extended for a stream environment
Composable SQL operators
Queries reference/produce relations or streams
GSQL [CJSS03]: SQL used by Gigascope
CQL [ABWO03]: SQL used by STREAM

Streams or Stream or
finite Relations I:>Stream Query Language :> finite Relation

UDA-SQL [LWZ04]: Monotonic sequence based queries
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Windows

Mechanism for extracting a finite relation from an infinite stream

Various window proposals for restricting operator scope
Windows based on ordering attributes (e.g., time)
Windows based on tuple counts

8/20/07

Windows based on explicit markers (e.g., punctuations)

Streams

window

specifications Finite

relations

> manipulated
using SQL

AT&T Labs-Research

streamify

>

Stream
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Ordering Attribute Based Windows

Assumes existence of an ordering attribute (e.g., time)

Various possibilities exist

Agglomerative

- O

< >
Start time Current time
t1 t2 t3 t4 Sliding window
time

Tumbling window

time
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Tuple Count Based Windows

Window of size N tuples (sliding, tumbling) over the stream
Problematic with non-unique time stamps associated with tuples

Ties broken arbitrarily may lead to non deterministic output

time
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Punctuation Based Windows [TMSFO03]

Application inserted “end-of-processing” markers
Each data item identifies “beginning-of-processing”

Enables data item-dependent variable length windows
E.g., a stream of auctions

Similar utility in query processing
Limit the scope of query operators relative to the stream
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UDA-SQL [LWZ04]

Key ldea: Only permit non-blocking queries on data streams
Non-blocking queries = monotonic queries

Non-blocking RA cannot express all monotonic FO queries
Set difference (-) in RA is blocking wrt its second argument
Expression of “coalesce” and “until” use set difference

Proposal: Support non-blocking user-defined aggregates

INITIALIZE, ITERATE: process tuples in an ordered fashion
NB-UDAs + Union = computable monotonic functions
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Stream Map

Part II: Query processing

Query operators (selections/projections, joins, aggregations)
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Selections, Projections

Selections, (duplicate preserving) projections are straightforward
Local, per-element operators

Duplicate eliminating projection is like grouping

Projection needs to include ordering attribute [JMS95]
No restriction for position ordered streams

Select sourcelP, time
from TCP
where length > 512
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Join Operators

General case of join operators problematic on streams
Equijoin on stream ordering attributes is tractable [JMS95]
May need to join arbitrarily far apart stream tuples

Majority of work focuses on joins between streams with windows

Select A.sourcelP, B.sourcelP
from TCP A [window T1], TCP B [window T2]
where A.destlP = B.destIP
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Join Operators: Background

Symmetric Hash Joins [WA91]
Takes into account streaming nature of inputs

match
Hash table 1 Hash table 2
. 4
source1 ‘ ‘ source?

XJoin [UF00]: extends Symmetric Hash Joins
Overflowing inputs spilled to disk for later evaluation

8/20/07
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Binary Joins [KNVO03]

New A tuple:
A Scan B’s window for joining
g tuples and output result
T1 - > join
Insert tuple into A’s window
B- s

Invalidate all expired tuples
T2 in A’s window
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Binary Joins: Asymmetry

Asymmetric join processing

A o useful if arrival rates differ
memmmp- | Hash join ——

join Goal: maximize tuple output
Limited computation, but
e I-Nested loops | m—t- sufficient memory
Limited memory, but

sufficient computation
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Strategies and Expirations

Eager tuple expiration Lazy tuple expiration

Eager
Evaluation

Lazy
Evaluation
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Aggregation

General form:
select G, F1 from S where P group by G having F2 op &

G: grouping attributes, F1,F2: aggregate expressions

Aggregate expressions:
Distributive: sum, count, min, max
Algebraic: avg
Holistic: count-distinct, median

8/20/07 AT&T Labs-Research
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Aggregation 1n Theory

An aggregate query result can be streamed if group by
attributes include the ordering attribute [IMS95]

A single stream aggregate query “select G,F from S where P
group by G” can be executed in bounded memory if [ABB+02]:

Every attribute in G is bounded

No aggregate expression in F, executed on an unbounded
attribute, is holistic

Arasu et al. [ABB+02] derive conditions for bounded memory
execution of aggregate queries on multiple streams
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Aggregation in Bounded Memory

Aggregate query execution not in bounded memory:

select length select distinct length
from TCP [window T] — from TCP [window T]
where length > 512 —  where length > 512

group by length
Aggregate query execution in bounded memory:

select length, count(*)
from TCP [window T]
where length > 512 and length < 1024

group by length

8/20/07 AT&T Labs-Research
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Aggregation 1n Gigascope

Grouping attributes contain window expressions restricting the
scope of the group (e.g., temporally)

select peerid, tb, count(*) from TCP group by time/60 as tb,
f(destIP, peerid.tbl’) as peerid

time/60 is a minute-long tumbling window (epoch)
Gigascope applies partial-aggregation on low-level data streams

Bounded number of groups maintained at low level
Unbounded number of groups maintainable at high level
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Aggregation & Approximation

When aggregates cannot be computed exactly in limited
storage, approximation may be possible and acceptable

Examples:

select G, median(A) from S group by G
select G, count(distinct A) from S group by G

Use summary structures: samples, histograms, sketches

8/20/07 AT&T Labs-Research
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Quantiles

What: quantiles are order statistics
Minimum, maximum, median
®-quantile: item with rank ®N in data set of size N

Why: useful to summarize data distributions

Example: 0.1, 0.2, ..., 0.9-quantiles of GRE scores
Median (0.5-quantile) more robust to outliers than average

8/20/07 AT&T Labs-Research
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Quantile Computation

Exact computation of ®-quantile
Sort data set, pick out item in position ®N
On a data stream (one pass), need Q(N) space [MP80]

g-approximate computation in sub-linear space
®-quantile: item with rank between (P-¢)N and (P+¢)N
[MRL98]: N known a priori, space O(1/e log?(eN))
[GKO1]: N not known a priori, space O(1/¢ log(eN))

8/20/07 AT&T Labs-Research
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Biased Quantiles: Motivation

IP network traffic has a lot of skew
Long tails of great interest
Example: 0.9, 0.95, 0.99-quantiles of TCP round trip times

Issue: uniform error guarantees
€ = 0.05: okay for median, but not 0.99-quantile

¢ = 0.001: okay for both, but needs too much space

Goal: support relative error guarantees in small space
1-O, ...,1-®k quantiles in ranks (1-(1£e)®)N, ..., (1-(1£e)P)N
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Biased Quantiles

. Intuition

Median at time step N

¥a-quantile at time step N' = 2N

N’ = 2N, eN = e/2(2N)

8/20/07 AT&T Labs-Research
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Biased Quantiles [CKMSO06]

Domain-oriented [SBAS04]
ltems drawn from [1...U]
Impose binary tree over domain
Want space to be O(log U)

Maintain counts ¢, on (subset of) nodes
Represents input items from subtree
L(v): counts to left of a leaf are certainly less
A(x): uncertainty in rank is from ancestors

8/20/07 AT&T Labs-Research 54



Biased Quantiles: Results

Maintain accuracy invariants
Deterministically bound ranks: L(x) — A(x) < rank(x) < L(x)
Bound possible ranks: v # If(v) — C, < (¢/log U) L(v)
Consequence: can find r'(x) so |r'(x) — rank(x)| < € rank(x)

Results: can answer queries with error < € rank(x)
Use space O(1/¢ log(eN) log(U))
Amortized update time O(log log U)
Lower bound on space of O(1/¢ log(eN))
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Stream Map

Part II: Query processing

Optimization objectives (stream rate, resource limits, QoS)

8/20/07 AT&T Labs-Research
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Optimization Objectives: Issues

Traditionally table based cardinalities used in query optimization
Problematic in a streaming environment

Need for novel optimization objectives that are relevant when
inputs consist of streaming information sources
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Optimization Objectives

Rate-based optimization [VNO2]:
Take into account rates of streams in query evaluation tree
Rates can be known and/or estimated

Overall objective is to maximize the tuple output rate for a query
Instead of seeking the least cost plan
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Rate Based Optimization

50 tuples/sec Very fast op
sel: 0.1 sel: 0.1
| e @ | e @ | e
0.5 tuples/sec
500 tuples/sec
Very fast op 50 tuples/sec
: I: 0.1
X218 tht S¢ 5 tuples/sec
[ > @ [ > @ L >
500 tuples/sec

8/20/07
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Rate Based Optimization

Output rate of a plan: number of tuples produced per unit time
Derive expressions for the rate of each operator

Combine expressions to derive expression r(t) for the plan
output rate as a function of time:

Optimize for a specific point in time in the execution
Optimize for the output production size

8/20/07 AT&T Labs-Research
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Optimization Objectives: Summary

Novel notions of optimization
Stream rate based
Resource based
QoS based

Continuously adaptive optimization
Possibility that objectives cannot be met:

Resource constraints
Bursty arrivals under limited processing capability
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Load Shedding

When input stream rate exceeds system capacity a stream
manager can shed load (tuples)

Load shedding affects queries and their answers

Introducing load shedding in a data stream manager is a
challenging problem

Random and semantic load shedding
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Stream Map

Part II: Query processing

Multi-query execution

8/20/07 AT&T Labs-Research
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Multi-query Processing on Streams

In traditional multi-query optimization:
Result sharing among queries leads to better performance

Similar issues arise when processing queries on streams:

Sharing between select/project expressions
Sharing between sliding window join expressions

8/20/07 AT&T Labs-Research
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Grouped Filters [MSHRO02]

Select Predicates
for Stream S.A

S A>1
S A>7
S.A>11

S.A<3
S.A<5

Tuple S A=38

8/20/07

1 11
.
SA>1 |[SA>7 5.A > 11
<
S.A<3 S.A<5

AT&T Labs-Research
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Shared Window Joins [HFAEQO3]

Consider the two queries:

select sum (A.length)
from TCP A [window 1hour], TCP B [window 1 hour]
where A.destIP = B.destIP

select count (distinct A.sourcelP)
from TCP A [window 1 min], TCP B [window 1 min]
where A.destIP = B.destIP

8/20/07 AT&T Labs-Research
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Shared Window Joins

Great opportunity for optimization as windows are highly shared

Strategies for scheduling the evaluation of shared joins
Largest window only
Smallest window first

Process at any instant the tuple that is likely to benefit the
largest number of joins (maximize throughput)
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Shared Window Aggregates [AW04]

Great opportunity for optimization as windows are highly shared

Sliding window aggregates
Various aggregation functions (e.g., distributive, algebraic)
Various window types (time, tuple based)
Input models (single, multiple streams)
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Stream Map

Part II: Query processing

Prototype systems

8/20/07 AT&T Labs-Research
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Prototype systems

Aurora (Brandeis, Brown, MIT) [CCC+02]
Gigascope (AT&T) [CISS03]

Hancock (AT&T) [CFP+00]

Nile (Purdue) [AEA+04]

STREAM (Stanford) [MWA+03]
Telegraph (Berkeley) [CCD+03]

8/20/07 AT&T Labs-Research
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Related DSMS Technologies

System Data Stream Data Model Query Query Query Plan
Architecture Language Answers
Aurora low-level RS-in Operators approximate QoS-based,
StreamBase RS-out load shedding
Gigascope two level (low, S-in GSQL approximate decomposition,
high) S-out distribution
Hancock high-level RS-in Procedural exact, optimize for 1/O,
R-out signatures process blocks
Nile high level RS-in SQL-based approximate incremental
RS-out evaluation,
multi-query
STREAM low-level RS-in cQL approximate optimize space,
RS-out static analysis
Telegraph high-level RS-in RS-out SQL-based exact adaptive plans,
multi-query
8/20/07 AT&T Labs-Research 71




Aurora

Geared towards monitoring applications (streams, triggers,
imprecise data, real time requirements)

Specified set of operators, connected in a data flow graph
Optimization of the data flow graph
Three query modes (continuous, ad-hoc, view)

Aurora accepts QoS specifications and attempts to optimize
QoS for the outputs produced

Real time scheduling, introspection and load shedding
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Gigascope

Specialized stream database for network applications

GSQL for declarative query specifications: pure stream query
language (stream input/output)

Uses ordering attributes in IP streams (timestamps and their
properties) to turn blocking operators into non blocking ones

GSQL processor is code generator.
Query optimization uses a two level hierarchy
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Hancock

A C-based domain specific language which facilitates transactor
signature extraction from transactional data streams

Support for efficient and tunable representation of signature
collections

Support for custom scalable persistent data structures
Elaborate statistics collection from streams
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Nile

Summary Manager with the notion of promising tuples
Sliding and predicate windows

Negative tuples

Shared execution

Admission control and quality of service support
Context-aware query processing and optimization
Disk-based data streams

8/20/07 AT&T Labs-Research
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STREAM

General purpose stream data manager

CQL for declarative query specification
Consider query plan generation

Resource management: operator scheduling
Static and dynamic approximations

8/20/07 AT&T Labs-Research
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Telegraph

Continuous query processing system

Support for stream oriented operators

Support for adaptivity in query processing

Various aspects of optimized multi-query stream processing

8/20/07 AT&T Labs-Research
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Benchmark: Linear Road [ACG+04]

Goal: Compare performance of DSMSs and DBMSs

Linear Road Benchmark: Challenges
Semantically valid input: high-volume simulated data
Performance metrics: real-time query response, load
No query language: queries specified in predicate calculus
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Stream Map

Part Ill: Gigascope DSMS
Scalable aggregate query processing
Open Issues

8/20/07 AT&T Labs-Research
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Gigascope: Scalability

Gigascope is a fast, flexible data stream management system
High performance at OC768 speeds (2 x 40 Gbit/sec)
Non-trivial queries at 200,000 pkts/sec using 38% of 1 CPU

Monitoring platform of choice for AT&T IP network

Scalability mechanisms
Two-level architecture: Query splitting, pre-aggregation
Distribution architecture: Query-aware stream splitting
Unblocking: Reduce data buffering
Sampling algorithms: Data reduction
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Gigascope: Two-Level Architecture

Low-level queries perform

fast selection, aggregation

High-level queries complete High High

complex aggregation T / \
Low

. T /
< Ring f)ujer

NIC

*

8/20/07 AT&T Labs-Research 81



Gigascope: Query Splitting

select tb, destIP, sum(sumLen)

from SubQ
define { query _name smtp; } group by tb, destIP
select tb, destIP, sum(len) having sum(cnt) > 1

from TCP

where protocol = 6 and define { query_name SubQ; }
destPort = 25 select tb, destlP, sum(len) as

group by time/60 as tb, destIP sumLen, count(*) as cnt

having count(*) > 1 from TCP

where protocol = 6 and
destPort = 25

group by time/60 as tb, destIP
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Gigascope: Low-Level Aggregation

Fixed number of slots for Fixed-size slots

groups, fixed size slot for group  aggregate data

~

each group
Direct-mapped hashing x
Eviction
on collision

Optimizations
Limited hash chaining
reduces eviction rate

Slow eviction of groups
when epoch changes

Fixed number of slots
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Aggregation 1n Gigascope

High
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Gigascope: UDAF Specification

Standard database UDAF: INIT, ITERATE, TERMINATE

Gigascope UDAF: similar to standard database UDAF, but

Break TERMINATE into OUTPUT and DESTROY: enables,
e.g., quantile(len, 0.9), quantile(len, 0.95), quantile(len, 0.99)

Can support arbitrary data stream algorithms as UDAFs

GK quantile summary, CKMS (biased) quantile summary
Count-min (CM) sketch
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Gigascope: UDAF Design Issues

Split processing effort between high and low level

Processing at low-level saves processing at high-level
Data reduction, fewer transfers, fewer merges, etc.

Too much processing at low-level causes packet drops
Quick-and-dirty filtering and aggregation

Need to strike the right balance

Lightweight data structures, especially at low level
Avoid excessive processing at bottlenecks
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Gigascope: Performance

8/20/07

Query Low High Packets/sec
counting 8% 0% 145,000
only
grouping 12.6% 0.5% 145,000
aggregatio
inv8rse 25% 15.5% 142,000
distribution
UDAF 30% 43% 141,000
DDoS (join) 16.9% 3.1% 142,000
P2P 10.7% 0% 139,000

(content)
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Distributed Gigascope

Problem: OC768 monitoring High speed (OC768) stream
needs more than one CPU

2x40 Gb/s = 16M pkts/s

Solution: split data stream, @

process query, recombine
partitioned query results

GS1 GS2| oomo GSn

For linear scaling, splitting
needs to be query-aware

Gigabit Ethernet
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Gigascope: Query-Unaware Splitting

define { query_name flows; }

hflows
select tb, srclP, destlP,
count(*) flows
from TCP T
group by time/60 as tb, srclP, U
destIP PN
flows Hows
define { query _name hflows; } GS 1 o GSn
select tb, srclP, max(cnt) Y~

group by tb, srclP
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Gigascope: Query-Aware Splitting

define { query_name flows; }

U
select tb, srclP, destIP,
count(*) / \

from TCP hflows hflows
group by time/60 as tb, srclP, T noo T
destIP flows flows
GS 1 GSn
define { query_name hflows; } T~ —
select tb, srclP, max(cnt)
from flows T

group by tb, srclP
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Gigascope: Unblocking

Issues
Produce useful output over potentially infinite streams
A link failure can stall an input stream

Solution technique: Timestamps
|dentify fields behaving like timestamps (monotone)
Determine tuple locality by query analysis on references

Solution technique: Punctuation carrying “heartbeats”

Inject heartbeats into streams, propagate through query dag
Significant reduction in memory usage with low CPU cost
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Gigascope: Sampling Algorithms

Issues
Need sampling to deal with high volume streams (attacks)

Solution technique: Single operator that can be specialized

Simple communication structure between samples,
summary

Efficient implementation using multiple hash tables
Solution technique: User-defined aggregate functions (UDAFsS)

Separate UDAFs for distinct sampling algorithms
Added flexibility permits inter-sample communication
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Stream Map

Part Ill: Gigascope DSMS

Open Issues
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Challenges and Opportunities

Challenges
Large query sets: 100s of GSQL queries, black-box UDAFs
Data quality: inadequate understanding of network protocols
Network speeds increasing: OC48 — OC192 — OC768

Opportunities
Multi-query optimization: predicates, joins, UDAFs, etc.
Stream integrity: PAC constraints, etc.
Using specialized hardware: GPUs, FPGAs, etc.
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Multi-Query Optimization

Challenge
100s of GSQL queries, black-box UDAFs

Traditional MQO problem: predicates, aggregates, joins, etc.
Fast identification of queries relevant to a record

Novel MQO problem: optimizable, shareable UDAFs

Example: GSQL queries using different sampling strategies
Declarative characterization (specification?) of UDAFs
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Stream Integrity

Challenge
Complex protocols, inadequate understanding in practice

Queries can return inexplicable results
Unlike in a DBMS, cannot go back to explore the raw data

Need to formally characterize and monitor query pre-conditions

Example: stream sorted on time? multiple SYN packets?
PAC constraints to approximately quantify violations

8/20/07 AT&T Labs-Research 100



Using Specialized Hardware

Challenge
Network speeds increasing: OC48 — OC192 — OC768

Using commodity hardware
GPUs for highly parallel computations with spatial locality

Using specialized hardware

FPGAs to parse TCP packet headers
RegEx matchers to access application-level (HTTP) fields
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Conclusions

Data stream query processing has real applications
Need for sophisticated near-real time queries
Massive data volumes of transactions and measurements

Gigascope is a flexible DSMS, used in practice
Designed to support complex aggregation on fast streams
Careful algorithm engineering essential for performance

Wealth of challenging technical and practical problems exist

Resource limitations exist, especially at low-level
Important to think of the end-to-end architecture
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