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Abstract. Temporal business constraints have been extensively
adopted to declaratively capture the acceptable courses of execution in a
business process. However, traditionally, constraints are interpreted logi-
cally in a crisp way: a process execution trace conforms with a constraint
model if all the constraints therein are satisfied. This is too restrictive
when one wants to capture best practices, constraints involving uncon-
trollable activities, and exceptional but still conforming behaviors. This
calls for the extension of business constraints with uncertainty. In this
paper, we tackle this timely and important challenge, relying on recent
results on probabilistic temporal logics over finite traces. Specifically, our
contribution is threefold. First, we delve into the conceptual meaning
of probabilistic constraints and their semantics. Second, we argue that
probabilistic constraints can be discovered from event data using exist-
ing techniques for declarative process discovery. Third, we study how to
monitor probabilistic constraints, where constraints and their combina-
tions may be in multiple monitoring states at the same time, though
with different probabilities.

Keywords: Declarative process models · Temporal logics · Process
mining · Probabilistic process monitoring · Probabilistic conformance
checking

1 Introduction

A key functionality that any process-aware information system should support
is that of monitoring [12]. Monitoring concerns the ability to verify at runtime
whether an actual process execution conforms to a prescriptive business process
model. This runtime form of conformance checking is instrumental to detect, and
then suitably handle, deviations appearing in ongoing process instances [14].

A common way of representing monitoring requirements that capture the
expected behavior prescribed by a process model is by using declarative, busi-
ness constraints. Many studies demonstrated that, in several settings, business
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constraints can be formalized in terms of temporal logic rules [19]. Within this
paradigm, the Declare constraint-based process modeling language [21] has been
introduced as a front-end language to specify business constraints based on Lin-
ear Temporal Logic over finite traces (LTLf ) [2]. The advantage of this approach
is that the automata-theoretic characterization of LTLf is based on standard,
finite-state automata. These can be exploited to provide advanced monitoring
facilities where the state of constraints is determined in a sophisticated way by
combining the events collected at runtime with the possible, future continuations
[1,16], in turn enabling the early detection of conflicting constraints [17].

In a variety of application domains, business constraints are inherently uncer-
tain. This is clearly the case for constraints which: (i) capture best practices that
have to be followed by default, that is, in most, but not necessarily all, cases;
(ii) link controllable activities to activities that are under the responsibility of
uncontrollable, external stakeholders; (iii) should hold in exceptional but still
conforming courses of execution. Uncertainty is intrinsically present also when
business constraints are discovered from event data. It is then very surprising
that only very few approaches incorporate uncertainty as a first-class citizen.
This is the case not just when the prescriptive behavior to be monitored is
expressed as a set of business constraints, but also when a more conventional
imperative approach is adopted [11].

It is well known that combining uncertainty with temporal logics is extremely
challenging. This is due to the interplay of temporal operators and uncertainty,
which becomes especially tricky considering that, usually, temporal logics are
interpreted over infinite traces. The resulting, combined logics then come with
semantic or syntactic restrictions (see, e.g., [8,20]). To tackle these issues, the
probabilistic temporal logic over finite traces PLTLf , and its fragment PLTL0

f ,
have been recently proposed in [15]. Since these logics are defined over finite
traces, they are the natural candidate to enrich existing constraint-based process
modeling approaches with uncertainty.

In this paper, we indeed employ PLTL0
f to achieve this goal. Specifically,

we exploit the fact that PLTL0
f handles time and probabilities in a way that

naturally matches with the notion of conformance: a constraint ϕ holds with
probability p if, by considering all the traces contained in a log, ϕ is satisfied
by a fraction p of all the traces contained therein. Based on this observation, we
provide a threefold contribution.

First, we exploit PLTL0
f to introduce probabilistic constraints and delve into

their semantics and conceptual meaning; notably, our semantics is based on the
already established notion of stochastic language [11]. We then show how prob-
abilistic constraints can be used to naturally lift the Declare language to its
probabilistic version ProbDeclare. Second, we observe that probabilistic Declare
constraints can be discovered off-the-shelf using already existing techniques for
declarative process discovery [7,9,13,22], with strong guarantees on the con-
sistency of the generated models. In fact, the discovered constraints are for
sure (probabilistically) consistent, without incurring in the notorious consis-
tency issues experienced when the discovered constraints are interpreted in a
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crisp way [4,5]. Third, we study how to monitor probabilistic constraints, where
constraints and their combinations may be in multiple monitoring states at the
same time, though with different associated probabilities. This is based on the
fact that a single ProbDeclare model gives raise to multiple scenarios, each with
its own distinct probability, where some of the constraints are expected to be
satisfied, and the others to be violated. Specifically, we show how to lift existing
automata-theoretic monitoring techniques to this more sophisticated probabilis-
tic setting, and report on a proof-of-concept implementation of the resulting
framework.

The paper is structured as follows. After preliminary notions introduced in
Sect. 2, we introduce the syntax and semantics of probabilistic constraints in
Sect. 3. In Sect. 4, we discuss how ProbDeclare constraints can be discovered
from event data using existing techniques. In Sect. 5, we show how to monitor
probabilistic constraints, and report on the corresponding implementation. In
Sect. 6, we conclude the paper and spell out directions for future work.

2 Preliminaries

We consider a finite alphabet Σ of atomic activities. A trace τ over Σ is a finite
sequence a1 . . . an of activities, where ai ∈ Σ for i ∈ {1, . . . , n}. The length of
trace τ is denoted by length(τ). We use notation τ(i) to select the activity ai

present in position (also called instant) i of τ , and Σ∗ for the (infinite) set of all
possible traces over Σ. A log over Σ is a finite multiset of traces over Σ.

We recall next syntax and semantics of LTLf [1,2], and its application in the
context of Declare [18,21]. Consistently with the BPM literature, we make the
simplifying assumption that formulae are evaluated on sequences where, at each
point in time, only one proposition is true, matching the notion of trace defined
above.

LTL Over Finite Traces. LTLf has exactly the same syntax of standard LTL,
but, differently from LTL, it interprets formulae over finite traces, as defined
above. An LTLf formula ϕ over Σ is built by extending propositional logic with
temporal operators:

ϕ ::= a | ¬ϕ | ϕ1 ∨ ϕ2 | ©ϕ | ϕ1 U ϕ2 where a ∈ Σ.

A formula ϕ is evaluated over a trace τ in a valid instant i of τ , such that
1 ≤ i ≤ length(τ). Specifically, we inductively define that ϕ holds at instant i of
τ , written τ, i |= ϕ, as:

– τ, i |= a for a ∈ Σ iff τ(i) = a;
– τ, i |= ¬ϕ iff τ, i �|= ϕ;
– τ, i |= ϕ1 ∨ ϕ2 iff τ, i |= ϕ1 or τ, i |= ϕ2;
– τ, i |= ©ϕ iff i < length(τ) and τ, i + 1 |= ϕ;
– τ, i |= ϕ1 U ϕ2 iff for some j such that i ≤ j ≤ length(τ), we have τ, j |= ϕ2

and for every k such that i ≤ k < j, we have τ, k |= ϕ1.
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Table 1. Some Declare templates, with their LTLf and graphical representations.

Intuitively, © denotes the next state operator, and ©ϕ holds if there exists a next
instant (i.e., the current instant does not correspond to the end of the trace),
and, in the next instant, ϕ holds. Operator U instead is the until operator, and
ϕ1 U ϕ2 holds if ϕ1 holds now and continues to hold until eventually, in a future
instant, ϕ2 holds.

From these operators, we can derive the usual boolean operators ∧ and →,
the two formulae true and false, as well as additional temporal operators. We
consider, in particular, the following three: (i) (eventually) ♦ϕ = trueU ϕ is true,
if there is a future state where ϕ holds; (ii) (globally) �ϕ = ¬♦¬ϕ is true, if
now and in all future states ϕ holds; (iii) (weak until) ϕ1 W ϕ2 = ϕ1 U ϕ2 ∨�ϕ1

relaxes the until operator by admitting the possibility that ϕ2 never becomes
true, in this case by requiring that ϕ1 holds now and in all future states. We
write τ |= ϕ as a shortcut notation for τ, 0 |= ϕ, and say that formula ϕ is
satisfiable, if there exists a trace τ such that τ |= ϕ.

Example 1. The LTLf formula �(close → ©♦accept) (called response in
Declare) models that, whenever an order is closed, then it is eventually accepted.
�

Every LTLf formula ϕ can be translated into a corresponding standard finite-
state automaton Aϕ that accepts all and only those finite traces that satisfy ϕ
[1,2]. Although the complexity of reasoning with LTLf is the same as that of
LTL, finite-state automata are much easier to manipulate in comparison with the
Büchi automata used when formulae are interpreted over infinite traces. This is
the main reason why LTLf has been extensively and successfully adopted within
BPM to capture constraint-based, declarative processes, in particular providing
the formal basis of Declare.
Declare is a constraint-based process modeling language based on LTLf .
Declare models a process by fixing a set of activities, and defining a set of
temporal constraints over them, accepting every execution trace that satisfies
all constraints. Constraints are specified via pre-defined LTLf templates, which
come with a corresponding graphical representation (see Table 1 for the Declare
templates we use in this paper). For the sake of generality, in this paper, we
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consider arbitrary LTLf formulae as constraints. However, in the examples, we
consider formulae whose templates can be represented graphically in Declare.
Automata-based techniques for LTLf have been adopted in Declare to tackle
fundamental tasks within the lifecycle of Declare processes, such as consistency
checking [19,21], enactment and monitoring [1,16,21], and discovery support
[13].

3 Probabilistic Constraints and ProbDeclare

We now lift LTLf constraints to their probabilistic version. As done in Sect. 2,
we assume a fixed finite set Σ of activities.

Definition 1. A probabilistic constraint over Σ is a triple 〈ϕ, ��, p〉, where: (i)
ϕ, the constraint formula, is an LTLf formula over Σ; (ii) �� ∈ {=, �=,≤,≥, <
,>} is the probability operator; (iii) p, the constraint probability, is a rational
value in [0, 1]. �

We use the compact notation 〈ϕ, p〉 for the probabilistic constraint 〈ϕ,=, p〉.
A probabilistic constraint is interpreted over an event log, where traces have
probabilities attached. Formally, we borrow the notion of stochastic language
from [11].

Definition 2. A stochastic language over Σ is a function ρ : Σ∗ → [0, 1] that
maps every trace over Σ onto a corresponding probability, so that

∑
τ∈Σ∗ ρ(τ) =

1. �

An event log can be easily turned into a corresponding stochastic language
through normalization of the trace quantities, in particular by dividing the num-
ber of occurrences of each trace by the total number of traces in the log [11].
Similarly, a stochastic language can be turned into a corresponding event log by
considering only the traces with non-zero probabilities.

Example 2. Consider the following traces over Σ = {close, accept, nop}: (i)
τ1 = 〈close, accept〉; (ii) τ2 = 〈close, accept, close, nop, accept〉; (iii) τ3 =
〈close, accept, close, nop〉; (iv) τ4 = 〈close, nop〉. Log L = {τ50

1 , τ30
2 , τ10

3 , τ10
4 }

corresponds to the stochastic language ρ defined as follows: (i) ρ(τ1) = 0.5; (ii)
ρ(τ2) = 0.3; (iii) ρ(τ3) = 0.1; (iv) ρ(τ4) = 0.1; (v)ρ is 0 for any other trace in
Σ∗. �

We say that a stochastic language ρ satisfies a probabilistic constraint C =
〈ϕ, ��, p〉, written ρ |= C, iff

∑
τ∈Σ∗,τ |=ϕ ρ(τ) �� p. In other words, we first obtain

all the traces that satisfy ϕ in the classical LTLf sense. We then use ρ to sum
up the overall probability associated to such traces. We finally check whether
the so-obtained number n is so that the comparison expression n �� p is true.
Constraint C = 〈ϕ, ��, p〉 is plausible if p �= 0 and it is logically plausible, that
is, ρ |= C for some stochastic language ρ. This latter requirements simply means
that ϕ is satisfiable in the classical LTLf sense.
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Thanks to the correspondence between stochastic languages and event logs,
we can define an analogous notion of satisfaction for event logs. With a slight
abuse of notation, we use the same notation L |= C to indicate that event
log L satisfies C. The resulting semantics naturally leads to interpret the con-
straint probability as a frequency, that is, as the fraction of conforming vs non-
conforming traces contained in a log.

Example 3. The log L from Example 2 satisfies the probabilistic constraint
Cca = 〈�(close → ©♦accept), 0.8〉. In fact, �(close → ©♦accept) is satis-
fied1 by traces τ1 and τ2, whose overall probability is 0.5 + 0.3 = 0.8. �

This statistical interpretation of probabilities is central in the context of this
paper, and leads to the following key observation: ρ satisfies C = 〈ϕ, p〉 iff it
satisfies C = 〈¬ϕ, 1 − p〉. This reflects the intuition that, whenever ϕ holds in a
fraction p of traces from an event log, then ¬ϕ must hold in the complementary
fraction 1 − p of traces from that log. Conversely, an unknown execution trace
τ will satisfy ϕ with probability p, and will violate ϕ (i.e., satisfy ¬ϕ) with
probability 1 − p. This can be extended to the other probability operators in
the natural way, taking into account that ≤ should be replaced by its dual ≥
(and vice-versa). Hence, we can interpret ϕ and ¬ϕ as two alternative, possible
scenarios, each coming with its own probability (respectively, p and 1 − p).
Whether such possible scenarios are indeed plausible depends, in turn, on their
logical consistency (a plausible scenario must be logically satisfiable, that is, have
at least one conforming trace) and associated probability (a plausible scenario
must have a non-zero probability). A probabilistic constraint of the form 〈ϕ, 1〉
with ϕ satisfiable gives raise to a single possible world, where all traces in the
log satisfy ϕ.

Example 4. Consider constraint Cca from Example 3, modeling that, in 80%
of the process traces, it is true that, whenever an order is closed, then it is
eventually accepted. This is equivalent to assert that, in 20% of the traces, the
response is violated, i.e., there exists an instant where the order is closed and
not accepted afterward. Given an unknown trace τ , there is then 0.8 chance that
τ will satisfy the response formula �(close → ©♦accept), and 0.2 that τ will
violate such a formula (i.e., satisfy its negation ♦(close ∧ ¬©♦accept)). �

3.1 Probabilistic Declare

We now consider probabilistic declarative process models including multiple
probabilistic constraints at once. We lift Declare to its probabilistic version Prob-
Declare.

Definition 3. A ProbDeclare model is a pair 〈Σ, C〉, where Σ is a set of activ-
ities and C is a set of probabilistic constraints. �

1 Recall that a response constraint is satisfied if every execution of the source is fol-
lowed by the execution of the target.
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A stochastic language ρ over Σ satisfies a ProbDeclare model 〈Σ, C〉 if it sat-
isfies every probabilistic constraint C ∈ C. It is interesting to note that, since
C = 〈ϕ, p〉 and C = 〈¬ϕ, 1 − p〉 are equivalent, in ProbDeclare the distinc-
tion between existence and absence templates (cf. the first two lines of Table 1)
gets blurred. In fact, 〈existence(a), p〉 corresponds to 〈♦a, p〉. In turn, 〈♦a, p〉 is
semantically equivalent to 〈¬♦a, 1−p〉, which corresponds to 〈absence(a), 1−p〉.
The same line of reasoning applies to the existence2 and absence2 templates. All
such constraints have in fact to be interpreted as the probability of (repeated)
occurrence for a given activity.

Example 5. A small ProbDeclare model is shown on the left-hand side of Fig. 1,
where only the equality operator is used for the various probabilities. Crisp
constraints with probability 1 are shown in dark blue, and genuine probabilistic
constraints are shown in light blue, with probability values attached. The model
expresses that each order is at some point closed, and, whenever this happens,
there is probability 0.8 that it will be eventually accepted, and probability 0.3
that it will be eventually refused. Note that the sum of these probabilities exceeds
1, and, consequently, in a small fraction of traces, there will be an acceptance
and also a rejection (capturing the fact that a previous decision on a closed
order was subverted later on). On the other hand, there is a sensible amount of
traces where the order will be eventually accepted, but not refused, given the
fact that the probability of the response constraint connecting close order to
refuse order is only of 0.3. In 90% of the cases, it is asserted that acceptance
and rejection are mutually exclusive. Finally, accepting/rejecting an order can
only occur if the order was closed. �

We remark that ProbDeclare models and stochastic languages have a direct
correspondence to the PLTL0

f logic and its interpretations (as defined in [15]).
Specifically, a constraint of the form 〈ϕ, ��, p〉 corresponds to the PLTL0

f formula
���pϕ. PLTL0

f is a fragment of PLTLf , also defined in [15]. Models of PLTLf

formulae are finite trees where nodes are propositional assignments, and edges
carry probabilities, with the condition that the sum of the probabilities on the
edges that depart from the same node add up to 1. A stochastic language ρ can
then be easily represented as a PLTLf model. This can be done by creating
a tree where the root has as many outgoing edges as the number of traces in
ρ. Each edge gets the probability that ρ associates to the corresponding trace.
Then each edge continues into a single branch where nodes sequentially encode
the events of the trace, and where edges all have probability 1. Due to this
direct correspondence, we get that reasoning on ProbDeclare models (e.g., to
check for satisfiability) can be carried out in PSpace, thus yielding the same
complexity of LTLf . This does not yet give a concrete technique to actually
carry out reasoning and, more in general, understand how different probabilistic
constraints and their probabilities interact with each other. This is answered
in the next section, again taking advantage from the fact that, thanks to the
correspondence with the PLTLf framework in [15], all the techniques presented
next are formally correct.
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Fig. 1. A ProbDeclare model, with 8 constraint scenarios, out of which only 4 are
logically plausible. Recall that each scenario implicitly contains also the three constraint
formulae derived from the three constraints with probability 1.

3.2 Constraints Scenarios and Their Probabilities

Since a ProbDeclare model contains multiple probabilistic constraints, we have
to consider that, probabilistically, a trace may satisfy or violate each of the
constraints contained in the model, thus yielding multiple possible worlds, each
one defining which constraints are satisfied, and which violated. E.g., in Fig. 1, we
may have a trace containing close order followed by accept order and refuse
order, thus violating the not − coexistence constraint relating acceptance and
refusal. This is indeed possible in 10% of the traces. More in general, consider a
ProbDeclare model M = 〈Σ, {〈ϕ1, p1〉, . . . , 〈ϕn, pn〉}〉. Each constraint formula
ϕi is satisfied by a trace with probability pi, and violated with probability 1−pi.
Hence, a model of this form implicitly yields, potentially, 2n possible worlds
resulting from all possible choices of which constraints formulae are satisfied, and
which are violated (recall that violating a formula means satisfying its negation).
We call such possible worlds constraint scenarios. The key point is to understand
which scenarios are plausible, and with which overall probability, starting from
the “local” probabilities attached to each single constraint. Overall, a set of
constraint scenarios with their corresponding probabilities can be seen as a sort
of canonical stochastic language that provides a uniform representation of all
stochastic languages that satisfy the ProbDeclare model under study.

Example 6. If a constraint has probability 1, we do not need to consider the
two alternatives, since every trace will need to satisfy its formula. An alternative
way of reading this is to notice that the negated constraint would, in this case,
have probability 0. Hence, to identify a scenario, we proceed as follows. We
consider the m ≤ n constrains with probability different than 1, and fix an
order over them. Then, a scenario is defined by a number between 0 and 2m−1,
whose corresponding binary representation defines which constraint formulae are
satisfied, and which violated: specifically, for constraint formula ϕi of index i, if
the bit in position i−1 is 1, then the scenario contains ϕi, if instead that bit is 0,
then the scenario contains ¬ϕi. The overall formula describing a scenario is then
simply the conjunction of all such formulae, together with all the formulae of
constraints with probability 1. Clearly, each execution trace belongs to one and
only one constraint scenario: it does so when it satisfies the conjunctive formula
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associated to that scenario. We say that a scenario is logically plausible, if such
a conjunctive LTLf formula is satisfiable in the LTLf sense: if it is not, then the
scenario has to be discarded, since no trace will ever belong to it.

Figure 1 shows a ProbDeclare model with 6 constraints, three of which
are crisp constraints with probability 1, while the other three are gen-
uinely probabilistic. Circled numbers represent the ordering of such con-
straints. 8 possible constraint scenarios are induced, each enforcing the sat-
isfaction of the three crisp constraints, while picking the satisfaction or vio-
lation of the three constraints response(close, acc), response(close, ref), and
not − coexistence(acc, ref). Logically speaking, we have to consider 6 different
formulae: �(close → ©♦acc) and its negation ♦(close ∧ ¬©♦acc) (simi-
larly for response(close,ref)), as well as ¬(♦acc ∧ ♦refuse) and its negation
♦acc ∧ ♦refuse. The resulting scenarios are reported in the same figure, using
the naming conventions introduced before. E.g., scenario S101 is the scenario
that satisfies response(close, acc) and not − coexistence(acc, ref), but violates
response(close, ref).

By checking the LTLf satisfiability of the conjunction of the formulae entailed
by a given scenario, we can see whether the scenario is logically plausible. In
Fig. 1, only 4 scenarios are actually logically plausible. For example, S111 is not
logically plausible. In fact, it requires that the order is closed (due to the crisp
1..∗ constraint on close order) and, consequently, that the order is eventually
accepted and refused (due to the two response constraints attached to close
order, which in this scenario must be both satisfied); however, the presence of
both an acceptance and a refusal violates the not − coexistence constraint linking
such two activities, contradicting the requirement that also this constraint must
be satisfied in this scenario. S101 is logically plausible: it is satisfied by the
trace where an order is closed and then accepted. All in all, we have 4 logically
plausible scenarios: (i) S001, where an order is closed and later not accepted nor
refused; (ii) S011, where an order is closed and later refused (and not accepted);
(iii) S101, where an order is closed and later accepted (and not refused); (iv)
S110, where an order is closed and later accepted and refused. �

While it is clear that a logically implausible scenario should correspond to prob-
ability 0, are all logically plausible scenarios really plausible when the actual
probabilities are taken into account? By looking at Fig. 1, one can notice that
scenario S001 is logically plausible: it describes traces where an order is closed
but not accepted nor refused. As we will see, however, this cannot happen
given the probabilities of 0.8 and 0.3 attached to response(close, acc) and
response(close, ref). More in general, what is the probability of a constraint sce-
nario, i.e., the fraction of traces in a log that belong to that scenario? Is it possible
to assign probabilities to scenarios, while respecting the probabilities attached to
the constraints? The latter question points out that a ProbDeclare model may be
unsatisfiable (in a probabilistic sense), if there is no way to properly lift the prob-
abilities attached to constraints to corresponding probabilities of the scenarios
induced by those constraints. To answer these questions, we resort to the tech-
nique in [15]. We associate each scenario to a probability variable, keeping the
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same naming convention. E.g., scenario S001 corresponds to variable x001. More
in general, for a ProbDeclare model M = 〈Σ, {〈ϕ1, ��1, p1〉, . . . , 〈ϕn, ��n, pn〉}〉,
we construct the system LM of inequalities using probability variables xi, with
i ranging from 0 to 2n (in boolean):

xi ≥ 0 0 ≤ i < 2n

∑2n−1
i=0 xi = 1∑

jth position is 1 xi ��j pj 0 ≤ j < n

xi = 0 if scenario Si is logically implausible

The first two lines guarantee that we assign a non-negative value to each variable,
and that their sum is 1. We can see these assignments as probabilities, having
the guarantee that all scenarios together cover the full probability spectrum. The
third line verifies the probability associated to each constraint in M . In particu-
lar, it constructs one (in)equality per constraint 〈ϕj , ��j , pj〉 in M , ensuring that
all the variables that correspond to scenarios making ϕj true should all together
yield a probability that is ��j pi. The last line enforces that logically implausible
scenarios get assigned probability 0. This shows how logical and probabilistic
reasoning come together in LM .

We can use this system of inequalities to check whether a given ProbDeclare
model is satisfiable: M is satisfiable if and only if LM admits a solution. In fact,
solving LM corresponds to verifying whether the class of all possible traces can
be divided in such a way that the proportions required by the probabilistic con-
straints in the different scenarios are satisfied. This, in turn, witnesses that there
must be at least one logically plausible scenario that gets a non-zero probability.
Checking whether LM admits a solution can be done in PSpace in the size of
M , if we calculate the size as the length of the LTLf formulae appearing therein
[15].

Example 7. Consider the ProbDeclare model M containing two constraints:

1. existence(close)=♦close with probability = 0.1;
2. response(close,accept)=�(close → ©♦acc) with probability = 0.8.

M indicates that only 10% of the traces contain that the order is closed, and
that 80% of the traces are so that, whenever an order is closed, it is eventually
accepted. This model is inconsistent. Intuitively, the fact that, in 80% of the
traces, whenever an order is closed, it is eventually accepted, is equivalent to say
that, in 20% of the traces, we violate such a response constraint, i.e., we have
that an order is closed but then not accepted. All such traces satisfy the existence
constraint over the close order activity, and, consequently, the probability of
such a constraint must be at least 0.2. However, this is contradicted by the first
constraint of M , which imposes that such a probability is 0.1.

We now show how this is detected formally. M yields 4 constraint scenarios:

S00 = {¬♦close,♦(close ∧ ¬©♦acc)} S01 = {¬♦close,�(close → ©♦acc)}
S10 = {♦close,♦(close ∧ ¬©♦acc)} S11 = {♦close,�(close → ©♦acc)}
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Fig. 2. A ProbDeclare model and its 4 constraint scenarios.

Scenario S00 is logically implausible: it requires and forbids that the order is
closed; the other scenarios are instead all logically plausible. Hence, the equations
of LM are:

x00 + x01 + x10 + x11 = 1
x10 + x11 = 0.1

x01 + x11 = 0.8
x00 = 0

The equations yield x10 = 0.2, x01 = 0.9, and x11 = −0.1. This is an inconsistent
probability assignment, and witnesses that it is not possible to properly assign
suitable fractions of traces to the various constraint scenarios. �

When LM is solvable, M is satisfiable. In addition, the solutions of LM

tell us what is the probability (or range of probabilities) for each constraint
scenario. If a logically plausible scenario admits a probability that is strictly > 0,
then it is actually plausible also in probabilistic terms. Contrariwise, a logically
plausible scenario that gets assigned a probability that is forcefully 0 is actually
implausible. This witnesses in fact that, due to the probabilities attached to the
various constraints in M , the fraction of traces belonging to it must be 0.

Example 8. Consider the ProbDeclare model in Fig. 1. Its system of inequal-
ities is so that x000 = x010 = x100 = x111 = 0, since the corresponding con-
straint scenarios are logically implausible. For the logically plausible scenarios,
we instead get the following equalities, once the variables above are removed
(being them all equal to 0):

x001 + x011 + x101 + x110 = 1
x101 + x110 = 0.8

x011 + x110 = 0.3
x001 + x011 + x101 = 0.9

It is easy to see that this system of equations admits only one solution: x001 = 0,
x011 = 0.2, x101 = 0.7, x110 = 0.1. This solution witnesses that scenario S001

is implausible, and that the most plausible scenario, holding in 70% of cases, is
actually S101, namely the one where after the order is closed, it is eventually
accepted, and not refused. In addition, the solution tells us that there are other
two outlier scenarios: the first, holding in 20% of cases, is the one where, after the
order is closed, it is eventually refused (and not accepted); the second, holding
in 10% of cases, is the one where a closed order is accepted and refused. �
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In general, the system LM of inequalities for a ProbDeclare model M may have
more than one solution. If this is the case, we can attach to each constraint
scenario a probability interval, whose extreme values are calculated by minimiz-
ing and maximizing its corresponding variable over LM . Since these intervals
are computed by analyzing each variable in isolation, not all the combinations
of values residing in such intervals are actually consistent (which would entail
yielding an overall probability of 1). Still, for sure these intervals contain prob-
ability values that are overall consistent, and, in addition, they provide a good
indicator of which are the most (and less) plausible scenarios. We illustrate this
in the next example.

Example 9. Consider the ProbDeclare model in Fig. 2. It comes with 4 con-
straint scenarios, obtained by considering the two constraint formulae precedence
(sign,close) = ¬close W sign and response(close,sign) =�(close →
©♦sign), as well as their respective negated formulae ¬sign U close and
♦(close ∧ ¬©♦sign). All such scenarios are logically plausible, and hence the
equations of the system are:

x00 + x01 + x10 + x11 = 1
x10 + x11 = 0.8

x01 + x11 = 0.1

This system admits multiple solutions. In fact, by calculating the minimum and
maximum values for the 4 variables, we get that: (i) scenario S00, where the
order is closed but consent is not signed, comes with probability interval [0, 0.1];
(ii) scenario S01, where the order is closed and consent is signed afterward,
comes with probability interval [0, 0.1]; (iii) scenario S10, where the order is
closed after having signed consent, comes with probability interval [0.7, 0.8]; (iv)
scenario S11, where the order is closed and consent is signed at least twice (once
before, and once afterward), comes with probability interval [0.1, 0.2]. �

4 Discovering ProbDeclare Models from Event Logs

We now show that ProbDeclare models can be discovered from event data using,
off-the-shelf, already existing techniques, with a quite interesting guarantee: that
the discovered model is always consistent. We use the standard notation [·] for
multisets, and use superscript numbers to identify the multiplicity of an element
in the multiset.

A plethora of different algorithms have been devised to discover Declare mod-
els from event data [7,9,13,22]. In general, the vast majority of these algorithms
adopt the following approach to discovery: (1) Candidate constraints are gen-
erated by analyzing the activities contained in the log. (2) For each constraint,
its support is computed as the fraction of traces in the log where the constraint
holds. (3) Candidate constraints are filtered, retaining only those whose support
exceeds a given threshold. (4) Further filters (e.g., considering the “relevance” of
a constraint [6]) are applied. (5) The overall model is checked for satisfiability,
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operating with different strategies if it is not; this is necessary since constraints
with high support, but less than 1, may actually conflict with each other [4,5].
In this procedure, the notion of support is formalized as follows.

Definition 4. The support of an LTLf constraint ϕ in an event log L =
[τ1, . . . , τn] is suppL(ϕ) = |Lϕ|

|L| , where Lϕ = [τ ∈ L | τ |= ϕ]. �

We can adopt this approach off-the-shelf to discover ProbDeclare constraints:
we just use the constraint support as its associated probability, with operator =.
In other words, if ϕ is discovered with support p, we turn it into the probabilis-
tic constraint 〈ϕ, p〉. When doing so, we can also relax step (3), e.g., to retain
constraints with a very low support, implying that their negated versions have
a very high support.

Example 10. Consider L = [〈close, acc〉7, 〈close, ref〉2, 〈close, acc, ref〉1],
capturing the evolution of 10 orders, 7 of which have been closed and then
accepted, 2 of which have been closed and then refused, and 1 of which
has been closed, then accepted, then refused. The support of constraint
response(close,acc) is 8/10 = 0.8, witnessing that 8 traces satisfy such a con-
straint, whereas 2 violate it. This corresponds exactly to the interpretation of
probability 0.8 for the probabilistic response(close,acc) constraint in Fig. 1.
More in general, the entire ProbDeclare model of Fig. 1 can be discovered from
L. �

A second key observation is that once this procedure is used to discover
ProbDeclare constraints, step (5) is unnecessary: the overall discovered model is
in fact guaranteed to be satisfiable (in our probabilistic sense).

Theorem 1. Let Σ be a set of activities, L an event log over Σ, and C =
{〈ϕ1, p1〉, . . . , 〈ϕn, pn〉} a set of probabilistic constraints, such that for each i ∈
{1, . . . , n}, pi = suppL(ϕi). The ProbDeclare model 〈Σ, C〉 is satisfiable. �

Proof. Technically, 〈Σ, C〉 is satisfiable if its corresponding PLTL0
f formula Φ :=

{�p1ϕ1, . . . ,�pn
ϕn} is satisfiable. To show this, we simply use L to build a

model of Φ. For every set I ⊆ {1, . . . , n}, let ϕI be the LTLf formula ϕI :=∧
i∈I ϕi ∧ ∧

i/∈I ¬ϕi, and let LI be the sublog of L containing all the traces that
satisfy ϕI . Note that the sublogs LI form a partition of L; that is, every trace
appears in exactly one such LI . For each I such that LI is not empty, choose a
representative tI ∈ LI and let pI := |LI |

|L| be the fraction of traces that belong
to LI . We build a stochastic language ρ by setting ρ(tI) = pI for each I such
that LI �= ∅ and ρ(τ) = 0 for all other traces. We need to show that ρ satisfies
C. Consider a constraint 〈ϕ, p〉 ∈ C; we need to show that

∑
τ |=ϕ ρ(τ) = p. Note

that by construction,
∑

τ |=ϕ ρ(τ) =
∑

tI |=ϕ pI and since LI form a partition, the
latter is, in fact, the fraction of traces that satisfy ϕ. On the other hand, p is
also the support of ϕ; that is, the proportion of traces satisfying ϕ. Hence, both
values are equal, and ρ satisfies the ProbDeclare model. �
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Fig. 3. Result computed by monitoring the ProbDeclare model on the top left against
the trace 〈close, acc, ref〉, which conforms to the outlier constraint scenario where the
two response constraints are satisfied, while the not − coexistence one is violated.

Fig. 4. Output of the implemented tool on the example in Fig.2.

By this theorem, probabilistic constraints can be discovered in a purely local way,
having the guarantee that they will never conflict with each other. Obviously,
non-local filters can still prove useful to prune implied constraints and select the
most relevant ones. Also, note that the probabilities of the discovered constraints
can be easily adjusted when new traces are added to the log, by incrementally
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recomputing the support values after checking how many new traces satisfy the
various constraints.

There are many open questions that deserve a dedicated investigation, such
as: when do we stop the discovery procedure, now that every constraint can
be retained, irrespectively of its support? What is the impact of retaining con-
straints with various degrees of support in terms of over/under-fitting? How to
learn constraints with probability operators different from just equality? And
how does this impact generalization?

5 Monitoring Probabilistic Constraints

In Sect. 3.2, we have shown how we can take a ProbDeclare model and generate
its constraint scenarios, together with their corresponding probability intervals.
We now describe how this technique can be directly turned into an operational
probabilistic monitoring and conformance checking framework.

Let M = 〈Σ, C〉 be a ProbDeclare model with n probabilistic constraints. For
simplicity, we do not distinguish between crisp and genuinely probabilistic con-
straints, nor prune away implausible scenarios: the produced monitoring results
do not change, but obviously our implementation, presented at the end of this
section, takes into account these aspects for optimization reasons. M generates
2n constraint scenarios. As discussed in Sect. 3.2, each scenario S comes with a
corresponding characteristic LTLf formula, which amounts to the conjunction
of positive and negated constraints in C, where the decision of which ones are
taken positive and which negative is defined by the scenario itself. We denote
such a formula by formula(S). For example, if C = {〈ϕ1, p1〉, 〈ϕ2, p2〉, 〈ϕ3, p3〉},
then formula(S101) = ϕ1 ∧ ¬ϕ2 ∧ ϕ3. In addition, if M is satisfiable, and hence
LM is solvable, each scenario S comes with its own probability. More specifically,
we have to consider the case where multiple (possibly infinite) solutions exist for
LM . There are various possibilities to handle this case. We tackle it by resorting
to a quite direct approach: for each scenario S, we solve LM twice by respectively
imposing, as an additional constraint, that the probability variable for S has to
be minimized/maximized. This, in turn, yields a probability interval for S, which
we denote by prob(S). From Example 9, we have, e.g., that prob(S10) = [0.7, 0.8].
More sophisticated ways to extract probabilities from LM can be investigated.

5.1 Prefix Monitoring

A very direct form of monitoring consists in checking whether a partial trace,
that is, the prefix of a full trace whose continuation is yet to be determined, con-
forms to a given ProbDeclare model M . This amounts to a probabilistic version
of conformance checking that can be tackled as follows. We fix an order over
the constraints in M , and precompute the probability intervals of the scenar-
ios induced by M . At runtime, we consider the current prefix τ and, for every
formula ϕ of each probabilistic constraint 〈ϕ, ��, p〉 ∈ M considered in isolation,
we output 1 if τ |= ϕ, and 0 otherwise. One effective way to do this check is
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to precompute the finite-state automaton that recognizes all and only the finite
traces accepted by ϕ [1], then checking at runtime whether τ is recognized by
that automaton. The automaton can be determinized upfront, making in turn
possible to perform this check incrementally. The overall, so-produced output,
interpreted as an array of bits, matches exactly one and only one scenario of
M . If the scenario has probability 0, then τ is not conforming to M , whereas
if the scenario has a proper probability (interval), then τ conforms to M , and
the actual probability value can be used to understand whether τ represents a
common or an outlier behavior - that is, coupling “conformance” with an estima-
tion of the degree of “conformism”. This approach comes with a main limitation
though: it does not reason on the possible future continuations of the current
prefix. This is particularly limiting in a probabilistic setting: monitoring a prefix
makes it impossible to understand if and how its matching scenario will change
as new events are acquired.

5.2 Full Monitoring

We now show how prefix monitoring can be further developed into full monitor-
ing of prefixes and their possible continuations in our probabilistic setting. In
this case, we cannot consider anymore the constraints in isolation, but we have to
reason at the level of scenarios. Notice that most of the computational burden is
at design time, whereas, at runtime, we incur simply in the cost of incrementally
recognizing a growing prefix on a fixed set of deterministic finite-state automata,
which is computationally lightweight.

To handle full monitoring, first notice that the characteristic formula of a
scenario is in standard LTLf , and so we can construct a scenario monitor by
recasting well-known automata-theoretic techniques [1,16]. Specifically, given an
LTLf formula ϕ over a set Σ of activities, and a partial trace τ representing an
ongoing process execution, a monitor outputs one of the four following truth
values:

• τ (permanently) satisfies ϕ, if ϕ is currently satisfied (τ |= ϕ), and ϕ stays
satisfied no matter how the execution continues, that is, for every possible
continuation trace τ ′ over Σ, we have τ · τ ′ |= ϕ (the · operator denotes the
concatenation of two traces);

• τ possibly satisfies ϕ, if ϕ is currently satisfied (τ |= ϕ), but ϕ may become
violated in the future, that is, there exists a continuation trace τ ′ over Σ such
that τ · τ ′ �|= ϕ;

• τ possibly violates ϕ, if ϕ is currently violated (τ �|= ϕ), but ϕ may become
satisfied in the future, that is, there exists a continuation trace τ ′ over Σ such
that τ · τ ′ |= ϕ;

• τ (permanently) violates ϕ, if ϕ is currently violated (τ �|= ϕ), and ϕ stays
violated no matter how the execution continues, that is, for every possible
continuation trace τ ′ over Σ, we have τ · τ ′ �|= ϕ.
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This is used as follows. For each plausible scenario S over M , we construct the
monitor for S.2 We then track the evolution of a running trace by delivering its
events to all such monitors in parallel, returning the truth values they produce.
As pointed out in Sect. 5.1, at runtime we do not always know to which scenario
the trace will belong to once completed. However, we can again combine logical
and probabilistic reasoning to obtain a meaningful feedback.

A first key observation is that, for every partial trace, at most one scenario
can turn out to be permanently or temporarily satisfied. Call this scenario S. In
the first case, this verdict is irrevocable, and also implies that all other scenarios
are permanently violated. This witnesses that no matter how the execution con-
tinues, the resulting trace will for sure belong to S. We then return immediately
that the trace is conforming, and also return prob(S) to give an indication about
the degree of conformism of the trace (see above). In the second case, the verdict
may instead change as the execution unfolds, but would collapse to the previous
case if the execution terminates, which is communicated to the monitors by a
special complete event.

A second key observation is that multiple scenarios may be at the same
time temporarily or permanently violated. For this reason, we need to aggregate
in some way the probabilities of the scenarios that produce the same truth
value to have an indication of the overall probability associated with that value.
Having this aggregated probability is useful to have sophisticated feedback about
the monitored trace. For example, the aggregated probability for permanently
violated scenarios is useful as it can never decrease over time: it is possible
that new scenarios become permanently violated, but those that already are will
never switch to a different truth value. So a high value associated to permanent
violation can be interpreted as a clear indication that the monitored trace will
turn out to be either a conforming outlier or not conforming at all. At the same
time, the aggregated value of permanent violation can be used as a conditional
probability, when one is interested in understanding what is the probability that
a trace will end up in a given scenario. The extreme values of the aggregated
probability interval for temporary/permanent violations are computed using the
system of inequalities LM . In particular, this is done by adding a constraint
that minimizes/maximizes the sum of the probability variables associated to the
scenarios that produce that truth value.

Example 11. Consider the ProbDeclare model in Fig. 1 with its three plausible
scenarios (recall that four scenarios are logically plausible there, but one of those
has probability 0, so only three remains to be monitored). Figure 3 shows the
result produced when monitoring a trace that at some point appears to belong
to the most plausible scenario, but in the end turns out to conform to the least
plausible one. From the image, we can also clearly see that the trace consisting
only of a close order activity would be judged as non-conforming, as it would
violate all scenarios. �

2 Implausible scenarios are irrelevant: they produce an output that is associated to
probability 0.
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This probabilistic monitoring technique has been fully implemented.3 For
solving systems of inequalities, we use the LP solver4. The implementation comes
with various optimizations. First, scenarios are computed by directly imposing
that crisp constraints with probability 1 must hold in their positive form in all
scenarios. Second, only plausible scenarios are retained for monitoring. Third,
the results obtained by minimizing and maximizing for aggregate probability
variables are cached, to avoid solving multiple times the same problem. Figure 4
shows the output of the implemented monitoring tool on the example in Fig. 2
and for two different traces.5 Here, the aggregated probability intervals are shown
with a dark gray or light gray background depending on whether their midpoint
is closer to 1 or to 0, respectively. The first trace (on the left) is classified as
belonging to scenario S01 and is an outlier because this scenario has low probabil-
ity (corresponding to a probability interval of prob(S01) = [0.0, 0.1]). The second
trace (on the right) is classified as belonging to the highly plausible scenario S10

(corresponding to a probability interval of prob(S10) = [0.7, 0.8]).

6 Conclusion

In this paper, we have introduced the notion of probabilistic business constraint
and demonstrated how this notion affects the outcomes of standard process
monitoring (and mining) approaches based on Declare, when standard Declare
is replaced by its probabilistic counterpart. We have introduced a framework for
monitoring a trace with respect to a set of probabilistic constraints. The frame-
work classifies completed traces as violating a given probabilistic model or as
belonging to a certain constraint scenario (i.e., satisfying a certain combination
of probabilistic constraints). Technically, our approach seamlessly handles more
sophisticated logics for specifying constraints, only requiring that they have a
corresponding automata-theoretic characterization. Thus, for example, regular
expressions or LDLf [1] can be used in place of LTLf , as well as FO-LTLf [3].

For future work, we plan to better investigate the influence of probabilistic
constraints on the state-of-the-art techniques for declarative process mining.
In addition, as it has been shown in the paper, very sophisticated monitoring
feedbacks can be extracted, but their interpretation is not at all straightforward.
A dedicated study focused on end user-tailored feedbacks is needed. Last but
not least, we plan to relate, and possibly integrate, the declarative approach
presented in this paper with recent advancements in stochastic conformance
checking on imperative process models [10]. Note that, if we extend our approach
with probabilities within constraints (ending up in the full logic studied in [15]),
we have to manipulate more sophisticated automata that are reminiscent of the
stochastic automata used in [10]. At the same time, the entropy-based approach
brought forward in [10] could be used in our setting to measure the “distance”
3 https://bitbucket.org/fmmaggi/probabilisticmonitor/src/master/.
4 http://lpsolve.sourceforge.net/5.5/.
5 In the screenshots, 1 and 2 represent the probabilistic constraints labeled with 1 and

2 in Fig. 2, whereas 3 represents the crisp constraint in the same example.

https://bitbucket.org/fmmaggi/probabilisticmonitor/src/master/
http://lpsolve.sourceforge.net/5.5/
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between a set of probabilistic constraints and an event log whose trace frequencies
are not fully aligned to what prescribed by the probabilistic constraints.

Acknowledgments. This work has been supported by the Estonian Research Council
(project PRG887).
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