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Abstract. This article presents a run-time verification method of web
service behaviour with respect to choreographies. We start from Dec-
SerFlow as a graphical choreography description language. We select a
core set of DecSerFlow elements and formalize them using a reactive
version of the Event Calculus, based on the computational logic SCIFF
framework. Our choice enables us to enrich DecSerFlow and the Event
Calculus with quantitative time constraints and to model compensation
actions.

1 Introduction

Recent years have seen a wide adoption of the Service-Oriented Architecture
(SOA) paradigm, both in the research field as well as in industrial settings, to
enable distributed applications within intra- and inter-organizational scenarios.
Such applications typically consist of a composition of heterogenous interacting
services, each one providing a specific functionality. Complex business processes
are realized by properly guiding and constraining service interactions. When
collaboration is performed across different organizations, service choreographies
come into play. A choreography models the interaction from a global viewpoint.
As stated by the authors of WS-CDL [I], “/a choreography] offers a means by
which the rules of participation within a collaboration can be clearly defined and
agreed to, jointly.”

Recent research has demonstrated a possible use of choreographies before ser-
vice execution, either to establish an agreement among services [2/3], or to derive
skeletons of local models [4J5] to be used for implementing the services. A differ-
ent issue is to verify that a running service follows a given choreography. This is
a task that has to be carried out during execution, when potential mismatches
between a service’s behavioural interface and its real implementation may lead
to unexpected/undesired interactions. Therefore, monitoring and verifying the
behaviour of services at execution time is a fundamental requirement.

Choreographies often involve the specification of complex constraints, such
as conditions on the reached state or the possibility of violating certain pre-
scriptions, at the expense of some compensating activity. Suitable, expressive
formalisms are needed to model such constraints in an accurate way. Candidates
could be temporal logic languages, such as linear temporal logic (LTL), branch-
ing time temporal logic (CTL) or CTL* [6], which can encode formulae such
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as that a condition will eventually be true, or a condition must be true until
another one becomes true, etc. However, these logics do not accommodate quan-
titative time, i.e, they enable reasoning about what happens “next” or “at some
point in the future,” but not “before 60 time ticks.” Extensions to temporal logic
languages, such as metric temporal logic [7], have been proposed to accommo-
date explicit time, but they can be hardly used for runtime verification because
of their high computational complexity [8]. The well known “state-explosion”
problem for temporal logics is even more critical when considering declarative
specification languages such as DecSerFlow [9], where the system itself is speci-
fied as a conjunction of LTL formulae.

An alternative to temporal logics is the Event Calculus [10] (EC for short).
Many authors believe the £C to be well suited for expressing the complex con-
straints of choreographies, especially because it enables the modeler to specify
temporal requirements, in a declarative and easily understandable way. In fact,
the £C has been (and is being) extensively applied in the SOA setting. How-
ever, little emphasis has been given so far to the possible adoption of the £C for
performing compliance verification of service interaction during execution. We
believe that this is mainly due to the lack of suitable underlying reasoning tools.

In this paper, we propose to adopt a reactive version of Event Calculus
(RECI1I]) to perform run-time verification of the observed behaviour. REC is
formalized as an axiom theory on top of the SCIFF framework [12], a logic based
formalism with a sound and complete proof procedure and an efficient imple-
mentation [I3]. The literature is rich in languages proposed to specify service
choreographies. WS-CDL [I] is one of the most prominent procedural ones. We
have chosen to represent choreographies in DecSerFlow [9], a graphical represen-
tation language introduced by van der Aalst and Pesic to specify and constrain
service flows in a declarative manner. This choice is motivated by the capability
of DecSerFlow to capture in a flexible and concise way the “contractual nature”
of choreographies. However, our approach based on REC is general and does not
depend on a specific choreography specification language.

Besides providing a mapping from DecSerFlow to REC, in this article we show
how the approach can be easily extended (by adding new axioms) to support
deadlines modeling and verification, and to reify the violations generated by the
proof procedure during verification. This latter feature gives us two main advan-
tages: (1) when a violation is detected, the proof does not terminate reporting
the error, but continues the verification task; (7i) violations can be notied to the
user, and even considered as rst-class objects during the modeling phase: hence
compensation mechanisms related to the violation can be easily specified.

We show the benefits of our approach by way of a motivating example.

2 Background

In this section we briefly introduce the two components of our run-time verifi-
cation framework, namely DecSerFlow as a specification language, and REC as
its underlying reasoning mechanism.
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2.1 DecSerFlow

DecSerFlow is a graphical language which specifies service flows by adopting
a declarative style of modeling. Instead of defining rigid service flows, which
may lead—especially with procedural languages like WS-CDL and BPEL-to over-
specified and over-constrained models, DecSerFlow focuses on the minimal set
of constraints which must be satisfied in order to correctly carry out the interac-
tion. This makes DecSerFlow especially suited for representing the “contractual
nature” of service choreographies. A DecSerFlow model is composed by a set of
activities, which represent atomic units of work (such as message exchanges),
and relations among activities, used to specify constraints on their execution.
DecSerFlow provides constructs to define positive and negative constraints, that
specify the desired and undesired courses of interaction while leaving undefined
other possibilities of interaction that are neither desired nor undesired. Posi-
tive and negative constraints make the DecSerFlow approach open: services can
interact freely unless when in the presence of constraints.

DecSerFlow constraints are grouped into three families (see Table [l [2] and B
for a complete description of all the basic constraints):

— existence constraints: unary cardinality constraints expressing how many
times an activity can/should be executed;

— relation constraints: binary constraints which impose the presence of a cer-
tain activity when some other activity is performed;

— negation constraints: the negative version of relation constraints, used to
explicitly forbid the execution of a certain activity when some other activity
is performed.

Intuititely, a service composition is compliant with a DecSerFlow choreography
if all positive constraints are eventually satisfied, and no activity forbidden by
any negation constraint is performed. The DecSerFlow semantics is defined for
finite execution traces.

Table 1. DecSerFlow existence constraints. In [9], choice used to be called mutual
substitution and had a slightly different notation.

graphical description equivalent to

N existence(N,a). a must be executed at least

. basic
E N times
0.N+1 absence(N+1,a). a cannot be executed more

. basic
than N times

N exactly(N,a). a must be executed exactly N existence(N,a)A
E times absence (N+1,a)

choice(a,b). At least one activity among a existence(1,avb)
and b must be executed
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Table 2. An overview of DecSerFlow relation constraints

graphical description equivalent to
responded existence(a,b). If a is executed
then b must be executed (before or after a)
coexistence(a,b). Either both a and b are resp. existence(a,b)A
executed, or none of them is executed resp. existence(b,a)
response(a,b). If a is executed, then b must basic

be executed afterwards

precedence(a,b). b can be executed only after
a is executed

’ basic

basic

response(a,b) A\

succession(a,b).

precedence(a,b)
n _ n alternate response(a,b). b is response of a response(a,b)A
and there has to be a b between two a interposition(a,b,a)
alternate precedence(a,b). bis preceded by precedence(a,b) A
a and there has to be an a between two b interposition(b,a,b)

alt. response(a,b)A

alt. precedence(a,b)

response (a,b) A

interposition(a,b,X)

AX #Db

q precedence(a,b)A
interposition(X,a,b)
NX # a

chain succession(a,b). a and b are always chain response(a,b)A

executed next to each other chain precedence(a,b)

alternate succession(a,b).

chain response(a,b). If a is executed then b
is executed next (immediately after a)

chain precedence(a,b). b can be execute
only if a was the last executed activity

2.2 REC: A Reactive Event Calculus in SCIFF

The Event Calculus (£C) is a framework, based on first-order logic, which enables
reasoning about the effects of events [L0/T4]. The basic elements of the calculus
are events which happen during the executio, and properties (called fluents)
which describe a partial state of the world. To model a given event-based system,
the user must simply provide a declarative description of how possible occurring
events affect the corresponding fluents.

In the classical £C setting, given a description of the system and a set of desired
temporal requirements, two main reasoning tasks can be carried out: narrative
verification, exploiting £C in a deductive manner, to check whether a given
execution trace of the system satisfies the requirements, and planning, using
abduction to simulate narratives of the systems, trying to produce a possible
execution which satisfies the requirements.

Such verifications are respectively carried out a posteriori (after execution),
and a priori (before execution). The use of £C to monitor an ongoing execu-
tion, and to check if it complies with the requirements (run-time monitoring and
verification), has been little exploited so far, mainly due to a lack of suitable

1 'We will consider only atomic events, i.e., events occur at a certain point in time.
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Table 3. An overview of DecSerFlow negation constraints

graphical description equivalent to
responded absence(a,b). If a is executed,
then b cannot be ever executed

not coexistence(a,b). a and b cannot be neg. response(a,b)A
both executed neg. response(b,a)

not coexistence(a,b)

negation response(a,b). If a is executed,
then b cannot be executed afterwards
negation precedence(a,b). b cannot be exe-
cuted if a was executed before

basic

neg. response(a,b)

negation succession(a,b). neg. response(a,b)

negation alternate response(a,b). b can-
not be executed between two a

negation alternate precedence(a,b).a
cannot be executed between two b

neg. interpos.(a,b,a)

neg. interpos.(b,a,b)

negation alternate succession(a,b). neg. alt. resp.(a,b)A
neg. alt. prec.(a,b)

negation chain response(a,b). b cannot be interposition(a,X,b)

executed next to (i.e., immediately after) a AX #Db

negation chain precedence(a,b). a cannot

be last executed activity before b

negation chain succession(a,b). a and b

cannot be executed next to each other

n. chain response(a,b)

n. chain response(a,b)

underlying reasoning tools. In a companion paper [I1], we show how the compu-
tational logic-based SCIFF framework [12] can be adopted to provide a reactive
axiomatization of £C (called REC), enabling reasoning about events and flu-
ents at run-time. SCIFF is a framework originally designed for the specification
and run-time verification of global interaction protocols in open Multi-Agent
Systems. Its usage for run-time verification of service choreographies has been
presented at previous editions of this workshop series [15]. SCIFF consists of
a rule-based language with a declarative semantics for specifying what are the
un)desired courses of interaction as events occur. A corresponding execution
model (the SCIFF proof-procedure [12], implemented in the SOCS-SI tool [13])
enables run-time monitoring and compliance checking of the interacting entities’
behavior. The SCIFF proof-procedure is sound and complete w.r.t. its declar-
ative semantics, and it natively provides the capability of reasoning upon dy-
namically occurring events, using constraint propagation to update the status of
fluents. To represent time, SCIFF uses variables that can range over finite do-
mains or over real numbers, and that are associated to events. Therefore, while
the procedure does not model itself the flow of time, the current time can be
inferred, with some approximation, from the time of occurring events. For exam-
ple, the expiration of a deadline can be made known to the reasoning engine by
way of “tick” event, real or fictitious such as a “tick”, which occurs at or after
that time.

—~
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Table 4. The REC ontology

happens(Ev,T) Event Fv happens at time T'

holds(F,T;, Ty) Fluent F begins to hold from time T; and persists to hold until
time Tf

Fluent F' holds at time T'

Fluent F' does not hold at time T

Fluent F' holds from the initial time

Event FEv initiates fluent F' at time T'; this means that if F
does not hold at time 7', it is declipped by the happening of
Ev at that time

terminates(Ev, F,T) Event Ev terminates fluent F' at time T'; if F holds at time T,
it is clipped by the happening of Ev at that time

holdsat(F,T

not holdsat(F,T
inatially(F
initiates(Ev, F, T

—_ —

The REC ontology is shown in Table @ the main difference w.r.t. the classical
EC ontology is that while £C focuses on time intervals inside which a fluent has
been terminated or initiated, REC focuses on the maximum time intervals inside
which the fluent uninterruptedly holds (represented by the holds/3 predicate).

REC integrates the advantages of SCIFF and £C, by embedding the latter
inside a framework that supports run-time reasoning, while extending SCIFF
with fluents-based reasoning.

3 Mapping DecSerFlow to Event Calculus

We now present the mapping of DecSerFlow onto £C. To this end, we follow a
two-fold approach. We first show that all DecSerFlow constraints can be repre-
sented in terms of a small core set?. Then, we provide a fluent-based formaliza-
tions of such a setf.

3.1 Expressing DecSerFlow with a Core Set of Constraints

Table[Il 2 and Bl respectively recall the basic existence, relation and negation Dec-
SerFlow constraints, by also showing how constraints can be expressed by using
a small set of core constraints. To this purpose, two further ternary constraints
are used; they represent the concept of positive and negative interposition. In
particular, interposition(a,b,c) states that between any execution of activ-
ity a and a future execution of activity ¢, b must be performed at least once.
negation interposition(a,b,c) expresses the opposite constraint, specifying
that the execution of a and a following ¢ cannot be interleaved by b. X is some-
times used to represent an arbitrary activity (i.e., it is a variable matching with
any activity).

% Some equivalences are already stated in [9].

3 We will use the Prolog notation: variables starting by upper case, constants by lower
case. To differentiate between formalisms, we use teletype for DecSerFlow formula
names, and italics for Prolog terms and rules in the knowledge base.
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All the 26 basic DecSerFlow constraints can be expressed in terms of eight
core constraints:

the two basic cardinality constraints (existence and absence);

— the three fundamental positive temporal orderings (responded existence
for any ordering, response for the after ordering, precedence for the before
ordering);

— the negation response constraint;

— the positive/negative interposition patterns.

For example, the chain response between a and b (see Table ) can be
expressed using a response formula and by stating that between each occurrence
of activity a and another arbitrary activity different than b, there must exist at
least an intermediate execution of b (hence b is necessarily next to a). The
not coexistence constraint (Table B]) can instead be reduced to two opposite
negation responses. In fact, expressing that two activities cannot coexist in a
single execution is the same as stating that the first happening activity forbids
future executions of the other one.

3.2 A Fluent-Based Formalization of DecSerFlow

The formalization of DecSerFlow in REC is composed by two parts (see Figure[Il
for an overview):

— a general part, which describes how the different DecSerFlow constraints can
be formalized as fluents in the £C setting;
— a specific part, whose purpose is to describe a specific DecSerFlow diagram.

Specific DecSerFlow model

Fluent-based formalization of DecSerFlow DecSerFlow

CDecSerFlow constraints] Formalization of core ]

equivalence constrains

( Reactive Event Calculus
( ) Generic Calculus

SCIFF

Fig. 1. Building parts of the DecSerFlow formalization in REC

The specific part is a set of constraint/2 facts. Each one of them corre-
sponds to a DecSerFlow constraint in the diagram. For example, constraint(ci,
response(order item, ack)) states that the DecSerFlow choreography contains a
constraint named ¢; which models a response between the order item and ack
activities.

The generic DecSerFlow formalization in EC splits itself in two sub-parts.
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Formalization of constraints equivalence. The first part is a set of predi-
cate definitions for core constraint/2. They implement the reduction of
the 26 basic DecSerFlow constraints to the set of eight core constraints listed
above. In this way, we provide a full implementation of DecSerFlow (not only
the core constraints). Examples of such definitions are those below, relating
alternate response with response and interpositionE:

core constraint(C, response(A, B)) « constraint(C, alt response(A, B)).

core constraint(C, interposition(A, B, A)) < constraint(C, alt response(A, B)).

Fluent-based formalization of the core constraints. The second part is a
set of predicate definitions for initially/1,initiates/3 and terminates/3.
In other words, it is a knowledge base which formalizes constraints in terms
of fluents, linking their initiation and termination to activities.

The fluents chosen to model DecSerFlow reflect the double nature of its
constraints: some relations explicitly forbid the execution of a certain activity,
whereas other ones express the necessity of performing some activity, becoming
temporarly unsatisfied until such an activity indeed happens. More specifically,
we exploit a forbidden(C,A) fluent to model that an activity A is forbidden
by a constraint C, and a satisfied(C) fluent to model that a constraint C' is
satisfied.

Table [0l briefly indicates our usage of fluents in the formalization of the Dec-
SerFlow core constraints. Some parts of the formalization are left implicit for
ease of presentation. In particular, Table [l omits the binding between each for-
malization and its corresponding core constraint. For example, the complete
formalization of response would be:

initially(satis fied(C)) < core constraint(C,response(A, B)).
terminates(A, satisfied(C), ) < core constraint(C,response(A, B)).

initiates(B, satis fied(C), ) < core constraint(C,response(A, B)).

The formalization of existence (Tab. [B(1)) and absence (Tab. B(2)) con-
straints is straightforward: the first constraint is satisfied when the n-th occur-
rence of a is executed, whereas the second one forbids further executions of a
when its n-th occurrence happens. To obtain the time at which the n-th occur-
rence of activity a happens, we use a conjunction of n happened events involving
a; then, we order such happened events by means of temporal constraints. The
last happened event provides the desired time.

responded existence (Tab.[3)) is more complex to deal with, mainly due
to the fact that it does not impose any ordering, whereas £C, which considers the
effects of events, reasons “forwards.” To capture its semantics, we differentiate
between two cases: the one in which b happens before any occurrence of a, and

4 Note that the parameters of core constraint/2 have the same meaning of the
parameters of constraint/2.



Verification of Choreographies During Execution 63

Table 5. A fluent-based formalization of DecSerFlow core constraints (f is used as
constraint identifier); the last two constraints express the concepts of positive and
negative interposition

constraint

0..N+1

intuition formalization
(1) initiates(a, satisfied(f),Tn) «—

T > /\ (happens(a,T3) NT; > Ti—1).
To=b

(2) initiates(a, forbidden(a, f), Tn) «—

T\ forbi(a) n
]

o
o
E)
.
=2
)

— e > L\l (happens(a, T;) NT; > Ti—1).
To=0
.......... (3) initially(no target(f)).
no target E_S_a_ti_s_fi_qq _________ terminates(b,no target(f), ).
A g > initially(satis fied(f)).
— — terminates(a, satisfied(f),T) «—
satisfied |Ino target I[ satisfied < holdsat(no target(f),T).
a b initiates(b, satisfied(f), ).
(4) initially(satis fied(f)).
CEIBIRE Sl > terminates(a, satisfied(f), ).
I b initiates(b, satisfied(f), ).
Torb.(b) : __________ (5) initially(forbidden(b, f)).
T > terminates(a, forbidden(b, f), ).

| .
______ 1 forbidden(b) > (6) initiates(a, forbidden(b, f), ).

forb.(c) ! (7) initiates(a, forbidden(c, f), ).
___________ > terminates(b, forbidden(c, f), ).

v\ forb.(c) (8) initiates(b, forbidden(c, f),T) «—
______ z __-__I:I> > happens(a,To) NTo < T.

the reverse. In the first case, the constraint is always satisfied: when a happens,
b is already present in the execution trace, thus no further expectation is trig-
gered. In the second case, instead, the occurrence of a switches the constraint
to an unsatisfied state, waiting for activity b to be executed (as in the case of
response, Tab. [[l(4)). Since the happening of a concretely affects the status of
the satisfied fluent only if no b was previously performed, we have to explicitly
track the happening of b with another fluent (called no target in Table [l).
precedence (Tab.[l(5)) is captured by observing that the backward constraint
“b must be preceded by a” can be rephrased in a forward manner as “a enables
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the possibility of executing b”. We formalize this by imposing that the constraint
causes b to be initially forbidden, until the first execution of activity a happens.

The formalization of negation response (Tab.[l(6)) is straightforward: the
happening of the source activity a causes b to be forbidden.

The interposition constraint (Tab.[B7)) is captured by rephrasing “if c is
performed after a, then at least one instance of activity b must be executed in
between” as “when a is executed, c is forbidden until b is executed”. Similarly,
negative interposition (Tab.[B(8)) can be formalized by stating that when
activity b is performed after a, then ¢ becomes forbidden: its execution would
lead to violate the constraint.

The proposed formalization can be easily adapted to deal also with branching
constraints, which are interpreted in DecSerFlow in a disjunctive manner. For
example, let us consider a response constraint, having both branching sources
a and b and branching targets ¢ and d. It is interpreted as follows: “when either
a or b are executed, then ¢ or d must be executed afterwards”. To model such a
behavior, we extend the way constraints are represented by considering lists
of activities instead of individual activities (e.g., the above described branching
response can be modeled as formula(cy, response(la, b], [c,d]))). We then adapt
the formalization shown in Table[d] using the built-in Prolog predicate member/
to specify that each source (target resp.) activity is able to terminate (initiate
resp.) the corresponding satisfied fluent:

initially(satis fied(C)) < core constraint(C,response(As, Bs)).
terminates(A, satisfied(C), ) < core constraint(C,response(As, Bs))
A member(A, As).
initiates(B, satisfied(C), ) < core constraint(C,response(As, Bs))
A member(B, Bs).

3.3 Characterizing Compliant Executions

To effectively perform compliance verification of a service composition w.r.t. a
DecSerFlow model, we finally have to define a suitable semantics for the satis-
fied and forbidden fluents, reflecting their intuitive meaning. More specifically,
a correct execution must fulfill the following requirements:

— all constraints which involve a “positive” relation must eventually converge
to a fulfilled state. This means that the satisfied fluent corresponding to the
positive relation holds from a given point on and it is never declipped there-
after. We denote the set of “positive” constraints by Csar. Since the “pos-
itive” behavior is formalized by means of a satisfied fluent, such a require-
ment can be expressed as a goal imposing that, for all contraints in Csar, the
corresponding satisfied fluent must hold when the interaction is completed.
We model the completion of interaction as a special, last complete event,

5 member (E1, L) is true if E1 belongs to the list L.
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happening at a time T, (s.t. no further event will happen after Tt ). Thus,
we have a goal:

/\ holdsat(satisfied(c), Too). (1)

{clc€CsaT}

— the semantics of forbidden fluents is given as a denial, stating that if a certain
activity A happens when it is forbidden by some negative constraint, then
the execution is unsuccessful:

happens(A,T) A holdsat( forbidden( ,A),T) — L.dov (2)

In order to be compliant, services must eventually satisfy all the positive relations
without undermining the negative ones.

4 Verification of Quantitative Time Constraints

We now discuss how it can be extended to model and verify quantitative temporal
constraints, which are an important aspect when monitoring service interaction.
In the context of DecSerFlow, temporal constraints can be used to extend posi-
tive relations with the concepts of delays and deadlines, i.e. minimum /maximum
time intervals that should be respected between the execution of two activitiedd.

To specify that “when an order is paid, a receipt must be delivered within
24 time units” the modeler may use a response constraint c;, adding the
information that c¢; cannot persist in a non-satisfied state for more than 24
time units. We suppose that, to describe this condition, the user simply uses
a deadline(satis fied(c1),24) declaration. In general, deadline(F, D) states that
fluent F' can persist in a “not-holding” state at most D time units.

To capture and verify deadlines, we then add four new axioms. Let us suppose
that fluent F' is associated to a deadline(F, D) condition. When F is terminated,
anew fluent d check(F,T.) is initiated. This fluent represents that F' is currently
monitored, to check if the associated deadline will be met by the execution; T,
denotes the time at which the deadline will expire. Such a situation can be
formalized by means of the following axiom:

initiates(A,d check(F,T.),T) « deadline(F, D), terminates(A, F,T),

3
Te ==T+D. ®

The fluent d check(F,T,) can be terminated in two cases. In the first case, an
event capable to terminate F' happens within the deadline (i.e., within T¢):
terminates(A,d check(F,Te),T) « deadline(F, ),initiates(A, F,T),T < T.. (4)

5 In the following, we will focus only on deadlines; delays can be handled in a similar
way.
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The second case deals with the expiration of the deadline. SCIFF has no notion

of the flow of time: it becomes aware of the current time only when a new event
occurs. Therefore, we can keep SCIFF up-to-date by generating special tick
events. The deadline expiration is then detected and handled as soon as the first
tick event after the deadline occurs:

terminates(tick, deadline check(F,Te),T) «— deadline(F, ),T > T.. (5)

A further axiom recognizes this abnormal situation, by evaluating whether the
deadline check has been terminated after the expiration time (and generating a
violation if it is the case):

happens(tick,T) A holdsat(deadline check(F,Te), T)ANT > T. — L. (6)

5 Extending the Calculus

In this section we show how violations can be captured and reified within the
calculus itself. On the one hand, capturing violations prevents the termination
of the proof procedure when an error is detected. On the other hand, reifying
violations enable the possibility to consider them as first-class object during the
modeling phase, supporting the possibility of specifying and verifying complex
requirements such as compensating activities.

5.1 Reification of Violations

As described in Sections and @l two different kinds of non-compliance can be
identified at run-time: violation of a negative constraint, by executing a forbidden
activity, or violation of a positive constraint, if it is not satisfied when the execu-
tion terminates or, if a deadline is present, within the required expiration time.

In its basic form, SCIFF reacts to violations by terminating with answer “no”:
the observed happened events are evaluated as non compliant with the choreog-
raphy. This is undesirable in a monitoring setting: we would like to continue the
verification task even if some constraint has been violated.

To prevent termination of the proof, the underlying idea is to reify violations
as occurrences of special events. In other words, we explicitly capture the possible
run-time violations of a fluent F' by generating a corresponding violation(F’)
event upon violation of F. If we want to capture and handle violations, then we
must remove axioms ([II), ) and ), and substitute them with a corresponding
“soft” version. In particular, a soft version of axiom () states that, for each
constraint C' € Cgar, if the corresponding satis fied fluent does not hold at T,
then a corresponding wviolation(satisfied(C')) event must be generated:

happens(complete, Too )\

7
not holdsat(satisfied(C),Ts) — happens(violation(satisfied(C)),Ts). @
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The same applies for axiom ) (dealing with the deadline expiration), which
becomes

happens(tick, T)A ®)
holdsat(deadline check(F,T.),T) NT > T. — happens(violation(F'),T).

A soft version of axiom (@) is the following axiom:

happens(A, T)A\ 0
holdsat(forbidden(C, A), T) — happens(violation(forbidden(C)),T). ©®
Reifying violations opens many possibilities. For example, we could associate
an “importance degree” to each constraints, identifying and handling different
levels of violation. In the next section we will briefly focus on another possibility,
namely the specification of how to compensate for a violation.

5.2 Dealing with Compensations

Among the many possibilities offered by the reification of violations, an interest-
ing option is to attach DecSerFlow constraints to such a generated event. This
could be a way to specify how the interacting services must compensate for a
violation, or to define a context for violations, i.e. to model constraints which
become soft only in certain situations in the choreography.

Compensation can be modeled by e.g. inserting a response constraint having
a violation event as source, and the compensation activity as target; chain
response could be then used to handle critical violations: it states that when
the violation is detected, the next immediate activity to be executed is the
compensating one.

Contextualization of violations can be modeled using backward DecSerFlow
constraints (e.g., precedence). For example, modeling a precedence constraint
involving an activity A and the event violation(C) states that as soon as the
event violation(C) is raised, the REC verify if previously an execution of the
activity A has been performed (the activity A representing some how the idea
of context). In such a case, the violation can be managed, otherwise a definitive,
non compliant response is provided as a result.

6 Monitoring Example

We now briefly discuss a simple yet significative example of a choreography
fragment, showing how the proposed approach can be fruitfully applied for run-
time monitoring. Figure 2 shows the graphical DecSerFlow representation of the
example, while Table [@] sketches its corresponding formalization.

The choreography involves a customer, who creates an order by choosing one
or more items, and a seller, who collects the ordered items and finally gives a
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Fig. 2. A DecSerFlow choreography fragment, extended with a deadline and a com-
pensation

Table 6. Formalization of the choreography fragment shown in Figure

ID REC Specification
a1 formula(ci, alternate succession([choose item], [refuse item,accept item])).
c2  formula(cz, precedence([accept item], [close order])).
cs  formula(cs, negation response([close order], [choose item)])).
cs  formula(ca, response([close order], [send receipt])).
deadline(satis fied(ca), 10).
¢s  formula(cs, response([violation(cs)], [send discounted receipt])).
ce formula(cs, precedence([accept possible delays], [send discounted receipt])).

receipt. The seller is committed to issue the final receipt within a pre-established
deadline. Moreover, the seller offers the customer a fixed discount if he/she
accepts some delays; in case of a delay, the seller also promises a further discount
directly on the receipt.

In particular, the following rules of engagement must be fulfilled by the inter-
acting services. It is worth noting that each constraint can be easily mapped by
means of an (extended) DecSerFlow relation.

— Every choose item activity must be followed by an answer from the seller,
either positive or negative; no further upload can be executed until the re-
sponse is sent. Conversely, each positive/negative response must be preceded
by a choose item activity, and no further response can be sent until a new
item is chosen (constraint cq).

— If at least one uploaded item has been accepted by the seller, then it is
possible for the customer to close the order (constraint cs).

— When an order has been closed, no further item can be choosen (constraint
¢3); moreover, the seller is committed to send a corresponding receipt by at
most 10 time units (constraint cy).

— If the seller does not meet the deadline, it must deliver a discounted receipt
(constraint c¢5, modeled as a response constraint triggered by the violation
of constraint c4; the graphical representation of the violation is inspired by
the BPMN intermediate error event).
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Fig. 3. Fluents trend generated by REC when monitoring a specific interaction, and
using the diagram of Figure 2] as model. The verification time spent for reacting to
each happened event is also reported.

— The possibility of sending a discounted receipt is enabled only if the customer
has previously accepted the possibility of experiencing delays (constraint cg).

Note that the obtained DecSerFlow diagram contains two constraints (c4 and
¢5) which are not envisaged by standard DecSerFlow, but are seamlessly sup-
ported by REC thanks to the extensions presented above.

Figure [3 illustrates how REC is able to reason upon a specific course of in-
teraction w.r.t. the above described DecSerFlow model. Clipping and declipping
of fluents are handled at run-time, thus giving a constantly updated snapshot
of the reached interaction status. In the bottom part of the figure, verification
performance is reported, showing the amount of time spent by REC in order to
dynamically react to and reason upon occurring events.
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The central part of the execution shows how REC deals with a deadline ex-
piration. Indeed, as soon as the activity close order is executed (at time 50),
constraint ¢4 becomes unsatisfied, and a corresponding deadline check is initi-
ated, having 60 as expiration time. At time 62, a tick event makes the proof
aware that the deadline related to the satisfaction of constraint c4 is expired.
As a consequence, SCIFF reacts by terminating the deadline check fluent and
by installing the corresponding compensation; this is attested by the fact that
constraint ¢; becomes unsatisfied.

7 Related Work

Event Calculus has been extensively applied to specify and verify event-based
systems in many different settings. We will restrict our attention to the applica-
tions related to the SOA research field.

Rouached et al. propose a framework for engineering and verifying WS-BPEL
processes is [16]. £C is used to provide an underlying semantics to WS-BPEL,
enabling verification before and after execution. In particular, £C is exploited
to verify consistency and safety of a service composition (i.e. to statically check
if the specification always guarantees the desired requirements), and to check
whether an already completed execution has deviated from the prescribed re-
quirements. The authors rely on an inductive theorem prover for the verification
task. Although our work adopts DecSerFlow as specification language, the map-
ping of WS-BPEL presented in [16] can be directly implemented on top of REC.
In [I7], Aydin and colleagues use the Abductive Event Calculus to synthesize
a web service composition starting from a goal. The composition process is a
planning problem, where the functionality provided by individual services are
(atomic) actions, requiring some inputs and producing certain outputs. Being
REC based on an abductive proof-procedure, we will investigate the possibility
of adopting REC to deal also with this issue.

Few authors have considered adopting the £C to perform run-time reasoning.
Among those who have, Mahbub and Spanoudakis present a framework [I8] for
monitoring the compliance of a WS-BPEL service composition w.r.t. behavioral
properties automatically extracted from the composition process, or assump-
tions/requirements expressed by the user. £C is exploited to monitor the actual
behavior of interacting services and report different kinds of violation. The ap-
proach is extended in [I9], where an extension of WS-Agreement is used to
specify requirements. The monitoring framework relies on an ad hoc event pro-
cessing algorithm, which fetches occurred events updating the status of involved
fluents.

8 Conclusion

In this article we have presented a method for run-time verification of chore-
ographies specified in DecSerFlow that makes use of a SCIFF implementation
of the Event Calculus. The main features of our method are the presence of an
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execution model, which enables an efficient monitoring of the evolution of flu-
ents and their verification; the coherence of an overall declarative framework, in
which no information is lost when passing from DecSerFlow to SCIFF; and the
flexibility of the language, which makes it possible to capture aspects of complex
requirements, such as qualitative temporal conditions and violation handling by
compensation, in a simple and intuitive way. We have chosen to start from Dec-
SerFlow partly because it is well suited for representing the contractual nature of
service choreographies, and to specify the desired and undesired courses of inter-
action while leaving undefined other possibilities of interaction that are neither
desired nor undesired. We believe that this is a promising approach and in the
future we plan to focus on other declarative and contractual aspects of chore-
ographies. In particular, we intend to study the role of social commitments [20]
in the choreographies and to investigate possible integrations of commitments
into our framework.
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