
Checking Compliance of Execution Traces to

Business Rules

Federico Chesani1, Paola Mello1, Marco Montali1, Fabrizio Riguzzi2,
Maurizio Sebastianis3, and Sergio Storari2

1 DEIS – University of Bologna, V.le Risorgimento 2, 40136 Bologna, Italy
{federico.chesani,paola.mello,marco.montali}@unibo.it

2 ENDIF – University of Ferrara, Via Saragat 1, 44100 Ferrara, Italy
{fabrizio.riguzzi,sergio.storari}@unife.it

3 Think3 Inc., Via Ronzani 7/29, 40033 Casalecchio di Reno (BO), Italy
maurizio.sebastianis@think3.com

Abstract. Complex and flexible business processes are critical not only
because they are difficult to handle, but also because they often tend
to loose their intelligibility. Verifying compliance of complex and flexi-
ble processes becomes therefore a fundamental requirement. We propose
a framework for performing compliance checking of process execution
traces w.r.t. expressive reactive business rules, tailored to the MXML
meta-model. Rules are mapped to Logic Programming, using Prolog to
classify execution traces as compliant/non-compliant. We show how dif-
ferent rule templates, inspired by the ConDec language, can be easily
specified and then customized in the context of a real industrial case
study. We finally describe how the proposed language and its underlying
a-posteriori reasoning technique have been concretely implemented as a
ProM analysis plug-in.

1 Introduction

In the last years, Workflow Management Systems (WfMS) have been increasingly
adopted by companies in order to efficiently implement their Business Processes.
A plethora of tools, systems and notations have been proposed to cover all the
phases of the Business Process Management life-cycle, from Process Design and
Modeling to Execution and Monitoring/Analysis. To deal with needs and re-
quirements of business users, two main dimensions have been recently tackled:
flexibility and expressiveness. On one side, to be successfully employed WfMS
should make a trade-off between controlling the way workers do their business
and turning them loose to exploit their expertise during execution [1,2,3]; while
constraining workers to follow a business process model, flexible WfMS sup-
port the possibility of deviating from its prescriptions and even changing it at
run-time. On the other side, business processes are exploited to model complex
problems and domains under different perspectives (e.g. the control flow perspec-
tive and the organizational one); to have an idea of the expressiveness needed

D. Ardagna et al. (Eds.): BPM 2008 Workshops, LNBIP 17, pp. 134–145, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Checking Compliance of Execution Traces to Business Rules 135

to suitably face with this complexity, just take a look to the Worfklow Patterns
[4] initiative1.

Both dimensions are critical not only because they are difficult to handle,
but also because they contribute to make the process less intelligible. Verifying
compliance of complex and flexible processes becomes therefore a fundamental
requirement. On the one hand, as claimed in [5] “deviations from the ‘normal
process’ may be desiderable but may also point to inefficiencies or even fraud”,
and therefore flexibility could lead the organization to miss its strategic goals or
even to violate regulations and governance directives. Among the different kinds
of flexibility, flexibility by change and by deviation [1,3] enable the possibility
of changing the process instance or deviating from the prescribed model during
execution, making therefore impossible to assess compliance before the execution.
On the other hand, as complexity increases it becomes important to provide
support for a business analyst in the task of analyzing past process executions.
This analysis can help the business manager in the process of assessing business
trends and consequently making strategic decisions.

In this paper, we focus on this specific task, proposing a framework for per-
forming compliance checking of process execution traces w.r.t. reactive business
rules. Such rules are specified by means of a powerful declarative language, called
CLIMB, which stems from Condec [6] constraints, extending their expressive-
ness not only as regards temporal aspects but also as regards event data, such
as involved originators, event types and activity identifiers.

We sketch how the proposed language can be mapped to Logic Programming,
enabling the possibility of exploiting Prolog in order to perform compliance
checking. Such a reasoning technique has been exploited to implement a ProM
[7] plug-in, called SCIFFChecker, that classifies a set of MXML [8] execution
traces as compliant/non-compliant w.r.t. a certain business rule, in the style
of LTL Checker [5]. MXML is the format used in ProM to load the process
execution traces.

The feasibility of our approach is assessed by considering a real case study
involving Think3 R©2, a company working in the Computer Aided Design (CAD)
and Product Life-cycle Management (PLM) market.

The paper is organized as follows. Section 2 grounds the compliance checking
problem on the Think3 case study. Language and methodology for specifying
and applying CLIMB rules are presented in Section 3. Section 4 illustrates the
implementation of a-posteriori compliance checking inside ProM, reporting ex-
periments made on the Think3 case study. Related works and conclusions follow.

2 An Industrial Case Study

An important current challenge in the manufactoring industry is to handle, ver-
ify and distribute the technical information produced by the design, development
and production processes of the company. The adoption of a system supporting
1 http://www.workflowpatterns.com
2 http://www.think3.com

http://www.workflowpatterns.com
http://www.think3.com

136 F. Chesani et al.

the management of technical data and the coordination of the people involved is
of key importance, to improve productivity and competitiveness. The main issue
is to provide solutions for managing all the technical information and documen-
tation (such as CAD projects, test results, photos, revisions), which is mainly
produced by workers during the design phase. Since an important part of the
design process is spent by testing, modifying and improving previously released
versions, the traceability of relevant information concerning an item is necessary.

Think3 is one of the leading global players in the field of CAD and PLM solu-
tions: it provides an integrated software which bridges the gap between CAD
modeling environments and other tools involved in the process of designing
(and then manufacturing) products. All these tools are transparently combined
with a non-intrusive information system which handles the underlying product
workflow, recording all the relevant information and making it easily accessible
to the workers involved, enabling its consultation, use and modification. Such
an information system supplies a detailed, shared and constantly updated vi-
sion of the life-cycle of each product, providing a complete log of the executed
activities.

The underlying Think3 workflow centers around the design of a manufacturing
product. Different activities can be executed to affect the progress-status of an
item, involving the modification and even the evolution of multiple co-existing
versions of its corresponding project. Such a workflow can be adapted on each
single Think3 client company in order to meet different specific requirements.

2.1 Compliance Checking and Decision Making Support: Think3
Requirements

To support a business manager in decision making, and in particular in the tasks
of analyzing the life-cycle of different projects and pinpointing problems and
bottlenecks, Think3 is investigating the development of a Business Intelligence
dashboard. Within the TOCAI.IT FIRB Project3, Think3 and the University of
Bologna are collaborating to realize one of the main dashboard components: a
tool supporting compliance verification (both on and off-line) of design processes
w.r.t. configurable business rules. This will facilitate the manager in the iden-
tification of behavioural trends and non-compliances to regulations or internal
policies. In this particular case study, we elicitated the following non-exaustive
list of interesting properties:

(Br1) Evaluating the time relationship between the execution of two given ac-
tivities (e.g. Was a project committed by 18 days after its creation?).

(Br2) Identifying which projects passed too many times through a certain ac-
tivity (e.g., Which projects have been modified at least twice?).

(Br3) Analysing originators, i.e., workers involved in the process (e.g., Was a
project checked by a person different than the one who published it?).

3 http://www.dis.uniroma1.it/~tocai/

http://www.dis.uniroma1.it/~tocai/

Checking Compliance of Execution Traces to Business Rules 137

3 CLIMB Business Rules

We propose a language, inspired by the SCIFF one [9], for specifying reactive
business rules (called CLIMB business rules throughout the paper). Their struc-
ture resembles ECA (Event-Condition-Action) rules [10]; the main difference
w.r.t. ECA rules is that, since CLIMB rules are used for checking, they envisage
expectations about executions rather than actions to be executed. Expectations
represent events that should (not) happen. Therefore, CLIMB rules are used
to constrain the process execution when a given situation holds. Both positive
and negative constraints can be imposed on the execution, i.e., it is possible to
specify what is mandatory as well as forbidden in the process.

Rules follow an IF Body having BodyConditions THEN Head structure,
where Body is a conjunction of occurred events, with zero or more associated
conditions BodyConditions, and Head is a disjunction of positive and negative
expectations (or false). Each head element can be subject to conditions as well.

The underlying intuitive semantics is that whenever a set of occurred events
makes Body (and the corresponding conditions BodyConditions) true, then also
Head must eventually be satisfied4. A positive (resp. negative) expectation is
satisfied if a corresponding matching event indeed occurs (resp. does not occur)
and the associated conditions are satisfied as well. Furthermore, it is possible
to specify rules without the IF part: such rules are used to impose what the
business manager expects (not) to find inside the process instances in any case.

The concept of event is tailored to the one of audit trail entry in the MXML
meta-model [8]. Events are atomic and mainly characterized by: (i) the name
of the activity it is associated to; (ii) an event type, according to the MXML
transactional model [8], which models the life-cycle of each activity with event
types like “start”, “re-assignment”, “completion”; (iii) an originator, identifying
the worker who generated the event; (iv) an execution time, representing the time
at which the event has been generated; (v) one or more data items5.

The main distinctive feature of our rules is that all these parameters are
treated, by default, as variables. To specify that a generic activity A has been
subject to a whatsoever event, the rule body will simply contain a string like:
activity A is performed by OA at time TA, where A stands for the ac-
tivity’s name, OA and TA represent the involved originator and execution time
respectively, and performed is a keyword denoting any event type. To facilitate
readibility, the part concerning originator and execution time can be omitted if
the corresponding variables are not involved in any condition.

Such a generic sentence will match with any kind of event, because all the
involved variables (A, OA and TA) are completely free, and the event type is not
specified. The sentence can then be configured in many different ways. In par-
ticular, the involved variables can be grounded to specific values or constrained
by means of explicit conditions. The Event type can be instead fixed by simply

4 Therefore, rules having false in the head are used to express denials.
5 For simplicity, in the paper we will not take into account this aspect, but it can be

seamlessly treated in our framework.

138 F. Chesani et al.

substituting the generic performed keyword with one of the specific types envis-
aged in the MXML transactional model.

Positive (negative) expectations are represented similarly to occurred events,
by only changing the is part with should (not) be.

3.1 A Methodology for Building Rules

To clarify our methodology, let us consider a completely configured rule, namely
the specification of the (Br3) rule of Think3:

IF activity A is performed by OA having A equal to Check

THEN activity B should NOT be performed by OB

having B equal to Publish and OB equal to OA

(CLIMB-Br3)

By analyzing this rule, we can easily recognize two different aspects: on the
one hand, the rule contains generic elements, free variables and constraints,
whereas on the other hand it specifically refers to concrete activities. The former
aspect captures re-usable patterns: in this case, the fact that the same person
cannot perform two different activities A and B, which is known as the four-eyes
principle. The latter aspect instantiates the rules in a specific domain, in this
case grounding the four-eyes principle in the context of Think3’s workflow. To
reflect such a separation, we foresee a three-step methodology to build, configure
and apply business rules: (i) a set of re-usable rules, called rule templates, are
developed and organized into groups by a technical expert (i.e., someone having
a deep knowledge of rules syntax and semantics); (ii) rule templates are further
configured, constrained and customized by a business manager to deal with her
specific requirements and needs; (iii) configured rules are exploited to perform
compliance checking of company’s execution traces.

3.2 Specification of Conditions

Conditions are exploited to constrain variables associated to event occurences
and expectations inside business rules (namely activity names, originators and
execution times). As shown in Figure 1 two main families of conditions are
currently envisaged: string and time conditions. String conditions are used to
constrain an activity/originator by specifying that it is equal to or different
from another activity/originator, either variable or constant. An example of a
string condition constraining two originator variables is the “OB equal to OA”
part in rule (CLIMB-Br3).

Time conditions are used instead to relate execution times, in particular for
specifying ordering among events or imposing quantitative constraints, such as
deadlines and delays. The semantics of constraints is determined by time oper-
ators, which intuitively capture basic time relationships (such as before or at).
Absolute time conditions constrain a time variable w.r.t. a certain time/date,
whereas relative time conditions define orderings and constraints between two

Checking Compliance of Execution Traces to Business Rules 139

Fig. 1. Basic hierarchy of string and time constraints

variables. Relative conditions can optionally attach a displacement to the target
time variable as well. For example, to specify that the time variable TB must be
within a displacement of 2 days after TA, we simply write TB BEFORE TA+2days.

3.3 Rule Templates

The first step in our methodology envisages the creation of rule templates, i.e.
re-usable partially constrained rules. They typically fix the rule structure, e.g. de-
ciding how many events are contained in the body, and use variable string con-
ditions and/or relative time conditions. They do not involve absolute time and
constant conditions, which are exploited to ground rules on a specific domain.

We have developed a hierarchy of rules which strictly resembles the one pro-
posed for ConDec. Three basic groups are defined: existence rules, IF. . .THEN
rules and IF. . .THEN NOT rules. The hierarchy is not fixed: it can be adapted
or even replaced by writing other rules and by organizing them differently.

Existence Rules impose the presence/absence of some events in the execution
trace, independently from the occurrence of other events. The presence (absence)
template simply state that a certain event is expected to (not) occur, and is sim-
ply formalized as: activity A should (NOT) be performed. Choice extends
presence by introducing disjunction of expectations. The at least N (at most
N) rule extends the presence (absence) one by stating that the specified event
should (not) be repeated N times.

Such rules are useful for modeling the presence/absence of multiple instances of
a certain event in the execution trace, as in (Br2), but they are rather difficult to
be represented, especially when N increases. For this reason, we have extended the
syntax of the language for supporting repetitions as first-class entities. To specify
that activity A should be performed at least 3 times, we will then write: activity
A should be performed 3 times between TsA and TcA. The two involved time
variables extend the concept of execution time when dealing with multiple events,

140 F. Chesani et al.

by identifying the two time points at which the repetition starts and completes.
To express that A must be performed at most 3 times, we can simply state: IF
activity A is performed 4 times THEN false.

IF. . . THEN Rules are positive relationships which specify that when certain
events happen, then also other events should occur, satisfying the imposed time
orderings. The simplest rule belonging to this group is the responded existence
one, which simply states that when a certain event happens, then another event
should happen too, either before or afterward. Starting from this rule, response
and precedence templates extend it by adding respectively an after and before
relative time condition among the involved execution times.

Response and precedence rules can then be specialized to express more com-
plex event patterns, e.g. introducing conjunctions and disjunctions of events.
For example, the following template represents a synchronized response, i.e. a
response triggered by the occurrence of two events:

IF activity A is performed at time TA

and activity B is performed at time TB

THEN activity C should be performed at time TC

having TC after TA and TC after TB .

IF. . . THEN NOT Rules express events to be forbidden when other events
happen. Roughly speaking, they substitute positive expectations with nega-
tive ones; for example, the responded absence states that IF activity A is
performed THEN activity B should not be performed .

This templates is a good example to illustrate how conditions about origina-
tors can be used. Indeed, by adding an equal to constraint between the origina-
tors of A and B, it actually models the already cited four-eyes principle.

3.4 From Templates to Customized Business Rules

In a second phase, rule templates are configured by a business manager to deal
with her specific requirements. This step exploits constant string conditions, ab-
solute time conditions and relative time conditions with displacements, specifi-
cally referring to the company’s domain. For example, the CLIMB rule

IF activity A is performed at time TA

having A equal to Creation

THEN activity B should be performed at time TB

having B equal to Commit

and TB after TA and TB before TA + 18days.

(CLIMB-Br1)

models (Br1) by extending response with a before relative time constraint having
a 18 days-displacement (used to express a deadline).

Finally, Think3’s Rule (Br2) can be easily modeled by grounding the at least
N template on the Modify activity.

Checking Compliance of Execution Traces to Business Rules 141

3.5 Compliance Verification with Logic-Programming

Compliance verification is concretely carried out by mapping each execution
trace and the CLIMB rule to Logic Programming, exploiting Prolog for reason-
ing. An execution trace is treated as a knowledge base storing each audit trail
entry as a fact of the type

happened(event(EventType,ActivityName,Originator), ExecutionT ime))).

The rule used for checking is instead transformed into a Prolog query by
computing the negation of the implication represented by the CLIMB rule. So, if
the CLIMB rule is represented by the implication B → H , then the query would
be B ∧ ¬H . Such a query tries to find a set of occurred events in the execution
trace that satisfy the rule body but violate the rule head. For example, rule (Br3)
is translated to the following query:

?−A = ’Check’, happened(event(, A, OA), TA),
not(B = ’Publish’, OB �= OA, not(happened(event(, B, OB), TB))).

Since the analysis is performed a-posteriori, positive expectations are flattened
to occurred events, and negative expectations to the absence of events. If the
query succeeds, then a counter-example which violates the rule has been found
in the execution trace. The trace is then evaluated as non-compliant.

4 SCIFFChecker: Compliance Checking in ProM

Drawing inspiration from the LTL Checker [5], we have embedded such a compli-
ance reasoning technique into a ProM [7] analysis plug-in, called SCIFFChecker,
for the classification of MXML execution traces w.r.t. CLIMB business rules.
SCIFFChecker relies on the three-steps methodology described in Section 3.1,
providing a user-friendly GUI for the customization of rule templates.

At start-up, templates are loaded from an XML-based template file. At the
moment, different templates are already available, following the structure pro-
posed in Section 3.3. In order to extend or modify the template hierarchy, the
technical expert has simply to change this file. As shown in Figure 2, templates
are displayed exploiting a tree-like component; clicking on a template description
causes its corresponding CLIMB representation to appear in the center panel.
By clicking on a “configuration” button, the different variables and customizable
elements of the rule become highlighted. When selecting an highlighted element,
a specific customization panel appears, supporting the user in setting the param-
eters (such as event types and repetitions) and in the specification of conditions.
When the chosen rule has been customized, it can be either saved to a special
group containing all the user-defined rules or used for compliance checking. In
the latter case, the user has first to choose a granularity, which ranges from
milliseconds to months and defines the time unit for converting time quantities
into integer values. For each execution trace contained in the considered MXML

142 F. Chesani et al.

Fig. 2. A screenshot of the main SCIFFChecker window

log, three steps are then performed transparently to the user: (i) the execution
trace is translated into a Prolog knowledge base, converting involved execution
times; (ii) the CLIMB business rule is mapped to a Prolog query, following the
proof-of-concept shown in Section 3.5; (iii) a Prolog engine based on SWI6 is
exploited to verify whether the execution trace complies to the CLIMB rule.

All verification outcomes are finally collected and a summarizing pie chart is
shown, together with the explicit list of compliant/non compliant traces. The
user can then start a new classification by considering the whole log or only the
(non) compliant execution traces. In this way, a conjunction of CLIMB rules can
be verified by performing a sequence of tests, each one dealing with a single rule,
and selecting at each step only the compliant subset for the next verification.

SCIFFChecker has been concretely applied to analyze the execution traces
of a Think3 client. We have first exploited the ProM Import tool7 in order to
convert the relevant information from the client database into an MXML format,
by considering the project name as case identifier.

In particular, we extracted a portion of 9000 execution traces, ranging from
4 to 15 events. Then we used, together with a Think3 business manager, the
plug-in to express and test the business rules of interest described in Section
3.4. The average time for performing compliance checking have been assessed to
be around 10-12 seconds. The verification outcomes have been finally analyzed
with the business manager. For example, considering rules (Br2) and (Br3), we
discovered that, fortunately, only 2% of the execution traces involved more than
two project revisions, and that in 3,5% of the cases only the same person was
responsible for both publishing and checking the project.

The verification of rules like (Br1) was found interesting especially by varying
the deadline involved. Indeed, the business manager wanted to detect projects

6 http://www.swi-prolog.com/
7 http://promimport.sourceforge.net

http://www.swi-prolog.com/
http://promimport.sourceforge.net

Checking Compliance of Execution Traces to Business Rules 143

taking too much time as well as projects released too soon, to point out both
possible bottlenecks and potential inaccuracies.

5 Related Work

A huge amount of work has been (and is being) carried out in order to deal with
flexibility and adaptivity in Process Aware Information Systems [2]. DECLARE
[1] is a constraint-based WfMS which adopt ConDec as a declarative graphical
specification language. Flexibility is tackled at design-time, supporting the user
in the specification of a minimal set of constraints that should be met during
execution rather than focusing on a specific procedural solution, and at run-time,
supporting the dynamic removal and insertion of constraints. In [3] ADEPT2 is
proposed as a Workflow Management System capable to support the change of
running instances (flexibility by change). The authors also suggest that Adaptive
Process Management System should store, besides the enactment log, also the
log of sequences of changes applied to a process model during execution.

SCIFFChecker could be considered as complementary to these systems: it
can be used to assess whether executed instances met the desired requirements/
regulations. An interesting future work concerns the verification of process logs
containing also the sequence of changes; in this setting, it would be possible to
express requirements involving also such changes, and to investigate the rela-
tionship between non-compliances and changes.

The closest work to the one here presented is the ProM LTL-Checker [5], that
shares with our approach motivation and purposes. While LTL-Checker exploits
Linear Temporal Logic (LTL) for the formalization of properties, our approach
belongs to the Logic Programming family. The main technical difference between
the two approaches is that while LTL formulae employ temporal modalities to
qualitatively deal with time and must be completely grounded before the verifi-
cation, CLIMB rules support variables and an explicit notion of time. The impact
of this difference is twofold: (i) CLIMB rules are more expressive than LTL for-
mulas, being e.g. able to constrain execution times and model delays/deadlines;
(ii) the configuration of templates inside the LTL-Checker mainly consists of as-
sociating a ground value to the involved parameters, while SCIFFChecker sup-
ports the specification of many different conditions on the variables, enabling the
possibility of modeling a variety of business rules starting from a single template.

The task of verifying compliance with regulations and rules can also be car-
ried out before the execution. In [11], the compliance of processes to regulations
and standards is enforced by design rather than being checked a posteriori. In
order to identify obligations that an enterprise has to fulfill for the process to be
compliant, the authors adopt a deontic logic language. Obviously, a static ap-
proach is not suited to deal with flexibility by change or deviation. Furthermore,
it cannot deal with situations where the outcome of the compliance test inher-
ently depends on the actual configuration (resources and data) of the process
instance, e.g. like in the case of the four-eyes principle, where the focus of the
constraint is about the actual originators.

144 F. Chesani et al.

An interesting research topic concerns the integration of SCIFFChecker with
the process mining algorithm described in [12], which follows the opposite direc-
tion: it aims at discovering a set of declarative business rules, specified in the
SCIFF language, starting from execution traces previously classified as correct
or wrong, s.t. the mined specification evaluates as compliant the correct sub-
set and as non compliant the wrong one. We could first mine a set of CLIMB
business rules, use them to classify new traces, or exploit SCIFFChecker to
split a given MXML log into the wrong and correct subsets required as input
for the mining algorithm. The latter approach could be exploited to discover a
declarative model giving an explanation of the SCIFFChecker classification.

6 Conclusions and Future Work

We have described a framework for checking the compliance of process execution
traces to declarative reactive business rules, proposing a three-steps methodol-
ogy for developing and applying rules. The approach has been tested on a real
industrial case study, identifying what kind of rules the Think3 company would
be able to check and showing how they can be easily expressed by customiz-
ing rule templates (re-usable patterns resembling ConDec constraints). In order
to effectively use such rules for reasoning, we have sketched how they can be
mapped to Logic Programming, making possible to adopt Prolog for verification.
A ProM plug-in that classifies MXML execution traces w.r.t. CLIMB business
rules, helping a business manager in the assessment of business trends and pro-
viding decision making support, has been implemented on top of this reasoning
technique.

We are applying our approach in other domains, such as a regional health
screening protocol and in a chemo-physical process of wastewater treatment
plants [13]. In the future, we will continue to develop the framework, introduc-
ing the possibility of dealing also with case and event data (which is seamlessly
supported by the underlying reasoning technique), and investigating relation-
ships between CLIMB rules and other languages.

In particular, we will study to what extent CLIMB business rules can be
expressed as SQL queries in temporal databases. We have chosen Prolog as un-
derlying formal framework because of its great expressiveness. Thanks to Pro-
log, tested rules can be complemented with background knowledge composed of
(possibly recursive) rules that allow to infer new facts about the analyzed traces
(e.g., an organizational perspective comprising roles and groups can be easily ex-
pressed). Anyway, only further investigation will reveal if such an expressiveness
will be effectively exploited by business analysts.

Acknowledgments. This work has been partially supported by the FIRB
project TOCAI.IT. The authors would like to thank Wil van der Aalst and
Maja Pesic for their valuable comments and suggestions.

Checking Compliance of Execution Traces to Business Rules 145

References

1. Pesic, M., Schonenberg, M.H., Sidorova, N., van der Aalst, W.M.P.: Constraint-
based workflow models: Change made easy. In: Meersman, R., Tari, Z. (eds.) OTM
2007, Part I. LNCS, vol. 4803, pp. 77–94. Springer, Heidelberg (2007)

2. Weber, B., Rinderle, S., Reichert, M.: Change patterns and change support fea-
tures in process-aware information systems. In: Krogstie, J., Opdahl, A.L., Sindre,
G. (eds.) CAiSE 2007 and WES 2007. LNCS, vol. 4495, pp. 574–588. Springer,
Heidelberg (2007)

3. Reichert, M., Rinderle, S., Kreher, U., Dadam, P.: Adaptive process management
with ADEPT2. In: Proceedings of the 21st International Conference on Data Engi-
neering (ICDE 2005), pp. 1113–1114. IEEE Computer Society, Los Alamitos (2005)

4. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distributed and Parallel Databases 14(1), 5–51 (2003)

5. van der Aalst, W., de Beer, H., van Dongen, B.: Process Mining and Verification
of Properties: An Approach based on Temporal Logic. In: Meersman, R., Tari, Z.
(eds.) OTM 2005. LNCS, vol. 3760, pp. 130–147. Springer, Heidelberg (2005)

6. Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business
processes management. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006.
LNCS, vol. 4103, pp. 169–180. Springer, Heidelberg (2006)

7. van der Aalst, W.M.P., van Dongen, B.F., Günther, C.W., Mans, R.S., de Medeiros,
A.A., Rozinat, A., Rubin, V., Song, M., Verbeek, H.M.W., Weijters, A.J.M.M.:
ProM 4.0: Comprehensive Support for Real Process Analysis. In: Kleijn, J.,
Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 484–494. Springer, Hei-
delberg (2007)

8. van Dongen, B.F., van der Aalst, W.M.P.: A Meta Model for Process Mining
Data. In: Casto, J., Teniente, E. (eds.) Proceedings of the CAiSE 2005 Workshops
(EMOI-INTEROP Workshop), FEUP, Porto, Portugal, vol. 2, pp. 309–320 (2005)

9. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Verifiable
agent interaction in abductive logic programming: the SCIFF framework. ACM
Transactions on Computational Logic 9(4) (to appear) (2008)

10. Pissinou, N., Snodgrass, R.T., Elmasri, R., Mumick, I.S., Özsu, T., Pernici, B.,
Segev, A., Theodoulidis, B., Dayal, U.: Towards an infrastructure for temporal
databases. SIGMOD Rec 23(1), 35–51 (1994)

11. Sadiq, S.W., Governatori, G., Namiri, K.: Modeling control objectives for business
process compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007.
LNCS, vol. 4714, pp. 149–164. Springer, Heidelberg (2007)

12. Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Inducing declarative
logic-based models from labeled traces. In: Alonso, G., Dadam, P., Rosemann, M.
(eds.) BPM 2007. LNCS, vol. 4714, pp. 344–359. Springer, Heidelberg (2007)

13. Luccarini, L., Bragadin, G.L., Mancini, M., Mello, P., Montali, M., Sottara, D.: Pro-
cess quality assessment in automatic management of wastewater treatment plants
using formal verification. In: Proceedings of Simposio Internazionale di Ingegneria
Sanitaria Ambientale (SIDISA 2008) (to appear) (2008)

	Checking Compliance of Execution Traces to Business Rules
	Introduction
	An Industrial Case Study
	Compliance Checking and Decision Making Support: Think3 Requirements

	CLIMB Business Rules
	A Methodology for Building Rules
	Specification of Conditions
	Rule Templates
	From Templates to Customized Business Rules
	Compliance Verification with Logic-Programming

	SCIFFChecker: Compliance Checking in ProM
	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

